
Fixed Queries Array: A Fast and Economical Data Structurefor Proximity Searching �Edgar Ch�avez (elchavez@zeus.ccu.umich.mx)Univ. Michoacana, Morelia, Mich. M�exico.Jos�e L. Marroqu��n (jlm@cimat.mx)Cent. de Inv. en Mat. (CIMAT), Guanajuato, M�exico.Gonzalo Navarro (gnavarro@dcc.uchile.cl)Dept. of Computer Science, Univ. of Chile, Santiago, Chile.Abstract. Pivot-based algorithms are e�ective tools for proximity searching inmetric spaces. They allow trading space overhead for number of distance evaluationsperformed at query time. With additional search structures (that pose extra spaceoverhead) they can also reduce the amount of side computations. We introducea new data structure, the Fixed Queries Array (FQA), whose novelties are (1) itpermits sublinear extra CPU time without any extra data structure; (2) it permitstrading number of pivots for their precision so as to make better use of the availablememory. We show experimentally that the FQA is an e�cient tool to search in metricspaces and that it compares favorably against other state of the art approaches. Itssimplicity converts it into a simple yet e�ective tool for practitioners seeking for ablack-box method to plug in their applications.Keywords: Metric spaces, similarity search, range search, �xed queries tree.1. IntroductionProximity searching is the problem of looking for objects in a set closeenough to a query under a certain (expensive to compute) distance.The goal is to preprocess the set in order to minimize the numberof distance evaluations at query time. This is a very active branchof computer science, seeking for a black-box to put in applicationssuch as multimedia databases, machine learning, data compression, textretrieval, computational biology and function prediction, to name a few.A very common case arises when the objects are points in a k-dimensional Euclidean space, and well known solutions exist, such asVoronoi diagrams (Aurenhammer, 1991), kd-trees (Bentley, 1975) andR-trees (Guttman, 1984). However, this is not the general case, and inmany applications the distance is simply a metric (i.e. it just satis�esthe triangular inequality).� Supported in part by CYTED VII.13 AMYRI project, and also by CONACyTgrant R-28923A (�rst author), CONACyT (second author) and Fondecyt grant 1-000929 (third author).c
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2 Ch�avez, Marroqu��n, NavarroWe are interested in the case of general metric spaces, where thereare essentially two design approaches. One approach is based on theconcept of the Voronoi diagram (Aurenhammer, 1991), a data structureproven to be useful in low dimensional vector spaces. The other ap-proach, much more popular, is based essentially in mapping the metricspace onto a k-dimensional space. This last approach, the focus of thispaper, leads to a family called pivot-based indexing algorithms.This family has interesting properties, such as the ability to paymore space overhead (basically by incrementing k) in order to reducethe number of distance evaluations at query time. The higher the in-trinsic dimension of the space (a concept that we explain later), themore pivots are needed to obtain the same performance, a phenomenonknown as the \curse of dimensionality". Therefore, e�cient space usageis an issue for pivot-based algorithms.On the other hand, it is not always realistic to assume that thedistance function is so expensive to compute that all the other side com-putations can be neglected. Therefore, many pivot-based algorithmsadd extra data structures (which pose more space overhead) in orderto reduce the side computations. This does not reduce the number ofdistance evaluations, but the search is in practice faster.In this paper we introduce a new data structure called Fixed QueriesArray (or FQA), which has two interesting properties. First, it is the�rst data structure able of achieving a sublinear (in the database size)number of side computations without using any extra space. Second, itis able to trade number of pivots k for their precision, so as to optimizethe usage of the available space.We compare experimentally the FQA against other state of the artapproaches and show that it is a simple and e�ective alternative. TheFQA is a very appealing choice for practitioners looking for a simpleand e�cient solution for proximity queries in metric spaces.The paper is organized as follows. In Section 2 we give the basicformal de�nitions and review related work. In Section 3 we presentthe pivot-based approach and discuss e�ciency measures. In Section 4we introduce the FQAs. Section 5 presents our experimental results.Finally, we give our concluding remarks in Section 6. A preliminaryversion of this work appeared in (Ch�avez et al., 1999b).
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Fixed Queries Array 32. Basic Concepts2.1. Formal DefinitionsProximity queries can be formalized using the metric space model,where a distance function d(x; y) is de�ned for every point in a set X.The distance function d hasmetric properties, i.e. it satis�es d(x; y) � 0(positiveness), d(x; y) = d(y; x) (symmetry), d(x; y) = 0 i� x = y (strictpositiveness), and the property allowing the existence of solutions bet-ter than brute-force for proximity queries: d(x; y) � d(x; z) + d(z; y)(triangle inequality).The database is a set U � X of size n, and we de�ne the queryas q, an arbitrary element of X. A proximity query involves additionalinformation, besides q, and can be of two basic types:Range query: retrieve all elements which are within distance r to q,i.e. (q; r)d = fu 2 U : d(q; u) � rg.Nearest neighbor query: retrieve the closest elements to q in U, i.e.nn(q)d = fu 2 U : 8v 2 U; d(q; u) � d(q; v)g.In this paper we are devoted to range queries. Nearest neighborqueries can be embedded into range queries using a branch and boundheuristic; although several dedicated algorithms have been published(Clarkson, 1999; Mic�o et al., 1994; Yianilos, 1999).Vector spaces are a particular case of metric spaces where the ele-ments are k-dimensional coordinates under the Lp distance (p =1, 2,... 1). This is de�ned as follows: the Lp distance between x and y isLp((x1; : : : ; xk); (y1; : : : ; yk)) = 0@ X1�i�k jxi � yijp1A1=p ;where some particular cases are p = 1 (Manhattan distance), p = 2(Euclidean distance) and p = 1 (maximum distance). This last onedeserves an explicit formula:L1((x1; : : : ; xk); (y1; : : : ; yk)) = max1�i�k jxi � yij :Figure 1 illustrates.The goal of a proximity search algorithm is to build in advancea data structure (called \index") so as to minimize the search costat query time. There are three main terms in this cost, namely thenumber of distance computations, the extra CPU cost and the I/Ocost. In this paper we concentrate in the �rst two, assuming that thepaper.tex; 17/11/2000; 19:05; p.3



4 Ch�avez, Marroqu��n, Navarro
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qFigure 1. On the left, an example of a range query on a set of points. On the right,the set of points at the same distance to a center point, for di�erent Lp distances.index �ts in main memory. There exist currently very few approachesto the secondary memory problem on metric spaces (see (Ciaccia et al.,1997)). On the other hand, the importance of the extra CPU cost (or\side computations") depends on the application, namely on how costlyto compute is the distance function.2.2. Related WorkHistorically, the proximity searching problem appeared in the morerestricted form of vector spaces, where the objects are points in a k-dimensional space (with Lp distances). General metric space algorithmsinherited two major trends, very successful for vector spaces. Thosemodels are derived from Voronoi diagrams (Aurenhammer, 1991) andfrom kd-trees (Bentley, 1975). We brie
y discuss the �rst idea andthen focus on pivot-based algorithms. For a more thorough discussionsee (Ch�avez et al., 1999c).2.2.1. Voronoi-like AlgorithmsThe Voronoi diagram (Aurenhammer, 1991), or proximity graph, hasbeen used for proximity queries in vector spaces. It is a fundamentalstructure in computational geometry for solving closest point prob-lems. It is really challenging to generalize it to metric spaces, be-cause the algorithms to build it depend heavily on coordinate informa-tion. Nevertheless, the concept itself has inspired several approachesconstructing a more or less �ne approximation to either the Voronoigraph or its dual, the Delaunay triangulation. In this line we can �ndgeneralized hyperplanes (Kalantari and McDonald, 1983; Dehne andpaper.tex; 17/11/2000; 19:05; p.4



Fixed Queries Array 5Nolteimer, 1987; Uhlmann, 1991b), the GNATs (Geometric NeighborAccess Trees) (Brin, 1995), and more recently the M-trees (Ciacciaet al., 1997), the SB algorithm (Clarkson, 1999) and the SAT (SpatialApproximation Tree) (Navarro, 1999). The key idea in all these algo-rithms is to cluster the space so as to search by approaching spatiallyto the query, as opposed to the pivot-based algorithms below.2.2.2. Pivot-Based AlgorithmsThe kd-trees perform a hierarchical binary decomposition of the vectorspace. At each level the left and right branches account for points at theleft or right of a threshold in a particular coordinate. The coordinatesalternate at each level. For general metric spaces the absence of coor-dinates urged the design of alternative rules for space decomposition,object location and cell discarding. An entire family of algorithms aredirect descendants of the kd-tree structure. Instead of using the coordi-nates directly, these algorithmsuse the distance to a set of distinguisheddatabase objects called keys, vantage points or pivots in the papers.This is combined with the triangular inequality to obtain a discardingrule similar to that of kd-trees.Most of these schemes are tree-based data structures de�ning a hier-archical decomposition where the space cells coincide with leaves in thetree. The simplest example is the Burkhard-Keller Tree (BKT), a datastructure designed for distance functions yielding discrete values. Eachnode of the tree corresponds to a di�erent pivot p, and each descendingbranch to a distance from p. That is, all the elements at distance i fromp are put in the i-th subtree of the corresponding node. The subtreesare recursively built with the same rule. At search time, for a query(q; r)d, we backtrack in the tree entering only in the subtrees numberedd(q; p)� r to d(q; p) + r, as the other elements can be discarded usingthe triangular inequality.Many other variations over the same idea exist. We can select morethan one pivot at each node, as in (Shapiro, 1977). Other interestingalternative is to use one pivot in each tree level instead of each node.This scheme is used in the Fixed Queries Tree (FQT) (Baeza-Yateset al., 1994), which saves distance computations in the backtrackingat the expense of somewhat taller trees. Since the pivots do not residein the nodes one can think in a further re�nement of FQT, namely toarbitrarily increase the number of pivots, or equivalently the height ofthe tree. These arbitrarily tall trees are the Fixed Height Fixed QueriesTrees (FHFQT) (Baeza-Yates, 1997), which are experimentally shownto be more e�cient than their predecessors.If, on the other hand, the distance function is continuous, thenthis scheme does not work because it is impossible to assign directlypaper.tex; 17/11/2000; 19:05; p.5



6 Ch�avez, Marroqu��n, Navarroone branch for each distance outcome. Hence some discretization ofthe distances has to be carried out. In the Metric Trees and VantagePoint Trees (VPTs) (Uhlmann, 1991a; Yianilos, 1993) it is suggestedto binarize the distance outcome by using as threshold the medianof the distances from the pivot to all its associated elements. Thisguarantees that the tree is well balanced. The VP-tree is generalized touse more than one pivot per node and using arbitrary quantiles insteadof just the median in the Multi-Vantage Point Tree (MVP) (Bozkayaand Ozsoyoglu, 1997). Another generalization of the same idea is to usea forest instead of a tree (Yianilos, 1999) to eliminate backtracking inlimited-radius nearest neighbor search.A di�erent trend of algorithms based on pivots stores the informa-tion in array form. For each database element a, its distance to the kpivots (d(a; p1):::d(a; pk)) is stored. Given the query q, its distance tothe k pivots is computed (d(q; p1):::d(q; pk)). Now, if, for some pivot piit holds that jd(q; pi) � d(a; pi)j > r, then we know by the triangularinequality that d(q; a) > r and therefore there is no need to explicitlyevaluate d(a; p). All the other elements that cannot be eliminated usingthis rule are directly compared against the query. Algorithms such asAESA (Vidal, 1986) and LAESA (Mic�o et al., 1994) are variants of thisidea. Note, however, that in this case there is no search structure tohelp reduce the extra CPU time. That is, despite that the number ofdistance computations using k pivots is the same as for a FHFQT ofheight k, in this case we need to traverse the array of distances elementby element, for a minimumof 
(n) extra CPU time. A few proposals toreduce the extra CPU time while keeping the array structure exist, mostnotably (Nene and Nayar, 1997) and the Spaghettis (SPA) (Ch�avezet al., 1999a), which independently sort the n distances along eachcoordinate in order to replace the linear traversal by binary searches ofthe range d(q; pi)�r. In this case, however, they need to store additionallinks to be able to retrieve the permutation performed by the sortingprocess.It is worth noting that all the tree and array based schemes men-tioned are variants of the same idea, except that they add di�erent (orno) data structures to avoid a linear CPU time (i.e. a linear traversalover the set). The methods di�er also in the form they select the pivots,but the general principle is that, given an element a and a pivot p, if westore d(a; p) somewhere in the index, then at query time we can avoidcomputing d(q; a) whenever jd(q; p)� d(a; p)j > r. This is the essenceof pivot based algorithms. Figure 2 illustrates.
paper.tex; 17/11/2000; 19:05; p.6
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Figure 2. Using one pivot. The points between both rings centered at p qualify forthe next iteration.3. Pivot Based Algorithms as a Mapping to RkAn abstract view of a pivot based algorithm is as follows. We select aset of k pivots fp1; : : : ; pkg. At indexing time, for each database elementa, we compute and store �(a) = (d(a; p1):::d(a; pk)). At query time, fora query (q; r)d, we compute �(q) = (d(q; p1):::d(q; pk)). Now, we candiscard every a 2 Usuch that, for some pivot pi, jd(q; pi)�d(a; pi)j > r,or which is the same, we discard every a such thatmax1�i�k jd(q; pi)� d(a; pi)j = L1(�(a);�(q)) > r :This shows that pivot-based algorithms can be viewed as a map-ping � from the original metric space (X; d) to a k-dimensional vectorspace with the L1 distance, namely (Rk; L1). Moreover, this mappingis contractive, i.e. L1(�(x);�(y)) � d(x; y) because of the triangleinequality.Hence, the underlying idea of pivot based algorithms is to projectthe space into a new space where the distances are reduced. We searchin the new space with the same radius r, which guarantees that noanswer will be missed. On the other hand, elements that should notbe in the answer in the original space are selected in the projectedspace. This is the reason why it is necessary to check directly with thed distance all the elements a that cannot be discarded in the projectedspace. Figure 3 illustrates.3.1. Internal and External ComplexityThe key factor is how close can we make this approximation. That is,the L1 distance in the projected space lower bounds d, and we wouldlike it to be as close to d as possible. Adding more pivots (i.e. increasingpaper.tex; 17/11/2000; 19:05; p.7
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10 Ch�avez, Marroqu��n, NavarroWhat Lemma 1 says is that we can decrease the external complexityby increasing the internal complexity (number of pivots). It is clear thatthere is an optimum k where the sum of internal plus external complex-ity is minimized. Figure 5 shows an experiment with random uniformlydistributed vectors in ([0; 1]8; L2), where we have used di�erent numberof pivots and the optimum is reached for k close to 110.
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Fixed Queries Array 113.2. Intrinsic DimensionalityWhat Figure 5 also shows is that this optimum is larger as the dimen-sion of the space grows. That is, it is convenient to use more and morepivots as the dimension grows.In (Ch�avez et al., 1999c) the intrinsic dimension of a general metricspace is de�ned in terms of its histogram: � = �22�2 , where � and � arethe mean and standard deviation of the histogram of distances in themetric space. As for vector spaces, a more skewed histogram meansa higher intrinsic dimension. Moreover, the intrinsic dimension of arandom k-dimensional vector space is shown to be �(k). A fundamentalcontribution of (Ch�avez et al., 1999c) is to prove that (1) a lower boundon the average number of distance evaluations performed by a pivot-based algorithm, for randomly chosen pivots, is �(� logn); and (2) theoptimum number of pivots to use is k� = �(� logn) as well.It is important to make it clear that in many real-world vectorspaces the intrinsic dimension is not the same as the representationaldimension. For example a plane embedded in a 50-dimensional spacehas intrinsic dimension 2 and representational dimension 50. This isin general the case of real applications, where the data is clustered,and it has lead to attempts to measure the intrinsic dimension suchas the concept of \fractal dimension" (Faloutsos and Kamel, 1994).Despite that no proximity search technique can cope with intrinsicdimension higher than 20, much higher representational dimensionscan be handled by dimensionality reduction techniques (Faloutsos andLin, 1995; Cox and Cox, 1994; Hair et al., 1995). Relaxed techniquescan be used for \approximate proximity matching", as in (Arya et al.,1994) and (Yianilos, 2000).3.3. Space ConsiderationsHowever, there is an additional factor that we have disregarded up tonow. As we use more pivots, our space requirements (i.e. storing kncoordinates) increases. Just storing a few hundreds of coordinates foreach element is very expensive, and as we have seen in Figure 5, theoptimal k� is well beyond that limit for all except very low dimensionalspaces.The conclusion is clear: in most cases we have to use just as muchmemory as we can, since in practice performance will improvemonoton-ically with k. This gives a new light to see all the other algorithms thatuse a data structure (like trees) over a pivot-based algorithm: the spaceused by the data structure, aimed at reducing the extra CPU cost,paper.tex; 17/11/2000; 19:05; p.11



12 Ch�avez, Marroqu��n, Navarrocould perhaps be better used to store more pivots and hence reducethe number of distance evaluations.4. Fixed Queries ArraysUnder the light of the previous section, we introduce the Fixed QueriesArray, or FQA. The FQA is a simple data structure that stores noth-ing more than the kn coordinates and performs the same number ofdistance evaluations of the basic technique. However, the FQA permitssublinear (in n) extra CPU time without any space overhead. Thishas not been achieved up to now. Additionally, the FQA permits totrade number of pivots for precision and hence to optimize the amountof memory that can be used. In practice, this reduces the number ofdistance evaluations to perform at query time.For a traditional (exact) searching, one can select between an arrayand a tree to implement essentially the same idea: binary searching.However, proximity searching algorithms work by backtracking in thetree. The essential idea of the FQA is that the same backtracking canbe performed in the array without any extra information and with asmall time penalty.4.1. The FQA StructureFirst assume that the set of possible distances is discrete. Given eachelement of the database, a list of its distances to the k pivots is stored.In the FQA, this list is considered as a sequence of k integers. Thestructure simply stores the database elements lexicographically sortedby this sequence of distances, that is, the elements are �rst sorted bytheir distance to the �rst pivot, those at the same distance to the �rstpivot are sorted by their distance to the second pivot, and so on. Asmore and more keys are added, the array becomes more and more\sorted".The result has strong relations to the FHFQT of height k. If theleaves of the FHFQT are traversed in order, the outcome is preciselythe order imposed in the FQA. Moreover, the search algorithm of theFHFQT is inherited by the FQA. Each node of the FHFQT correspondsto a range of cells in the FQA (that is, those whose �rst h values matchthe path of values leading to the FHFQT node, of depth h). If a nodedescends from another in the tree, its range is a subrange of the otherin the array1. Hence, each time the tree algorithm moves from a node1 This has close resemblances to su�x trees and su�x arrays, two text retrievaldata structures (Baeza-Yates and Ribeiro-Neto, 1999).paper.tex; 17/11/2000; 19:05; p.12



Fixed Queries Array 13to a child in the tree, we mimic the movement in the array, by binarysearching the new range inside the current one. This binary search doesnot perform extra distance evaluations, it just compares sequences ofintegers. The net result is that the number of distance evaluations is thesame, and the extra CPU time is multiplied by an additional O(logn)factor. As proved in (Baeza-Yates and Navarro, 1998), the FHFQThas O(n�) extra CPU complexity (0 < � < 1), and this converts intoO(n� logn) for the FQA. The number of distance evaluations can bemade O(logn) by using �(logn) pivots.The construction complexity is O(nk) distance evaluations plus thetime to sort the array lexicographically. This is O(kn logn) time.To make the idea more clear, we show explicitly the search algo-rithm. Given a query q to be searched with tolerance r and k pivotsp1 : : : pk, we measure d1 = d(q; p1). Now, for every i in the range d1�r tod1+r, we binary search in the array the range where the �rst coordinateis i. Once that range is computed, for each i, we recursively continue thesearch on the sub array found, from the pivot p2 on. This is equivalentto recursively entering into the i-th subtree of the FHFQT. The search�nishes when we used the k pivots, and at that point the remainingsub arrays are sequentially checked. The recursive procedure obviously�nishes prematurely when the remaining sub array is empty.Nearest neighbor searching can be done in a similar way. The keyis to �nd the distance r� from q to its nearest neighbor. We start withan estimation r� = 1 and reduce it each time a closer element to qis discovered. At each point we perform normal range searching withradius r�. At the end we have in r� the distance from q to its nearestneighbors and we have already visited all of them. In order to quickly�nd elements that are close to q, we should start visiting, for eachpivot p, the branch labeled d(q; p), then d(q; p)� 1, then d(q; p) + 1,then d(q; p)� 2, then d(q; p) + 2, and so on, until d(q; p) + r�, hopingthat r� will be reduced by that time. This is easily extended to �ndthe K nearest neighbors. In this case we keep a priority queue of thecurrent K nearest neighbors sorted by distance. We insert newly foundneighbors as we �nd them, and r� is the distance from q to the farthestof its current K nearest neighbors. Alternative methods to traversethe tree in order to �nd promising neighbors as quickly as possible arediscussed in (Uhlmann, 1991b) and are applicable here as well.4.2. An ExampleConsider the FHFQT of Figure 6. Each branch from the root representsa distance to pivot p1. Branches from the second-level nodes referto the distances to p2, and so on. Given a query (q; r)d, the searchpaper.tex; 17/11/2000; 19:05; p.13



14 Ch�avez, Marroqu��n, Navarroalgorithm enters, at level i in the tree, only those branches withinthe interesting interval d(q; pi) � r. Consider r = 2 and fd(q; pi)g =f3; 4; 5; 4g:Branches labeled [1; 2; 3; 4] in the �rst level will be examinedand, recursively, all branches below them will be traversed accordingto the appropriate interval for their respective levels. When a branch isoutside the interesting interval it is pruned, e.g. branches [7; 8; 9] in theexample. At the end, database elements f4; 6; 7; 8g will remain in thecandidate list, and will be tested against the query to see if they shouldbe in the query outcome. The memory usage of this tree is 215 bytes:45 nodes assuming 5 bytes per node (a very e�cient implementation).
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Fixed Queries Array 15rows beginning with a 3: all the elements of the second column are alsosorted in increasing order, and so on.
(1,5) ( a )1 1 4 41 2 5 11 2 5 12 3 5 13 3 5 23 3 5 73 4 4 23 5 6 43 5 6 64 4 1 17 3 1 37 3 2 17 3 2 57 4 3 58 3 1 39 2 2 6 (2,6) ( b )1 1 4 41 2 5 11 2 5 12 3 5 13 3 5 23 3 5 73 4 4 23 5 6 43 5 6 64 4 1 17 3 1 37 3 2 17 3 2 57 4 3 58 3 1 39 2 2 6
(3,7) ( c )1 1 4 41 2 5 11 2 5 12 3 5 13 3 5 23 3 5 73 4 4 23 5 6 43 5 6 64 4 1 17 3 1 37 3 2 17 3 2 57 4 3 58 3 1 39 2 2 6 (2,6) ( d )1 1 4 41 2 5 11 2 5 12 3 5 13 3 5 23 3 5 73 4 4 23 5 6 43 5 6 64 4 1 17 3 1 37 3 2 17 3 2 57 4 3 58 3 1 39 2 2 6Figure 7. Searching an FQA.It is clear that the candidate list using either representation is un-changed. In the array based search we have to pay O(logn) (the costof a binary search) to simulate a visit to a branch. If we visit m nodesin the tree, we use O(m logn) time in the array.paper.tex; 17/11/2000; 19:05; p.15



16 Ch�avez, Marroqu��n, Navarro4.3. The Continuos CaseWe assumed that the distance is discrete, and this is not the generalcase. Observe that the FHFQT and the FQA do not work well if thedistance is continuous. Hence, it is necessary to de�ne ranges in thecontinuum of possible outcomes of the distance function and assignthem to a small set of discrete values. This idea, however, has its ownvalue, as we need less space to store these discretized values.In general, instead of storing k coordinates separately, we considerthe whole sequence of (discretized) values as an unsigned b = k � bsbits integer. Each group of bs bits represents the distance from thedatabase element to a pivot, i.e. we can represent 2bs values. Themost signi�cant bits are assigned to the �rst pivots, so we have thelexicographical ordering inherited by the integer ordering of the b bits.Hence, we can have more pivots at the expense of storing less bits forthe distances. This allows an extra degree of freedom in the use of theavailable memory.It is worth noting that the representation is not tightly linked withthe discretization rule. One can use any suitable rule to assign intervalsto branches in the tree. We envision at least two possible discretizationschemes.Fixed slices: FSFQA For each pivot, independently, we obtainDmax =maxfd(pi; u)g and Dmin = minfd(pi; u)g for u 2 U� fp1 : : : pkg.The range Dmax � Dmin is divided then in 2bs parts, and eachbinary number x is associated to the interval [Dmin + x (Dmax �Dmin)=2bs; Dmin + (x + 1) (Dmax � Dmin)=2bs). The idea is thatthe range of possible values is split in 2bs slices of the same width,although the number of points lying in each slice may vary (andcan be even zero).Fixed quantiles: FQFQA For each pivot we determine the bs � 1uniform quantiles that divide the set of distances into bs equalsized subsets, and assign one quantile to each value. The procedureensures that in each interval there are exactly n=2bs points.5. Experimental ResultsIn which follows we present experiments on the diverse aspects of thedata structure proposed and on how it compares against others. Wehave selected a sample of uniformly distributed real vectors on theunit cube for our experiments and used the L2 (Euclidean) distance.paper.tex; 17/11/2000; 19:05; p.16



Fixed Queries Array 17Although this is a space with coordinates, we treat it as a generalmetric space (not making use of the coordinates). This allows us tocontrol precisely the e�ective dimension of the data. All the graphsshow how many distance computations are needed to satisfy a queryretrieving 0.01% of the database. We use a database of up to 100,000elements and 4 to 20 dimensions.5.1. Use of MemoryFor a �xed amount of memory there are many possible combinationsof pivots and resolution for both FSFQA and FQFQA. For example ifwe have 32 bits for each database point, then we can choose to have 321-bit pivots, or 16 2-bit pivots, or 8 4-bit pivots, etc. We try to �gureout the best combination and the amount of di�erence between them.Another unclear issue is what is the best scheme for FQA: FSFQAor FQFQA. In the graphs the schemes are named \FSFQA/FQFQAh � b", where h is the number of pivots used and b is the number ofbits per pivot. If the same memory is used then h � 2b is constant.In Figure 8 we observe that for a small amount of memory, thedi�erence between schemes is negligible for the FSFQA. However, using256 bits (8 words), the best is 4 bits per pivot in almost every dimension.Figure 9 shows the same behavior for the FQFQA, the optimal selectionbeing 4 bits per pivot. As can be seen, both schemes give very similarresults, so we consider only FQFQA from here on.Figure 10 compares the FQFQA using 4 bits per pivot, for 32 and256 bits per element, against other data structures. We have includedthe FHFQT (height 8, using �xed slices of width 0.1), the MVPT (witharity 16), LAESA (8 pivots), SPA (4 pivots), GNAT (arity 64) and SAT.We gave to FHFQT, LAESA and SPA the same amount of memory asfor the FQA of 256 bits (since with 32 bits none of these structurescan perform reasonably well), and this determines the height of theFHFQT and the number of pivots for LAESA and SPA. On the otherhand, GNATs, SATs and MVPTs use a �xed amount of memory (about64 bits per element with a very careful implementation).It is clear that the FQA makes the best use of the available memory,in any of its two variants (which are not very di�erent indeed). Withrespect to Voronoi type data structures (GNAT and SAT), these aremore resistant to high dimensions, but the FQA (and other pivot basedalgorithms) beats them in any dimension provided enough memory.This shows how important is to make good use of the available memory.paper.tex; 17/11/2000; 19:05; p.17
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Figure 8. FSFQA using 32 bits (top) and 256 bits (bottom), for several combinationsof resolution/pivots and a �xed amount of memory.5.2. Search TechniqueThe results presented in the preceding experiments measure only dis-tance computations. We obtain the same results using either the FQAsearch algorithm or a plain array and a sequential search over the array.If the d distance is expensive to compute, the overall complexity willbe driven by the �gures obtained using only the number of distancepaper.tex; 17/11/2000; 19:05; p.18
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Figure 9. FQFQA using 32 bits (top) and 256 bits (bottom), for several combina-tions of resolution/pivots and a �xed amount of memory.computations. In many realistic setups, the side computations cannotbe deprecated.In Figure 11 (top) the total elapsed time for the \sequential" (i.e.a linear pass over the array) and \recursive" (i.e. our backtrackingalgorithm) versions of the FQA is shown. Note that, as the dimen-sion increases, the di�erences between both approaches become larger.The same is true if we increase the size of the database, as can bepaper.tex; 17/11/2000; 19:05; p.19
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Figure 10. FQA other data structures for di�erent amounts of memory andincreasing dimension.expected when comparing a linear and a sublinear algorithm. Notethat the number of distance computations is exactly the same for bothimplementations.We have also included a least squares estimation of the runningtime under the model t = cn�, showing that the recursive algorithm issublinear on n, despite that � tends to 1 as the dimension grows.5.3. A Real-World ExampleIn this section we aim at studying the performance of the FQA in areal application. We also use the test to determine which is the gain ofthe FQA with respect to other data structures in total CPU time (notonly counting distance evaluations). This test has little sense in thesynthetic experiments because the L2 distance in up to 20 dimensionsis much easier to evaluate than most real world distances.In several applications of computer vision and image processing theuser wants to locate a subimage inside a larger image. The referenceimage may be a frame of a sequence, or a static image. The subimagesare sized 16� 16 to 32� 32 pixels. The representational dimension ofthe vectors is 256 and 1024 respectively. The distance used to matchsubimages is the Euclidean distance or the L1 distance.We ran an experiment (see Figure 12) for �nding 15� 15 subimagesinside a 256 � 256 pixels image. This is equivalent to searching fora 225-dimensional vector in a 60,000 elements database. The searchpaper.tex; 17/11/2000; 19:05; p.20
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Dimension Sequential Recursive4 :0003n1:13 :0018n0:2610 :0012n1:04 :0020n0:8720 :0120n0:99 :0086n0:98Figure 11. Total elapsed time for varying database size. The plot shows the behav-ior of the recursive and sequential implementations of the FQFQA 64-8 in severaldimensions.retrieved about 6 database elements (0.01 % of the database) per query.The results were averaged over 300 random queries. The machine is aPentium III 450 Mhz with two processors and 500 Mb of RAM, runningLinux Kernel 2.2.12.For this example the FQFQA is faster than all the other data struc-tures, even taking less space (we had better results with 8 bits perpivot this time). It can easily trade memory for time. When movingfrom 16 to 32 pivots (from 1 Mb to 2 Mb) the speedup is about 25%,going from 32 to 64 pivots (from 2 to 4 Mb) gives a smaller speedup, ofabout 3%. We used 8 pivots for SPA, 16 pivots for LAESA and height8 for FHFQT. The memory is measured as the amount required by theprocess at runtime. paper.tex; 17/11/2000; 19:05; p.21



22 Ch�avez, Marroqu��n, NavarroIndex Construction Query time Query time Memory(distances) (msecs) (distances)FQA 64-8 3.5 M 14.167 245 4.0 MbFQA 32-8 2.1 M 14.556 285 2.0 MbFQA 16-8 1.1 M 18.333 414 1.0 MbSPA 0.5 M 22.833 548 4.0 MbFHFQT 0.5 M 26.111 594 8.1 MbMVPT 1.9 M 35.444 915 5.0 MbGNAT 7.1 M 62.722 1,702 1.2 MbSAT 5.5 M 175.222 4,554 3.6 MbLAESA 1.1 M 196.611 335 4.0 MbFigure 12. Finding 15�15 subimages inside a 256�256 pixels image. The databasehas about 60,000 vectors of dimension 225. Construction complexity is measured in(millions) of distance computations. Query complexity is measured in millisecondsas well as in distance computations.6. Conclusions and Future WorkWe have presented a new data structure, the Fixed Queries Array(FQA), for proximity searching in metric spaces. The FQA belongs tothe family of pivot based algorithms, the most popular one. We haveargued that the most important parameter governing the performanceof those algorithms is the number k of pivots used. Therefore, theamount of available memory is a crucial parameter because we needto store kn coordinates.The essential advantage of the FQA is that it makes good use of theavailable memory. First, it is the only structure that permits a sublinearamount of extra CPU time without using any extra information, sothe space that other data structures use for this purpose can be usedto accommodate more pivots. Second, it permits to trade number ofpivots for their precision, in order to make optimal use of the availablememory.The FQA is experimentally shown to be a simple yet e�ective struc-ture for this problem, as it compares well with other state of the artapproaches. Its simplicity makes it very appealing for practitionersseeking for a black box data structure to plug in their applications.We are currently working on dynamic and secondary memory as-pects of this data structure. For example, inserting an element is costlyin a sorted array, but a slightly more complex scheme with linkedpaper.tex; 17/11/2000; 19:05; p.22
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