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Abstract. Pivot-based algorithms are effective tools for proximity searching in
metric spaces. They allow trading space overhead for number of distance evaluations
performed at query time. With additional search structures (that pose extra space
overhead) they can also reduce the amount of side computations. We introduce
a new data structure, the Fixed Queries Array (FQA), whose novelties are (1) it
permits sublinear extra CPU time without any extra data structure; (2) it permits
trading number of pivots for their precision so as to make better use of the available
memory. We show experimentally that the FQA is an efficient tool to search in metric
spaces and that it compares favorably against other state of the art approaches. Its
simplicity converts it into a simple yet effective tool for practitioners seeking for a
black-box method to plug in their applications.
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1. Introduction

Proximity searching is the problem of looking for objects in a set close
enough to a query under a certain (expensive to compute) distance.
The goal is to preprocess the set in order to minimize the number
of distance evaluations at query time. This is a very active branch
of computer science, seeking for a black-box to put in applications
such as multimedia databases, machine learning, data compression, text
retrieval, computational biology and function prediction, to name a few.

A very common case arises when the objects are points in a k-
dimensional Euclidean space, and well known solutions exist, such as
Voronoi diagrams (Aurenhammer, 1991), kd-trees (Bentley, 1975) and
R-trees (Guttman, 1984). However, this is not the general case, and in
many applications the distance is simply a metric (i.e. it just satisfies
the triangular inequality).
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We are interested in the case of general metric spaces, where there
are essentially two design approaches. One approach is based on the
concept of the Voronoi diagram (Aurenhammer, 1991), a data structure
proven to be useful in low dimensional vector spaces. The other ap-
proach, much more popular, is based essentially in mapping the metric
space onto a k-dimensional space. This last approach, the focus of this
paper, leads to a family called pivot-based indexing algorithms.

This family has interesting properties, such as the ability to pay
more space overhead (basically by incrementing k) in order to reduce
the number of distance evaluations at query time. The higher the in-
trinsic dimension of the space (a concept that we explain later), the
more pivots are needed to obtain the same performance, a phenomenon
known as the “curse of dimensionality”. Therefore, efficient space usage
is an issue for pivot-based algorithms.

On the other hand, it is not always realistic to assume that the
distance function is so expensive to compute that all the other side com-
putations can be neglected. Therefore, many pivot-based algorithms
add extra data structures (which pose more space overhead) in order
to reduce the side computations. This does not reduce the number of
distance evaluations, but the search is in practice faster.

In this paper we introduce a new data structure called Fixed Queries
Array (or FQA), which has two interesting properties. First, it is the
first data structure able of achieving a sublinear (in the database size)
number of side computations without using any extra space. Second, it
is able to trade number of pivots k for their precision, so as to optimize
the usage of the available space.

We compare experimentally the FQA against other state of the art
approaches and show that it is a simple and effective alternative. The
FQA is a very appealing choice for practitioners looking for a simple
and efficient solution for proximity queries in metric spaces.

The paper is organized as follows. In Section 2 we give the basic
formal definitions and review related work. In Section 3 we present
the pivot-based approach and discuss efficiency measures. In Section 4
we introduce the FQAs. Section 5 presents our experimental results.
Finally, we give our concluding remarks in Section 6. A preliminary
version of this work appeared in (Chévez et al., 1999b).
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2. Basic Concepts

2.1. ForMAL DEFINITIONS

Proximity queries can be formalized using the metric space model,
where a distance function d(z,y) is defined for every point in a set X.
The distance function d has metric properties, i.e. it satisfies d(z,y) > 0
(positiveness), d(z, y) = d(y, ) (symmetry), d(z,y) = 0 iff = y (strict
positiveness), and the property allowing the existence of solutions bet-
ter than brute-force for proximity queries: d(z,y) < d(z, z) + d(z,y)
(triangle inequality).

The database is a set U C X of size n, and we define the query
as ¢, an arbitrary element of X. A proximity query involves additional
information, besides ¢, and can be of two basic types:

Range query: retrieve all elements which are within distance r to ¢,
ie. (¢,7)a={ueclU :d(¢g,u) <r}.

Nearest neighbor query: retrieve the closest elements to ¢ in U, i.e.

nn(g)a={ueU : YveU, d(q,u) <d(g,v)}.

In this paper we are devoted to range queries. Nearest neighbor
queries can be embedded into range queries using a branch and bound
heuristic; although several dedicated algorithms have been published
(Clarkson, 1999; Micé et al., 1994; Yianilos, 1999).

Vector spaces are a particular case of metric spaces where the ele-
ments are k-dimensional coordinates under the L, distance (p =1, 2,
.. 00). This is defined as follows: the L, distance between z and y is

1/p

Lp((wla"'amk)a(yla"'ayk)): E |$i—yi|p ’

1<i<k

where some particular cases are p = 1 (Manhattan distance), p = 2
(Euclidean distance) and p = oo (maximum distance). This last one
deserves an explicit formula:

Loo((wla sy wk)a (yla SRR yk)) = 112;2}2 |mz - yz| .
Figure 1 illustrates.
The goal of a proximity search algorithm is to build in advance
a data structure (called “index”) so as to minimize the search cost
at query time. There are three main terms in this cost, namely the
number of distance computations, the extra CPU cost and the I/O
cost. In this paper we concentrate in the first two, assuming that the
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Figure 1. On the left, an example of a range query on a set of points. On the right,
the set of points at the same distance to a center point, for different L, distances.

index fits in main memory. There exist currently very few approaches
to the secondary memory problem on metric spaces (see (Ciaccia et al.,
1997)). On the other hand, the importance of the extra CPU cost (or
“side computations”) depends on the application, namely on how costly
to compute is the distance function.

2.2. RELATED WORK

Historically, the proximity searching problem appeared in the more
restricted form of vector spaces, where the objects are points in a k-
dimensional space (with L, distances). General metric space algorithms
inherited two major trends, very successful for vector spaces. Those
models are derived from Voronoi diagrams (Aurenhammer, 1991) and
from kd-trees (Bentley, 1975). We briefly discuss the first idea and
then focus on pivot-based algorithms. For a more thorough discussion
see (Chévez et al., 1999c).

2.2.1. Voronoi-like Algorithms

The Voronoi diagram (Aurenhammer, 1991), or proximity graph, has
been used for proximity queries in vector spaces. It is a fundamental
structure in computational geometry for solving closest point prob-
lems. It is really challenging to generalize it to metric spaces, be-
cause the algorithms to build it depend heavily on coordinate informa-
tion. Nevertheless, the concept itself has inspired several approaches
constructing a more or less fine approximation to either the Voronoi
graph or its dual, the Delaunay triangulation. In this line we can find
generalized hyperplanes (Kalantari and McDonald, 1983; Dehne and
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Nolteimer, 1987; Uhlmann, 1991b), the GNATs (Geometric Neighbor
Access Trees) (Brin, 1995), and more recently the M-trees (Ciaccia
et al., 1997), the SB algorithm (Clarkson, 1999) and the SAT (Spatial
Approximation Tree) (Navarro, 1999). The key idea in all these algo-
rithms is to cluster the space so as to search by approaching spatially
to the query, as opposed to the pivot-based algorithms below.

2.2.2. Pwot-Based Algorithms

The kd-trees perform a hierarchical binary decomposition of the vector
space. At each level the left and right branches account for points at the
left or right of a threshold in a particular coordinate. The coordinates
alternate at each level. For general metric spaces the absence of coor-
dinates urged the design of alternative rules for space decomposition,
object location and cell discarding. An entire family of algorithms are
direct descendants of the kd-tree structure. Instead of using the coordi-
nates directly, these algorithms use the distance to a set of distinguished
database objects called keys, vantage points or pivots in the papers.
This is combined with the triangular inequality to obtain a discarding
rule similar to that of kd-trees.

Most of these schemes are tree-based data structures defining a hier-
archical decomposition where the space cells coincide with leaves in the
tree. The simplest example is the Burkhard-Keller Tree (BKT), a data
structure designed for distance functions yielding discrete values. Each
node of the tree corresponds to a different pivot p, and each descending
branch to a distance from p. That is, all the elements at distance ¢ from
p are put in the i-th subtree of the corresponding node. The subtrees
are recursively built with the same rule. At search time, for a query
(g,7)d, we backtrack in the tree entering only in the subtrees numbered
d(q,p) — r to d(g,p) + r, as the other elements can be discarded using
the triangular inequality.

Many other variations over the same idea exist. We can select more
than one pivot at each node, as in (Shapiro, 1977). Other interesting
alternative is to use one pivot in each tree level instead of each node.
This scheme is used in the Fixed Queries Tree (FQT) (Baeza-Yates
et al., 1994), which saves distance computations in the backtracking
at the expense of somewhat taller trees. Since the pivots do not reside
in the nodes one can think in a further refinement of FQT, namely to
arbitrarily increase the number of pivots, or equivalently the height of
the tree. These arbitrarily tall trees are the Fixed Height Fixed Queries
Trees (FHFQT) (Baeza-Yates, 1997), which are experimentally shown
to be more efficient than their predecessors.

If, on the other hand, the distance function is continuous, then
this scheme does not work because it is impossible to assign directly
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one branch for each distance outcome. Hence some discretization of
the distances has to be carried out. In the Metric Trees and Vantage
Point Trees (VPTs) (Uhlmann, 1991a; Yianilos, 1993) it is suggested
to binarize the distance outcome by using as threshold the median
of the distances from the pivot to all its associated elements. This
guarantees that the tree is well balanced. The VP-tree is generalized to
use more than one pivot per node and using arbitrary quantiles instead
of just the median in the Multi-Vantage Point Tree (MVP) (Bozkaya
and Ozsoyoglu, 1997). Another generalization of the same idea is to use
a forest instead of a tree (Yianilos, 1999) to eliminate backtracking in
limited-radius nearest neighbor search.

A different trend of algorithms based on pivots stores the informa-
tion in array form. For each database element a, its distance to the k
pivots (d(a, p1)...d(a, px)) is stored. Given the query g, its distance to
the k pivots is computed (d(g, p1)...d(g, px)). Now, if, for some pivot p;
it holds that |d(q,p;) — d(a,p;)| > », then we know by the triangular
inequality that d(g, a) > r and therefore there is no need to explicitly
evaluate d(a, p). All the other elements that cannot be eliminated using
this rule are directly compared against the query. Algorithms such as
AESA (Vidal, 1986) and LAESA (Micé et al., 1994) are variants of this
idea. Note, however, that in this case there is no search structure to
help reduce the extra CPU time. That is, despite that the number of
distance computations using k pivots is the same as for a FHFQT of
height k, in this case we need to traverse the array of distances element
by element, for a minimum of Q(n) extra CPU time. A few proposals to
reduce the extra CPU time while keeping the array structure exist, most
notably (Nene and Nayar, 1997) and the Spaghettis (SPA) (Chévez
et al., 1999a), which independently sort the n distances along each
coordinate in order to replace the linear traversal by binary searches of
the range d(q, p;)£r. In this case, however, they need to store additional
links to be able to retrieve the permutation performed by the sorting
process.

It is worth noting that all the tree and array based schemes men-
tioned are variants of the same idea, except that they add different (or
no) data structures to avoid a linear CPU time (i.e. a linear traversal
over the set). The methods differ also in the form they select the pivots,
but the general principle is that, given an element ¢ and a pivot p, if we
store d(a, p) somewhere in the index, then at query time we can avoid
computing d(g, a) whenever |d(g,p) — d(a,p)| > r. This is the essence
of pivot based algorithms. Figure 2 illustrates.
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Figure 2. Using one pivot. The points between both rings centered at p qualify for
the next iteration.

3. Pivot Based Algorithms as a Mapping to RF

An abstract view of a pivot based algorithm is as follows. We select a
set of k pivots {p1, ..., pr}. At indexing time, for each database element
a, we compute and store ®(a) = (d(a, p1)...d(a, pr)). At query time, for
a query (g,7)q, we compute ®(q) = (d(q,p1)..-d(g, px)). Now, we can
discard every a € U such that, for some pivot p;, |d(q, p;) —d(a, p;)| > r,
or which is the same, we discard every a such that

max |d(q,p;) — d(a,pi)] = Loo(®(a),®(q)) > r.

1<i<k

This shows that pivot-based algorithms can be viewed as a map-
ping ® from the original metric space (X, d) to a k-dimensional vector
space with the L, distance, namely (R*, L,). Moreover, this mapping
is contractive, i.e. Loo(®(z),®(y)) < d(z,y) because of the triangle
inequality.

Hence, the underlying idea of pivot based algorithms is to project
the space into a new space where the distances are reduced. We search
in the new space with the same radius r, which guarantees that no
answer will be missed. On the other hand, elements that should not
be in the answer in the original space are selected in the projected
space. This is the reason why it is necessary to check directly with the
d distance all the elements a that cannot be discarded in the projected
space. Figure 3 illustrates.

3.1. INTERNAL AND EXTERNAL COMPLEXITY

The key factor is how close can we make this approximation. That is,
the L, distance in the projected space lower bounds d, and we would
like it to be as close to d as possible. Adding more pivots (i.e. increasing
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Figure 3. An equivalence relation induced by intersecting rings centered in two
pivots us and w15, and how a query is transformed.

k) monotonically increases the quality of the approximation, since the
L distance is the maximum between k distances. This is easy to prove
formally:

Lemma 1. Let {p;} C {piy1} C U be a sequence of subsets of the
database, n the size of the database, a an arbitrary database element,
q a query. Let Di(q,a) = maxic;<i{|d(p;,q) — d(pj, a)|}. The fol-
lowing chain of inequalities holds: D;(¢,a) < D;;1(q, a), in particular
Dn(q, CL) = d(qa CL).

Proof. Since the set of pivots form a chain of contentions, as 7 in-
creases the maximum cannot decrease. For the last assertion, for D,, we
have already used all of the pivots (i.e. compared with every database
element), and by the triangle inequality d(a, ¢) > d(p;, ¢) — d(p;, a) for
any p;, with equality when p; = a.

Figure 4 shows an empirical verification of this assertion. We gener-
ated random uniformly distributed vectors in the metric space ([0, 1]32, L;)
and show the histogram of distances for the original distance L, and
for the pivot distance L., obtained with & = 16 and k = 512 pivots.
As can be seen, the histogram of L., approximates better the original
Lo as k grows.

A simple lesson is learned from the above discussion is that one can
improve the quality of the approximation of a pivot-based algorithm by
adding more pivots. Nevertheless, this implies using a larger &, and we
also need to perform k distance evaluations to obtain ®(g). This leads
to a clear separation of the number of distance evaluations performed
at search time, in two classes.

Definition 1. Let a search algorithm be based in a mapping & from
(X, d) to (R*, L), and let (g,7)4 be a range query. Then the inter-
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nal complezxity of the algorithm is k, while its external complezity is
|(®(q),7)L..|, the size of the outcome of the query in the mapped space.

That is, the internal complexity is the cost to compare ¢ against
the k pivots to obtain its k coordinates in the target space, while the
external complexity is the cost to check the list of candidates remaining
after filtering the database using the coordinates in the mapped space.
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What Lemma 1 says is that we can decrease the external complexity
by increasing the internal complexity (number of pivots). It is clear that
there is an optimum k where the sum of internal plus external complex-
ity is minimized. Figure 5 shows an experiment with random uniformly
distributed vectors in ([0, 1]8, Ls), where we have used different number
of pivots and the optimum is reached for k close to 110.
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sions, using different number of pivots k. On the bottom, overall distance evaluations

for more dimensions.
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3.2. INTRINSIC DIMENSIONALITY

What Figure 5 also shows is that this optimum is larger as the dimen-
sion of the space grows. That is, it is convenient to use more and more
pivots as the dimension grows.

In (Chévez et al., 1999c¢) the intrinsic dimension of a general metric

space is defined in terms of its histogram: p = %, where g and o are
the mean and standard deviation of the histogram of distances in the
metric space. As for vector spaces, a more skewed histogram means
a higher intrinsic dimension. Moreover, the intrinsic dimension of a
random k-dimensional vector space is shown to be @ (k). A fundamental
contribution of (Chévez et al., 1999c¢) is to prove that (1) a lower bound
on the average number of distance evaluations performed by a pivot-
based algorithm, for randomly chosen pivots, is ©(plogn); and (2) the
optimum number of pivots to use is k* = ©(plogn) as well.

It is important to make it clear that in many real-world vector
spaces the intrinsic dimension is not the same as the representational
dimension. For example a plane embedded in a 50-dimensional space
has intrinsic dimension 2 and representational dimension 50. This is
in general the case of real applications, where the data is clustered,
and it has lead to attempts to measure the intrinsic dimension such
as the concept of “fractal dimension” (Faloutsos and Kamel, 1994).
Despite that no proximity search technique can cope with intrinsic
dimension higher than 20, much higher representational dimensions
can be handled by dimensionality reduction techniques (Faloutsos and
Lin, 1995; Cox and Cox, 1994; Hair et al., 1995). Relaxed techniques
can be used for “approximate proximity matching”, as in (Arya et al.,
1994) and (Yianilos, 2000).

3.3. SpPacE CONSIDERATIONS

However, there is an additional factor that we have disregarded up to
now. As we use more pivots, our space requirements (i.e. storing kn
coordinates) increases. Just storing a few hundreds of coordinates for
each element is very expensive, and as we have seen in Figure 5, the
optimal k* is well beyond that limit for all except very low dimensional
spaces.

The conclusion is clear: in most cases we have to use just as much
memory as we can, since in practice performance will improve monoton-
ically with k. This gives a new light to see all the other algorithms that
use a data structure (like trees) over a pivot-based algorithm: the space
used by the data structure, aimed at reducing the extra CPU cost,
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could perhaps be better used to store more pivots and hence reduce
the number of distance evaluations.

4. Fixed Queries Arrays

Under the light of the previous section, we introduce the Fixed Queries
Array, or FQA. The FQA is a simple data structure that stores noth-
ing more than the kn coordinates and performs the same number of
distance evaluations of the basic technique. However, the FQA permits
sublinear (in n) extra CPU time without any space overhead. This
has not been achieved up to now. Additionally, the FQA permits to
trade number of pivots for precision and hence to optimize the amount
of memory that can be used. In practice, this reduces the number of
distance evaluations to perform at query time.

For a traditional (exact) searching, one can select between an array
and a tree to implement essentially the same idea: binary searching.
However, proximity searching algorithms work by backtracking in the
tree. The essential idea of the FQA is that the same backtracking can
be performed in the array without any extra information and with a
small time penalty.

4.1. THE FQA STRUCTURE

First assume that the set of possible distances is discrete. Given each
element of the database, a list of its distances to the k pivots is stored.
In the FQA, this list is considered as a sequence of k integers. The
structure simply stores the database elements lexicographically sorted
by this sequence of distances, that is, the elements are first sorted by
their distance to the first pivot, those at the same distance to the first
pivot are sorted by their distance to the second pivot, and so on. As
more and more keys are added, the array becomes more and more
“sorted”.

The result has strong relations to the FHFQT of height k. If the
leaves of the FHFQT are traversed in order, the outcome is precisely
the order imposed in the FQA. Moreover, the search algorithm of the
FHFQT is inherited by the FQA. Each node of the FHFQT corresponds
to a range of cells in the FQA (that is, those whose first » values match
the path of values leading to the FHFQT node, of depth h). If a node
descends from another in the tree, its range is a subrange of the other
in the array!. Hence, each time the tree algorithm moves from a node

! This has close resemblances to suffix trees and suffix arrays, two text retrieval
data structures (Baeza-Yates and Ribeiro-Neto, 1999).
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to a child in the tree, we mimic the movement in the array, by binary
searching the new range inside the current one. This binary search does
not perform extra distance evaluations, it just compares sequences of
integers. The net result is that the number of distance evaluations is the
same, and the extra CPU time is multiplied by an additional O(logn)
factor. As proved in (Baeza-Yates and Navarro, 1998), the FHFQT
has O(n®) extra CPU complexity (0 < o < 1), and this converts into
O(n*logn) for the FQA. The number of distance evaluations can be
made O(logn) by using ©(logn) pivots.

The construction complexity is O(nk) distance evaluations plus the
time to sort the array lexicographically. This is O(knlogn) time.

To make the idea more clear, we show explicitly the search algo-
rithm. Given a query ¢ to be searched with tolerance r and k pivots
P1 .. .Pk, we measure d; = d(g, p1). Now, for every ¢ in the range d; —r to
di+7, we binary search in the array the range where the first coordinate
is 7. Once that range is computed, for each ¢, we recursively continue the
search on the sub array found, from the pivot p; on. This is equivalent
to recursively entering into the i-th subtree of the FHFQT. The search
finishes when we used the k pivots, and at that point the remaining
sub arrays are sequentially checked. The recursive procedure obviously
finishes prematurely when the remaining sub array is empty.

Nearest neighbor searching can be done in a similar way. The key
is to find the distance r* from ¢ to its nearest neighbor. We start with
an estimation r* = oo and reduce it each time a closer element to ¢
is discovered. At each point we perform normal range searching with
radius r*. At the end we have in r* the distance from ¢ to its nearest
neighbors and we have already visited all of them. In order to quickly
find elements that are close to ¢, we should start visiting, for each
pivot p, the branch labeled d(g,p), then d(g,p) — 1, then d(gq,p) + 1,
then d(g,p) — 2, then d(g,p) + 2, and so on, until d(g, p) + r*, hoping
that »* will be reduced by that time. This is easily extended to find
the K nearest neighbors. In this case we keep a priority queue of the
current K nearest neighbors sorted by distance. We insert newly found
neighbors as we find them, and r* is the distance from ¢ to the farthest
of its current K nearest neighbors. Alternative methods to traverse
the tree in order to find promising neighbors as quickly as possible are
discussed in (Uhlmann, 1991b) and are applicable here as well.

4.2. AN EXAMPLE
Consider the FHFQT of Figure 6. Each branch from the root represents

a distance to pivot p;. Branches from the second-level nodes refer
to the distances to ps, and so on. Given a query (g,7)q, the search
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algorithm enters, at level ¢ in the tree, only those branches within
the interesting interval d(g,p;) £ 7. Consider » = 2 and {d(q,p;)} =
{3,4,5,4}. Branches labeled [1, 2, 3, 4] in the first level will be examined
and, recursively, all branches below them will be traversed according
to the appropriate interval for their respective levels. When a branch is
outside the interesting interval it is pruned, e.g. branches [7, 8, 9] in the
example. At the end, database elements {4, 6,7,8} will remain in the
candidate list, and will be tested against the query to see if they should
be in the query outcome. The memory usage of this tree is 215 bytes:
45 nodes assuming 5 bytes per node (a very efficient implementation).

7 8 9 10 1112 13 14 15

Figure 6. A FHFQT (tree implementation of FQA) for a small example

The equivalent FQA stores the elements in the left-to-right order
shown in Figure 6, keeping the four distances for each element. Figure
7 illustrates the search process.

We have four pivots, and each row in the four tables (a),(b),(c) and
(d) represents a branch in the tree; these in turn represent the distances
from the database point to the appropriate pivot. For a query ¢ we com-
pute the vector (d(g, p1), - - ., d(g, pa)), in this case (3,4, 5, 4). The search
radius is 2. We have to search the intervals ({1,5},{2,6}, {3,7},{2,6})
respectively. Figure 7 illustrates this. With a binary search we find
the intervals in the first column (boldface rows). In each one of the
four tables, we show in boldface the candidates after each search step.
Table (a) is equivalent to the first level in the tree, and so on for the
rest of them. We can easily check that binary searching intervals in
each column is equivalent to bounding the search in the appropriate
levels in the tree.

It is worth to observe that the lexicographical ordering allows one
to use binary searching in subsequent columns. Consider for example
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rows beginning with a 3: all the elements of the second column are also
sorted in increasing order, and so on.

( & ) ( b )

1 1 4 4 1 1 4 4
1 2 5 1 1 2 5 1
1 2 5 1 1 2 5 1
2 3 5 1 2 3 5 1
3 3 5 2 3 3 5 2
3 8 5 7 3 8 5 7
3 4 4 2 3 4 4 2
(15) 8 5 6 4 (26) 3 5 6 4
3 5 6 6 3 5 6 6
4 4 1 1 4 4 1 1
7 3 1 3 7 3 1 3
7 3 2 1 7 3 2 1
7 3 2 5 7 3 2 5
7 4 3 5 7 4 3 5
g8 3 1 3 g8 3 1 3
9 2 2 6 9 2 2 6
(¢ ) ( 4 )

1 1 4 4 1 1 4 4
1 2 5 1 1 2 5 1
1 2 5 1 1 2 5 1
2 3 5 1 2 3 5 1
3 3 5 2 3 3 5 2
3 8 5 7 3 3 5 7
3 4 4 2 3 4 4 2
(37 3 5 6 4 (26) 3 5 6 4
3 5 6 6 3 5 6 6
4 4 1 1 4 4 1 1
7 3 1 3 7 3 1 3
7 3 2 1 7 3 2 1
7 3 2 5 7 3 2 5
7 4 3 5 7 4 3 5
g8 3 1 3 g8 3 1 3
9 2 2 6 9 2 2 6

Figure 7. Searching an FQA.

It is clear that the candidate list using either representation is un-
changed. In the array based search we have to pay O(logn) (the cost
of a binary search) to simulate a visit to a branch. If we visit m nodes
in the tree, we use O(mlogn) time in the array.
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4.3. THE CONTINUOS CASE

We assumed that the distance is discrete, and this is not the general
case. Observe that the FHFQT and the FQA do not work well if the
distance is continuous. Hence, it is necessary to define ranges in the
continuum of possible outcomes of the distance function and assign
them to a small set of discrete values. This idea, however, has its own
value, as we need less space to store these discretized values.

In general, instead of storing k coordinates separately, we consider
the whole sequence of (discretized) values as an unsigned b = k - b,
bits integer. Each group of b, bits represents the distance from the
database element to a pivot, i.e. we can represent 2% values. The
most significant bits are assigned to the first pivots, so we have the
lexicographical ordering inherited by the integer ordering of the b bits.
Hence, we can have more pivots at the expense of storing less bits for
the distances. This allows an extra degree of freedom in the use of the
available memory.

It is worth noting that the representation is not tightly linked with
the discretization rule. One can use any suitable rule to assign intervals
to branches in the tree. We envision at least two possible discretization
schemes.

Fixed slices: FSFQA For each pivot, independently, we obtain D,,,,, —
max{d(p;,u)} and Dy, = min{d(p;,uw)} for v € U — {p1...pr}.
The range Dae — Dpmin is divided then in 2bs parts, and each
binary number & is associated to the interval [Dpin + @ (Dmaz —
Dinin)/2%, Dppin + (2 + 1) (Dinaz — Dimin)/2%). The idea is that
the range of possible values is split in 2% slices of the same width,
although the number of points lying in each slice may vary (and
can be even zero).

Fixed quantiles: FQFQA For each pivot we determine the b, — 1
uniform quantiles that divide the set of distances into b, equal
sized subsets, and assign one quantile to each value. The procedure
ensures that in each interval there are exactly n/2% points.

5. Experimental Results

In which follows we present experiments on the diverse aspects of the
data structure proposed and on how it compares against others. We
have selected a sample of uniformly distributed real vectors on the
unit cube for our experiments and used the L, (Euclidean) distance.
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Although this is a space with coordinates, we treat it as a general
metric space (not making use of the coordinates). This allows us to
control precisely the effective dimension of the data. All the graphs
show how many distance computations are needed to satisfy a query
retrieving 0.01% of the database. We use a database of up to 100,000
elements and 4 to 20 dimensions.

5.1. USE oF MEMORY

For a fixed amount of memory there are many possible combinations
of pivots and resolution for both FSFQA and FQFQA. For example if
we have 32 bits for each database point, then we can choose to have 32
1-bit pivots, or 16 2-bit pivots, or 8 4-bit pivots, etc. We try to figure
out the best combination and the amount of difference between them.

Another unclear issue is what is the best scheme for FQA: FSFQA
or FQFQA. In the graphs the schemes are named “FSFQA/FQFQA
h — b”, where h is the number of pivots used and b is the number of
bits per pivot. If the same memory is used then A - 2% is constant.

In Figure 8 we observe that for a small amount of memory, the
difference between schemes is negligible for the FSFQA. However, using
256 bits (8 words), the best is 4 bits per pivot in almost every dimension.
Figure 9 shows the same behavior for the FQFQA, the optimal selection
being 4 bits per pivot. As can be seen, both schemes give very similar
results, so we consider only FQFQA from here on.

Figure 10 compares the FQFQA using 4 bits per pivot, for 32 and
256 bits per element, against other data structures. We have included
the FHFQT (height 8, using fixed slices of width 0.1), the MVPT (with
arity 16), LAESA (8 pivots), SPA (4 pivots), GNAT (arity 64) and SAT.
We gave to FHFQT, LAESA and SPA the same amount of memory as
for the FQA of 256 bits (since with 32 bits none of these structures
can perform reasonably well), and this determines the height of the
FHFQT and the number of pivots for LAESA and SPA. On the other
hand, GNATSs, SATs and MVPTs use a fixed amount of memory (about
64 bits per element with a very careful implementation).

It is clear that the FQA makes the best use of the available memory,
in any of its two variants (which are not very different indeed). With
respect to Voronoi type data structures (GNAT and SAT), these are
more resistant to high dimensions, but the FQA (and other pivot based
algorithms) beats them in any dimension provided enough memory.
This shows how important is to make good use of the available memory.
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Figure 8. FSFQA using 32 bits (top) and 256 bits (bottom), for several combinations
of resolution/pivots and a fixed amount of memory.

5.2. SEARCH TECHNIQUE

The results presented in the preceding experiments measure only dis-
tance computations. We obtain the same results using either the FQA
search algorithm or a plain array and a sequential search over the array.
If the d distance is expensive to compute, the overall complexity will
be driven by the figures obtained using only the number of distance
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Figure 9. FQFQA using 32 bits (top) and 256 bits (bottom), for several combina-
tions of resolution/pivots and a fixed amount of memory.

computations. In many realistic setups, the side computations cannot
be deprecated.

In Figure 11 (top) the total elapsed time for the “sequential” (i.e.
a linear pass over the array) and “recursive” (i.e. our backtracking
algorithm) versions of the FQA is shown. Note that, as the dimen-
sion increases, the differences between both approaches become larger.
The same is true if we increase the size of the database, as can be
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Figure 10. FQA other data structures for different amounts of memory and
increasing dimension.

expected when comparing a linear and a sublinear algorithm. Note
that the number of distance computations is exactly the same for both
implementations.

We have also included a least squares estimation of the running
time under the model ¢ = cn®, showing that the recursive algorithm is
sublinear on n, despite that a tends to 1 as the dimension grows.

5.3. A REAL-WORLD EXAMPLE

In this section we aim at studying the performance of the FQA in a
real application. We also use the test to determine which is the gain of
the FQA with respect to other data structures in total CPU time (not
only counting distance evaluations). This test has little sense in the
synthetic experiments because the Ly distance in up to 20 dimensions
is much easier to evaluate than most real world distances.

In several applications of computer vision and image processing the
user wants to locate a subimage inside a larger image. The reference
image may be a frame of a sequence, or a static image. The subimages
are sized 16 X 16 to 32 x 32 pixels. The representational dimension of
the vectors is 256 and 1024 respectively. The distance used to match
subimages is the Euclidean distance or the L, distance.

We ran an experiment (see Figure 12) for finding 15 x 15 subimages
inside a 256 x 256 pixels image. This is equivalent to searching for
a 225-dimensional vector in a 60,000 elements database. The search
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Dimension | Sequential | Recursive

4 .0003n'12 | .0018n026
10 .0012n1%% | 00201087
20 .0120n%9? | .0086n°-98

Figure 11. Total elapsed time for varying database size. The plot shows the behav-
ior of the recursive and sequential implementations of the FQFQA 64-8 in several
dimensions.

retrieved about 6 database elements (0.01 % of the database) per query.
The results were averaged over 300 random queries. The machine is a
Pentium III 450 Mhz with two processors and 500 Mb of RAM, running
Linux Kernel 2.2.12.

For this example the FQFQA is faster than all the other data struc-
tures, even taking less space (we had better results with 8 bits per
pivot this time). It can easily trade memory for time. When moving
from 16 to 32 pivots (from 1 Mb to 2 Mb) the speedup is about 25%,
going from 32 to 64 pivots (from 2 to 4 Mb) gives a smaller speedup, of
about 3%. We used 8 pivots for SPA, 16 pivots for LAESA and height
8 for FHFQT. The memory is measured as the amount required by the
process at runtime.
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Index Construction | Query time | Query time | Memory
(distances) (msecs) (distances)
FQA64-8 | 356 M 14.167 245 4.0 Mb
FQA 32-8 | 21 M 14.556 285 2.0 Mb
FQA16-8 | 1.1 M 18.333 414 1.0 Mb
SPA 0.5 M 22.833 548 4.0 Mb
FHFQT 0.5 M 26.111 594 8.1 Mb
MVPT 19 M 35.444 915 5.0 Mb
GNAT 71M 62.722 1,702 1.2 Mb
SAT 55 M 175.222 4,554 3.6 Mb
LAESA 1.1 M 196.611 335 4.0 Mb

Figure 12. Finding 15 x 15 subimages inside a 256 x 256 pixels image. The database
has about 60,000 vectors of dimension 225. Construction complexity is measured in
(millions) of distance computations. Query complexity is measured in milliseconds
as well as in distance computations.

6. Conclusions and Future Work

We have presented a new data structure, the Fixed Queries Array
(FQA), for proximity searching in metric spaces. The FQA belongs to
the family of pivot based algorithms, the most popular one. We have
argued that the most important parameter governing the performance
of those algorithms is the number k of pivots used. Therefore, the
amount of available memory is a crucial parameter because we need
to store kn coordinates.

The essential advantage of the FQA is that it makes good use of the
available memory. First, it is the only structure that permits a sublinear
amount of extra CPU time without using any extra information, so
the space that other data structures use for this purpose can be used
to accommodate more pivots. Second, it permits to trade number of
pivots for their precision, in order to make optimal use of the available
memory.

The FQA is experimentally shown to be a simple yet effective struc-
ture for this problem, as it compares well with other state of the art
approaches. Its simplicity makes it very appealing for practitioners
seeking for a black box data structure to plug in their applications.

We are currently working on dynamic and secondary memory as-
pects of this data structure. For example, inserting an element is costly
in a sorted array, but a slightly more complex scheme with linked
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blocks solves the problem at negligible extra space overhead. Secondary
memory problems refer to the design of efficient access paths for this
data structure when it is stored on disk.

The code for the FQAs is available upon request, at
elchavez@zeus.ccu.umich.mx

References

Arya, S., D. Mount, N. Netanyahu, R. Silverman, and A. Wu: 1994, ‘An optimal
algorithm for approximate nearest neighbor searching in fixed dimension’. In:
Proc. 5th ACM-SIAM Symposium on Discrete Algorithms (SODA’94). pp. 573
583.

Aurenhammer, F.: 1991, ‘Voronoi diagrams — a survey of a fundamental geometric
data structure’. ACM Computing Surveys 23(3).

Baeza-Yates, R.: 1997, ‘Searching: an algorithmic tour’. In: A. Kent and J. Williams
(eds.): Encyclopedia of Computer Science and Technology, Vol. 37. Marcel Dekker
Inc., pp. 331-359.

Baeza-Yates, R., W. Cunto, U. Manber, and S. Wu: 1994, ‘Proximity Matching Using
Fixed-Queries Trees’. In: Proc. 5th Combinatorial Pattern Matching (CPM’94).
pp. 198-212.

Baeza-Yates, R. and G. Navarro: 1998, ‘Fast Approximate String Matching in a
Dictionary’. In: Proc. 5th Symposium on String Processing and Information
Retrieval (SPIRE’98). pp. 14-22.

Baeza-Yates, R. and B. Ribeiro-Neto: 1999, Modern Information Retrieval. Addison-
Wesley.

Bentley, J.: 1975, ‘Multidimensional binary search trees used for associative
searching’. Comm. of the ACM 18(9), 509-517.

Bozkaya, T. and M. Ozsoyoglu: 1997, ‘Distance-based indexing for high-dimensional
metric spaces’. In: Proc. ACM SIGMOD International Conference on Manage-
ment of Data. pp. 357-368. Sigmod Record 26(2).

Brin, S.: 1995, ‘Near neighbor search in large metric spaces’. In: Proc. 21st
Conference on Very Large Databases (VLDB’95). pp. 574-584.

Chavez, E., J. Marroquin, and R. Baeza-Yates: 1999a, ‘Spaghettis: an Array Based
Algorithm for Similarity Queries in Metric Spaces’. In: Proc. 6th Symposium on
String Processing and Information Retrieval (SPIRE’99). pp. 38-46.

Chéavez, E., J. Marroquin, and G. Navarro: 1999b, ‘Overcoming the Curse of
Dimensionality’. In: European Workshop on Content-Based Multimedia In-
dexing (CBMI’99). pp. 57-64. ftp://garota.fismat.umich.mx/pub/users/-
elchavez/fqa.ps.gz.

Chéavez, E., G. Navarro, R. Baeza-Yates, and J. Marroquin: 1999c, ‘Searching in
Metric Spaces’. Technical Report TR/DCC-99-3, Dept. of Computer Science,
Univ. of Chile. Submitted. ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/-
survmetric.ps.gz.

Ciaccia, P., M. Patella, and P. Zezula: 1997, ‘M-tree: an efficient Access Method for
Similarity Search in Metric Spaces’. In: Proc. of the 28rd Conference on Very
Large Databases (VLDB’97). pp. 426-435.

Clarkson, K.: 1999, ‘Nearest neighbor queries in metric spaces’. Discrete Computa-
tional Geometry 22(1), 63-93.

Cox, T. and M. Cox: 1994, Multidimensional Scaling. Chapman and Hall.

paper.tex; 17/11/2000; 19:05; p.23



24 Chévez, Marroquin, Navarro

Dehne, F. and H. Nolteimer: 1987, ‘Voronoi trees and clustering problems’.
Information Systems 12(2), 171-175.

Faloutsos, C. and I. Kamel: 1994, ‘Beyond uniformity and independence: analysis of
R-trees using the concept of fractal dimension’. In: Proc. 13th ACM Symposium
on Principles of Database Principles (PODS’94). pp. 4-13.

Faloutsos, C. and K. Lin: 1995, ‘Fastmap: a fast algorithm for indexing, data mining
and visualization of traditional and multimedia datasets’. ACM SIGMOD Record
24(2), 163-174.

Guttman, A.: 1984, ‘R-trees: a dynamic index structure for spatial searching’. In:
Proc. ACM SIGMOD International Conference on Management of Data. pp.
47-57.

Hair, J., R. Anderson, R. Tatham, and W. Black: 1995, Multivariate Data Analysis
with Readings. Prentice-Hall, 4th edition.

Kalantari, I. and G. McDonald: 1983, ‘A data structure and an algorithm for the
nearest point problem’. IEEE Transactions on Software Engineering 9(5).

Micé, L., J. Oncina, and E. Vidal: 1994, ‘A new version of the nearest-neighbor
approximating and eliminating search (AESA) with linear preprocessing-time
and memory requirements’. Pattern Recognition Letters 15, 9-17.

Navarro, G.: 1999, ‘Searching in metric spaces by spatial approximation’. In: Proc.
6th Symposium on String Processing and Information Retrieval (SPIRE’99). pp.
141-148.

Nene, S. and S. Nayar: 1997, ‘A simple algorithm for nearest neighbor search in high
dimensions’. IEEE Trans. on Pattern Analysis and Machine Intelligence 19(9),
989-1003.

Shapiro, M.: 1977, ‘The choice of reference points in best-match file searching’.
Comm. of the ACM 20(5), 339-343.

Uhlmann, J.: 1991a, ‘Implementing metric trees to satisfy general proxim-
ity /similarity queries’. Manuscript.

Uhlmann, J.: 1991b, ‘Satisfying general proximity/similarity queries with metric
trees’. Information Processing Letters 40, 175-179.

Vidal, E.: 1986, ‘An algorithm for finding nearest neighbors in (approximately)
constant average time’. Pattern Recognition Letters 4, 145-157.

Yianilos, P.: 1993, ‘Data structures and algorithms for nearest neighbor search
in general metric spaces’. In: Proc. 4th ACM-SIAM Symposium on Discrete
Algorithms (SODA’93). pp. 311-321.

Yianilos, P.: 1999, ‘Excluded Middle Vantage Point Forests for Nearest Neighbor
Search’. In: DIMACS Implementation Challenge, ALENEX’99. Baltimore, MD.

Yianilos, P.: 2000, ‘Locally Lifting the Curse of Dimensionality for Nearest Neigh-
bor Search’. In: Proc. 11th ACM-SIAM Symposium on Discrete Algorithms
(SODA’00). pp. 361-370.

paper.tex; 17/11/2000; 19:05; p.24



