
Improved Approximate Pattern Matching onHypertext ?Gonzalo NavarroDept. of Computer Science, University of Chile. Blanco Encalada 2120, Santiago,Chile. gnavarro@dcc.uchile.cl.Abstract. The problem of approximate pattern matching on hypertextis de�ned and solved by Amir et al. in O(m(n logm + e)) time, wherem is the length of the pattern, n is the total text size and e is the totalnumber of edges. Their space complexity is O(mn). We present a newalgorithm which is O(mk(n+ e)) time and needs only O(n) extra space,where k < m is the number of allowed errors in the pattern. If the graphis acyclic, our time complexity drops to O(m(n+ e)), improving Amir'sresults.1 IntroductionApproximate string matching problems appear in a number of important areasrelated to string processing: text searching, pattern recognition, computationalbiology, audio processing, etc.The edit distance between two strings a and b, ed(a; b), is de�ned as theminimum number of edit operations that must be carried out to make them equal.The allowed operations are insertion, deletion and substitution of characters ina or b. The problem of approximate string matching is de�ned as follows: givena text of length n, and a pattern of length m, both being sequences over analphabet of size �, and a maximum number of allowed errors k < m, �nd allsegments (or \occurrences") in text whose edit distance to pattern is at most k.That is, report all text positions j such that there is a su�x x of text[1::j] suchthat ed(x; patt) � k.The classical solution is O(mn) time and involves dynamic programming [11].This solution is the most exible to allow di�erent distance functions. For theparticular case of ed(), a number of algorithms have been presented to improvethe worst case to O(kn) or the average case, e.g. [8, 13, 5, 12, 4, 14, 15, 3]Pattern matching on hypertext [6] has been considered only recently. Themodel is that the text forms a graph of N nodes and E edges, where a stringis stored inside each node, and the edges indicate alternative texts that mayfollow the current node. The pattern is still a simple string of length m. It is alsocustomary to transform this graph into one where there is exactly one characterper node (by converting each node containing a text of length ` into a chain of? This work has been supported in part by Fondecyt grants 1-950622 and 1-960881.



2 Gonzalo Navarro` nodes). This graph has n nodes and e edges (note that n is the text size ande = n� N +E).Approximate string matching over hypertext is not only motivated by thestructure of the World-Wide-Web and the possibility to search sequences of ele-ments across paths of references, but also because graphs model naturally com-plex processes. In [7] it is considered the possibility of using approximate stringmatching as a model for data mining, where the symbols are in fact events andsequences of interesting events (perhaps separated by uninteresting events) aresought. This corresponds to allowing only insertions into the pattern. A graphmay be a functional description of a process (paths representing possible alter-native sequences of events), and we may want to identify potentially dangeroussequences of events in the process under analysis.The �rst attempt to de�ne pattern matching on hypertext is due to Manberand Wu [9], which view a hypertext as a graph of �les with no links inside(it is easy to transform any hypertext to that form, by ending the node at its�rst reference). They solve the problem for an acyclic graph in O(N + mE +R log logm) (where R is the size of the answer).Akutsu [1] solved the problem of exact pattern matching on a hypertextwhich has a tree structure in O(n) time, while Park and Kim [10] extended thisresult to an O(n + mE) algorithm for directed acyclic graphs and for graphswith cycles where no text node can match the pattern in two places.Amir et al. [2] were the �rst in considering approximate string matching overhypertext. In this case they consider the graph with n nodes and e edges andwant to report all nodes v where in the text graph there is a su�x x endingat node v such that ed(x; patt) � k. We say that x is a text su�x ending at vif there is a path in the graph ending at v such that the concatenation of allcharacters of the traversed nodes yields x.Amir et al. prove that the problem is NP-Complete if the errors can occur inthe text, and give an algorithm to solve the case of errors only in the pattern,which is O(m(n logm+ e)) time and O(mn) space. Their algorithm can handlegeneral graphs, not only acyclic ones.We present a new algorithm for approximate pattern matching over hyper-text graphs. For acyclic graphs, the algorithm is O(m(n + e)), which raises toO(mk(n + e)) for graphs with cycles. In both cases, our space complexity isO(n), which is by far smaller than that of [2]. On the other hand, we improvetheir time complexity for a small number of errors, namely for k = O(logm) ife = O(n) and for kn = O(e logm) otherwise. We also improve previous work inthe case of acyclic graphs.2 Rethinking the Classical AlgorithmThe classical algorithm to solve the general approximate string matching prob-lem [11] is de�ned in terms of a matrix C[i; j]. When used to compute editdistance between two strings a and b, we have that C[i; j] is the edit distancebetween a[1::i] and b[1::j]. Therefore C[i; 0] = C[0; i] = i for all i, and the update



Improved Approximate Pattern Matching on Hypertext 3formula isC[i; j] = (a[i] == b[j]) ?C[i�1; j�1] : 1+min(C[i�1; j]; C[i; j�1]; C[i�1; j�1]) ;where in the minimization the term C[i�1; j] corresponds to deleting the currentcharacter of the pattern, C[i; j � 1] to inserting the current text character intothe pattern, and C[i� 1; j � 1] to replacing the current character of the patternby the current text character.Now, if a turns out to be a short pattern of length m and b a long text oflength n, and we want to search the approximate occurrences of the pattern intothe text (i.e. text positions j such that the pattern occurs with at most k errorsin a su�x of text[1::j]), almost the same algorithm can be applied. The onlymodi�cation needed is to set C[0; j] = 0 for all j (so as to give each text positiona chance to start a match).The problem with a large text is space. In principle, we should store theO(mn) size matrix C, which is prohibitively expensive. It is not hard to see,however, that to compute the column j of the matrix we only need to keep thecolumn j�1. Therefore, it is enough to keep and \old" and a \new" column to dothe job, at a total space complexity O(m), which is very low. The time complexitydoes not change. For obvious reasons, the other alternative of computing thematrix row by row, keeping old and new rows at a space complexity of O(n), hasnever been considered. However, this is what we propose if the text is a graph.See Figure 1.
our processingdirectionpattern textC[i; j] directionprogrammingprocessingdynamicFig. 1. The classical and our traversal of the dynamic programming matrix.3 Applying the Algorithm to a HypertextFollowing [2], we �rst consider hypertexts where each node has just one character(it is easy to convert any hypertext to this form). Since the pattern keeps its



4 Gonzalo Navarrolinear structure but the text does not, implementing the classical algorithmcolumn-wise is di�cult, because in a graph the notion of \advancing" in thetext is not clear as in the linear version.However, we take advantage of the fact that the pattern is still linear andapply the classical algorithm row-wise. That is, we perform m long iterations. Atthe end of iteration i, we have computed for every node v of the graph the bestedit distance between pattern[1::i] and any text su�x in the graph which endsat node v. We recall that x is a text su�x ending at v if there is a path in thegraph ending at v such that the concatenation of all characters of the traversednodes gives x. We denote by t[v] the text character at node v.The algorithm needs to keep a state per node, called C[v]. At each iterationnew values for all C[v], denoted C 0[v], are computed. This accounts for our O(n)extra space. The pseudocode for the algorithm is presented in Figure 2.for all v 2 V , C[v] 0.for i = 1 to mfor all v 2 VC 0[v] minu=(u;v)2E f(u;v; patt[i])for all v 2 V , C[v] C 0[v]Fig. 2. Our algorithm for approximate string matching on hypertext. The function f()depends on the distance function used.It is not hard to see that this algorithm takes O(m(n + e)) time and needsO(n) extra space.To follow the idea of the classical algorithm, the f function of the algorithmshould be de�ned asf(u; v; x) = (t[v] == x) ? C[u] : 1 + min(C[u]; C[v]; C 0[u]) ;the problem being to ensure that C 0[u] has been already computed. If the graphhas no loops this is easily achieved by computing the new C 0 values in topologicalorder (a topological sorting takes O(n + e) time). This improves the previousresult [2] both in time and space complexity.However, this does not work in case of loops. The problem is that the insertionof the current text character into the pattern makes the current value of C[v] todepend on its predecessors in the graph up to k nodes away. In a loop of lengthless than k, there seems not to be easy way to determine the proper place tostart the computation of the values of the loop.We solve the problem by not considering insertions in the f function. Instead,insertions are simulated by modifying the pattern. We take a new character tthat does not belong to the alphabet. This character can be deleted at zerocost, but replacing it costs the same as an insertion. We insert k such charactersafter each letter of the pattern. Therefore, if the algorithm would insert a text



Improved Approximate Pattern Matching on Hypertext 5character between two pattern characters, what it does now is to replace oneof the t characters. The others can be deleted at zero cost. We insert k specialcharacters at each position to allow all the k insertions to occur at the sameplace, if necessary. Therefore, if the pattern is aloha and k = 3, we search fora t t t l t tt o t t t h t t t a t ttand our new f function isf(u; v; x) = (t[v] == x) ? C[u] : min(1 +C[u]; del(C[v]; x)) ;where del(C[v]; x) = (x == t) ? C[v] : 1 +C[v] :Since our pattern is now of length mk, the cost of the algorithm becomesO(mk(n + e)) when the graph has loops. This improves the previous result of[2] especially in space, since we need O(n) extra space and they need O(mn)extra space. We improve their O(m(n logm + e)) time complexity for the casek = O(logm) if e = O(n), and kn = O(e logm) otherwise.4 GeneralizationsWe consider now the case where the text has a string at each node, instead ofa single character. In this case we distinguish the total text size, n, from thenumber of nodes, N .Since inside each node the text is linear, we can search at O(kn) worst-casecost inside the node. The state of the search at character j of a node dependsonly on characters from j�m�k+1 to j. Therefore, although the �rst (m+k)text characters of each node still depend on the state of the global search (i.e.previous characters in the graph), the rest of the search at each node can becomputed independently.The �nal state of the search in node v has the information needed by theglobal search at the nodes that follow v in the graph. It is easy to modify thedynamic programming algorithm to keep count of the number of insertions per-formed in the pattern at each position. With that information it is possible todeduce which would be the state of the search at the end of node v for the globalalgorithm that uses the modi�ed pattern.Therefore, if there are N nodes we must perform at most O(min(n;N (m +k))) = O(min(n;Nm)) iterations of the global algorithm. The rest of the searchon the whole text proceeds internally at each node at O(kn) total cost.Since our algorithm pays O(mk) per node and per edge of the graph, oursearch cost is O(mk(min(n;mN ) + E) + kn). This is O(kn) provided N =O(n=m2) and E = O(n=m).The distance function can be easily modi�ed to allow exact searching, orsearching allowing only insertions (which is the case in data mining) or to givea particular edit cost to each operation.



6 Gonzalo Navarro5 Conclusions and Further WorkWe have addressed the problem of approximate string matching when the textis a hypertext and the pattern is a string. The only previous algorithm is [2],which is O(m(n logm+e)) time and O(mn) space. We presented a new algorithmwhich in case of acyclic graphs is O(m(n + e)) and in case of graphs with loopsis O(mk(n + e)) time. Our algorithm needs only O(n) extra space.The main problem that prevents an O(m(n + e)) time and O(n) space al-gorithm is the combination of loops in the graph with operations that allow toinsert text characters in the pattern. This situation creates circular dependen-cies that cannot be easily broken. We solved the problem by disallowing suchoperations and simulating them with a di�erent, longer pattern. This solutionis open to improvements and we are working at it.References1. T. Akutsu. A linear time pattern matching algorithm between a string and a tree.In Proc. CPM'93, pages 1{10, 1993.2. A. Amir, M. Lewenstein, and N. Lewenstein. Pattern matching in hypertext. InProc. WADS'97, LNCS 1272, pages 160{173, 1997.3. R. Baeza-Yates and G. Navarro. A faster algorithm for approximate string match-ing. In Proc. CPM'96, LNCS 1075, pages 1{23, 1996. ftp://ftp.dcc.uchile.cl/-pub/users/gnavarro/cpm96.ps.gz.4. R. Baeza-Yates and C. Perleberg. Fast and practical approximate pattern match-ing. In Proc. CPM'92, LNCS 644, pages 185{192, 1992.5. W. Chang and J. Lampe. Theoretical and empirical comparisons of approximatestring matching algorithms. In Proc. CPM'92, LNCS 644, pages 172{181, 1992.6. J. Conklin. Hypertext: An introduction and survey. IEEE Computer, 20(9):17{41,September 1987.7. G. Das, R. Fleischer, L. Gasieniec, D. Gunopulos, and J. Kark�ainen. Episodematching. In Proc. CPM'97, LNCS 1264, pages 12{27, 1997.8. G. Landau and U. Vishkin. Fast string matching with k di�erences. J. of ComputerSystems Science, 37:63{78, 1988.9. U. Manber and S. Wu. Approximate string matching with arbitrary costs for textand hypertext. In Proc. IAPR Workshop on Structural and Syntactic PatternRecognition, pages 22{33, Bern, Switzerland, 1992.10. K. Park and D. Kim. String matching in hypertext. In Proc. CPM'95, pages318{329, 1995.11. P. Sellers. The theory and computation of evolutionary distances: pattern recog-nition. J. of Algorithms, 1:359{373, 1980.12. E. Sutinen and J. Tarhio. On using q-gram locations in approximate string match-ing. In Proc. ESA'95, LNCS 979, 1995.13. Esko Ukkonen. Finding approximate patterns in strings. J. of Algorithms, 6:132{137, 1985.14. S. Wu and U. Manber. Fast text searching allowing errors. CACM, 35(10):83{91,October 1992.15. S. Wu, U. Manber, and E. Myers. A sub-quadratic algorithm for approximatelimited expression matching. Algorithmica, 15(1):50{67, 1996.


