Chapter 5
Query Languages

We cover in this chapter the different kind of queries normally posed to text retrieval systems.
This is in part dependent on the retrieval model the system adopts, i.e. a full-text system will not
answer the same kind of queries as those answered by a system based on keyword ranking (as done
by Web search engines) or on a hypertext model. In Chapter 7 we explain how the user queries are
solved, while in this chapter we show which queries can be formulated. The type of query the user
might formulate is largely dependent on the underlying information retrieval model. The different
models for text retrieval systems are covered in Chapter 2.

As in previous chapters, we want to distinguish between information retrieval and data retrieval,
as we use this dichotomy to classify different query languages. We have chosen to distinguish first
languages that allow the answer to be ranked, that is, languages for information retrieval. As
covered in Chapter 2, for the basic information retrieval models, keyword-based retrieval is the
main type of querying task. For query languages not aimed at information retrieval, the concept of
ranking cannot be easily defined, so we consider them as languages for data retrieval. Furthermore,
some query languages are not intended for final users and can be viewed as languages that a higher
level software package should use to query an on-line database or a CD-ROM archive. In that
case, we talk about protocols rather than query languages. Depending on the user experience, a
different query language will be used. For example, if the user knows exactly what he/she wants,
the retrieval task is easier and ranking may not even be needed.

An important issue is that most query languages try to use the content (i.e. the semantics) and
the structure of the text (that is, the text syntax) to find relevant documents. In that sense, the
system may fail to find the relevant answers (see Chapter [REF]). For this reason, a number of
techniques meant to enhance the usefulness of the queries exist. Some examples are the expansion
of a word to the set of its synonyms or the use of a thesaurus, stemming to put together all the
derivatives of the same word, and others. Moreover, some words which are very frequent and do
not carry meaning (such as "the"), called stop-words, may be removed. This subject is covered in
Chapter [REF]. Here we assume that all the query preprocessing has already been done. Although
these operations are usually done for information retrieval, many of them can also be useful in
a data retrieval context. When we want to emphasize the difference between words that can be
retrieved by a query and those which cannot, we call “keywords” the first ones.

Orthogonal to the kind of queries that can be asked is the subject of the retrieval unit the

2 CHAPTER 5. QUERY LANGUAGES

information system adopts. The retrieval unit is the basic element which can be retrieved as an
answer to a query (normally a set of such basic elements is retrieved, sometimes ranked by relevance
or other criterion). The retrieval unit can be a file, a document, a Web page, a paragraph, or some
other structural unit which contains an answer to the search query. From this point on, we will call
simply “documents” those retrieval units, although as explained this can have different meanings
(see also Chapter 2).

This chapter is organized as follows. We first show the queries that can be formulated with
keyword-based query languages. They are aimed at information retrieval, including simple words
and phrases as well as boolean operators which manipulate sets of documents. In a second section
we cover pattern matching, which includes more complex queries and is generally aimed at comple-
menting keyword searching with more powerful data retrieval capabilities. Third, we cover querying
on the structure of the text, which is more dependent on the particular text model. Finally, we
finish with some standard protocols used in Internet and by CD-ROM publishers.

5.1 Keyword Based Querying

A query is the formulation of a user information need. In its simplest form, a query is composed of
keywords and the documents containing such keywords are searched for. Keyword based queries are
popular because they are intuitive, easy to express, and allow for fast ranking. Thus, a query can
be (and in many cases is) simply a word, although it can in general be a more complex combination
of operations involving several words.

In the rest of this chapter we will refer to single-word and multiple-word queries as basic queries.
Patterns, which are covered in Section 77, are also considered as basic queries.

5.1.1 Single-Word Queries

The most elementary query that can be formulated in a text retrieval system is the word. Text
documents are assumed to be essentially long sequences of words. Although some models present
a more general view, virtually all models allow seeing the text in this perspective and to search
words. Some models (such as the full text model) are also able to see the internal division of
words into letters. Those last models permit searching other types of patterns, which are covered
in Section 5.2. The set of words retrieved by these extended queries can then be fed into the
word-treating machinery, say to perform thesaurus expansion or for ranking purposes.

A word is normally defined in a rather simple way. The alphabet is split into “letters” and
“separators”, and a word is a sequence of letters surrounded by separators. More complex models
allow specifying that some characters are not letters but do not split a word, e.g. the hyphen in
"on-line". It is good practice to leave the choice of what is a letter and what is a separator to the
administrator of the text database.

The division of the text into words is not arbitrary, since words carry a lot of meaning in natural
language. Because of that, many models (such as the vector model) are completely structured on
the concept of words, and words are the only type of queries allowed (moreover, some systems
only allow a small set of words to be extracted from the documents). The result of word queries
is the set of documents containing at least one of the words of the query. Further, the resulting
documents are ranked according to a degree of similarity to the query. To support ranking, two

5.1. KEYWORD BASED QUERYING 3

common statistics on word occurrences inside texts are commonly used. The first is called “term
frequency” and counts the number of times a word appears inside a document. The second is called
“inverse document frequency” and is based on a counting of the number of documents in which a
word appears. See Chapter 2 for more details.

Additionally, the exact positions where the word appears in the text may be required. This
might be useful for the user interface to highlight each occurrence.

5.1.2 Context Queries

Many systems complement single-word queries with the ability to search words in a given contezt,
that is, near other words. As detailed in Chapter [REF], words which appear near each other may
signal higher likelihood of relevance than if they appear apart. For instance, we may want to form
phrases of words or find words which are proximal in the text.

Phrase: is a sequence of single-word queries. An occurrence of the phrase is a sequence of
words. For instance, it is possible to search for the word "enhance", and then then the
word "retrieval". In phrase queries it is normally understood that the separators which
are in the text need not be the same as in the query (e.g. two spaces versus one space), and
even uninteresting words are not considered at all. For instance, the previous example could
match in a text such as "...enhance the retrieval...". Although this feature is very
useful in most cases, not all systems implement it.

Proximity: a more relaxed version of the phrase query is the proximity query. In this case, a se-
quence of single words or phrases is given, together with a maximum allowed distance between
them. For instance, the above example could state that the two words should occur within
four words, and therefore a match could be "...enhance the power of retrieval...".
This distance can be measured in characters or words depending on the system. The words
and phrases may or may not be required to appear in the same order as in the query.

Phrases can be ranked in a fashion somewhat analogous to single words (see Chapter [REF] for
details). Proximity queries can be ranked in the same way if the parameters used by the ranking
technique do not depend on physical proximity. Although it is not clear how to do better ranking,
physical proximity has semantic value. This is because in most cases the proximity means that the
words are in the same paragraph, and hence related in some way.

5.1.3 Boolean Queries

The oldest (and still heavily used) mean to combine keyword queries is to use boolean operators.
A boolean query has a syntax composed of atoms (i.e. basic queries) that retrieve documents, and
of boolean operators which work on their operands (which are sets of documents) and deliver sets
of documents. Since this scheme is in general compositional (i.e. operators can be composed over
the results of other operators) a query syntaz tree is naturally defined, where the leaves correspond
to the basic queries and the internal nodes to the operators. The query syntax tree operates on
an algebra over sets of documents (and the final answer of the query is also a set of documents).
This is much as, for instance, the syntax trees of arithmetic expressions where the numbers and
variables are the leaves and the operations form the internal nodes. Figure 5.1 shows an example.

4 CHAPTER 5. QUERY LANGUAGES

transl ation OR

synt ax syntactic

Figure 5.1: An example of a query syntax tree. It will retrieve all the documents which contain
the word "translation" as well as either the word "syntax" or the word "syntactic".

The operators most commonly used, given two basic queries or boolean sub-expressions e; and
€9, are:

OR: The query (e; OR e3) selects all documents which satisfy e; or e3. Duplicates are eliminated.
AND: The query (e; AND ey) selects all documents which satisfy both e; and ej.

BUT: The query (e; BUT e3) selects all documents which satisfy e; but not e;. Notice that
classical boolean logic uses a “NOT” operation, where (NOT e3) is valid whenever e; is not.
In this case all documents not satisfying es should be delivered, which may retrieve a huge
amount of text and it is probably not what the user wants. The BUT operator, instead, sets
the universe of retrievable elements to the result of e; !.

Apart from selecting the appropriate documents, it is up to the system to present those docu-
ments sorted by some criterion, to highlight the occurrences of the words mentioned in the query,
and to allow feedback by taking the answer set as a basis to reformulate the query. The information
needed to achieve this must be also provided as part of the result set.

With classic boolean systems, no ranking of the retrieved documents is provided. A document
either satisfies the boolean query (in which case it is retrieved) or it does not (in which case it is
not retrieved). This is quite a limitation because it does not allow for partial matching between
a document and a user query. To overcome this limitation, the condition for retrieval must be
relaxed. For instance, a document which partially satisfies an AND condition might be retrieved.

In fact, it is widely accepted that users not trained in mathematics find the meaning of boolean
operators difficult to grasp. With this problem in mind, a “fuzzy-boolean” set of operators has
been proposed. The idea is that the meaning of AN D and OR can be relaxed, so that they take
many operands and instead of forcing an element to appear in all operands (AN D) or one operand
(OR), they retrieve elements appearing in some operands (the AN D may require it to appear in
more operands than the OR). Moreover, the documents are ranked higher when they have a larger
number of elements in common with the query (see Chapter [REF]).

! Notice that the same problem arises in the relational calculus, which is shown similar to the relational algebra
only when “unsafe” expressions are avoided. Unsafe expressions are those that make direct or indirect reference to a
universe of elements, such as NOT does.

5.2. PATTERN MATCHING 5

5.1.4 Natural Language

Pushing the fuzzy boolean model even further, the distinction between AND and OR could be
completely blurred, so that a query becomes simply an enumeration of words and context queries
which are of interest to the user, and all the documents matching some query are retrieved, giving
more weight to those matching more parts of the query. The negation can be handled by letting
the user express that some words are not desired, so that the documents containing them are
penalized in the ranking computation. A threshold may be selected so that the documents with
very low weights are not retrieved. Under this scheme we have completely eliminated any reference
to boolean operations and entered into the field of natural language queries. In fact, one can
consider that boolean queries are a simplified abstraction of natural language queries.

A number of new issues arise once this model is used, especially those related to the proper way
to rank an element with respect to a query. The search criterion can be reexpressed using a different
model, where documents and queries are considered just as a vector of “term weights” (with one
coordinate per interesting keyword or even per existing text word) and queries are considered in
exactly the same way (context queries are not considered in this case). Therefore, the query is
now internally converted into a vector of term weights and the aim is to retrieve all the vectors
(documents) which are close to the query (where closeness has to be defined in the model). This
allows many interesting possibilities, for instance a complete document can be used as a query
(since it is also a vector), which naturally leads to the use of relevance feedback techniques (i.e.
the user can select a document from the result and submit it as a new query to retrieve documents
similar to the selected one). The algorithms for this model are totally different from those based on
searching patterns (it is even possible that not every text word can be searched but only a small set
of hopefully representative keywords is extracted from each document). Natural language querying
is explained in more detail in Chapter [REF].

5.2 Pattern Matching

In this section we discuss more specific query formulations (based on the concept of a pattern) which
allow retrieving pieces of text that have some property. These data retrieval queries are useful
for linguistics, text statistics and data extraction. Their result can be fed into the composition
mechanism described above to form phrases and proximity queries, comprising what we have called
basic queries. Basic queries can be combined using boolean expressions. In this sense we can view
these data retrieval capabilities as enhanced tools for information retrieval. However, it is more
difficult to rank the result of a pattern matching expression.

A pattern is a set of syntactic features that must be found in a text segment. Those segments
satisfying the pattern specifications are said to “match” the pattern. We are interested in documents
containing segments which match a given search pattern. Each system allows specifying some types
of patterns, which range from very simple (for example words) to rather complex (such as regular
expressions). The more powerful the set of patterns allowed, the more involved queries can the user
formulate and the more complex is the implementation of the search, in general. The most used
types of patterns are:

Words: a string (sequence of characters) which must be a word in the text (see section 5.1). This

6 CHAPTER 5. QUERY LANGUAGES

is the most basic pattern.

Prefixes: a string which must form the beginning of a text word. For instance, given the prefix
"comput" all the documents containing words as "computer", "computation", "computing",
etc. are retrieved.

Suffixes: a string which must form the termination of a text word. For instance, given the suffix
"ters" all the documents containing words as "computers", "testers", "painters", etc.
are retrieved.

Substrings: a string which can appear within a text word. For instance, given the substring
"tal" all the documents containing words such as "coastal", "talk", "metallic", etc. are
retrieved. This query can be restricted to find the substrings inside words, or it can go further
and search the substring anywhere in the text (in this case the query is not restricted to be a
sequence of letters but can contain word separators). For instance, a search for "any flow"
will match in the phrase "...many flowers...".

Ranges: a pair of strings which matches any word which lexicographically lies between them.
Alphabets are normally sorted, and this induces an order into the strings which is called
lezicographical order (this is indeed the order in which words in a dictionary are listed). For
instance, the range between words "held" and "hold" will retrieve strings such as "hoax"
and "hissing".

Allowing errors: a word together with an error threshold. This search pattern retrieves all text
words which are “similar” to the given word. The concept of similarity can be defined in
many ways. The general concept is that the pattern or the text may have errors (coming
from typing, spelling or from an optical character recognition software, among others), and
the query should try to retrieve the given word and what are likely to be its erroneous variants.
Although there are many models for similarity among words, the most generally accepted in
text retrieval is the Levenshtein distance, or simply edit distance. The edit distance between
two strings is the minimum number of character insertions, deletions and replacements needed
to make them equal. For instance, the edit distance between "color" and "colour" is one,
while the edit distance between "survey" and "surgery" is two. This distance has been
found superior to model errors than other more complex methods such as the Soundex system.
Therefore, the query specifies the maximum number of allowed errors for a word to match
the pattern (i.e. the maximum allowed edit distance). This model can also be extended to
search substrings (not only words), retrieving any text segment which is at the allowed edit
distance to the search pattern. Under this model, if a typing error splits "flower" into "flo
wer" it could still be found with one error, while in the restricted case of words it could not
(since neither "f1o" or "wer" are at edit distance 1 to "flower"). Variations on this distance
model are of use in computational biology to search on DNA or protein sequences.

Regular expressions: some text retrieval systems allow searching for regular expressions. A
regular expression is a rather general pattern built up by simple strings (which are meant to
be matched as substrings) and the following operators

5.3. STRUCTURAL QUERIES 7

e Union: if e; and ey are regular expressions, then (e;|es) matches what e; or e; matches.

e Concatenation: if e; and e, are regular expressions, the occurrences of (e; es) are formed
by the occurrences of e; immediately followed by those of ey (therefore simple strings
can be thought of as a concatenation of their individual letters).

e Repetition: if e is a regular expression, then (e*) matches a sequence of zero or more
contiguous occurrences of e.

For instance, consider a query like "pro (blem | tein) (s | €) (0| 1| 2)* " (where € denotes
the empty string). It will match words such as "problem02" and "proteins". As in previous
cases, the matches can be restricted to comprise a whole word, to occur inside a word or
to match an arbitrary text segment. This can also be combined with the previous type of
patterns to search a regular expression allowing errors.

Extended patterns: it is normal to use a more user-friendly query language to represent some
common cases of regular expressions. Extended patterns are subsets of the regular expres-
sions which are expressed with a simpler syntax. The retrieval system can internally convert
extended patterns into regular expressions, or search them with specific algorithms. Each
system supports its own set of extended patterns, and therefore no formal definition exists.
Some examples found in many new systems are

e Classes of characters, i.e. some patterns positions match with a set of characters. This
involves features such as case-insensitive matching, use of ranges of characters (e.g.
specifying that some character must be a digit), complements (e.g. some character must
not be a letter), enumeration (e.g. a character must be a vowel), wild cards (i.e. some
pattern position matches with anything), among others.

e Conditional expressions, i.e. a part of the pattern may or may not appear.

e Wild characters which match any sequence in the text, e.g. any word which starts as
"flo" and ends with "ers", which matches "flowers" as well as "flounders".

e Combinations allowing that some parts of the pattern match exactly and others with
errors.

5.3 Structural Queries

Up to now we have considered the text collection as a set of documents which can be queried with
regard to their text content. This model is unable to take advantage of novel text features which
are becoming commonplace, such as the text structure. The text collections tend to have some
structure built into them, and the choice of being able to query those texts based on their structure
(and not only their content) is becoming attractive. The standardization of languages to represent
structured texts such as HTML has pushed forward in this direction.

Mixing contents and structure in queries allows posing very powerful queries, which are much
more expressive than each query mechanism by itself. By using a query language that integrates
both types of queries, the retrieval quality of textual databases can be improved.

8 CHAPTER 5. QUERY LANGUAGES

This mechanism is built on top of the basic queries, so that they select a set of documents
that satisfy certain constraints on their content (expressed using words, phrases or patterns that
the documents must contain). On top of this, some structural constraints can be expressed using
containment, proximity or other restrictions on the structural elements (e.g. chapters, sections,
etc.) present in the documents. The boolean queries can be built on top of the structural queries,
so that they combine the sets of documents delivered by those structural queries. In the boolean
syntax tree (recall the example of Figure 5.1) the structural queries form the leaves of the tree. On
the other hand, structural queries can themselves have a complex syntax.

We divide this section according to the type of structures found in text databases. Figure 5.2

illustrates them. Although structured query languages should be amenable for ranking, this is still
an open problem.

Ol — b)
—)

S /4 S

0)

Figure 5.2: The three main structures: a) form-like fixed structure, b) hypertext structure and c)
hierarchical structure.

In which follows it is important to distinguish the difference between the structure that a text
may have and what can be queried about that structure. In general, natural language texts may
have any desired structure. However, different models allow querying only some aspects of the real
structure. When we say that the structure allowed is restricted in some way, we mean that only
the aspects which follow this restriction can be queried, albeit the text may have more structural
information. For instance, it is possible that an article has a nested structure of sections and
subsections, but the query model does not accept recursive structures. In this case we will not be
able to query for sections included in others, although this may be the case in the texts.

5.3.1 Fixed Structure

The structure allowed in texts was traditionally quite restrictive. The documents had a fixed set
of fields, much like a filled form. Each field had some text inside. Some fields were not present
in all documents, but only rarely could they appear in any order or appear repeatedly across the
document or could the document have text not classified under any field. They were not allowed
to nest or overlap. The retrieval activity allowed on them was restricted to specifying that a given
basic pattern was to be found only in a given field. Most current commercial systems use this
model.

This model is reasonable when the text collection has a fixed structure. For instance, a mail
archive could be regarded as a set of mails, where each mail has a sender, a receiver, a date, a

5.3. STRUCTURAL QUERIES 9

subject and a body field. The user can thus search for the mails he sent to a given person with
"football" in the subject field. However, the model is inadequate to represent the hierarchical
structure present in a HTML document, for instance.

If the division of the text into fields is rigid enough, the content of some fields can even be
interpreted not as text but as numbers, dates, etc. therefore allowing different queries to be posed
on them (e.g. month ranges in dates). It is not hard to see that this idea leads naturally to the
relational model, each field corresponding to a column in the database table. Looking the database
as a text allows querying the textual fields with much more power than what is common in relational
database systems. On the other hand, relational databases may use better their knowledge on the
data types involved to build specialized and more efficient indices. A number of approaches to
mix both trends have been proposed in the last years, their main problem being that they do not
achieve optimal performance because the text is usually stored together with other types of data.
Nevertheless, there are several proposals that extend SQL (Structured Query Language) to allow
full-text retrieval. Among them we can mention SFQL, which is covered in section 5.4.

5.3.2 Hypertext

Hypertexts probably represent the opposite trend with respect to structuring power. A hypertext is
a directed graph where the nodes hold some text and the links represent connections among nodes
or among positions inside the nodes. Hypertexts received a lot of attention since the explosion of
the Web, which is indeed a gigantic hypertext-like database spread across the world.

However, retrieval from hypertext began as a merely navigational activity. That is, the user
had to manually traverse the hypertext nodes following links to search what he/she wanted. It was
not possible to query the hypertext based on its structure. Even in the Web one can search by the
text contents of the nodes, but not by their connection structure.

An interesting proposal to combine browsing and searching on the Web is WebGlimpse. It
allows classical navigation plus the ability to search by content in the neighborhood of the current
node. Currently, some query tools have appeared that achieve the goal of querying hypertext based
on their content and their structure. This problem is covered in detail in Chapter [REF].

5.3.3 Hierarchical Structures

An intermediate structuring model which lies between fixed structure and hypertext is the hierar-
chical structure. This represents a recursive decomposition of the text and it is a natural model for
many text collections (e.g. books, articles, legal documents, structured programs, etc.). Figure 5.3
shows an example of such structure.

On the other hand, the simplification from hypertext to a hierarchy allows the use of faster
algorithms to solve queries. As a general rule, the more powerful the model, the less efficiently it
can be implemented.

Our aim in this section is to analyze and discuss the different approaches presented by the
hierarchical models. We first present a selection of the most representative models and then discuss
the main subjects of this area.

10

CHAPTER 5. QUERY LANGUAGES

Chapter 5

We cover in this chapter
the different kind of ...

5.1 Keyword Based ...

in
figure with

7N

section with

title "structural "

Figure 5.3: An example of a hierarchical structure: the page of a book, it schematic view, and a

parsed query to retrieve the figure.

A Sample of Hierarchical Models

PAT Expressions are built on the same index of the text, i.e. there is no special index on

structure. The structure is assumed to be marked in the text by tags (as in HTML), and
therefore the structure is defined in terms of initial and final tags. This allows a dynamic
scheme where the structure of interest is not fixed but can be determined at query time
(since the tags need not be especially designed to be tags, e.g. one can define that the end-
of-lines are the marks in order to define a structure of lines). This also allows a very efficient
implementation and no additional space overhead for the structure.

Each expression of initial and final tags defines a region, which is a set of contiguous text
areas. Externally computed regions are also supported. However, the areas of a region cannot
nest nor overlap, which is quite restrictive. There is no restriction on areas of different regions.

Apart from text searching operations, it is possible to select areas containing (or not) other
areas, contained (or not) in other areas, or followed (or not) by other areas.

A disadvantage is that the algebra mixes regions and sets of text positions, which are incom-
patible and force complex conversion semantics. For instance, if the result of a query is going
to generate overlapping areas (which can not be determined beforehand) then the result is
converted to positions. Also, the dynamic definition of regions is flexible but requires that

5.3. STRUCTURAL QUERIES 11

the structure can be expressed using tags (also called “markup”), which for instance does not
occur in some structured programming languages.

Overlapped Lists can be seen as an evolution from PAT Expressions. The model allows that the
areas of a region overlap, but not nest. This elegantly solves the problems of mixing regions
and sets of positions. The model considers the use of an inverted list (see Chapter 7) where
not only the words but also the regions are indexed.

Apart from the operations of PAT Expressions, the model allows performing set union, and
to combine regions. Combination means selecting the minimal text areas including any two
areas taken from two regions. A “followed by” operator imposes the additional restriction
that the first area must be before the second one. An “n words” operator generates the region
of all (overlapping) sequences of n words of the text (this is further used to retrieve elements
close to each other). If an operation produces a region with nested areas, only the minimal
areas are selected.

The implementation of this model can also be very efficient. It is not clear, however, whether
overlapping is good or not to capture the structural properties that information has in prac-
tice. A new proposal allows that the structure nests end overlaps, showing that most inter-
esting operators can still be implemented.

Lists of References is an attempt to uniformize definition and querying of structured text, using
a common language. The language goes beyond querying structured text, so we restrict our
attention to the subset of our interest.

The structure of documents is fixed and hierarchical, which makes it impossible to have
overlapping results. All possible regions are defined at indexing time. The answers delivered
are more restrictive, since nesting is not allowed (only the top-level elements qualify) and all
elements must be of the same type, e.g. only sections, or only paragraphs. In fact, there are
also hypertext links but these cannot be queried (the model has also navigational features).

A static hierarchical structure makes it possible to speak in terms of direct ancestorship of
nodes, a concept difficult to express when the structure is dynamic. The language allows
querying on “path expressions”, which describe paths in the structure tree.

Answers to queries are seen as lists of “references”. A reference is a pointer to a region of the
database. This integrates in an elegant way answers to queries and hypertext links, since all
are lists of references.

Proximal Nodes tries to find a good compromise between expressiveness and efficiency. It does
not define a specific language, but a model in which it is shown that a number of useful
operators can be included achieving good efficiency.

The structure is fixed and hierarchical. However, many independent structures can be defined
on the same text, each one being a strict hierarchy but allowing overlaps between areas of
different hierarchies.

A query can relate different hierarchies, but returns a subset of the nodes of one hierarchy
only (i.e. nested elements are allowed in the answers, but no overlaps). Text matching queries
are modeled as returning nodes from a special “text hierarchy”.

12

Tree

CHAPTER 5. QUERY LANGUAGES

The model specifies a fully compositional language where the leaves of the query syntax tree
are formed by basic queries on contents or names of structural elements (e.g. all chapters).
The internal nodes combine results. For efficiency, the operations of the internal nodes must
be implementable looking at the identity and text areas of the operands, and must relate
nodes which are close in the text.

It is shown that many useful operators satisfy this restriction: selecting elements that (directly
or transitively) include or are included in others, that are included at a given position (e.g.
the third paragraph of each chapter); that are short before or after others; set manipulation;
and many powerful variations. Operations on content elements deliver a set of regions with no
nesting, and those results can be fully integrated into any query. This ability to integrate the
text into the model is very useful. On the other hand, some queries requiring non-proximal
operations are not allowed, for instance semijoins. An example of a semijoin is “give me the
titles of all the chapters referenced in this chapter”.

Matching relies on a single primitive: tree inclusion. The idea of tree inclusion is, seeing
both the structure of the database and the query (a pattern on structure) as trees, find
an embedding of the query into the database which respects the hierarchical relationships
between nodes of the query.

Two variants are studied. Ordered inclusion forces the embedding to respect the left-to-right
relations among siblings in the query, while unordered inclusion does not. The leaves of the
query can be not only structural elements but also text patterns, meaning that the ancestor
of the leaf must contain that pattern.

Simple queries return the roots of the matches, and the language is enriched by Prolog-like
variables, which can be used to express requirements on equality between parts of the matched
substructure and to retrieve another part of the match, not only the root. Logical variables
are also used for union and intersection of queries, as well as to emulate tuples and join
capabilities.

Although the language is set-oriented, the algorithms work by sequentially obtaining each
match. The use of logical variables and unordered inclusion makes the problem intractable
(NP-hard in many cases). Even the good cases have an inefficient solution in practice.

Discussion

A survey on the main hierarchical models raises a number of interesting issues, most of them largely
unresolved up to now. Some of them are

Static or Dynamic Structure: as seen, in a static structure there are one or more explicit hi-

erarchies (which can be queried, e.g., by ancestorship), while in a dynamic structure there is
not really a hierarchy, but the required elements are built on the fly. A dynamic structure
is implemented over a normal text index, while a static one may or may not be. A static
structure is independent on the text markup, while a dynamic one is more flexible to build
arbitrary structures.

5.4. QUERY PROTOCOLS 13

Restrictions on the structure: the text or the answers may have restrictions about nesting
and/or overlapping. In some cases those restrictions exist for efficiency reasons. In other
cases, the query language is restricted to avoid restricting the structure. This choice is largely
dependent on the needs of each application.

Integration with text: in many models the text content is merely seen as a secondary source
of information, used only to restrict the matches of structural elements. This is the reverse
side of what happens to structure in classical models, where it is used only to restrict text
matches. It is important that the integration of content and structure gives both aspects all
their power and that integrates elegantly both types of queries for further manipulation.

Query language: typical queries on structure allow selecting areas that contain or not others, or
are contained or not in others, that follow or are followed or are close to others, and set ma-
nipulation. Many of them are implemented in most models, although each models has unique
features. Some kind of standardization, expressiveness taxonomy or formal categorization
would be highly desirable and does not yet exist.

5.4 Query Protocols

In this section we briefly cover some query languages that are used automatically by software
applications to query text databases. Some of them are proposed as standards for querying CD-
ROMs or as intermediate languages to query library systems. Because they are not intended for
human use, we refer to them as protocols rather than languages. More information on protocols
can be found in the Chapters [REF,REF] on Library Systems and Digital Libraries. The most
important are:

Z39.50: is a protocol, approved as standard in 1995 by ANSI and NISO. This protocol is intended
to query bibliographical information using a standard interface between the client and the
host database manager, despite the appearance of the client user interface and the query
language of the host database. This database is assumed to be a text collection with some
fixed fields (although it is more flexible than usual). The use of this protocol is very extended,
for instance it is used internally by WAIS. The protocol does not only specify the query
language and its semantics, but also the way in which client and server establish a session,
communicate and exchange information, etc. Although originally conceived only to operate
based on bibliographical information (using the MARC format [REF)), it has been extended
to query other types of information as well.

WAIS: (Wide Area Information Service) is a suite of protocols which was popular at the beginning
of the 90s before the boom of the WWW. The goal of WAIS was to be a network publishing
protocol and be able to query databases through Internet.

In the CD-ROM publishing arena, there are several proposals for query protocols. The main
goal of these protocols is to provide “disc interchangeability”. This means more flexibility
in data communication between primary information providers and end users. Also enables

14 CHAPTER 5. QUERY LANGUAGES

significant cost savings since it allows access to diverse information without the need to buy,
install and train users for different data retrieval applications. We briefly cover three of them:

CCL: (Common Command Language) is a NISO proposal (Z39.58 or ISO 8777) based in Z39.50.
It defines 19 commands that can be used interactively. It is more popular in Europe, although
very few products use it. It is based in the classical boolean model.

CD-RDx: (Compact Disk Read only Data exchange) uses a client-server architecture and has
been implemented in most used platforms. The client is generic while the server is designed
and provided by the CD-ROM publisher which includes it with the database in the CD-ROM.
It allows fixed-length fields, images and audio, and is being supported by some US national

agencies as CIA, NASA and GSA.

SFQL: (Structured Full-text Query Language) is based on SQL and also has a client-server ar-
chitecture. SFQL has been adopted as a standard by the aerospace community (the Air
Transport Association/ Aircraft Industry Association). Documents are rows in a relational
table and can be tagged using GSML. The language defines the format of the answer, which
has a header and a variable length message area. The language does not define any specific
formatting or markup. For example, a query in SFQL is:

Select abstract from journal.papers where title contains "text search"

The language supports boolean and logical operators, thesaurus, proximity operations and
some special characters as wild-cards and repetition. For example:

where paper contains "retrieval" or like "info %" and date > 1/1/98

Compared with CCL or CD-RDx, SFQL is more general and flexible, although it is based in
a relational model, which is not always the best choice for a document database.

5.5 Conclusions and Trends

We reviewed in this chapter the main aspects of the query languages that retrieve information
from textual databases. We ranged from the most classical tools to the most novel capabilities
that are emerging, from searching words to extended patterns, from the boolean model to querying
structures. Table 5.1 shows the different queries allowed in the different models. Although the
probabilistic and the Bayesian belief network (BBN) model are based on word queries, they can
incorporate set operations.

We present in Figure 5.4 the types of operations we covered and how can they be structured
(not all them exist in all models and not all them have to be used to form a query). The figure
shows, for instance, that we can form a query using boolean operations over phrases (skipping
structural queries), which can be formed by words and by regular expressions (skipping the ability
to allow errors).

The subject of query languages for text databases is definitely moving to a higher flexibility.
While the text models are moving to the goal of achieving a better understanding of the user needs

5.6. BIBLIOGRAPHIC DISCUSSION 15

‘ Model ‘ Queries allowed
Boolean word, set operations
Vector words
Probabilistic | words
BBN words
Full-text words, set operations, pattern matching

Table 5.1: Relationship between type of queries and models.

boolean queries
fuzzy boolean

natural language ‘

structural queries

,,,,,,,,,,,,,, 4bas'cqueﬂ%
””””” proximity | |
phrases | !

33 errors | pattern 3

i / \ | matching

ii substrings regular expressions 3 3

,,,,, words 2 prefixes extended patterns ! !
keywordsand context ' suffixes ! !

Figure 5.4: The types of queries covered and how are they structured.

(by providing relevance feedback, for instance) the query languages are allowing more and more
power in the specification of the query. Not only extended patterns and searching allowing errors
permit to find patterns without complete knowledge of what is wanted, but it is also becoming
more common to query on the structure of the text and not only on its content.

5.6 Bibliographic Discussion

The material on classical query languages (most simple patterns, boolean model, and fixed struc-
ture) is based on current commercial systems, such as Fulcrum, Verity and others, as well as on
non-commercial systems such as Glimpse (Manber and Wu 1993) and Igrep (Aratjo, Navarro and
Ziviani 1997).

The fuzzy-boolean model is described in (Salton, Fox and Wu 1982). The Levenshtein distance
is described in (Levenshtein 1966) and (Apostolico and Galil 1985). Soundex is explained in (Knuth
1973). A comparison of the efectiveness of different similarity models is given in (Nesbit 1986). A
good source on regular expressions is (Hopcroft and Ullman 1979). A rich language on extended

16 CHAPTER 5. QUERY LANGUAGES

patterns is described in (Wu and Manber 1992).

A classical reference on hypertext is (Conklin 1987). The WebGlimpse system is presented in
(Manber, Smith and Gopal 1997). The discussion of hierarchical text is partially based on (Baeza-
Yates and Navarro 1996). The original proposals are: PAT Expressions (Salminen and Tompa
1992), Overlapped Lists (Clarke, Cormack and Burkowski 1995) and the new improved proposal
(Dao, Sacks-Davis and Tohm 1996), Lists of References (MacLeod 1991), Proximal Nodes (Navarro
and Baeza-Yates 1997) and Tree Matching (Kilpeldinen and Mannila 1993). PAT Expressions are
the basic model of the PAT Text Searching System (Gonnet 1987).

More information on Z39.50 can be obtained from (Z39.50 - ANSI/NISO Standards 1995). More
information on WAIS'is given in (Kahle and Medlar, 1991). For details on SFQL see (IEEE SFQL,
1992).

Bibliography

[AG85]

[ANZ97]

[BYNYS6]

[CCBYS5)]

[Con87]

[DSDT96]

[Gon87]

[HU79]

[KMO91]

[KM93]

[Knu73]

[Mac91]

A. Apostolico and Z. Galil. Combinatorial Algorithms on Words. Springer-Verlag, New
York, 1985.

M. Aradjo, G. Navarro, and N. Ziviani. Large text searching allowing errors. In Proc.
WSP’97, pages 2-20. Carleton University Press, 1997.

R. Baeza-Yates and G. Navarro. Integrating contents and structure in text retrieval.

ACM SIGMOD Record, 25(1):67-79, March 1996.

C. Clarke, G. Cormack, and F. Burkowski. An algebra for structured text search and a
framework for its implementation. The Computer Journal, 1995.

J. Conklin. Hypertext: An introduction and survey. IEEE Computer, 20(9):17-41,
September 1987.

T. Dao, R. Sacks-Dayvis, and J. Tohm. Indexing structured text for queries on contain-
ment relationships. In Proc. 7th Australasian Conference, 1996.

G. Gonnet. Examples of PAT applied to the Oxford English Dictionary. Technical
Report OED-87-02, UW Centre for the New OED and Text Research, Univ. of Waterloo,
1987.

J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages and Compu-
tation. Addison-Wesley Publishing Company, 1979.

B. Kahle and A. Medlar. An information server for corporate users: Wide Area Infor-
mation Servers. ConneXions - The Interoperability Report, 5(11):2-9, 1991. Available
from ftp://think.com/wais/wais-corporate-paper.text.

P. Kilpeldinen and H. Mannila. Retrieval from hierarchical texts by partial patterns. In
Proc. ACM SIGIR’93, pages 214-222, 1993.

D. Knuth. The Art of Computer Programming, volume 3: Searching and Sorting.
Addison-Wesley, 1973.

I. MacLeod. A query language for retrieving information from hierarchic text structures.
The Computer Journal, 34(3):254-264, 1991.

17

18

[MSG97]

[MW93]

[NBY97]

[Nes86]

[0ODS92]

[SFW82]

[ST92]

[Sta9db]

[WMO2]

BIBLIOGRAPHY

U. Manber, M. Smith, and B. Gopal. Webglimpse: combining browsing and searching.
In Proc. of USENIX Technical Conference, 1997.

U. Manber and S. Wu. GLIMPSE: A tool to search through entire file systems. Technical
Report 93-34, Dept. of CS, Univ. of Arizona, Oct 1993.

G. Navarro and R. Baeza-Yates. Proximal Nodes: a language to query document data-
bases by content and structure. ACM TOIS, 15(4):401-435, October 1997.

J. Nesbit. The accuracy of approximate string matching algorithms. J. of Computer-
Based Instruction, 13(3):80-83, 1986.

IEEE Standards Committee on Optical Disk and Multimedia Platforms (SCODMP).
Ieee sfql. Technical report, IEEE, Washington, USA, 1992.

G. Salton, E. Fox, and H. Wu. Extended boolean information retrieval. Technical Report
TR 82-511, Dept. of Computer Science, Cornell Univ., August 1982.

A. Salminen and F. Tompa. PAT expressions: an algebra for text search. Technical
Report OED-92-02, UW Centre for the New Oxford English Dictionary, July 1992.

ANSI/NISO Standards. Z39.50-information retrieval: Application service defini-
tion and protocol specification. Technical report, Washington, USA, 1995. See
http://leweb.loc.gov/z3950/agency.

S. Wu and U. Manber. Fast text searching allowing errors. Communications of the

ACM, 35(10):83-91, October 1992.

