
Chapter 5Query LanguagesWe cover in this chapter the di�erent kind of queries normally posed to text retrieval systems.This is in part dependent on the retrieval model the system adopts, i.e. a full-text system will notanswer the same kind of queries as those answered by a system based on keyword ranking (as doneby Web search engines) or on a hypertext model. In Chapter 7 we explain how the user queries aresolved, while in this chapter we show which queries can be formulated. The type of query the usermight formulate is largely dependent on the underlying information retrieval model. The di�erentmodels for text retrieval systems are covered in Chapter 2.As in previous chapters, we want to distinguish between information retrieval and data retrieval,as we use this dichotomy to classify di�erent query languages. We have chosen to distinguish �rstlanguages that allow the answer to be ranked, that is, languages for information retrieval. Ascovered in Chapter 2, for the basic information retrieval models, keyword-based retrieval is themain type of querying task. For query languages not aimed at information retrieval, the concept ofranking cannot be easily de�ned, so we consider them as languages for data retrieval. Furthermore,some query languages are not intended for �nal users and can be viewed as languages that a higherlevel software package should use to query an on-line database or a CD-ROM archive. In thatcase, we talk about protocols rather than query languages. Depending on the user experience, adi�erent query language will be used. For example, if the user knows exactly what he/she wants,the retrieval task is easier and ranking may not even be needed.An important issue is that most query languages try to use the content (i.e. the semantics) andthe structure of the text (that is, the text syntax) to �nd relevant documents. In that sense, thesystem may fail to �nd the relevant answers (see Chapter [REF]). For this reason, a number oftechniques meant to enhance the usefulness of the queries exist. Some examples are the expansionof a word to the set of its synonyms or the use of a thesaurus, stemming to put together all thederivatives of the same word, and others. Moreover, some words which are very frequent and donot carry meaning (such as "the"), called stop-words, may be removed. This subject is covered inChapter [REF]. Here we assume that all the query preprocessing has already been done. Althoughthese operations are usually done for information retrieval, many of them can also be useful ina data retrieval context. When we want to emphasize the di�erence between words that can beretrieved by a query and those which cannot, we call \keywords" the �rst ones.Orthogonal to the kind of queries that can be asked is the subject of the retrieval unit the1

2 CHAPTER 5. QUERY LANGUAGESinformation system adopts. The retrieval unit is the basic element which can be retrieved as ananswer to a query (normally a set of such basic elements is retrieved, sometimes ranked by relevanceor other criterion). The retrieval unit can be a �le, a document, a Web page, a paragraph, or someother structural unit which contains an answer to the search query. From this point on, we will callsimply \documents" those retrieval units, although as explained this can have di�erent meanings(see also Chapter 2).This chapter is organized as follows. We �rst show the queries that can be formulated withkeyword-based query languages. They are aimed at information retrieval, including simple wordsand phrases as well as boolean operators which manipulate sets of documents. In a second sectionwe cover pattern matching, which includes more complex queries and is generally aimed at comple-menting keyword searching with more powerful data retrieval capabilities. Third, we cover queryingon the structure of the text, which is more dependent on the particular text model. Finally, we�nish with some standard protocols used in Internet and by CD-ROM publishers.5.1 Keyword Based QueryingA query is the formulation of a user information need. In its simplest form, a query is composed ofkeywords and the documents containing such keywords are searched for. Keyword based queries arepopular because they are intuitive, easy to express, and allow for fast ranking. Thus, a query canbe (and in many cases is) simply a word, although it can in general be a more complex combinationof operations involving several words.In the rest of this chapter we will refer to single-word and multiple-word queries as basic queries.Patterns, which are covered in Section ??, are also considered as basic queries.5.1.1 Single-Word QueriesThe most elementary query that can be formulated in a text retrieval system is the word. Textdocuments are assumed to be essentially long sequences of words. Although some models presenta more general view, virtually all models allow seeing the text in this perspective and to searchwords. Some models (such as the full text model) are also able to see the internal division ofwords into letters. Those last models permit searching other types of patterns, which are coveredin Section 5.2. The set of words retrieved by these extended queries can then be fed into theword-treating machinery, say to perform thesaurus expansion or for ranking purposes.A word is normally de�ned in a rather simple way. The alphabet is split into \letters" and\separators", and a word is a sequence of letters surrounded by separators. More complex modelsallow specifying that some characters are not letters but do not split a word, e.g. the hyphen in"on-line". It is good practice to leave the choice of what is a letter and what is a separator to theadministrator of the text database.The division of the text into words is not arbitrary, since words carry a lot of meaning in naturallanguage. Because of that, many models (such as the vector model) are completely structured onthe concept of words, and words are the only type of queries allowed (moreover, some systemsonly allow a small set of words to be extracted from the documents). The result of word queriesis the set of documents containing at least one of the words of the query. Further, the resultingdocuments are ranked according to a degree of similarity to the query. To support ranking, two

5.1. KEYWORD BASED QUERYING 3common statistics on word occurrences inside texts are commonly used. The �rst is called \termfrequency" and counts the number of times a word appears inside a document. The second is called\inverse document frequency" and is based on a counting of the number of documents in which aword appears. See Chapter 2 for more details.Additionally, the exact positions where the word appears in the text may be required. Thismight be useful for the user interface to highlight each occurrence.5.1.2 Context QueriesMany systems complement single-word queries with the ability to search words in a given context,that is, near other words. As detailed in Chapter [REF], words which appear near each other maysignal higher likelihood of relevance than if they appear apart. For instance, we may want to formphrases of words or �nd words which are proximal in the text.Phrase: is a sequence of single-word queries. An occurrence of the phrase is a sequence ofwords. For instance, it is possible to search for the word "enhance", and then then theword "retrieval". In phrase queries it is normally understood that the separators whichare in the text need not be the same as in the query (e.g. two spaces versus one space), andeven uninteresting words are not considered at all. For instance, the previous example couldmatch in a text such as "...enhance the retrieval...". Although this feature is veryuseful in most cases, not all systems implement it.Proximity: a more relaxed version of the phrase query is the proximity query. In this case, a se-quence of single words or phrases is given, together with a maximumallowed distance betweenthem. For instance, the above example could state that the two words should occur withinfour words, and therefore a match could be "...enhance the power of retrieval...".This distance can be measured in characters or words depending on the system. The wordsand phrases may or may not be required to appear in the same order as in the query.Phrases can be ranked in a fashion somewhat analogous to single words (see Chapter [REF] fordetails). Proximity queries can be ranked in the same way if the parameters used by the rankingtechnique do not depend on physical proximity. Although it is not clear how to do better ranking,physical proximity has semantic value. This is because in most cases the proximity means that thewords are in the same paragraph, and hence related in some way.5.1.3 Boolean QueriesThe oldest (and still heavily used) mean to combine keyword queries is to use boolean operators.A boolean query has a syntax composed of atoms (i.e. basic queries) that retrieve documents, andof boolean operators which work on their operands (which are sets of documents) and deliver setsof documents. Since this scheme is in general compositional (i.e. operators can be composed overthe results of other operators) a query syntax tree is naturally de�ned, where the leaves correspondto the basic queries and the internal nodes to the operators. The query syntax tree operates onan algebra over sets of documents (and the �nal answer of the query is also a set of documents).This is much as, for instance, the syntax trees of arithmetic expressions where the numbers andvariables are the leaves and the operations form the internal nodes. Figure 5.1 shows an example.

4 CHAPTER 5. QUERY LANGUAGES
syntax syntactic

ORtranslation

AND

Figure 5.1: An example of a query syntax tree. It will retrieve all the documents which containthe word "translation" as well as either the word "syntax" or the word "syntactic".The operators most commonly used, given two basic queries or boolean sub-expressions e1 ande2, are:OR: The query (e1 OR e2) selects all documents which satisfy e1 or e2. Duplicates are eliminated.AND: The query (e1 AND e2) selects all documents which satisfy both e1 and e2.BUT: The query (e1 BUT e2) selects all documents which satisfy e1 but not e2. Notice thatclassical boolean logic uses a \NOT" operation, where (NOT e2) is valid whenever e2 is not.In this case all documents not satisfying e2 should be delivered, which may retrieve a hugeamount of text and it is probably not what the user wants. The BUT operator, instead, setsthe universe of retrievable elements to the result of e1 1.Apart from selecting the appropriate documents, it is up to the system to present those docu-ments sorted by some criterion, to highlight the occurrences of the words mentioned in the query,and to allow feedback by taking the answer set as a basis to reformulate the query. The informationneeded to achieve this must be also provided as part of the result set.With classic boolean systems, no ranking of the retrieved documents is provided. A documenteither satis�es the boolean query (in which case it is retrieved) or it does not (in which case it isnot retrieved). This is quite a limitation because it does not allow for partial matching betweena document and a user query. To overcome this limitation, the condition for retrieval must berelaxed. For instance, a document which partially satis�es an AND condition might be retrieved.In fact, it is widely accepted that users not trained in mathematics �nd the meaning of booleanoperators di�cult to grasp. With this problem in mind, a \fuzzy-boolean" set of operators hasbeen proposed. The idea is that the meaning of AND and OR can be relaxed, so that they takemany operands and instead of forcing an element to appear in all operands (AND) or one operand(OR), they retrieve elements appearing in some operands (the AND may require it to appear inmore operands than the OR). Moreover, the documents are ranked higher when they have a largernumber of elements in common with the query (see Chapter [REF]).1Notice that the same problem arises in the relational calculus, which is shown similar to the relational algebraonly when \unsafe" expressions are avoided. Unsafe expressions are those that make direct or indirect reference to auniverse of elements, such as NOT does.

5.2. PATTERN MATCHING 55.1.4 Natural LanguagePushing the fuzzy boolean model even further, the distinction between AND and OR could becompletely blurred, so that a query becomes simply an enumeration of words and context querieswhich are of interest to the user, and all the documents matching some query are retrieved, givingmore weight to those matching more parts of the query. The negation can be handled by lettingthe user express that some words are not desired, so that the documents containing them arepenalized in the ranking computation. A threshold may be selected so that the documents withvery low weights are not retrieved. Under this scheme we have completely eliminated any referenceto boolean operations and entered into the �eld of natural language queries. In fact, one canconsider that boolean queries are a simpli�ed abstraction of natural language queries.A number of new issues arise once this model is used, especially those related to the proper wayto rank an element with respect to a query. The search criterion can be reexpressed using a di�erentmodel, where documents and queries are considered just as a vector of \term weights" (with onecoordinate per interesting keyword or even per existing text word) and queries are considered inexactly the same way (context queries are not considered in this case). Therefore, the query isnow internally converted into a vector of term weights and the aim is to retrieve all the vectors(documents) which are close to the query (where closeness has to be de�ned in the model). Thisallows many interesting possibilities, for instance a complete document can be used as a query(since it is also a vector), which naturally leads to the use of relevance feedback techniques (i.e.the user can select a document from the result and submit it as a new query to retrieve documentssimilar to the selected one). The algorithms for this model are totally di�erent from those based onsearching patterns (it is even possible that not every text word can be searched but only a small setof hopefully representative keywords is extracted from each document). Natural language queryingis explained in more detail in Chapter [REF].5.2 Pattern MatchingIn this section we discuss more speci�c query formulations (based on the concept of a pattern) whichallow retrieving pieces of text that have some property. These data retrieval queries are usefulfor linguistics, text statistics and data extraction. Their result can be fed into the compositionmechanism described above to form phrases and proximity queries, comprising what we have calledbasic queries. Basic queries can be combined using boolean expressions. In this sense we can viewthese data retrieval capabilities as enhanced tools for information retrieval. However, it is moredi�cult to rank the result of a pattern matching expression.A pattern is a set of syntactic features that must be found in a text segment. Those segmentssatisfying the pattern speci�cations are said to \match" the pattern. We are interested in documentscontaining segments which match a given search pattern. Each system allows specifying some typesof patterns, which range from very simple (for example words) to rather complex (such as regularexpressions). The more powerful the set of patterns allowed, the more involved queries can the userformulate and the more complex is the implementation of the search, in general. The most usedtypes of patterns are:Words: a string (sequence of characters) which must be a word in the text (see section 5.1). This

6 CHAPTER 5. QUERY LANGUAGESis the most basic pattern.Pre�xes: a string which must form the beginning of a text word. For instance, given the pre�x"comput" all the documents containing words as "computer", "computation", "computing",etc. are retrieved.Su�xes: a string which must form the termination of a text word. For instance, given the su�x"ters" all the documents containing words as "computers", "testers", "painters", etc.are retrieved.Substrings: a string which can appear within a text word. For instance, given the substring"tal" all the documents containing words such as "coastal", "talk", "metallic", etc. areretrieved. This query can be restricted to �nd the substrings inside words, or it can go furtherand search the substring anywhere in the text (in this case the query is not restricted to be asequence of letters but can contain word separators). For instance, a search for "any flow"will match in the phrase "...many flowers...".Ranges: a pair of strings which matches any word which lexicographically lies between them.Alphabets are normally sorted, and this induces an order into the strings which is calledlexicographical order (this is indeed the order in which words in a dictionary are listed). Forinstance, the range between words "held" and "hold" will retrieve strings such as "hoax"and "hissing".Allowing errors: a word together with an error threshold. This search pattern retrieves all textwords which are \similar" to the given word. The concept of similarity can be de�ned inmany ways. The general concept is that the pattern or the text may have errors (comingfrom typing, spelling or from an optical character recognition software, among others), andthe query should try to retrieve the given word and what are likely to be its erroneous variants.Although there are many models for similarity among words, the most generally accepted intext retrieval is the Levenshtein distance, or simply edit distance. The edit distance betweentwo strings is the minimumnumber of character insertions, deletions and replacements neededto make them equal. For instance, the edit distance between "color" and "colour" is one,while the edit distance between "survey" and "surgery" is two. This distance has beenfound superior to model errors than other more complex methods such as the Soundex system.Therefore, the query speci�es the maximum number of allowed errors for a word to matchthe pattern (i.e. the maximum allowed edit distance). This model can also be extended tosearch substrings (not only words), retrieving any text segment which is at the allowed editdistance to the search pattern. Under this model, if a typing error splits "flower" into "flower" it could still be found with one error, while in the restricted case of words it could not(since neither "flo" or "wer" are at edit distance 1 to "flower"). Variations on this distancemodel are of use in computational biology to search on DNA or protein sequences.Regular expressions: some text retrieval systems allow searching for regular expressions. Aregular expression is a rather general pattern built up by simple strings (which are meant tobe matched as substrings) and the following operators

5.3. STRUCTURAL QUERIES 7� Union: if e1 and e2 are regular expressions, then (e1je2) matches what e1 or e2 matches.� Concatenation: if e1 and e2 are regular expressions, the occurrences of (e1 e2) are formedby the occurrences of e1 immediately followed by those of e2 (therefore simple stringscan be thought of as a concatenation of their individual letters).� Repetition: if e is a regular expression, then (e�) matches a sequence of zero or morecontiguous occurrences of e.For instance, consider a query like "pro (blem j tein) (s j �) (0 j 1 j 2)� " (where � denotesthe empty string). It will match words such as "problem02" and "proteins". As in previouscases, the matches can be restricted to comprise a whole word, to occur inside a word orto match an arbitrary text segment. This can also be combined with the previous type ofpatterns to search a regular expression allowing errors.Extended patterns: it is normal to use a more user-friendly query language to represent somecommon cases of regular expressions. Extended patterns are subsets of the regular expres-sions which are expressed with a simpler syntax. The retrieval system can internally convertextended patterns into regular expressions, or search them with speci�c algorithms. Eachsystem supports its own set of extended patterns, and therefore no formal de�nition exists.Some examples found in many new systems are� Classes of characters, i.e. some patterns positions match with a set of characters. Thisinvolves features such as case-insensitive matching, use of ranges of characters (e.g.specifying that some character must be a digit), complements (e.g. some character mustnot be a letter), enumeration (e.g. a character must be a vowel), wild cards (i.e. somepattern position matches with anything), among others.� Conditional expressions, i.e. a part of the pattern may or may not appear.� Wild characters which match any sequence in the text, e.g. any word which starts as"flo" and ends with "ers", which matches "flowers" as well as "flounders".� Combinations allowing that some parts of the pattern match exactly and others witherrors.5.3 Structural QueriesUp to now we have considered the text collection as a set of documents which can be queried withregard to their text content. This model is unable to take advantage of novel text features whichare becoming commonplace, such as the text structure. The text collections tend to have somestructure built into them, and the choice of being able to query those texts based on their structure(and not only their content) is becoming attractive. The standardization of languages to representstructured texts such as HTML has pushed forward in this direction.Mixing contents and structure in queries allows posing very powerful queries, which are muchmore expressive than each query mechanism by itself. By using a query language that integratesboth types of queries, the retrieval quality of textual databases can be improved.

8 CHAPTER 5. QUERY LANGUAGESThis mechanism is built on top of the basic queries, so that they select a set of documentsthat satisfy certain constraints on their content (expressed using words, phrases or patterns thatthe documents must contain). On top of this, some structural constraints can be expressed usingcontainment, proximity or other restrictions on the structural elements (e.g. chapters, sections,etc.) present in the documents. The boolean queries can be built on top of the structural queries,so that they combine the sets of documents delivered by those structural queries. In the booleansyntax tree (recall the example of Figure 5.1) the structural queries form the leaves of the tree. Onthe other hand, structural queries can themselves have a complex syntax.We divide this section according to the type of structures found in text databases. Figure 5.2illustrates them. Although structured query languages should be amenable for ranking, this is stillan open problem.
a) b) c)Figure 5.2: The three main structures: a) form-like �xed structure, b) hypertext structure and c)hierarchical structure.In which follows it is important to distinguish the di�erence between the structure that a textmay have and what can be queried about that structure. In general, natural language texts mayhave any desired structure. However, di�erent models allow querying only some aspects of the realstructure. When we say that the structure allowed is restricted in some way, we mean that onlythe aspects which follow this restriction can be queried, albeit the text may have more structuralinformation. For instance, it is possible that an article has a nested structure of sections andsubsections, but the query model does not accept recursive structures. In this case we will not beable to query for sections included in others, although this may be the case in the texts.5.3.1 Fixed StructureThe structure allowed in texts was traditionally quite restrictive. The documents had a �xed setof �elds, much like a �lled form. Each �eld had some text inside. Some �elds were not presentin all documents, but only rarely could they appear in any order or appear repeatedly across thedocument or could the document have text not classi�ed under any �eld. They were not allowedto nest or overlap. The retrieval activity allowed on them was restricted to specifying that a givenbasic pattern was to be found only in a given �eld. Most current commercial systems use thismodel.This model is reasonable when the text collection has a �xed structure. For instance, a mailarchive could be regarded as a set of mails, where each mail has a sender, a receiver, a date, a

5.3. STRUCTURAL QUERIES 9subject and a body �eld. The user can thus search for the mails he sent to a given person with"football" in the subject �eld. However, the model is inadequate to represent the hierarchicalstructure present in a HTML document, for instance.If the division of the text into �elds is rigid enough, the content of some �elds can even beinterpreted not as text but as numbers, dates, etc. therefore allowing di�erent queries to be posedon them (e.g. month ranges in dates). It is not hard to see that this idea leads naturally to therelational model, each �eld corresponding to a column in the database table. Looking the databaseas a text allows querying the textual �elds with much more power than what is common in relationaldatabase systems. On the other hand, relational databases may use better their knowledge on thedata types involved to build specialized and more e�cient indices. A number of approaches tomix both trends have been proposed in the last years, their main problem being that they do notachieve optimal performance because the text is usually stored together with other types of data.Nevertheless, there are several proposals that extend SQL (Structured Query Language) to allowfull-text retrieval. Among them we can mention SFQL, which is covered in section 5.4.5.3.2 HypertextHypertexts probably represent the opposite trend with respect to structuring power. A hypertext isa directed graph where the nodes hold some text and the links represent connections among nodesor among positions inside the nodes. Hypertexts received a lot of attention since the explosion ofthe Web, which is indeed a gigantic hypertext-like database spread across the world.However, retrieval from hypertext began as a merely navigational activity. That is, the userhad to manually traverse the hypertext nodes following links to search what he/she wanted. It wasnot possible to query the hypertext based on its structure. Even in the Web one can search by thetext contents of the nodes, but not by their connection structure.An interesting proposal to combine browsing and searching on the Web is WebGlimpse. Itallows classical navigation plus the ability to search by content in the neighborhood of the currentnode. Currently, some query tools have appeared that achieve the goal of querying hypertext basedon their content and their structure. This problem is covered in detail in Chapter [REF].5.3.3 Hierarchical StructuresAn intermediate structuring model which lies between �xed structure and hypertext is the hierar-chical structure. This represents a recursive decomposition of the text and it is a natural model formany text collections (e.g. books, articles, legal documents, structured programs, etc.). Figure 5.3shows an example of such structure.On the other hand, the simpli�cation from hypertext to a hierarchy allows the use of fasteralgorithms to solve queries. As a general rule, the more powerful the model, the less e�ciently itcan be implemented.Our aim in this section is to analyze and discuss the di�erent approaches presented by thehierarchical models. We �rst present a selection of the most representative models and then discussthe main subjects of this area.

10 CHAPTER 5. QUERY LANGUAGES
chapter

section section

figuretitle title

Keyword Based Structural...We cover...

in

figure with

title "structural"

withsection

Chapter 5

.......

We cover in this chapter
the different kind of ...

........

5.3 Structural Queries

5.1 Keyword Based ...

Figure 5.3: An example of a hierarchical structure: the page of a book, it schematic view, and aparsed query to retrieve the �gure.A Sample of Hierarchical ModelsPAT Expressions are built on the same index of the text, i.e. there is no special index onstructure. The structure is assumed to be marked in the text by tags (as in HTML), andtherefore the structure is de�ned in terms of initial and �nal tags. This allows a dynamicscheme where the structure of interest is not �xed but can be determined at query time(since the tags need not be especially designed to be tags, e.g. one can de�ne that the end-of-lines are the marks in order to de�ne a structure of lines). This also allows a very e�cientimplementation and no additional space overhead for the structure.Each expression of initial and �nal tags de�nes a region, which is a set of contiguous textareas. Externally computed regions are also supported. However, the areas of a region cannotnest nor overlap, which is quite restrictive. There is no restriction on areas of di�erent regions.Apart from text searching operations, it is possible to select areas containing (or not) otherareas, contained (or not) in other areas, or followed (or not) by other areas.A disadvantage is that the algebra mixes regions and sets of text positions, which are incom-patible and force complex conversion semantics. For instance, if the result of a query is goingto generate overlapping areas (which can not be determined beforehand) then the result isconverted to positions. Also, the dynamic de�nition of regions is
exible but requires that

5.3. STRUCTURAL QUERIES 11the structure can be expressed using tags (also called \markup"), which for instance does notoccur in some structured programming languages.Overlapped Lists can be seen as an evolution from PAT Expressions. The model allows that theareas of a region overlap, but not nest. This elegantly solves the problems of mixing regionsand sets of positions. The model considers the use of an inverted list (see Chapter 7) wherenot only the words but also the regions are indexed.Apart from the operations of PAT Expressions, the model allows performing set union, andto combine regions. Combination means selecting the minimal text areas including any twoareas taken from two regions. A \followed by" operator imposes the additional restrictionthat the �rst area must be before the second one. An \n words" operator generates the regionof all (overlapping) sequences of n words of the text (this is further used to retrieve elementsclose to each other). If an operation produces a region with nested areas, only the minimalareas are selected.The implementation of this model can also be very e�cient. It is not clear, however, whetheroverlapping is good or not to capture the structural properties that information has in prac-tice. A new proposal allows that the structure nests and overlaps, showing that most inter-esting operators can still be implemented.Lists of References is an attempt to uniformize de�nition and querying of structured text, usinga common language. The language goes beyond querying structured text, so we restrict ourattention to the subset of our interest.The structure of documents is �xed and hierarchical, which makes it impossible to haveoverlapping results. All possible regions are de�ned at indexing time. The answers deliveredare more restrictive, since nesting is not allowed (only the top-level elements qualify) and allelements must be of the same type, e.g. only sections, or only paragraphs. In fact, there arealso hypertext links but these cannot be queried (the model has also navigational features).A static hierarchical structure makes it possible to speak in terms of direct ancestorship ofnodes, a concept di�cult to express when the structure is dynamic. The language allowsquerying on \path expressions", which describe paths in the structure tree.Answers to queries are seen as lists of \references". A reference is a pointer to a region of thedatabase. This integrates in an elegant way answers to queries and hypertext links, since allare lists of references.Proximal Nodes tries to �nd a good compromise between expressiveness and e�ciency. It doesnot de�ne a speci�c language, but a model in which it is shown that a number of usefuloperators can be included achieving good e�ciency.The structure is �xed and hierarchical. However, many independent structures can be de�nedon the same text, each one being a strict hierarchy but allowing overlaps between areas ofdi�erent hierarchies.A query can relate di�erent hierarchies, but returns a subset of the nodes of one hierarchyonly (i.e. nested elements are allowed in the answers, but no overlaps). Text matching queriesare modeled as returning nodes from a special \text hierarchy".

12 CHAPTER 5. QUERY LANGUAGESThe model speci�es a fully compositional language where the leaves of the query syntax treeare formed by basic queries on contents or names of structural elements (e.g. all chapters).The internal nodes combine results. For e�ciency, the operations of the internal nodes mustbe implementable looking at the identity and text areas of the operands, and must relatenodes which are close in the text.It is shown that many useful operators satisfy this restriction: selecting elements that (directlyor transitively) include or are included in others, that are included at a given position (e.g.the third paragraph of each chapter); that are short before or after others; set manipulation;and many powerful variations. Operations on content elements deliver a set of regions with nonesting, and those results can be fully integrated into any query. This ability to integrate thetext into the model is very useful. On the other hand, some queries requiring non-proximaloperations are not allowed, for instance semijoins. An example of a semijoin is \give me thetitles of all the chapters referenced in this chapter".Tree Matching relies on a single primitive: tree inclusion. The idea of tree inclusion is, seeingboth the structure of the database and the query (a pattern on structure) as trees, �ndan embedding of the query into the database which respects the hierarchical relationshipsbetween nodes of the query.Two variants are studied. Ordered inclusion forces the embedding to respect the left-to-rightrelations among siblings in the query, while unordered inclusion does not. The leaves of thequery can be not only structural elements but also text patterns, meaning that the ancestorof the leaf must contain that pattern.Simple queries return the roots of the matches, and the language is enriched by Prolog-likevariables, which can be used to express requirements on equality between parts of the matchedsubstructure and to retrieve another part of the match, not only the root. Logical variablesare also used for union and intersection of queries, as well as to emulate tuples and joincapabilities.Although the language is set-oriented, the algorithms work by sequentially obtaining eachmatch. The use of logical variables and unordered inclusion makes the problem intractable(NP-hard in many cases). Even the good cases have an ine�cient solution in practice.DiscussionA survey on the main hierarchical models raises a number of interesting issues, most of them largelyunresolved up to now. Some of them areStatic or Dynamic Structure: as seen, in a static structure there are one or more explicit hi-erarchies (which can be queried, e.g., by ancestorship), while in a dynamic structure there isnot really a hierarchy, but the required elements are built on the
y. A dynamic structureis implemented over a normal text index, while a static one may or may not be. A staticstructure is independent on the text markup, while a dynamic one is more
exible to buildarbitrary structures.

5.4. QUERY PROTOCOLS 13Restrictions on the structure: the text or the answers may have restrictions about nestingand/or overlapping. In some cases those restrictions exist for e�ciency reasons. In othercases, the query language is restricted to avoid restricting the structure. This choice is largelydependent on the needs of each application.Integration with text: in many models the text content is merely seen as a secondary sourceof information, used only to restrict the matches of structural elements. This is the reverseside of what happens to structure in classical models, where it is used only to restrict textmatches. It is important that the integration of content and structure gives both aspects alltheir power and that integrates elegantly both types of queries for further manipulation.Query language: typical queries on structure allow selecting areas that contain or not others, orare contained or not in others, that follow or are followed or are close to others, and set ma-nipulation. Many of them are implemented in most models, although each models has uniquefeatures. Some kind of standardization, expressiveness taxonomy or formal categorizationwould be highly desirable and does not yet exist.5.4 Query ProtocolsIn this section we brie
y cover some query languages that are used automatically by softwareapplications to query text databases. Some of them are proposed as standards for querying CD-ROMs or as intermediate languages to query library systems. Because they are not intended forhuman use, we refer to them as protocols rather than languages. More information on protocolscan be found in the Chapters [REF,REF] on Library Systems and Digital Libraries. The mostimportant are:Z39.50: is a protocol, approved as standard in 1995 by ANSI and NISO. This protocol is intendedto query bibliographical information using a standard interface between the client and thehost database manager, despite the appearance of the client user interface and the querylanguage of the host database. This database is assumed to be a text collection with some�xed �elds (although it is more
exible than usual). The use of this protocol is very extended,for instance it is used internally by WAIS. The protocol does not only specify the querylanguage and its semantics, but also the way in which client and server establish a session,communicate and exchange information, etc. Although originally conceived only to operatebased on bibliographical information (using the MARC format [REF]), it has been extendedto query other types of information as well.WAIS: (Wide Area Information Service) is a suite of protocols which was popular at the beginningof the 90s before the boom of the WWW. The goal of WAIS was to be a network publishingprotocol and be able to query databases through Internet.In the CD-ROM publishing arena, there are several proposals for query protocols. The maingoal of these protocols is to provide \disc interchangeability". This means more
exibilityin data communication between primary information providers and end users. Also enables

14 CHAPTER 5. QUERY LANGUAGESsigni�cant cost savings since it allows access to diverse information without the need to buy,install and train users for di�erent data retrieval applications. We brie
y cover three of them:CCL: (Common Command Language) is a NISO proposal (Z39.58 or ISO 8777) based in Z39.50.It de�nes 19 commands that can be used interactively. It is more popular in Europe, althoughvery few products use it. It is based in the classical boolean model.CD-RDx: (Compact Disk Read only Data exchange) uses a client-server architecture and hasbeen implemented in most used platforms. The client is generic while the server is designedand provided by the CD-ROM publisher which includes it with the database in the CD-ROM.It allows �xed-length �elds, images and audio, and is being supported by some US nationalagencies as CIA, NASA and GSA.SFQL: (Structured Full-text Query Language) is based on SQL and also has a client-server ar-chitecture. SFQL has been adopted as a standard by the aerospace community (the AirTransport Association/ Aircraft Industry Association). Documents are rows in a relationaltable and can be tagged using GSML. The language de�nes the format of the answer, whichhas a header and a variable length message area. The language does not de�ne any speci�cformatting or markup. For example, a query in SFQL is:Select abstract from journal.papers where title contains "text search"The language supports boolean and logical operators, thesaurus, proximity operations andsome special characters as wild-cards and repetition. For example:... where paper contains "retrieval" or like "info %" and date > 1=1=98Compared with CCL or CD-RDx, SFQL is more general and
exible, although it is based ina relational model, which is not always the best choice for a document database.5.5 Conclusions and TrendsWe reviewed in this chapter the main aspects of the query languages that retrieve informationfrom textual databases. We ranged from the most classical tools to the most novel capabilitiesthat are emerging, from searching words to extended patterns, from the boolean model to queryingstructures. Table 5.1 shows the di�erent queries allowed in the di�erent models. Although theprobabilistic and the Bayesian belief network (BBN) model are based on word queries, they canincorporate set operations.We present in Figure 5.4 the types of operations we covered and how can they be structured(not all them exist in all models and not all them have to be used to form a query). The �gureshows, for instance, that we can form a query using boolean operations over phrases (skippingstructural queries), which can be formed by words and by regular expressions (skipping the abilityto allow errors).The subject of query languages for text databases is de�nitely moving to a higher
exibility.While the text models are moving to the goal of achieving a better understanding of the user needs

5.6. BIBLIOGRAPHIC DISCUSSION 15Model Queries allowedBoolean word, set operationsVector wordsProbabilistic wordsBBN wordsFull-text words, set operations, pattern matchingTable 5.1: Relationship between type of queries and models.
structural queries

fuzzy boolean
boolean queries

phrases

words

errors

substrings
prefixes
suffixes

regular expressions
extended patterns

pattern
matching

keywords and context

natural language

basic queries

proximity

Figure 5.4: The types of queries covered and how are they structured.(by providing relevance feedback, for instance) the query languages are allowing more and morepower in the speci�cation of the query. Not only extended patterns and searching allowing errorspermit to �nd patterns without complete knowledge of what is wanted, but it is also becomingmore common to query on the structure of the text and not only on its content.5.6 Bibliographic DiscussionThe material on classical query languages (most simple patterns, boolean model, and �xed struc-ture) is based on current commercial systems, such as Fulcrum, Verity and others, as well as onnon-commercial systems such as Glimpse (Manber and Wu 1993) and Igrep (Ara�ujo, Navarro andZiviani 1997).The fuzzy-boolean model is described in (Salton, Fox and Wu 1982). The Levenshtein distanceis described in (Levenshtein 1966) and (Apostolico and Galil 1985). Soundex is explained in (Knuth1973). A comparison of the efectiveness of di�erent similarity models is given in (Nesbit 1986). Agood source on regular expressions is (Hopcroft and Ullman 1979). A rich language on extended

16 CHAPTER 5. QUERY LANGUAGESpatterns is described in (Wu and Manber 1992).A classical reference on hypertext is (Conklin 1987). The WebGlimpse system is presented in(Manber, Smith and Gopal 1997). The discussion of hierarchical text is partially based on (Baeza-Yates and Navarro 1996). The original proposals are: PAT Expressions (Salminen and Tompa1992), Overlapped Lists (Clarke, Cormack and Burkowski 1995) and the new improved proposal(Dao, Sacks-Davis and Tohm 1996), Lists of References (MacLeod 1991), Proximal Nodes (Navarroand Baeza-Yates 1997) and Tree Matching (Kilpel�ainen and Mannila 1993). PAT Expressions arethe basic model of the PAT Text Searching System (Gonnet 1987).More information on Z39.50 can be obtained from (Z39.50 - ANSI/NISO Standards 1995). Moreinformation on WAIS is given in (Kahle and Medlar, 1991). For details on SFQL see (IEEE SFQL,1992).

Bibliography[AG85] A. Apostolico and Z. Galil. Combinatorial Algorithms on Words. Springer-Verlag, NewYork, 1985.[ANZ97] M. Ara�ujo, G. Navarro, and N. Ziviani. Large text searching allowing errors. In Proc.WSP'97, pages 2{20. Carleton University Press, 1997.[BYN96] R. Baeza-Yates and G. Navarro. Integrating contents and structure in text retrieval.ACM SIGMOD Record, 25(1):67{79, March 1996.[CCB95] C. Clarke, G. Cormack, and F. Burkowski. An algebra for structured text search and aframework for its implementation. The Computer Journal, 1995.[Con87] J. Conklin. Hypertext: An introduction and survey. IEEE Computer, 20(9):17{41,September 1987.[DSDT96] T. Dao, R. Sacks-Davis, and J. Tohm. Indexing structured text for queries on contain-ment relationships. In Proc. 7th Australasian Conference, 1996.[Gon87] G. Gonnet. Examples of PAT applied to the Oxford English Dictionary. TechnicalReport OED-87-02, UWCentre for the New OED and Text Research, Univ. of Waterloo,1987.[HU79] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages and Compu-tation. Addison-Wesley Publishing Company, 1979.[KM91] B. Kahle and A. Medlar. An information server for corporate users: Wide Area Infor-mation Servers. ConneXions - The Interoperability Report, 5(11):2{9, 1991. Availablefrom ftp://think.com/wais/wais-corporate-paper.text.[KM93] P. Kilpel�ainen and H. Mannila. Retrieval from hierarchical texts by partial patterns. InProc. ACM SIGIR'93, pages 214{222, 1993.[Knu73] D. Knuth. The Art of Computer Programming, volume 3: Searching and Sorting.Addison-Wesley, 1973.[Mac91] I. MacLeod. A query language for retrieving information from hierarchic text structures.The Computer Journal, 34(3):254{264, 1991.17

18 BIBLIOGRAPHY[MSG97] U. Manber, M. Smith, and B. Gopal. Webglimpse: combining browsing and searching.In Proc. of USENIX Technical Conference, 1997.[MW93] U. Manber and S. Wu. glimpse: A tool to search through entire �le systems. TechnicalReport 93-34, Dept. of CS, Univ. of Arizona, Oct 1993.[NBY97] G. Navarro and R. Baeza-Yates. Proximal Nodes: a language to query document data-bases by content and structure. ACM TOIS, 15(4):401{435, October 1997.[Nes86] J. Nesbit. The accuracy of approximate string matching algorithms. J. of Computer-Based Instruction, 13(3):80{83, 1986.[oODS92] IEEE Standards Committee on Optical Disk and Multimedia Platforms (SCODMP).Ieee sfql. Technical report, IEEE, Washington, USA, 1992.[SFW82] G. Salton, E. Fox, and H. Wu. Extended boolean information retrieval. Technical ReportTR 82-511, Dept. of Computer Science, Cornell Univ., August 1982.[ST92] A. Salminen and F. Tompa. PAT expressions: an algebra for text search. TechnicalReport OED-92-02, UW Centre for the New Oxford English Dictionary, July 1992.[Sta95] ANSI/NISO Standards. Z39.50-information retrieval: Application service de�ni-tion and protocol speci�cation. Technical report, Washington, USA, 1995. Seehttp://lcweb.loc.gov/z3950/agency.[WM92] S. Wu and U. Manber. Fast text searching allowing errors. Communications of theACM, 35(10):83{91, October 1992.

