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Abstract. We address the problem of approximate string matching in
two dimensions, that is, to find a pattern of size m X m in a text of size
n X n with at most k errors (substitutions, insertions and deletions). Al-
though the problem can be solved using dynamic programming in time
O(m?*n?), this is in general too expensive for small k. So we design a
filtering algorithm which avoids verifying most of the text with dynamic
programming. This filter is based on a one-dimensional multi-pattern
approximate search algorithm. The average complexity of our resulting
algorithm is O(n?klog, m /m?) for k < m(m + 1)/(51og, m), which is
optimal and matches the best previous result which allows only substitu-
tions. For higher error levels, we present an algorithm with time complex-
ity O(n®k/(w+/7)) (where w is the size in bits of the computer word and
o is the alphabet size). This algorithm works for k < m(m+1)(1—e/ /o),
where e = 2.718..., a limit which is not possible to improve. These are
the first good expected-case algorithms for the problem. Our algorithms
work also for rectangular patterns and rectangular text and can even be
extended to the case where each row in the pattern and the text has a
different length.

1 Introduction

A number of important problems related to string processing lead to algorithms
for approximate string matching: text searching, pattern recognition, computa-
tional biology, audio processing, etc. Two dimensional pattern matching with
errors has applications, for instance, in computer vision.

The edit distance between two strings a and b, ed(a,b), is defined as the
minimum number of edit operations that must be carried out to make them equal.
The allowed operations are insertion, deletion and substitution of characters in
a or b. The problem of approzimate string matching is defined as follows: given
a text of length n, and a pattern of length m, both being sequences over an
alphabet ¥ of size o, find all segments (or “occurrences”) in text whose edit
distance to pattern is at most k, where 0 < k& < m. The classical solution is
O(mn) time and involves dynamic programming [19].
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Krithivasan and Sitalakshmi (KS) [14] proposed the following extension of
edit distance for two dimensions. Given two images of the same size, the edit
distance is the sum of the edit distance of the corresponding row images. This
definition is justified when the images are transmitted row by row and there are
not too many communication errors. On the other hand, it is not clear how to lift
the row restriction (i.e. letting insertions and deletions along rows and columns)
as then an approximate match is harder to define. Figure 1 gives an example.

General KS

Fig. 1. Alternative error models.

Using this model they define an approximate search problem where a subim-
age of size m X m is searched into a large image of size n x n, which they solve in
O(m?n?) time using a generalization of the classical one-dimensional algorithm.

We use the same model and improve the expected case using a filter algorithm
based in multiple one-dimensional approximate string matching, in the same
vein of [9, 8, 7]. Our algorithm has O(n?klog, m /m?) average-case behavior for
k < m(m+1)/(5log, m), using O(m?) space. This time matches the best known
result for the same problem allowing only substitutions and is optimal [12], being
the restriction on % only a bit more strict. For higher error levels, we present an
algorithm with time complexity O(n2k/(w+/c)) (where w is the size in bits of
the computer word), which works for k£ < m(m + 1)(1 — e/+/0). We also show
that this limit on & cannot be improved.

Given a two-dimensional string S, we denote as S[7] its i-th row (¢ > 1), and
S[i][5] the j-th column of row ¢ (j > 1). The two-dimensional strings we use are
the pattern P and the text T'.

2 Previous Work

The classical O(mn) dynamic programming solution to the one-dimensional
problem [19] keeps an array C[0..m], which for each new text position T'[j] is
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updated to C'[0..m] with the formula
C'[0] «+ CI0], C'[§] + if P[i] = T[j] then C[i—1] else 14+min(C[i—1], C'[i—1], C[i])

and a match is reported whenever C[m] < k.
This solution was later improved by a number of algorithms. The different
approaches can be divided in three main areas:

— Those that use cleverly the geometric properties of the dynamic program-
ming matrix, e.g. [15, 21, 10]. These algorithms normally achieve O(kn) time
complexity in the worst or the average case.

— Those that filter the text, quickly leaving out most of the text and verify-
ing only the areas that seem interesting, e.g. [20,6]. They achieve sublinear
expected time in many cases (e.g. O(knlog, m/m)) for small k/m ratios.

— Those that parallelize the computation of a classical algorithm in the bits
of computer words [22,23,4]. We call w the number of bits in the computer
word, which is assumed to be @(logn). These algorithms obtain in the best
case a factor of O(1/logn) over their classical counterparts.

On the other hand, multi-pattern approximate search has only recently been
considered. In [16], hashing is used to search thousands of patterns in parallel,
although with only one error. In [5], extensions of [4] and [6] are presented based
on superimposing automata. In [17], a counting filter is bit-parallelized to keep
the state of many searches in parallel. Most multipattern algorithms consist of
a filter which discards most of the text at low cost, and verify using dynamic
programming the text areas that cannot be discarded. If the error level is low
enough, the average number of verifications is so low that their total cost is of
lower order and can be neglected. Otherwise the cost of verifications dominates
and the algorithm is not useful, as it is as costly as plain dynamic programming.

Finally, the case of two dimensional approximate string matching usually
considers only substitutions for rectangular patterns, which is much simpler than
the general case with insertions and deletions. For substitutions, the pattern
shape matches the same shape in the text (e.g. if the pattern is a rectangle, it
matches a rectangle of the same size in the text). For insertions and deletions,
instead, rows and/or columns of the pattern can match pieces of the text of
different length.

If we consider matching the pattern with at most £ substitutions, one of the
best results on the worst case is due to Amir and Landau [2], which achieves
O((k + log o)n?) time but uses O(n?) space. A similar algorithm is presented in
Crochemore and Rytter [11]. Ranka and Heywood, on the other hand, solve the
problem in O((k + m)n?) time and O(kn) space. Amir and Landau also present
a different algorithm running in O(n?log nloglognlogm) time. On average, the
best algorithm is due to Karkkéinen and Ukkonen [12], with its analysis and
space usage improved by Park [18]. The expected time is O(n’k/m? log, m) for

m m2
— ~

k< . m |m 1y ——
= L[log,(m?)]] 2 4log, m
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using O(m?) space (O(k) space on average). This time result is optimal for the
expected case.

Under the KS definition (i.e. allowing insertions and deletions along rows),
Krithivasan [13] presents an O(m(k-+log m)n?) algorithm that uses O(mn) space.
This was improved (for k& < m) by Amir and Landau [2] to O(k%*n?) worst case
time using O(n?) space. Amir and Farach [1] also considered non-rectangular
patterns achieving O(k(k + /mlogm+/klog k)n?) time. This algorithm is very

complicated, as it uses numerical convolutions.

3 Error Model for Two Dimensions

We assume that pattern and text are rectangular, of sizes m; X mg and n; X ng
respectively (rows X columns). We use sometimes M = mymgy and N = nin; as
the size of the pattern and the text respectively. However, our algorithms can be
easily extended to the more general case where each row in the pattern and the
text has different length. For simplicity we only explain the rectangular case in
this paper. Sometimes we even simplify more, considering the case m; = my; = m
and n; = ny = n.

In the KS error model we allow errors along rows, but errors cannot occur
along columns. This means that, for instance, a single insertion cannot move
all the characters of its column one position down. Or we cannot perform ms
deletions along a row and eliminate the row. All insertions and deletions displace
the characters of the row they occur in.

In this simple model every row is exactly where it is expected to be in an
exact search. That is, we can see the pattern as an mj-tuple of strings of length
mgo, and each error is a one-dimensional error occurring in exactly one of the
strings. Formally,

Definition: Given a pattern P of size m; X ms and a text T of size ny X ny, we
say that the pattern P occurs in the text at position (i, 7) with at most k errors

if
> led(Tli+r—1][1.5], P[r]) < &

where led(¢[1..5], pat) = min;eq. ; ed(t[4..5], pat).

Observe that in this case the problem still makes sense for £ > mg, although
it must hold k& < mymg (since otherwise every text position matches the pattern
by performing mjm; substitutions).

The natural generalization of the classical dynamic programming algorithm
for one dimension to the case of two dimensions was presented in [14]. Its com-
plexity is O(M N), which is also a natural extension of the O(mn) complexity
for one-dimensional text. The algorithm is presented in Figure 2 as it is the ba-
sic procedure for the verification phase of our filtering algorithm. Instead of the
single column vector C[j] of length m+ 1 used in [19], we have an mq x (mz+1)
matrix indexed by pattern rows and columns, Cr][j], for r € 1..my, j € 0..m..
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for i « 1 to ni-ml
--- initialize C ---
forr < 1 to ml
for j < 0 to m2
Clrl[3]1 <« j
--- compute values for each text column j ---
for j < 1 to n2
err < 0
forr < 1 to ml
for s < 1 to m2
if P[rlls] = T[i+r-1]1[j]
then C’[r][s] « C[r][s-1]
else C’[r][s] + 1 + min(C[r][s-1]1,C[r]l[s],C’[r][s-1])
err « err + C’[r][m2]
exchange C and C’ --- just exchange pointers ---
if err <= k then report match at (i,j)

Fig. 2. Two dimensional approximate matching by dynamic programming. The vari-
able err sums up the errors along the rows of the pattern.

This algorithm uses O(M) extra space, which is the only state information
it needs to be started at any text position. Although Amir and Landau have an
O(k%n?) algorithm, notice that dynamic programming is always better if k > m,
so depending on k we have to choose the best algorithm.

4 A Fast Algorithm on Average

We begin by proving a lemma which allows us to quickly discard large areas of
the text.

Lemma: If the pattern occurs with & errors at position (7,7) in the text, and
71,72, ...Ts are s different rows in the range 1 to mq, then

tI;lli.I.ls{led(T[i + 7 —1[1..5], Plre))} < |k/s] .

Proof: Otherwise, led(T[i + r: — 1][1..5], P[re]) > 1+ |k/s| > k/s for all ¢.
Just summing up the errors in the s selected rows we have strictly more than
s X k/s = k errors and therefore a match is not possible.

The Lemma can be used in many ways. The simplest case is to set s = 1.
This tells us that if we cannot find a row r of the pattern with at most & errors
at text row ¢, then the pattern cannot occur at row 7 — r + 1. Therefore, we can
search for all rows of the pattern at text row m;. If we cannot find a match of
any of the pattern rows with at most & errors, then no possible match begins at
text rows 1..m;. There cannot be a match at text row 1 because pattern row m;
was not found at text row m;. There cannot be a match at text row 2 because
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pattern row m; — 1 was not found at text row m;. Finally, there cannot be a
match at text row m; because pattern row 1 was not found at text row my.

This shows that we can search only text rows ¢-mq, for ¢ = 1..|n1/m4]. Only
in the case that we find a match of pattern row r at text position (i - my, j),
we must verify a possible match beginning at text row 7 - m; — r + 1. We must
perform the verification from text column j—mg —k +1 to j, using the dynamic
programming algorithm. However, if £ > m3; we can start at j — 2mg + 1, since
otherwise we would pay more than m. insertions, in which case it is cheaper to
just perform my substitutions. This verification costs O(m;m32) = O(m?).

To avoid re-verifying the same areas due to overlapping verification require-
ments, we can force all verifications to be made in ascending row order and
ascending column order inside rows. By remembering the state of the last veri-
fied positions we avoid re-verifying the same columns, this way keeping the worst
case of this algorithm at O(m?n?) cost instead of O(m3n?).

Figure 3 shows how the algorithm works.

- -
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Fig. 3. Example of how the algorithm works.

We have still not explained how to perform a multi-pattern search for all
the rows of the pattern at text rows numbered 7 - m;. We can use any available
one-dimensional multi-pattern filtering algorithm. Each such algorithm has a
different complexity and a maximum error level (i.e. k/m ratio) up to where
it works well. For higher error levels, the filter triggers too many verifications,
which dominate the search time.

A problem with this approach is that, if £ > my holds in our original prob-
lem, this filtration phase will be completely ineffective (since all text positions
will match all the patterns, and all the text will be verified with dynamic pro-
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gramming). Even for k¥ < my the error level k/m; can be very high for the
multipattern filter we choose.

This is where the s of the Lemma comes to play. We can search, instead
of all text rows of the form i - my, all text rows of the form 7 - |m;/2], for all
patterns, with |k/2] errors. This corresponds to s = 2. If we find nothing at
rows i - |my/2| and (¢ + 1) - [m1/2], then no occurrence can be found at text
rows (¢ — 1) - [m1/2| + 1 to i - |m1/2], because that occurrence has already
two rows with more than k/2 errors. In general, we can search only the text
rows numbered - |my/s], for all the patterns, with |k/s| errors. In the extreme
case, we can search all text rows with |k/my | errors (which is always < mg and
therefore filtering is in principle possible).

There is another alternative way to use s, which is to search only the first
[m1/s] rows of the pattern with & errors and consider the text rows of the form
- |ma/s]. That is, reduce the number of patterns instead of reducing the error
level (this is because the tolerance to errors of some filters is reduced as the
number of patterns grows). This alternative, however, is not promising since
we pay s more times searches of (1/s)-th of the patterns. If the search cost for
r patterns is C(r), we pay sC(r/s). The aim of any multi-pattern matching
algorithm is precisely that C(r) < sC(r/s) (since the worst thing that can
happen is that searching for r patterns costs the same as r searches for one
pattern, i.e. C(r) = sC(r/s)).

5 Average Case Analysis

Once we have selected a given one-dimensional multipattern search algorithm to
support our two-dimensional filter, two values of the one-dimensional algorithm
influence the analysis of the two-dimensional filter:

— C(m, k,r), which is the cost per text character to search r patterns of length
m with k errors. Notice that in our case, m = ms and r = m;. Hence, the
cost to search a text row with this algorithm is nyC(mg, k, my).

— L(m, ), which is the maximum acceptable value for k/m up to where the
one-dimensional algorithm works. That is, the cost of the search is C(m, k, r)
per text character, plus the verifications. If the error level is low enough
(i.e. k/m < L(m,r)), the number of those verifications is so low that their
cost can be neglected. Otherwise the cost of verifications dominates and the
algorithm is not useful, as it is as costly as plain dynamic programming and
our whole scheme does not work. Again, in our case, m = mgy and r = m;.

Given a multi-pattern search algorithm, our search strategy for the two-
dimensional filter is as follows. If we search with |k/s] errors, it must hold

ol < tmmy = o= | ] W
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Since we traverse only the text rows of the form 4 - [mq/s], we work on
O(ny1s/m4) rows, and therefore our total complexity to filter the text is

O(ni1s/mq naC(me, k/s,mq)) = O<Nﬂk C(mz,?zi(zm;:;’bl)aml)> , (2)

where we recall that L has been selected so that the cost of verifications has, on
average, lower order and therefore we neglect verification costs. The algorithm
is applicable when it holds s < m;y, i.e. for

k< mg(ml + 1)L(’I’TL2,’I’TL1) s (3)

since if it requires s > mq, this means that the error level is too high even if we
search all rows of the text (s = mq).

We consider specific multi-pattern algorithms now, each one with a given C
and L functions. As we only reference the algorithms, we do not include here
their analysis leading to C and L, which is done in the original papers.

- Exact Partitioning [5] can be implemented such that C(m, k,r) = O(1)
(i-e. linear search time). For our O(mymZ) = O(rm?) verification costs, we

have L(m,r) = 1/log,(m3r?). Therefore, using this algorithm we would
select (Eq. (1))

B {kloga(m%mg)J B {5klogamJ

mo m

our average search cost would be (Eq. (2))

O<Nklogamax(m1,m2)> _ O<n2klogam>

M m2

and the algorithm would be applicable for k < ma(my + 1)/log,(mim3) =

m(m + 1)/ (5log, m) (Ea. (3)).
- Superimposed Automata [5] has L(m,7) = 1—e/\/0 (where e =2.718...),

and C(m, k,r) = O(mr/(cw(1l — k/m))) in its best version (automaton par-
titioning). Therefore, we have (Eq. (1))

)
)
° T anl—e/«/_J { 1—ke/f)J

the average complexity is (Eq. (2))

NEmam\ | o (NEY _ ok
© <M(1 — e/ o) ﬁwe) = <ﬁw> ° <ﬁw>

and the algorithm is applicable for k < ma(mq +1)(1 —e/y/0) = m(m +

1)(1 - e//o) (Eq. (3)).
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- Counting [17] has L(m,r) = e~™/7 and C(m, k,r) = O(r/w logm). There-
fore, using this algorithm we would select (Eq. (1))

Vcemz/a J {kem/" J
S = = y
mo m

the average search cost would be (Eq. (2))

O<N/’~ce""2/‘7 mllogm2> _ O<Nkem2/alogm2> _ O<n2kem/alogm>

M w maw mw

and the algorithm would be applicable for k < my(mi+1)e~™2/7 = m(m+
1)e_m/” (Eq. (3)).

Notice that this algorithm is asymmetric with respect to the shape of the
pattern, i.e. it works better on tall patterns than on wide ones. This is
because its cost formula and error level are not symmetric in terms of m and
r as the previous ones.

- One Error [16] can only search with & = 1 errors (i.e. L(m,r) = 2/m), with
time cost C(m, k,r) = m. Therefore we must have s = |k/2]| + 1, which
means that we can only apply the algorithm for £ < 2m;. In this case, the
complexity would be

O<N_k m2m2> _ O<Nkm2> _ O(n%).
M 2 ma

This algorithm is asymmetric with respect to the error level it tolerates, also
preferring taller rather than wider patterns.

The best algorithm on average turns out to be a hybrid. Counting is the best
option for small patterns (i.e. me~™/?/log, m > /o), superimposed automata
is the best option for intermediate patterns (i.e. m%/log, m < w+/c/log, o), and
exact partitioning is the best option for larger patterns. The combined complex-
ity is therefore

o n?klogm
mw max(m/wlog o,/ logm/m,e~™/7)

As m grows, the best (and optimal) complexity is given by the exact parti-
tioning, O(n%klog, m /m?). However, this is true for k& < m(m + 1)/(5log, m),
because otherwise the verification phase dominates. Once s = 1 and we cannot
reduce the error level by reducing s (i.e. by searching on more rows), the ap-
proach most resistant to the error level is superimposed automata, which works
up to k < m(m + 1)(1 — e/+/7) (at that point its cost is O(m2n?/(w\/7)),
very close to simple dynamic programming, and the verification time becomes
dominant).

Moreover, we prove in [4] that if k/ms > 1 — e/+/oc the number of text
positions matching the pattern is high. Therefore, the limit for automaton par-
titioning is not just the limit of another filtering algorithm, but the true limit
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up to where it is possible at all to filter the text. In this sense, this filter has
optimal tolerance to errors.

We summarize our results in Figure 4, where the best algorithm for each case
is presented.

error
level Dynamic Programming
k/m? (0] (n2 m? )

1—e/+/o

Automaton Partitioning
o ( n?k )
Ve 1/(5log, m)

Exact Partitioning

Counting
O nzklogU m
o (Mﬂ) me
mw
m
me—/7 _ m2 _ w7 2
log,m \/‘; Togom  logs o pattern size

Fig. 4. The best algorithm with respect to the pattern length and error level.
The complexity of each algorithm is also included.

6 Concluding Remarks

We present the first filtering algorithm for two dimensional approximate string
matching allowing also insertions and deletions. This filter avoids verifying most
of the text with the expensive dynamic programming algorithm, and is based
on a one-dimensional multi-pattern approximate search algorithm. Our analysis
gives the complexity of the filtering algorithm, obtaining expected case time
O(n?klog, m/m?) for k < m?/(5log, m). This time is optimal on average [12].

The edit distance that we use is simplified (row-wise) and does not model
well simple cases of approximate matching in other settings. For example, we
could have a match that only has the middle row of the pattern missing. In the
KS definition (which we use), the edit distance would be O(m?) if all pattern
rows are different. Intuitively, the right answer should be m, because only m
characters were deleted in the pattern. We are currently working on more general
error models [3], but as they are more general, the search complexity should be
higher.
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