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Abstract
Graph databases represent data as a labeled directed graph, where the labels refer to properties
that connect the entities represented by their source and target vertices. Queries feature, most
prominently, sets of edges where source, target, and/or label can be variables; each instantiation of
the variables where all the edges occur in the graph is a solution to the query. Worst-case-optimal
algorithms to solve those queries have been devised, but they pose significant space requirements.
This overhead has hindered the adoption of worst-case-optimal algorithms in real systems. We show
that a representation of the graph based on the extended BWT (eBWT), where each edge is seen
as an independent string of length 3 (source, label, target) supports worst-case-optimal algorithms
while using almost no extra space on top of the raw data. We then show how the idea is generalized
to the relational model, where the strings can be longer than 3 and several eBWTs are needed to
obtain worst-case optimality. The aim to minimize the amount of space in that case leads to consider
novel eBWT variants, where columns other than the last can be chosen. Finally, we show how the
same graph representation can be used to solve other typical queries, like finding graph paths that
match regular expressions.
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1 Introduction

Graph databases (GDBs) have become increasingly popular [29, 24, 26], as they enable the
storage of unstructured information repositories that emphasize the relations between entities
in applications such as knowledge graphs, the semantic web, social networks, transaction
networks, and communication networks, among others. A number of GDB management
systems and prototypes have been introduced [15, 33, 34, 1, 2, 25, 30], along with models
and query languages [3, 19, 23]. The efficient implementation of GDBs, however, still faces
various challenges [8], such as the efficient implementation of the key algorithms to solve
the most relevant queries on GDBs. To achieve the needed efficiency, GDBs require indexes
that tend to demand a lot of memory. For example, a common type of query on GDBs are
basic graph patterns, which search for subgraphs that are homomorphic to a given query
graph. These types of queries can be translated into the relational join of many tables, which
is known to be computationally demanding. Research on efficient algorithms to compute
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those joins has led to the concept of worst-case optimal (wco) join algorithms [10], which
offer certain guarantees of running time in a worst-case scenario. These wco algorithms,
however, generally demand strong indexing schemes, which entails a significant use of memory.
Leapfrog Triejoin (LTJ) [35] is one of the most popular wco join algorithms, and has proven
to be efficient in practice [35, 25]. However, its high memory consumption makes it less
viable in situations of limited memory or when the graphs are excessively large. This high
memory usage comes from the need to store indexes for 6 different “permutations” of the
graph database (a concept that will be clear soon) in order to work properly.

With other coauthors, we introduced the Ring [7, 5] as an alternative to reduce the
excessive memory usage of LTJ. The Ring is able simulate the 6 permutations needed by LTJ
(and the corresponding indexes) by storing only one of them. This allows implementing LTJ
using little additional space on top of that used by the database itself, thereby opening the
use of wco algorithms to many more applications. We originally conceived the Ring in terms
of the BWT [13]. We presented it to a database audience aiming to simplify the stringology
aspects as much as possible [7]. Our presentation was closer to that of the Permuterm index
[18], which regards the strings as circular, and simplified it to the case of strings of length
3. In the journal version [5] we managed to get rid completely of the stringology concepts,
which are difficult to grasp in other areas, and presented the Ring in terms of stable sortings.

In this paper we present the Ring to a stringology audience, and thus properly formalize
its concepts in terms of the more elegant extended BWT (eBWT) [28]. The generalization of
the ring to relational tables leads to the definition of eBWT variants that are new, to the
best of our knowledge.

2 Basic Concepts of Graph Databases

2.1 Graph databases
A graph database is an edge-labeled graph modeled as a finite set of triples G ⊆ U3 where,
for simplicity, U will represent a finite and totally ordered set of constants. We will stick
to the Resource Description Framework (RDF) model [27], as it is simpler than others and
sufficient to present the important concepts. In RDF, each triple (s, p, o) ∈ G represents
the directed edge s

p−→ o, connecting vertex s to vertex o, with p being the edge label. The
terms subject, predicate, and object are used to refer to s, p, and o, respectively. The number
of edges (triples) in G is denoted by N = |G|. The alphabet for the vertices of graph G is
defined as ΣV = {s, o | (s, p, o) ∈ G}, while ΣL = {p | (s, p, o) ∈ G} represents the alphabet
for the edge labels. We assume ΣV ∩ ΣL = ∅, implying that no edge label p is used as a
vertex in G. The domain of graph G is given by dom(G) = {s, p, o | (s, p, o) ∈ G} ⊆ U , so
we can safely assume |U| ≤ 3N . Figure 1 illustrates a sample graph, which will be used as
our running example. The figure also presents a particular enumeration of the constants in
dom(G), as well as the corresponding set of graph triples.

2.1.1 Basic Graph Patterns
Let V denote an infinite set of variables such that U ∩ V = ∅. The simplest way of querying
an edge-labeled graph is through triple patterns, which are tuples (s, p, o) ∈ (U ∪ V)3. The
solutions to a triple-pattern query involve all potential assignments of the variables within
the pattern to constants in dom(G) such that the resulting triple exists in G. This allows for
querying all graph edges (using variables s, p, and o), all edges with a vertex s ∈ dom(G) as
the subject (where s is a constant and p and o remain variables), all edges with label p (p is
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Thorne

adv

Nobel
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win

Mapping:

1: Bohr 5: Nobel
2: Thomson 6: adv
3: Thorne 7: nom
4: Wheeler 8: win

(4, 6, 1) (5, 8, 1)
(3, 6, 4) (5, 8, 2)
(5, 8, 3) (1, 6, 2)
(5, 7, 4)

Figure 1 An example graph database (above), a possible enumeration of its constants (below,
left), and the corresponding triple representation (below, right).

constant while s and o are variables), and all objects related to subject s by label p (s and
p are constant while o is a variable), among other queries. When viewing G as a ternary
relation in the relational model, triple patterns are analogous to equality-based selections.

Subsequently, triple patterns can be used to formulate more complex queries, such as
basic graph patterns (BGPs). A BGP represents a finite set Q ⊆ (U ∪ V)3 of triple patterns.
Let V(Q) be the set of variables in a BGP Q. The evaluation of Q upon a graph G is defined
as set of mappings Q(G) = {µ : V(Q) → dom(G) | µ(Q) ⊆ G}, referred to as solutions,
where µ(G) denotes the result of substituting each variable x ∈ V(Q) in Q with µ(x). Some
examples of BGPs on the graph of Figure 1 are as follows:

Q = {(Nobel, win, x)}, for x ∈ V(Q), which looks for all Nobel Prize winners. In our
example graph, Q(G) contains the instantiations µ1(x) = Thorne, µ2(x) = Bohr, and
µ3(x) = Thomson.
Q = {(Nobel, win, x), (Nobel, win, y), (x, adv, y)}, for x, y ∈ V(Q), which looks for all
pairs of values x and y such that x advised y and both x and y won the Nobel Prize.
In our example graph, Q(G) contains a single instantiation, namely µ(x) = Bohr and
µ(y) = Thomson.

2.1.2 Regular Path Queries
Apart from BGPs, the second major component of most graph query languages are the
so-called Regular Path Queries (RPQs). An RPQ essentially specifies a regular expression on
the alphabet ΣL, and looks for the paths in the graph where the concatenation of the edge
labels belongs to the language denoted by the regular expression. An RPQ may also fix the
initial and/or the final nodes of the desired paths. The answer to the query are the extremes
of all matching paths, in the form of pairs of nodes (s, o). Additionally, the regular expression
may use arrows in reverse order, by specifying a “reversed” version p̂ of the symbols p ∈ ΣL.
This can be handled by adding an edge o

p̂−→ s per graph edge s
p−→ o, so we omit this feature

in the sequel.
For instance, the RPQ Thorne adv+ x, where x is a variable, looks for all academic

descendants of Thorne in the graph of Figure 1 (the regular expression adv+ denotes all
the nonempty repetitions of the symbol adv). Its solutions are µ(x) = Wheeler (because
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of the path Thorne adv−−→ Wheeler), µ(x) = Bohr (because of Thorne adv−−→ Wheeler adv−−→ Bohr),
and µ(x) = Thompson (because of Thorne adv−−→Wheeler adv−−→ Bohr adv−−→ Thompson). Similarly,
x adv+ y, for variables x and y, looks for all instantiations of these variables such that y is
an academic descendant of x.

2.2 Worst-Case-Optimal joins
Joins are some of the most resource-intensive operations in relational algebra, making
their efficient computation essential for the performance of database systems. A sloppy
implementation might end up computing the whole cross product of the involved relations,
wasting resources. For a join query Q and a database instance D, a join algorithm enumerates
Q(D), the solutions for Q over D. In order to formalize the study of efficient join algorithms,
Atserias et al. [10] introduced the concept of the AGM bound (named after its authors).
Consider a natural join query Q on a database instance D, which comprises a collection of
relations. A natural join can be seen as the subset of the Cartesian product where the values
in the common attributes coincide (and only one column per common attribute is preserved).
The AGM bound of Q over D, denoted Q∗, is the highest possible number of tuples that can
result from evaluating Q on any database instance D′ that includes, for each relation R in
D, a relation R′ with the same attributes as R and such that |R′| ≤ |R|.

A join algorithm is termed worst-case optimal (wco) if its running time is bounded
by O(Q∗), possibly multiplied by polylogs on N (the number of tuples in D) and factors
independent of N (such as |Q| or the number of attributes in D). Although originally
conceptualized for relational databases, this idea has also been extended to include graph
databases. Even though BGPs are more general than natural joins, it is still possible to
apply the AGM bound by considering each triple pattern in a BGP as a relation comprising
the triples that match its constants [25].

2.3 Leapfrog TrieJoin
Next, we outline the Leapfrog Triejoin algorithm [35] (LTJ, for short), which is arguably
the most commonly used wco join algorithm in practice. In order to work properly, LTJ
requires the graph database to be structured using tries. The idea is to represent each triple
(graph edge) storing its components in a trie following a particular order (e.g., in spo order).
Indeed, to achieve worst-case optimality, all 3! = 6 possible permutations of the tuples need
to be maintained, resulting in the storage of 6 tries (the rationale for this requirement will
be explained subsequently). We will call Tspo, Tsop, Tpso, Tpos, Tosp, and Tops these tries.
Figure 2 shows the 6 tries corresponding to our running-example graph of Figure 1.

Let Q = {t1, . . . , tq} be a BGP, where ti is a triple pattern, for 1 ≤ i ≤ q. Let
V(Q) = {x1, . . . , xv} be the set of variables of Q. The distinctive strategy of LTJ is known as
variable elimination. This method involves v = |V(Q)| iterations, each focusing on a single
variable from V(Q) to be “eliminated” from the join process. The particular order in which
variables are eliminated determines a total order ⟨xi1 , . . . , xiv

⟩ of V(Q), which is called a
Variable Elimination Order (VEO, for short). Throughout this process, each triple pattern ti

is treated as a ternary relation that participates in the join. Once a VEO is established for
Q, each triple pattern ti will have a particular trie Ti associated with it. The trie Ti should
first traverse the constants in ti, and then traverse the variables in ti in an order that is
consistent with that of the VEO. This is why LTJ needs to store 6 tries. To illustrate this,
consider the query Q = {(x, adv, y), (z, nom, x), (z, w, y)}, for x, y, z, w ∈ V(Q). If the VEO
is ⟨x, y, z, w⟩, then the first triple is associated with trie Tpso, the second with Tpos, and the
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Figure 2 The 6 tries corresponding to our running-example graph.

third one with Tosp. If, instead, the VEO is ⟨z, y, x, w⟩, then the tries are Tpos, Tpso, Tsop. If
some of these 6 tries were not stored, then some VEOs would become unmanageable.

The navigational operations that must be supported at any trie node v of a trie T are:
T.root(): moves to the root node of trie T .
T.child(v, c): descends to the child of node v labeled c in trie T .
T.leap(v, c0): yields the smallest symbol c ≥ c0 that labels a child of node v in trie T .

LTJ starts at the root of each Ti and descends by the children that correspond to the
constants in triple ti. Next, we proceed to the variable elimination phase, assuming a VEO
⟨xi1 , . . . , xiv

⟩. For j = 1, . . . , v, let Qj ⊆ Q be the set of triple patterns that contain variable
xij

. Starting with the initial variable xi1 in the VEO, algorithm LTJ first identifies all values
c ∈ dom(G) such that for every t ∈ Q1, substituting xi1 with c in t results in a non-empty
evaluation of the modified triple pattern t over G (indicating that there are potential solutions
to Q where xi1 equals c). If the trie T related to t is consistent with the VEO, then its
current node’s children precisely represent the suitable values c for xi1 .

Throughout the execution, we maintain a mapping µ with the solutions of Q. When a
suitable value c is found for xi1 , we bind xi1 to c, resulting in µ = {(xi1 := c)}, and branch
on this particular value c. In this branch, we go down by c in all the virtual tries T such
that t ∈ Q1. Next, the same process is applied to Q2, determining suitable values d for xi2 ,
and extending the mapping to µ = {(xi1 := c), (xi2 := d)}. This process is repeated for the
remaining variables in the VEO. Once all variables have been bound in this way, µ effectively
contains a solution for Q; this occurs multiple times due to the branching for each binding
of xi1 , xi2 , and so forth. When all bindings c for a variable xij have been considered, LTJ
backtracks and moves on to the next binding for Qj−1. Upon completion of this process, the
algorithm has reported all possible solutions for Q.

Determining the values c, d, and so forth, involves finding the intersection among the child
nodes of the current nodes across all tries Ti, for each ti ∈ Qj . The algorithm LTJ carries
out this intersection using the primitive Ti.leap(v, c0) to implement Barbay and Kenyon’s
intersection algorithm [11]. Veldhuizen [35] proved that if the leap operation runs within
polylogarithmic time, then LTJ is wco regardless of the VEO chosen, provided the tries have
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an appropriate attribute order.
We next illustrate how LTJ handles the query Q = {(x, adv, y), (z, nom, x), (z, w, y)}

using the VEO ⟨z, y, x, w⟩. The triple patterns in Q are associated with tries Tpos, Tpso,
and Tsop, respectively. We set µ = ∅ and begin by processing the constants adv and nom,
identified as 6 and 7 in our example enumeration, descending to the respective nodes in
Tpos and Tpso. We then handle the variables following the VEO. Starting with z in the
second and third triple patterns of Q, we intersect the children at the current nodes of
both tries (the node corresponding to string 7 in Tpso and the root of trie Tsop). The only
common child is 5, so we descend to those nodes in both tries, setting µ = {(z := 5)}.
We now proceed to y, in the first and third triple patterns. We intersect the children of
nodes for string 6 in Tpos and 5 in Tsop. The first intersection element is 1, leading us to
descend in both tries and to update µ = {(z := 5), (y := 1)}, and to proceed to x in the
first and second triple patterns. We intersect the children of nodes corresponding to string
61 in Tpos and 75 in Tpso. Since 4 is a common value, we descend to the appropriate nodes
and update µ = {(z := 5), (y := 1), (x := 4)}. Lastly, for w, present only in the third
triple pattern, no intersection is required: all children of the node for string 51 in Tsop are
valid for w. The only value is 8, so we set µ = {(z := 5), (y := 1), (x := 4), (w := 8)}.
Having bound all variables, µ is a solution to Q. According to our enumeration, these
values translate to z := Nobel, y := Bohr, x := Wheeler, w := win, resulting in the set of
triples {(Wheeler, adv, Bohr), (Nobel, nom, Wheeler), (Nobel, win, Bohr)} in the graph. Finally
we backtrack, removing w from µ and returning to variable x, and repeat the process until
all bindings for the variables of Q are found. In this example, this was the only answer for Q.

3 The Ring Index

In the sequel we show how the Ring implements the functionality needed to implement the
LTJ algorithm (see Section 2.3) over a different data representation: the Ring index [7, 5].

3.1 The circular strings model
While LTJ is classically presented as running on tries, we take a more abstract view and
consider the database triples (s, p, o) as circular strings [12], where we regard all the strings
spo, osp, and pos as the same. We formalize circular strings using the concept of rotation.

▶ Definition 1. A rotation of a string S[1 . . n] is any S[i + 1 . . n]S[1 . . i], for 0 ≤ i < n.

▶ Definition 2. The circular string (or c-string) S̊ is defined as the set of the rotations of S.

In particular, ˚spo = {spo, osp, pos}; note that ˚spo = ˚osp = p̊os. Note that, because the
alphabet of the predicates is disjoint from that of subjects and objects, the three rotations of
Def. 2 must be different in our case (because p is at a different position). Therefore, there is
a one-to-one correspondence between triples and c-strings.

The graph database is then seen as a set of c-strings, one per triple, and we identify each
trie node v with the set of c-strings corresponding to the triples that descend from v. Figure
3 shows the c-strings corresponding to three sample nodes of tries Tspo and Tpos.

For what follows, we will create two disjoint copies, Σs and Σo, of the alphabet ΣV , in
order to distinguish subjects from objects in c-strings. We will call Σp = ΣL the alphabet
of predicates for consistency. Thus, triples will belong to Σs × Σp × Σo. Further, the three
sub-alphabets will form disjoint lexicographic ranges. In our running example, we separate
the alphabets by adding |U| to the p components of each triple in the graph, while the o

components are increased by 2|U|. Let us also redefine triple patterns.
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Figure 3 The c-strings corresponding to three nodes of tries Tspo and Tpos (see solid arrows). The
corresponding triple patterns t(v) (according to Definition 3) are also shown for these nodes (see
dashed arrows).

▶ Definition 3. A triple pattern is an element of (Σs ∪{∗})× (Σp ∪{∗})× (Σo ∪{∗}), where
∗ is a special symbol. We say that the elements ∗ are unbound and the others are bound. A
triple (s, p, o) matches a triple pattern (s′, p′, o′) iff x = x′ or x′ = ∗ for every x ∈ {s, p, o}.

Every trie node v then corresponds univocally to a triple pattern t(v), where the edges
that lead from the root to v define the bound components of t(v). The node v then represents
all the database triples that match t(v). Figure 3 also shows the triple patterns corresponding
to three nodes of tries Tspo and Tpos.

For our purposes, a key property of the characterization as circular strings is the following.

▶ Theorem 4. The bound components of any triple pattern t = (s′, p′, o′) can be concatenated
into a string P (t) such that a triple (s, p, o) matches t iff P (t) prefixes exactly one string of
its c-string ˚spo. The prefixed rotation of ˚spo is unique if P (t) ̸= ε.

Proof. Let us consider all the possibilities for |P (t)|.
If (s, p, o) matches t and the latter has one bound component, then P (t) is univocally s,

p, or o, and it prefixes spo, pos, or osp, respectively. It prefixes only one of those because
the triple components have disjoint alphabets. Conversely, if |P (t)| = 1 and P (t) prefixes
spo, pos, or osp, then (s, p, o) matches t.

If there are two bound components, then we can form P (t) = sp, P (t) = po, or P (t) = os,
which prefixes spo, pos, or osp, respectively. Again, P (t) prefixes exactly one of those.
Conversely again, if |P (t)| = 2 and it prefixes spo, pos, or osp, then (s, p, o) matches t. Note
that the other choices, P (t) = ps, P (t) = so, and P (t) = op, do not prefix any suffix.

If all the components are bound, then three choices of P (t) prefix (and equal) a string of
˚spo for the only triple (s, p, o) that matches t. Finally, if there are no bound components,

then P (t) = ε prefixes every string, and conversely every triple matches t. ◀

Building on this result, it will suffice to represent tries Tspo, Tosp, and Tpos. Our plan is
to identify every trie node v with a set of rotations, which except for the root will contain
exactly one rotation of each c-string ˚spo whose triple (s, p, o) matches t(v). By Theorem 4,
the rotations are exactly those that start with a given string P (t), so v descends from the
root by P (t). The way to efficiently represent that set of suffixes is considered next.

For example, consider the trie Tpos on the right of Figure 3. Its rightmost node v

descending by 83 has t(v) = (∗, 8, 3) and P (t) = 83. The node represents the single c-string
5̊83, and contains exactly one rotation of that c-string, 835, which starts with P (t).
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3.2 The extended Burrows-Wheeler Transform
The extended BWT (eBWT) [28, 14] is an extension of the Burrows-Wheeler Transform
(BWT) [13] to a set of strings. It builds on the concept of omega-order [28] on strings, which
is defined as follows.

▶ Definition 5. An infinite string S over alphabet Σ is a mapping S : N+→ Σ. The prefix
S[. . i] of the infinite string S is the finite string S[1]S[2] · · ·S[i]. The suffix X = S[i . .] of
the infinite string S is the infinite string such that X[j] = S[i + j − 1].

▶ Definition 6. The ω-extension Sω of a string S is the infinite string formed by concatena-
tions of strings S, that is, Sω[i] = S[1 + ((i− 1) mod |S|)].

▶ Definition 7. Given a string S, let m ≥ 1 be the maximum value such that S = Um for
some string U ; we then say that exp(S) = m and root(S) = U . The omega-order, denoted
<ω, between strings S and T is then defined as follows: S <ω T iff

root(S) = root(T ) and exp(S) < exp(T ), or
Sω < T ω, where < is the lexicographic order.

Note that, if S and T are not a proper prefix of the other, then <ω coincides with the
lexicographic order, but it can differ otherwise.

▶ Definition 8. Given a set of strings {S1, . . . , Sn}, the eBWT is a permutation of the
symbols in the strings Si given by listing the rotations of all strings Si in omega-order, and
then concatenating the last symbols of each rotation.

We are now in position to define the Ring index.

▶ Definition 9. The Ring index of a set D of triples is the eBWT of the set S =
{spo, (s, p, o) ∈ D}, after properly separating the alphabets into Σs, Σp, and Σo.

Because of the alphabet separations, it follows that the rotations X of all the c-strings ˚spo

have root(X) = X and exp(X) = 1; therefore the omega-order boils down to the lexicographic
order between their ω-extensions. Further, because of our alphabet separation, such order
boils down in turn to the plain lexicographic order of the strings. The Ring’s eBWT then
lists all the strings of all c-strings ˚spo in the graph, sorts them lexicographically, and collects
their last symbols.

Figure 4 (left) shows all the ˚spo strings corresponding to the edges of the graph from
Figure 1. Since |U| = 8 in this case, we sum 8 to the p component of each triple, and 16 to
the o components, and thus Σs = [1 . . 8], Σp = [9 . . 16], and Σo = [17 . . 24]. On the right,
the triples are lexicographically sorted, obtaining the corresponding Ring index as the last
column of the table.

The following theorem shows that we can identify each node v of the three chosen tries
with a range of the eBWT of the Ring index.

▶ Theorem 10. There is a distinct interval in the Ring representing the triples that descend
from each node v of Tspo, Tosp, and Tpos.

Proof. If v is the root, we can define its range as the whole eBWT. Otherwise, by Theorem 4,
there is a string P (t) for the triple pattern t = t(v) that prefixes exactly one string of the
c-string ˚spo, or equivalently a rotation of spo, for each triple (s, p, o) matching t. By Def. 9,
the three rotations of spo are listed in the Ring in lexicographic order, and thus those prefixed
by P (t) form a single range. Those ranges are unique once we define how P (t) is formed. As



D. Arroyuelo and G. Navarro 14:9

4 14 17
14 17 4
17 4 14
3 14 20

14 20 3
20 3 14
5 16 19

16 19 5
19 5 16
5 15 20

15 20 5
20 5 15
5 16 17

16 17 5
17 5 16
5 16 18

16 18 5
18 5 16
1 14 18

14 18 1
18 1 14

=⇒
sort

1 14 18
3 14 20
4 14 17
5 15 20
5 16 17
5 16 18
5 16 19

14 17 4
14 18 1
14 20 3
15 20 5
16 17 5
16 18 5
16 19 5

17 4 14
17 5 16
18 1 14
18 5 16
19 5 16
20 3 14
20 5 15

Figure 4 On the left, the 3 rotations of each c-string ˚spo of our running example graph. On the
right, the strings are lexicographically sorted. The last column is the corresponding eBWT. The
outer red rectangle corresponds to the node v of Tspo with t(v) = (5, ∗, ∗), and the inner one to
t(v) = (5, 16, ∗).

seen in Theorem 4, there are multiple choices to form P (t) only when |P (t)| = 3, that is,
when t is a triple. In this case it corresponds to just one c-string ˚spo and the singleton range
can be arbitrarily fixed to be that of any of its three rotations. ◀

Consider, for instance, the node corresponding to t = (5, ∗, ∗) in Tspo of Figure 2, whose
subtree includes the triples (5, 7, 4), (5, 8, 1), (5, 8, 2), and (5, 8, 3). This node is represented
by the interval [4 . . 7] in the Ring shown in Figure 4 (right side), highlighted with the larger
red box, which contains exactly the same triples mentioned before (with components p and
o shifted accordingly, as we have already explained). On the other hand, interval [5 . . 7]
(highlighted with the smaller red box) corresponds to the node for triple pattern t = (5, 8, ∗) in
the trie Tspo of Figure 2. Actually, notice that interval [1 . . 7] in this sample Ring corresponds
to the root of trie Tspo, interval [8 . . 14] is associated with the root of trie Tpos, and interval
[15 . . 21] represents the root of trie Tosp. Each subinterval within these regions corresponds
to nodes in the respective tries.

Roughly speaking, the Ring index then maps the trie operations to operations on the
eBWT of the triples. In the sequel we show precisely how this is done.

3.3 The eBWT as a representation of the graph
The following definition will help us discuss how the eBWT works on the graph.

▶ Definition 11. Let S = a1a2a3 · · · ak be a string where ai ∈ Σi for all i. We then say that
the order of S is the string 123 · · · k.

In our case, the order of spo is spo, the order of pos is pos, and the order of osp is osp.
Because the three alphabets form lexicographic ranges, eBWT contains a range where all
the listed rotations are of order spo, and thus the eBWT contains only symbols of Σo, a
second range where all the rotations are of order pos and the eBWT contains only symbols
of Σs, and a third range where all the rotations are of order osp and the eBWT contains
only symbols of Σp. We store those three segments of the eBWT, respectively, as strings,
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As Co

1 14 18
3 14 20
4 14 17
5 15 20
5 16 17
5 16 18
5 16 19

Ap Cs

14 17 4
14 18 1
14 20 3
15 20 5
16 17 5
16 18 5
16 19 5

Ao Cp

17 4 14
17 5 16
18 1 14
18 5 16
19 5 16
20 3 14
20 5 15

move to front and sort

Figure 5 The Ring index, formed by the three columns Cx, and how each column is obtained by
moving some other column to the front and reordering (the dashed arrow shows the case spo →
osp). We also show, with solid arrows, the process for retrieving a triple in ˚5,16,18 from the index.

called columns, Co[1 . . N ], Cs[1 . . N ], and Cp[1 . . N ] (see the different ranges and colors in
the last column in Figure 4), and say that their orders are spo, pos, and osp, respectively.

Let us first show that our representation allows accessing any desired triple (s, p, o)
starting from its position in any of the columns Cx. For example, to retrieve the triple
represented at Co[i], we know immediately that o = Co[i]. Now, by the classic BWT invariant
[13, 16] (which holds true in the eBWT [28, Prop. 10]), we find the entry Cp[j] corresponding
to Co[i] with

j = LFo(i) = Ao[o] + ranko(Co, i), (1)

where Ax[c] counts the number of times symbols smaller than c occur in Cx, and rankc(X, i)
counts the number of times c occurs in X[1 . . i]. With j we obtain p = Cp[j], compute the
position k of the triple in Cs with

k = LFp(j) = Ap[p] + rankp(Cp, j),

and complete the process with s = Cs[k]. The eBWT invariants imply that

i = LFs(k) = As[s] + ranks(Cs, k),

that is, we cycle on the string: the eBWT effectively regards the strings as circular and this
permits retrieving the triples starting from any of their components.

See Figure 5 for an example of this process. In this case, we have i = 6, and hence
o = Co[6] = 18. So, j = Ao[18] + rank18(Co, 6) = 2 + 2 = 4. Then, p = Cp[4] = 16, so
k = Ap[16] + rank16(Cp, 4) = 4 + 2 = 6. Then, s = Cs[6] = 5. So, we get back to i since
i = As[5] + rank5(Cs, 6) = 3 + 3 = 6. The corresponding spo triple is (5, 16, 18).

The rationale of (say) Eq. (1) is the following. Co corresponds to the order spo and Cp
to the order osp. The second order is obtained from the first by stably reordering the tuples
by their o component, in accordance with the lexicographic order. In a stable reordering of
spo, position Co[i] = o will be moved to position j such that (i) all the symbols less than
o come before j (and those are counted in Ao[o]), and (ii) all the symbols o preceding the
one at Co[i] also come before j (thus we add ranko(Co, i)). Figure 5 also shows one of those
reorderings, from spo to osp.

Because the shifted symbols are stored in different strings Cx, the Ring remaps their
alphabets back to Σx = [1 . . |Σx|]. The nodes that are both subjects and objects use the
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same identifier in both Σs and Σo, in the range [1 . . |Σs ∩ Σo|]. Also, the Ring stores the
arrays Ax using N + o(N) bits, whereas function rank is computed in time O(log |U|) using
a wavelet tree [22] representation of the columns Cx[1 . . N ], just like a typical FM-index
implementation [17]. Overall, it represents a graph database of N triples over universe U
using 3N log |U|+ o(N log |U|) bits (logarithms are to the base 2), and can retrieve any triple
in time O(log |U|). This is almost the same space needed to store the 3N triple identifiers
in plain form. What is striking is that, within this space, the Ring can implement all the
operations required by the LTJ algorithm, as we see next.

3.4 Implementing the operations on the eBWT
Having separate columns, it is more convenient to identify the root of a trie starting with
symbol of alphabet Σx as the whole range Cx[1 . . N ]. This implements operation root
depending on the next triple component we will descend by.

Now assume we are in a range of the eBWT (that is, a range of Cs, Cp, or Co) that
corresponds to a trie node v. Recall that this means that the range is that of all the rotations
that start with P (t(v)). Let us show how to simulate the trie operations child and leap on
this representation.

The “easy” case

In the “easy” case, v is represented as Cx[i . . j] and the children of v belong to the alphabet
Σx. We can then use an extension of the LFx functions to compute the eBWT range
corresponding to a desired child of v. For example, if we are at v = root() and want to
descend to child(v, s), then we move from the range Cs[1 . . N ], which represents v, to the
range Co[i . . j] = Co[As[s] + 1 . . As[s + 1]], which represents u = child(v, s). This is the range
of all the rotations starting with s. We can now descend to child(u, o) with the famous
backward search formula [16], which essentially computes the range of all values LFo(k) for
all i ≤ k ≤ j where Co[k] = o:

i′ = Ao[o] + ranko(Co, i− 1) + 1, (2)
j′ = Ao[o] + ranko(Co, j),

so that now Cp[i′ . . j′] is the range of all the rotations starting with os, and represents
w = child(u, o). If we further descend to child(w, p), the analogous formulas will boil down
to a single entry of Cs corresponding to the trie leaf representing the triple (s, p, o) (in this
case, using the order pos).

For instance, assume that we want to go down by s = 5 and then by o = 19. We start
from the range Co[1 . . 7], corresponding to Tspo.root(). Going down to the child labeled
s = 5 corresponds to restricting the range to Co[As[5] + 1 . . As[6]] = Co[4 . . 7]. Then,
descending by o = 19 from this node corresponds to moving to the range Cp[i′ . . j′], with
i′ = Ao[19] + rank19(Co, 3) + 1 = 4 + 1 = 5 and j′ = Ao[19] + rank19(Co, 7) = 4 + 1 = 5. The
range Cp[5 . . 5] then corresponds to the range of a node v in the trie Tosp, which represents
the triple pattern t(v) = (5, ∗, 19). Note that, although we do not represent the trie Tsop, we
can find a node in some trie that corresponds to the same set of c-strings.

Operation leap(v, c0) is slightly more complex, and resorts to the geometric capabilities of
the wavelet tree. In the “easy case” again, node v is represented by a range Cx[i . . j] and c0
belongs to Σx; for example we are in Co[i . . j] and c0 is an object. We then use the wavelet
tree ability to compute, in O(log |U|) time, the least value not smaller than c0 in a range
[i . . j] of the string Cx it represents [21].

Manzini’s Festschrift



14:12 BWT Indexes for Optimal Joins in Graph Databases

The “hard” case

If v is the root and we descend by triple component x, we are always in the “easy” case,
because we can use Cx[1 . . N ] as root(). It is also always the easy case if t = t(v) has two
bound components (or, equivalently, v has depth 2): given any length-2 prefix P (t) of the
eBWT rotations, their range is in Cx, where x is the unbound component of t. For example,
if P (t) = sp, then its eBWT range is within Co. The only “hard” cases occur when exactly
one component is bound and we are forced to move “forward”, instead of “backward” as
Eq. (2) does: if only s is bound in t (the cases of p and o are analogous), then the range of
P (t) is within order spo, and then the representation of v is of the form Co[i . . j]. We can
then descend by o using Eq. (2), but we cannot descend by p in this way. Rather, we must
restrict the range Co[i . . j] so that it goes from representing all the rotations starting with s

to representing all the rotations starting with sp; the order is still spo.
To descend in this hard case, we reorder the string P (t): we descend from the root

Cp[1 . . N ] by p, and from the resulting interval Cs[i′ . . j′] of all the rotations starting with p,
we descend by s to the interval Co[i′′ . . j′′] of the rotations starting with sp.

For instance, assume that we have instantiated s = 5, which corresponds to Co[4 . . 7]
in our example Ring. This range is depicted by the larger box in the Ring of Figure 4.
Next, suppose that we instantiate p = 16 and want to go down in the corresponding trie.
The resulting range is represented by the smaller box in Figure 4. Notice that in this case
we remain at Co (i.e., in trie Tspo) after descending with p = 16 (unlike the “easy” case,
where we jump to a different trie after going down). However, using LFp to go down by
p = 16 is not feasible since we are currently in Co. Instead, we descend from Cp[1 . . 7] to
Cs[Ap[16] + 1 . . Ap[17]] = Cs[5 . . 7], and then proceed with s = 5 to obtain the desired range
Co[i′ . . j′], with i′ = As[5] + rank5(Cs, 4) + 1 = 5 and j′ = As[5] + rank5(Cs, 7) = 7.

Finally, we implement leap(v, c0) in the hard case as follows. Consider the same case
above, where only s is bound, v is represented by Co[i . . j], and p0 ∈ Σp. We start from
Cs[Ap[p0] + 1 . . N ], which is the range of all the rotations starting with predicates p ≥ p0.
We then map that range using an analogous of Eq. (2):

i′ = As[s] + ranks(Cs, Ap[p0]) + 1,

j′ = As[s + 1],

and obtain Co[i′ . . j′], the range of all the rotations starting with s and following with some
p ≥ c0. The first element of that range, Co[i′], is a triple with the desired minimum value
p ≥ p0. We then obtain p by traversing the circular string as described in Section 3.3.

4 Rings in Higher Dimensions

The theory of worst-case-optimal join algorithms was initially developed for the relational
model, and only then adapted to graph databases [25], where BGPs are modeled mainly
as multijoins on a single table of three columns. The space problem is even more serious
for tables with more than three attributes: a table with d attributes (which we will say to
be of dimension d) needs d! tries, each storing the equivalent of a copy of the database, in
order to implement worst-case-optimal joins using LTJ. This, of course, makes the technique
unaffordable even for modest amounts of attributes! A natural question is: can we extend
the Ring to dimensions d > 3 so as to use space proportional to the raw data?

The answer is, unfortunately, no: the key Theorem 4 does not hold for higher dimensions.
Already for d = 4, let {s, p, o, g} be the attributes. No matter how we choose the c-strings
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(say, ˚spog), there are subsets of attributes for which P (t) do not prefix any rotation of ˚spog

(say, {s, o} or {p, g}).
It is not hard to see, however, that two c-strings, like ˚spog an ˚sopg, suffice for Theorem 4

to hold on d = 4, in the sense that any string P (t), in some convenient order, prefixes some
rotation of ˚spog or of ˚sopg. Compared to storing 4! = 24 tries, storing just two eBWTs yields
an enormous space reduction!

The Ring simulation of Section 3 can be extended to having two or more eBWTs, by
jumping from one to another as needed. The following definition captures what is needed
from the chosen set of c-strings for such a simulation to work.

▶ Definition 12. A string Y is a substring of a c-string S̊ iff it is a substring of Sω. If
|Y | ≤ |S|, this is equivalent to Y being a substring of some rotation of S.

▶ Definition 13. A set S = {S1, S2, . . .} of strings over alphabet Σd = {1, 2, . . . , d} is
complete for dimension d iff, for every Y ⊂ Σd and x ∈ Σd \ Y, Y can be ordered to form a
string Y such that Y x or xY are a substring of some S̊i ∈ S.

The elements of S are strings of attributes, for example S = {123} is complete for d = 3
and S = {1234, 1324} is complete for d = 4. A Ring for dimension d is built on a complete
set S of strings of length d. For each data tuple (a1, . . . , ad) and each Si ∈ S, we extract the
string aSi[1] · · · aSi[d] (a permutation of the tuple). For example, with d = 3 and S = {123},
we extract from the tuple (s, p, o) the string spo. With d = 4 and S = {1234, 1324}, we
extract from the tuple (s, p, o, g) the strings spog and sopg. The Ring consists of one eBWT
for each string Si, which indexes the rotations of all the c-strings aSi[1] ˚· · ·aSi[d].

Consider a trie node v representing a tuple pattern t = t(v), now of d elements. If S is
complete, then by definition it is possible to concatenate the bound elements of t in some
order into a string P (t) that prefixes all rotations in the eBWT of some Si. We note that
there could be various ways to concatenate the bound attributes of t to form strings P (t) so
that they prefix rotations in different eBWTs.

We can then descend from v to child(v, x), with x ∈ Σx, in two ways. The “easy” one,
where v is represented by a range in Cx, uses the analogous of Eq. (2). The “hard” case
discards the current range and recomputes the result from scratch: it forms P (t(v)) such
that its order of attributes Y , preceded or followed by x, occurs in some S̊i (this works when
S is complete). It then retraverses the tries from the root following the path of P (t(v))x or
xP (t(v)), using the analogous of Eq. (2) at each step.

Suppose, with Rings for spog and sopg, that we want to go down using s, then o, then
p, and finally g. Initially, without further information, we may descend by s from the root of
the trie Tspog, obtaining a range of the spog Ring. Then, when it comes to go down by o,
we note that this is not possible on this Ring, so we move to the sopg Ring: we start with o

and continue by s using the “easy” case, reaching a node in the trie Tsopg (i.e., a range in
the sopg Ring). To proceed with p, we can remain in the same Ring, yet it corresponds to
the “hard” case, because p is to the right of so in the order sopg. This can be solved with
“easy” cases, either by re-running p, o, and s on the same sopg Ring, or using o, p, and s if
we move to spog. In both cases, the final descent by g corresponds to an easy case.

To implement leap(v, x0), there are also two possibilities. In the easy case, we proceed on
the wavelet tree exactly as explained (for the easy case) in Section 3. In the hard case, there
are two subcases:

We can form P (t(v)) whose order Y is such that xY occurs in some S̊i. In this case, we
retraverse the tries from the root to find Y , and finish as in the easy case. (Note that we
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were already in some range for the unbound attributes of t(v), but not in one from where
we could descend by x.)
We can form P (t(v)) whose order Y is such that Y x occurs in some S̊i. In this case,
we start from the range Cx[Ax[x0] + 1, N ] in the corresponding eBWT, and descend by
P (t(v)) from it.

We then track the first cell in the resulting range, using LF, back to Cx to find the answer
x Because of the hard cases, we simulate each child or leap operation in time O(d log |U|),
which still yields a worst-case-optimal query algorithm, as d is independent of N .

Now that we know how to use multi-eBWT Rings to handle higher dimensions, the
question is: how many eBWTs (i.e., strings in S) are needed to be complete in dimension d?
Arroyuelo et al. [5] studied this problem, showing that 5 eBWTs (instead of 5! = 120 tries)
are necessary and sufficient for d = 5, and 7 eBWTs (instead of 6! = 720 tries) are necessary
and sufficient for d = 6. The optimal number for d = 7 is shown to be between 10 and 12,
and for d = 8 is between 21 and 25 (they obtain various lower bounds). In asymptotic terms,
they prove that the number of eBWTs needed is O(2d) and Ω(2d/

√
d). These results make

worst-case-optimal algorithms much more feasible for relational databases.

5 Order Graphs

A way to visualize complete sets S = {S1, S2, . . .} is what are called order graphs [5].

▶ Definition 14. An order graph of dimension d has, as nodes, all the permutations of
[1 . . d], and has directed labeled edges of the form Z

x−→ xY .

In the order graphs that model complete sets of attribute strings, Z is always of the form
Y x. For example, the order graph for S = {123} consists of the cycle

123 3−→ 312 2−→ 231 1−→ 123;

recall the example in Figure 5, where we can see how one can move from the spo order to
osp using LFo, then to pos using LFp, and then back to spo using LFs. The order graph for
S = {1234, 1324} consists of the two cycles:

1234 4−→ 4123 3−→ 3412 2−→ 2341 1−→ 1234,

1324 4−→ 4132 2−→ 2413 3−→ 3241 1−→ 1324.

Each edge e = Y x x−→ xY of the order graph implies that the Ring stores a column Ce

over the alphabet Σx, so that the function LFe maps from order Y x to order xY . That is,
LFe applied on a position of the source order leads to the corresponding position in the target
order. Backward search, as in Eq. (2), also maps from the first to the second order. The
cycles arise because the eBWT, by definition, always stores the last column of its rotations.

An alternative way to understand Def. 13 is that, for every Y (in some order) and x,
there must exist a directed path labeled Y x or xY in the order graph: we can go from the
source to the target node using LF or backward search and obtain the desired cell or range
in the order of target node. This leads to a definition of complete order graphs.

▶ Definition 15. An order graph of dimension d is complete iff, for every Y ⊂ Σd = [1 . . d]
and x ∈ Σd \ Y, Y can be ordered to form a string Y such that concatenating the labels over
some directed path in the graph one obtains Y x or xY .
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p o s

14 17 4
14 18 1
14 20 3
15 20 5
16 17 5
16 18 5
16 19 5

o p s

17 14 4
17 16 5
18 14 1
18 16 5
19 16 5
20 14 3
20 15 5

move to front and sort

Figure 6 Reordering by the second column to go from order pos to order ops.
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Figure 7 Two particular complete order graphs of minimum size 8 for d = 4.

The definition of order graph, however, opens up new alternatives that are not possible
under the eBWT framework, namely when Z is not of the form Y x in Def. 14. Consider the
list of the rotations listed in lexicographic order by the eBWT, and regard the possibility of
storing another column of the rotations, not necessarily the last. For example, if we take
the order 1234 and store the third column, the corresponding LF function on that column
will stably reorder the rotations by the attribute 3, so that the ordering obtained is 3124
(recall the rationale of LF given after Eq. (1)). Backward search also works correctly using
the analogous of Eq. (2). Such a column corresponds to a graph edge 1234 3−→ 3124, and the
order graph is not anymore a set of cycles of length d. Figure 6 shows how this reordering by
another column operates on our example graph of dimension d = 3.

While complete sets of c-strings yield complete order graphs, there are complete order
graphs that do not correspond to complete sets. For d = 4, for example, we have a minimal
complete order graph that consists of a single cycle of length 8, instead of two cycles of
length 4 (for both, the index stores 8 columns Ce):

3421 1−→ 1342 2−→ 2134 3−→ 3214 4−→ 4321 1−→ 1432 2−→ 2143 4−→ 4213 3−→ 3421.

More curious optimal complete order graphs for d = 4 exist; Figure 7 shows two of them.
A natural question is whether complete order graphs can yield smaller Rings than complete

sets. The answer is indeed affirmative! For d = 5, there exists a complete order graph formed
by a single cycle of 20 edges [5], whereas the smallest complete set requires 5 eBWTs: seen as
an order graph, that amounts to 5 cycles of length 5, that is, 25 edges. The length-20 cycle
is known to be a minimal complete order graph for d = 5. In general, however, it is unknown
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whether some minimal complete order graph is always a single cycle, or a set of cycles. It
is only known that some minimal complete order graph is always formed by a set of cycles
with trees possibly sprouting from the nodes [5]. That is, every node must have indegree 1.
As it can be inferred from this discussion, no effective ways to build minimal complete sets
of c-strings or order graphs for a dimension d exist; we have resorted to exhaustive search.

6 Regular Path Queries

Assume an RPQ such that the initial node s is fixed. A classic solution to this problem is to
build the nondeterministic automaton of the regular expression and traverse the graph from
s, in DFS or BFS order. As we traverse an edge s

p−→ o, we feed the automaton with symbol
p, and abort the branch if the automaton runs out of active states. We must also record
the active automaton states with which we had already visited each graph node, to avoid
repeating the same nodes with the same states (i.e., we deactivate the repeated states in this
second visit). We report (s, o) for every node o where we arrive with a final automaton state
activated.

The other cases are solved analogously: if only the final node o is fixed, we can reverse
the regular expression the symbols (i.e. convert every p with p̂ and vice versa). If both are
fixed, we can start from either of those and stop as soon as the other node is found with a
final state. If none is fixed, we start a search from every possible value of s.

6.1 Simulation with the Ring
This process can be simulated with the Ring without using additional data structures. In this
case, it is easier to start assuming that only o is fixed, and derive the other cases analogously,
so we use the reversed automaton. Our first step is to descend from the trie root by o,
v = child(root(), o), which is represented by the range Cp[i . . j] = Cp[Ao[o] + 1 . . Ao[o + 1]].
We now analyze the automaton states to determine the symbols that would lead to active
states. For each such symbol p, we descend to u = child(v, p) using an analogous of Eq. (2),
for predicate p instead of for object o. The resulting range, Cs[i′ . . j′], contains all the distinct
sources s that lead to o by symbol p. Since there cannot be repetitions in this list, we extract
each value of s and iterate from it as the new source node, that is, setting o← s.

Note that we do not need the Ring component Co for this simulation. Further, one
can avoid duplicating the edges to support reversed symbols if one uses the “non-typical”
case technique to handle them. Such a technique [32] was implemented over a bit-parallel
simulation of the automaton, and shown to be very competitive in space and time with
classic solutions. Further, it was shown that the used Ring components are equivalent to a
known succinct representation of labeled graphs [31, Sec. 9.1.4]

6.2 Larger and smarter
An earlier Ring-based implementation [6], instead, does include the reversed edges, and
thus it can always use the “typical” case formulas. This enables other optimizations that
make the process faster. One possibility is that, instead of trying out the labels p that are
relevant for the automaton, one can enumerate the distinct labels p that occur in Cp[i . . j],
which could be less. The wavelet tree of Cp can do this enumeration in logarithmic time
per resulting symbol [21]. Further, the wavelet tree can be enriched with information on
the automaton states that are sources of symbols in ranges of ΣL. Those can be intersected
with the currently active states as we traverse the wavelet tree, so as to prune subtrees that
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cannot activate any state. This technique computes the intersection between the predicates
that lead to active automaton states and those that leave from the current node, in optimal
time, that is, proportional to the alternation complexity of both sets [11]. An analogous
technique on the wavelet treee of Cs avoids visiting sources of Cs[i′ . . j′] that have already
been visited with all the currently active states.

Using even more space (but still several times less than classic solutions), one can
implement even smarter traversals, in considerably less time [6]. For example, the regular
expression can be cut at an edge with a label p that is infrequent in the graph. From
each edge s

p−→ o, we launch a backward traversal from s to nodes that activate the initial
automaton state, and a forward traversal from o to nodes that activate the final automaton
states, and report the Cartesian product of both sets.

7 Perspective

We believe that the most important take-away message for the stringology audience is that
there are algorithmic and combinatorial problems in the database community, particularly
(but not only) in graph databases, that can benefit from approaches rooted in stringology:
the LTJ algorithm works on tries, the Ring structure builds on the eBWT, and RPQs are
an extended form of regular expression matching. We have also seen how combinatorial
problems arise, like finding lower bounds to the number of Rings needed in dimension d,
finding optimal ones efficiently, or characterizing the shapes of optimal order graphs. There
is also space for the use of compact data structures: the Ring is a non-redundant version of
the six tries used by LTJ, and we have used wavelet trees to solve the more complex LTJ
primitives, as well as to find better query plans [4]. Other remarkable uses of compact data
structure are compressed quadtrees to solve BGPs on any dimension d [9] and ordinal tree
representations to extend BGPs with topological queries [20].

On the other hand, the application of stringology techniques to databases bounces back
with new challenges and ideas. The most intriguing one is probably the idea of permuting the
eBWT matrix using an arbitrary column, not necessarily the last one. Could this technique
bring meaningful functionalities in other scenarios?

References
1 Christopher R. Aberger, Andrew Lamb, Susan Tu, Andres Nötzli, Kunle Olukotun, and

Christopher Ré. Emptyheaded: A relational engine for graph processing. ACM Transactions
on Database Systems, 42(4):20:1–20:44, 2017.

2 Waqas Ali, Muhammad Saleem, Bin Yao, Aidan Hogan, and Axel-Cyrille Ngonga Ngomo. A
survey of RDF stores & SPARQL engines for querying knowledge graphs. The VLDB Journal,
31(3):1–26, 2022.

3 Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan L. Reutter, and Domagoj
Vrgoc. Foundations of modern query languages for graph databases. ACM Computing Surveys,
50(5):68:1–68:40, 2017.

4 Diego Arroyuelo, Fabrizio Barisione, Antonio Fariña, Adrián Gómez-Brandón, and Gonzalo
Navarro. New compressed indices for multijoins on graph databases. CoRR, 2408.00558, 2024.

5 Diego Arroyuelo, Adrián Gómez-Brandón, Aidan Hogan, Gonzalo Navarro, Juan L. Reutter,
Javiel Rojas-Ledesma, and Adrián Soto. The Ring: Worst-case optimal joins in graph databases
using (almost) no extra space. ACM Transactions on Database Systems, 29(2):article 5, 2024.

6 Diego Arroyuelo, Adrián Gómez-Brandón, Aidan Hogan, Gonzalo Navarro, and Javiel Rojas-
Ledesma. Optimizing RPQs over a compact graph representation. The VLDB Journal,
33:349–374, 2024.

Manzini’s Festschrift



14:18 BWT Indexes for Optimal Joins in Graph Databases

7 Diego Arroyuelo, Aidan Hogan, Gonzalo Navarro, Juan L. Reutter, Javiel Rojas-Ledesma,
and Adrián Soto. Worst-case optimal graph joins in almost no space. In Proc. 47th ACM
International Conference on Management of Data (SIGMOD), pages 102–114, 2021.

8 Diego Arroyuelo, Aidan Hogan, Gonzalo Navarro, Juan L. Reutter, and Domagoj Vrgoc.
Tackling challenges in implementing large-scale graph databases. Communications of the ACM,
67(8):40–44, 2024.

9 Diego Arroyuelo, Gonzalo Navarro, Juan L. Reutter, and Javiel Rojas-Ledesma. Optimal joins
using compressed quadtrees. ACM Transactions on Database Systems, 47(2):article 8, 2022.

10 Albert Atserias, Martin Grohe, and Dániel Marx. Size bounds and query plans for relational
joins. SIAM Journal on Computing, 42(4):1737–1767, 2013.

11 Jérémy Barbay and Claire Kenyon. Alternation and redundancy analysis of the intersection
problem. ACM Transactions on Algorithms, 4(1):4:1–4:18, 2008.

12 Nieves Brisaboa, Ana Cerdeira-Pena, Guillermo de Bernardo, Antonio Fariña, and Gonzalo
Navarro. Space/time-efficient rdf stores based on circular suffix sorting. The Journal of
Supercomputing, 79:5643–5683, 2023.

13 Michael Burrows and David Wheeler. A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, 1994.

14 Davide Cenzato and Zsuzsanna Lipták. A theoretical and experimental analysis of BWT
variants for string collections. In Hideo Bannai and Jan Holub, editors, Proc. 33rd Annual
Symposium on Combinatorial Pattern Matching (CPM), pages 25:1–25:18, 2022.

15 Orri Erling. Virtuoso, a hybrid rdbms/graph column store. IEEE Data Engineering Bulletin,
35(1):3–8, 2012.

16 Paolo Ferragina and Giovanni Manzini. Indexing compressed texts. Journal of the ACM,
52(4):552–581, 2005.

17 Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo Navarro. Compressed repres-
entations of sequences and full-text indexes. ACM Transactions on Algorithms, 3(2):article 20,
2007.

18 Paolo Ferragina and Rossano Venturini. The compressed permuterm index. ACM Transactions
on Algorithms, 7(1):article 10, 2010.

19 Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Victor
Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and Andrés Taylor. Cypher: An
evolving query language for property graphs. In Proc. 44th ACM International Conference on
Management of Data (SIGMOD), pages 1433–1445. ACM, 2018.

20 José Fuentes-Sepúlveda, Adrián Gómez-Brandón, Aidan Hogan, Ayleen Iribarra-Cortés,
Gonzalo Navarro, and Juan Reutter. Worst-case-optimal joins on graphs with topological
relations. In Proc. 34th International World-Wide Web Conference (WWW), 2025. To appear.

21 Travis Gagie, Gonzalo Navarro, and Simon J. Puglisi. New algorithms on wavelet trees and
applications to information retrieval. Theoretical Computer Science, 426-427:25–41, 2012.

22 Roberto Grossi, Ankur Gupta, and Jeff S. Vitter. High-order entropy-compressed text indexes.
In Proc. 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 841–850,
2003.

23 Steve Harris, Andy Seaborne, and Eric Prud’hommeaux. SPARQL 1.1 query language. W3C
recommendation, 2013. URL: https://www.w3.org/TR/sparql11-query/.

24 Aidan Hogan. The Web of Data. Springer, 2020.
25 Aidan Hogan, Cristian Riveros, Carlos Rojas, and Adrián Soto. A worst-case optimal join

algorithm for SPARQL. In Proc. 18th International Semantic Web Conference (ISWC), pages
258–275, 2019.

26 Emil Eifrem Ian Robinson, Jim Webber. Graph Databases (2nd Edition). O’Reilly Media, Inc.,
2015.

27 Frank Manola and Eric Miller. RDF Primer. W3C Recommendation. 2004.
28 Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, and Marinella Sciortino. An extension

of the Burrows-Wheeler Transform. Theoretical Computer Science, 387(3):298––312, 2007.

https://www.w3.org/TR/sparql11-query/


D. Arroyuelo and G. Navarro 14:19

29 Amine Mhedhbi, Amol Deshpande, and Semih Salihoglu. Modern techniques for querying
graph-structured databases. Foundations and Trends in Databases, 14(2):72–185, 2024.

30 Amine Mhedhbi and Semih Salihoglu. Optimizing subgraph queries by combining binary and
worst-case optimal joins. Proc. VLDB Endowment, 12(11):1692–1704, 2019.

31 Gonzalo Navarro. Compact Data Structures – A practical approach. Cambridge University
Press, 2016.

32 Gonzalo Navarro and Josefa Robert. Compressed graph representations for evaluating regular
path queries. In Proc. 31st International Symposium on String Processing and Information
Retrieval (SPIRE), pages 218–232, 2024.

33 Thomas Neumann and Gerhard Weikum. The RDF-3X engine for scalable management of
RDF data. The VLDB Journal, 19(1):91–113, 2010.

34 Bryan B. Thompson, Mike Personick, and Martyn Cutcher. The bigdata® RDF graph database.
In Linked Data Management, pages 193–237. Chapman and Hall/CRC, 2014.

35 Todd L. Veldhuizen. Triejoin: A simple, worst-case optimal join algorithm. In Proc. 17th
International Conference on Database Theory (ICDT), pages 96–106, 2014.

Manzini’s Festschrift


	1 Introduction
	2 Basic Concepts of Graph Databases
	2.1 Graph databases
	2.1.1 Basic Graph Patterns
	2.1.2 Regular Path Queries

	2.2 Worst-Case-Optimal joins
	2.3 Leapfrog TrieJoin

	3 The Ring Index
	3.1 The circular strings model
	3.2 The extended Burrows-Wheeler Transform
	3.3 The eBWT as a representation of the graph
	3.4 Implementing the operations on the eBWT

	4 Rings in Higher Dimensions
	5 Order Graphs
	6 Regular Path Queries
	6.1 Simulation with the Ring
	6.2 Larger and smarter

	7 Perspective

