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Abstract. We propose a new measure of entropy for a set of sets, which
is related to how much they differ from each other. We show how to build
a data structure that stores a set of sets within this entropy measure, so
that access, membership, predecessor and successor queries are supported
in logarithmic time. In addition, we give a new MST-based construction
algorithm of the entropy measure that outperforms standard ones.

1 Introduction

The goal of compact data structures is to represent combinatorial objects in
space close to their entropy so that the representation itself can efficiently an-
swer a desired set of queries on the objects, without the need to decompress
them [32]. Given the incomputability of Kolmogorov’s absolute notion of en-
tropy, the definition of entropy varies depending on the application and on the
kind of regularities one expects to exploit from the data.

In this paper we focus on representing a set S of sets, each drawn from a
universe U of elements, and what we aim to exploit is the fact that some sets may
be similar to others, that is, their symmetric difference, SAS’, may be small. In
such a case, we can represent S in terms of S’ in space proportional to |[SAS’|,
by listing which elements we have to insert into or delete from S’ in order to
obtain S (or, symmetrically, we can represent S’ from S).

Let A(S) be the size of a representation of S based on encoding symmetric
differences. Our goal in this paper is to show that a representation of S in space
O(A(S)) can provide efficient general access to the compressed data. Concretely,
we focus on providing the following functionality, assuming a total order on U:

Membership: Determine if some element x € U belongs to some set S € S.

Access: Obtain the ith smallest element of some set S € S, for any 1 <i < |S|.

Rank: Count the number of elements < x that exist in S € S, for some =z € U.

Predecessor and successor: Find the largest element < x and the smallest
element > z in aset S € S.

Those fundamental queries enable many operations on sets of sets, such as
for example union and intersection of sets in S. Our representation supports the
fundamental queries in time O(log |U|) or less, which is a low overhead anyway
incurred in many cases, even with explicit (uncompressed) representations.



Sets of sets arise in many applications. For example, the rows of a Boolean
matrix can be viewed as the characteristic vectors of sets, in which case our
membership query corresponds to accessing individual matrix cells, while access
(as well as predecessor/successor) corresponds to collecting the 1s in a row.
Since a graph can be represented as its Boolean adjacency matrix, we can also
view it as a set of sets, in which case membership corresponds to asking for the
existence of individual edges and access to traversing the neighbors of a node.
Our structures then offer both dense and sparse representation functionality and
can be used to run a variety of algorithms, such as matrix multiplication and
graph traversals, while they are represented within space O(A(S)). This idea
has a rich history of developments and applications, which we defer to Section 5.

A close predecessor of our work is the “containment entropy” [3], which
represents sets as subsets of others: if S C §’, then they can represent S by telling
which elements of S’ it contains. They define an entropy measure corresponding
to the best such representation, and show that within that space they can support
the five queries mentioned above on each set S in time O(log(|4|/|S])). This can
be thought of as a “deletion entropy”: it specifies what to delete from S’ to
obtain S. Our entropy measure A(S) is coarser, in the sense that it measures
the number of elements and not the exact number of bits to represent them, but
it is more general because it allows insertions and deletions.

We start by defining the simpler concept of “insertion entropy”, Z(S), where
we describe S’ via the |S’\ S| elements we must add to S to obtain S’. This is the
dual of the containment entropy: in terms of number of elements, |S’ \ S|, they
differ only because the containment entropy starts from the set of all elements,
U, whereas the insertion entropy starts from the empty set.

We then define the more powerful “set-difference entropy”, A(S) < Z(S),
as the size of the minimum arrangement where sets can be defined in terms of
others by specifying insertions and deletions to make, starting from basic sets ()
and U. We solve the five basic queries within time O(log |[/|) and space O(A(S)).

The five queries, both on the structures of space bounded by O(Z(S)) and
O(A(S)), are efficiently supported on top of the so-called “tree extraction”
framework [29, 28], relatively directly in the case of the insertion entropy, and
requiring new ideas in the case of the set-difference entropy. In particular, we
show how to access the ith smallest element among the ancestors of some node,
when some nodes in the path can “delete” symbols that exist upward in the
path. This solution can have independent interest.

As a byproduct, we give improved results for the MST-based construction of
the compressed matrix representation of Alves et al. [6], which multiplies it by a
dense vector in time O(A(S)). This is a crucial aspect to make this representation
usable, up to the point that previous works [13] preferred to use approximate
MSTs. We also show how to compute the insertion entropy, Z(S), which can be
used directly to improve the time to compute the containment entropy [3].



2 Preliminaries and the Tree Extraction Framework

Throughout this paper, we adopt the word RAM model with w-bit words. As
we heavily use the tree extraction framework [29, 28] to obtain our results, we
first present it in this section. Tree extraction, a key process of this framework,
works as follows: Given a tree T and a subset, X, of its nodes including the root,
we construct a new tree by deleting the nodes of T' that are not in X. Whenever
a node v is deleted, its children are inserted in its place as the children of v’s
parent, preserving the original left-to-right order among nodes.

Tree extraction has been used to represent a labeled tree to support labeled
navigational operations [28]. Given an ordinal tree 7 with | 7| nodes, each with a
label from universe U = {1,2,...,u}, one defines a subtree T, for each o« € U by
using on 7 the tree extraction process described in the previous paragraph, for
the set X, consisting of the nodes labeled «, their parents and the root. Thus,
> acu |Tal = O(|T]). The nodes of the trees 7, are marked with values 0 or 1,
so that nodes marked 1 correspond to nodes of T labeled a. They show how to
compute, in O(loglog,, u) time, a mapping f7(v,«) = v’, where v is a node from
T and v’ is a node from T, so that the number of nodes labeled o from v to
the root of T equals the number of nodes labeled 1 from v’ to the root of 7.
Their representation [28] is built in O(|7|logu) time and uses O(|T]) space. It
supports these operations in time dominated by the cost to compute f7:

parent_(v): the lowest ancestor of v labeled « (or L if there is none).
rank,(v): the number of ancestors of v labeled a.
select,(v,7) : the ith highest ancestor of v labeled a.

More sophisticated operations called path gueries can be supported [29] by
extending the concept of wavelet tree [27,31]. They partition the universe U =
U , into subuniverses U, , = {a,a+1,...,b} via successive halving: starting from
a =1 and b = u, they partition U, p into Uy, and Uy, 11 5, where m = | (a+b)/2].
They store trees 7T, labeled with 0 and 1, where each node v € 7, is labeled
0 if the label of v belongs to U, and 1 if it belongs to Uy, 11,. Starting with
Tiu =T, they use tree extraction to define 7o m = (Tap)o and T, = (Tap)1-
The partition ends at the trees of the form 7, = Ta.,q, for @ € U. Because the
universe is just {0,1}, they store each tree 7,5 using O(|7,|) bits, so that the
total hierarchical partition uses O(|7|logu) bits, or O(|T]) space. It is built in
time O(|7T|logw). This arrangement can be used to answer the following queries:

Path counting: Given v € T and labels a < b, counts the number of ancestors
of v with label between a and b.

Path selection: Given v € T and an integer 4, finds the ancestor of v with the
ith smallest label.

This hierarchical partitioning of the universe enables O(logu) time support
for path queries. They then improve the query time to O(log,, ) by decomposing
the universe into a sublogarithmic number of subuniverses each time [29].



3 Warm-up: The Insertion Entropy

We start with a weaker entropy definition that only captures the fact that some
subsets can be (large) subsets of others, and thus can be used to represent the
containing subset within little space. This definition, as explained, is the dual of
the “containment entropy” [3], which focuses on representing the smaller set in
terms of the larger one.

Definition 1. Let S be a set of sets. For each S € S, let p(S) be a largest subset
of S in S, or 0 if no such subset exists. Then the insertion entropy of S is

Z(S) = Y IS\pS) = D_IS|—I[p(S)].

SeS ses

To represent a set of sets S within O(Z(S)) space, we define a so-called
“insertion graph”.

Definition 2. Let S be a set of sets, with p(S) according to Def. 1. The insertion
graph of S is a weighted directed graph with nodes S U {0} and an edge from
each set S € S to p(S), with weight |S| — |p(S)].

It is easy to see that the insertion graph is equivalent to a tree rooted at 0,
whose weights add up to Z(S). By storing S\ p(S) at each node S of the graph,
we spend O(Z(S)) space and can reconstruct S.

We will use a slightly different representation, in the form of a labeled tree,
still of size O(Z(S)), in order to efficiently support the five queries on S.

Definition 3. Let S be a set of sets, with p(S) according to Def. 1. The insertion
tree of S is defined as follows.

— The root of the tree is the empty set, and is called v(().

— EBwery set S € S is a node, which we call v(S), the node associated with S
(but there may be other tree nodes that are not associated with any sets).

— Let I(S) = S\ p(S). Then the tree has a chain of |I(S)| edges from v(p(S))
to v(S), each labeled with a distinct element of 1(S), in arbitrary order.

The insertion tree of S clearly has 1+Z(S) nodes. Figure 1 gives an example.
We represent it in O(Z(S)) space using the tree extraction framework. More
precisely, we represent the insertion tree using the labeled tree structure of [28]
to enable O(loglog,, |U|)-time support of parent , rank, and select,, and we
additionally represent it using the labeled tree structure of [29] to support path
counting and path selection queries in O(log,, [/|) time. We now describe how
the basic operations can be supported on any set .S.

Membership To find out whether x € S, we locate v(.S) (which we can directly
associate with S within the space budget). We then reduce the query to the
primitive parent  (v(S)) [28] (which finds the closest ancestor of v(.S) labeled
x), returning true iff there is one. This takes time O(loglog,, [U]).
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Fig.1. On the left, an insertion graph for sets S = {S1,...,S9}, with the weights
written as slanted values on the edges. It holds Z(S) = 20. On the right, a corresponding
insertion tree with 21 nodes. We write S; besides its corresponding node v(.S;).

Access To access the ith smallest element of S, we retrieve the ith smallest
symbol on an edge in the path from v(S) to the root. This corresponds to a
path selection query in our insertion tree, requiring time O(log,, [U]).

Rank A rank for x in S corresponds to counting the number of labels of ances-
tors of v(S) that are at most x. This is solved with a path counting query
with interval [1, 2] in O(log,, [U]) time.

Predecessor/Successor To find the predecessor of x in S we compute the
rank ¢ of z in S. If ¢+ = 0, then x has no predecessor in S; otherwise we
obtain it by accessing the ith smallest element of S. For successor, if the
predecessor of x is not x, we access and return instead the (i 4 1)st smallest
element of S, or return that there is no successor if ¢ is the depth of v(S) in
the insertion tree. This entire process uses O(log,, |U|) time.

The insertion tree is easily built from the insertion graph in time O(Z(S));
the costly part is to find p(S) for every S € S. Let s = [S|, n = > 4.5 5], and
u = |U|. We can first sort the sets by increasing size in time O(slog s), and insert
them one by one as nodes in the insertion graph (which initially contains only
the node () with an edge towards p(S). To insert S, we sort its elements (which
induces total time O(nlogu)) and then traverse the current graph in DFS order
from the node (), finding the largest sets S’ C S. Checking such containments
takes time O(|S] + |S’|) with a merge-like algorithm. This process takes time
O 5.5 (IS] +157)) = O(sn). If we store the sets S\ p(S) along this same
process, the insertion graph is built in additional time O(Z(S)) € O(n). From
the insertion graph, we build the insertion tree in time O(Z(S)) and the tree
extraction data structure in additional time O(nlogu).

Tree extraction assumes that & = [1..u]. If this is not the case, we collect all
the n elements, sort them in O(nlogu) time, and assign to the u distinct values
integers in [1..u]. Queries and answers can be translated in constant time.



Theorem 1. On a word RAM with w-bit words, a set of s sets S, over a universe
of size u = | Uges S|, can be represented within O(Z(S)) space so that access,
rank, predecessor and successor queries can be carried out in time O(log,, u) and
membership in time O(loglog, u). If n = 3¢ 5 |S|, then the data structure can
be built in time O(nlogu + sn).

In the next section we give, as a byproduct, an improved construction time;
see Theorem 3.

4 Set-Difference Entropy

We now give our definition of set-difference entropy, which allows expressing a
set by both inserting in or removing elements from some other set. This is strictly
stronger than both insertion and containment entropies.

Definition 4. A set-difference graph on a set of sets S is a weighted directed
graph on the nodes S U {0,U}, where U = UgesS. There is ezactly one edge
leaving from each set S € S. The target node of that edge is called p(S) and the
weight of the edge is |SAp(S)|, the size of the symmetric difference. Further,
there is a path from every S € S to 0 or to U. The weight of the set-difference
graph is the sum of the weights of its edges.

Note that a set-difference graph can be regarded as two rooted trees, one
rooted at () and the other rooted at . Given a set-difference graph for S, we can
represent at each node S only those elements in S\ p(S) and those in p(S)\ S, so
that we can reconstruct S from p(S). The total space incurred is the weight of
the two trees. This is a slight variation over the model of Alves et al. [6], which
use only one tree rooted at (.

Definition 5. The set-difference entropy of a set of sets S, A(S), is the mini-
mum weight of a set-difference graph on S.

We now describe a representation that uses O(A(S)) space and supports the
five basic queries in the almost same times as with the insertion entropy.

As explained, we will represent the two trees, storing at each node the sym-
metric difference with its parent node. We will later modify this tree and add
more structures in order to support efficient queries on the sets. The left part of
Figure 2 shows the construction over our running example.

4.1 Construction

Analogously to what Alves et al. [6] do on a slightly different model, we can build
the lightest set-difference graph as the minimum spanning tree (MST) over the
full graph with nodes S € S U {0,U} and edge weights w(S,S’) = |SAS’|. The
only exception is that, in order to obtain the best pair of trees according to our
model, we set w(,U) = 0. We first show the correctness of this construction.
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Fig. 2. On the left, a set-difference graph of minimum weight between the same sets of
Figure 1, yielding A(S) = 13. To build it, it is sufficient to consider the full graph edges
with weights up to ¢ = 2. Among these edges, those not belonging to the MST (i.e.,
the set-difference graph of minimum weight) are dashed. On the right, the indel trees,
rooted at U (upside down) and at ), that represent S in space O(A(S)). We write +z
and —x to indicate elements = to add or to delete, respectively, from the parent node.

Lemma 1. The weight of the described MST is A(S) and the two trees that
achieve it are obtained by removing the edge between O and U.

Proof. Every MST contains the lightest edge, which is the one between @) and U.
Removing this edge disconnects the MST into two trees, one rooted at () and one
rooted at U. The sum of the weights of the two trees is the same of the MST,
as we removed a zero-cost edge. On the other hand, any pair of trees rooted
at ) and U can be turned into a spanning tree of the same cost by adding the
zero-cost edge between () and U. It follows that the cost of the MST is A(S). O

We can build the MST in time O(s?) once all the edge weights are computed
as in Section 3: increasingly sort the elements of all sets in time O(nlogu), and
compute all the edge weights in time O(sn). The total construction time is then
O(nlogu+ sn) as for the insertion entropy. This is only slightly better than the
complexity obtained by Alves et al. [6]: O(sn + s? log s) if the sets come already
sorted. We now show that a more refined construction time is possible.

We first show that, once the sets are sorted, one can compute SAS’ in time
O(|SAS’|) after an O(nlogu)-time preprocessing of S. We map the elements of
U to the interval [1..u] in time O(nlogu) if necessary, as before. Let St,..., S
be the mapped sets. We then build a text T'(S) = 51$15282 - - - S8, which is a
string where all the mapped sets S; are appended a unique terminator symbol
$; = u + 7 and concatenated. Since |T(S)| = n + s = O(n), we can build the
suffix tree [7,19] of T(S) in O(n) time [23], with support for constant-time level



ancestor queries [11]: lca(u,v) is the deepest ancestor of suffix tree leaves u and
v, and its (stored) string depth is the length of the longest common prefix of the
suffixes denoted by those leaves. By storing the suffix tree leaf corresponding to
each suffix T'(S)[i..], and the position where each string S; € S starts in T'(S) (all
of which takes O(n) space) we can, in constant time, compute lep(S[p..], S'[g..]),
that is, how many equal symbols follow from any S[p..| and any S’[q..].

With this tool we can compare S and S’ as follows. We start from p,q := 1
and find the longest common prefix lep(S[p..], S'[g..]) = ¢ in constant time. This
means that the first position where the strings differ is S[p + ¢] # S’[q + ¢]. The
smaller of both symbols is the first element of SAS’. If the smaller element is
Sp+ /) weset p:=p+L+1and g:=q+ ¢ ifitis S'[g+ ¢ weset p:=p+ ¢
and q := g+ £ + 1. We then continue extracting the elements of SAS’ one by
one. When we reach both terminators $,, we are done. Note that we can use
this technique in iterator mode, finding the next difference at each call, so that
we determine in time O(k) whether the set difference is larger than k.

We adapt Prim’s algorithm, which grows a set V' (the nodes already attached
to the MST), by taking at each step a node out of V' (the nodes not yet in the
MST) and moving it into V. Initially we set V' := {0, U}, with the zero-cost edge
connecting them in the MST, and V' = S. Unlike the classic algorithm, which
knows all the weights from the beginning, we will start with all edge weights set
to +oo for Prim’s algorithm (except w((),i4) = 0, which is already in the MST),
and will discover the true weights incrementally, from smallest to largest.

We will maintain all the edges whose weights are yet unknown in a bag
(initially of size (SJQF2) —1). For each edge (S, 5’) in the bag, we initialize iterators
at p,q := 1 and find their first difference, updating p and gq.

Now we start the iterations, starting with £ = 1 onwards. In the kth iteration,
we advance the iterators in all the edges (S,S5’) of our bag. For those edges
where the lcp leads us to both terminators $,, we know that the edge weight
is w(S,8") = k, so we set the corresponding weight for Prim’s algorithm and
remove the edge from the bag.

The invariant is that after the kth iteration we have defined for Prim’s algo-
rithm all the edge weights that are k or less (note that those edges may connect
nodes from V and V’, or nodes within V', so not all of them can be immediately
used by Prim). We can then run some steps of Prim, until the next lowest weight
to include in the MST is +o00. At that point we suspend Prim’s algorithm and
move on to the next iteration, where we find the weights equal to k + 1.

The correctness of the algorithm is clear from the invariant: Prim looks for
the least-weight edge connecting V' with V', and we let it use edges of weight k
only when we have computed all of them weighting up to k. For the analysis, note
that, if ¢ is the heaviest weight included in the MST, then we have incremented
each weight w(S,S’), along the algorithm, min(¢, |[SAS’|) times. The total time
is then O(Y" 4 ¢ min(¢, |SAS’])), which is bounded both by O(s¢) and by O(sn)
(the latter because |SAS’| < [S] + |S']).

Theorem 2. A set of sets S can be represented within O(A(S)) space. If S has
s sets, the sum of the sizes of its sets is n, they contain u distinct elements in



total, and the mazimum weight in a minimum-weight set-difference graph of S
is £, then that graph can be built in time O(nlogu + ) g g1cg min(¢, [SAS’|)) C
O(nlogu + min(s?¢, sn)).

Improving the computation of Z(S). A similar approach can speed up the con-
struction of the insertion graph of Section 3. For every new set S, instead of
fully computing the distance towards all the preceding sets S’, we create a bag
with those and use the same iterations from k& = 1 until finding the first value
k associated with some set S’ such that S’ C S and |S\ S| = k. We then set
p(S) := S’. The computation using the pointers p and ¢ is a bit different, because
whenever we find the distinct element to occur in S’ we must discard S’ because
S’ ¢ S. Overall, we spend time O(s - ]S\ p(S)|) to add S to the tree. Thus:

Theorem 3. The data structure of Theorem 1 can be built in time O(nlogu +
s-Z(8)) € O(nlogu + sn).

By symmetry, this construction can be used to compute the containment
entropy [3], which is based on deletions instead of insertions, and has I instead
of 0 at the root. Their original construction takes time O(snlogn) [3].

4.2 Supporting the operations

We will use the following data structure to represent S in space O(A(S)). See
the right part of Figure 2.

Definition 6. Let S be a set of sets, with p(S) according to Def. 4. The indel
trees of S are two trees defined as follows.

— The root of one tree, called v(D), represents the empty set, and the root of
the other, called v(U), represents U.

— EBvery set S € S is a node, which we call v(S), in the same tree of v(p(S))
(but there may be other tree nodes that are not associated with any sets).

— Let I(S) = S\ p(S) and D(S) = p(S)\ S. Then the tree where v(S) belongs
has a chain of |I(S)|+ |D(S)| edges from v(p(S)) to v(S), each labeled with
a distinct element of 1(S) or D(S), in arbitrary order. Those labels x € I(S)
are written +x and those © € D(S) are written —x.

It is clear that the two indel trees of a minimum-weight set-difference graph
have A(S) + 2 nodes in total. Again we represent either tree using the labeled
tree data structures [28,29] to support labeled operations and path queries, and
this time the labels are from the set [—u..u]. We now show how the set queries
are carried out using operations on labeled trees.

Membership To find whether x € S, we first locate v(S). We then compute
ut = parent_ (v(S)) and u~ = parent__(v(S)) [28]. If both exist, then
x € Siff the depth of u™T is larger than that of 4™ (i.e., the last edit operation
involving & was an insertion). If only u™ exists, then z € S. If only u™ exists,
then z ¢ S. If none exists, then « € S iff v(S) descends from v(U). As for
the insertion entropy, this process takes O(loglog,, |U|) time.
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Fig. 3. The hierarchical extraction process for 7~ = 7, starting from the (upside
down) tree 7 rooted at U of Figure 2. The rightward bold arrows lead from 7., to

Tam (with label 0) and to 7, , (with label 1). We show the labels of the trees 7,
inside the nodes, and the original symbols in small font near the boxes.

Access We show in Section 4.3 how to solve this operation in time O(log [U]).

Rank The rank of z in S is found by counting the number of labels of ancestors
of v(S) in the range [1..z], minus the number of labels of ancestors of v(S) in
the range [—xz.. — 1]. If v(S) descends from v(U), we add x to this difference,
because the elements [1..u] are tacitly assumed to exist at the root. This
computation is done with two path counting queries, in O(log,, ||) time.

Predecessor/Successor This is solved exactly as for the insertion entropy. As
they use the access operation, their time is O(log |U|).

Theorem 4. On a word RAM with w-bit words, a set of s sets S, over a uni-
verse of size u = | Uges S|, can be represented in O(A(S)) space so that mem-
bership queries can be performed in time O(loglog,, u), rank can be performed
in time O(log,u), and access, predecessor and successor in time O(logu). If
n =3 ges S|, then, once a minimum-weight set-difference graph is constructed
(see Theorem 2), this structure can be built in O(nlogu) extra time.

4.3 Accessing with positive and negative values

We now show how to access the ith smallest element of a set S. Among the two
indel trees representing S, let T be the one containing the node v = v(S). Let
x be the element of S whose rank is i, that is, the element we are looking for.



Then, because negative values —z can only occur if z is already present in the
set that an ancestor of v represents, the rank ¢ of z is the number of ancestors
of v with labels in [1..x] minus the number of ancestors of v within labels in
[—z..—1]) if T is rooted at v(0); otherwise, it is this difference plus x. Thus, it
is easy to use rank operations from v to binary search for x in the indel tree in
time O(log |U|log,, [U|). We will, instead, exploit the structure of the hierarchy
described in Section 2 to do the binary search in time O(log |U|).

To achieve this, more preprocessing is required. For either indel tree 7, we
will use the hierarchical binary universe partitioning described in Section 2 to
form two hierarchies, one for positive values [1..u] starting at a tree 7+ and
another for negative values [—u..—1] (seen as [1..u]) starting at a tree 7. Both
trees 71 and 7~ are constructed from 7 via tree extraction (with labels {4+, —}),
using function fr. Figure 3 illustrates the process.

The main idea of our query algorithm is to start with ranges [a..b] := [1..u]
and, as we descend down both hierarchical partitions, shrink the difference be-
tween a and b, while maintaining the invariant that i is between the rank of a in
S and the rank of b in S. To describe this algorithm in detail, we first consider
the case in which 7 is rooted at v(@). Letting v = v(S) € T, we start from
vt = fr(v,+) € 7'1+u and v~ = fr(v,—) € T;,. In this process, v* € ’7:'}) and
v € 771_11 will be the current nodes in both hierarchical partitions. We compute
st = rankg(v™") in ’7;';7 and s~ = ranko(v™) in 7. Note that ranky is computed
in constant time because the alphabet, {0, 1}, of 7;%17 is of size two. Observe that,
in the path of 7 between v()) and v, the number of nodes representing the inser-
tion of an element must be either equal to or exactly one more than the number
of nodes representing its deletion. It then follows that S has sT — s~ elements
in [a..m], where m = |(a + b)/2]. Therefore, if sT — s~ > i, then z € [a..m]. In

this case, we set b:=m, vt := fF (vF,0) € T, and v™ := f (v,0) € T, .,
where fxi,zw the mapping function of the tree Eiy, is again computed in con-

stant time because the trees have only two labels. Otherwise, we set a := m + 1,
REEES f;)b(v*, 1), v™ = f (v, 1), and i := i — (sT — s7). We iterate until we
reach a = b, when we return the answer = := a = b.

When the tree root is U instead of §), we modify the above procedure by using
st —s7 4+ (b—a+1) instead of sT — s~. As we spend O(1) time on each level
of T+ and 7, which have O(logu) levels, this process uses O(logu) time.

5 Applications and Previous Work

There are various applications where it is natural to encode sets of sets by their
symmetric differences. An example is inverted indices in natural language text
collections, which store the sets of documents where each word occurs. The
phenomenon that semantically correlated words tend to appear in about the
same sets of documents has been observed long ago [34][9, Ch. 3], and for example
is used to detect word associations in NLP. Another example is the adjacency
lists of web graphs and social networks, where the symmetric differences between
such lists have been used to compress the graphs with high success [16, 15, 14].



This idea has been extended to arbitrary Boolean matrices (which in particular
can be the adjacency matrices of graphs).

Elgohary et al.’s papers [21,22] have contributed to a burst of research [1,
6, 8,10, 20,24, 30,35] on compressing matrices and manipulating them in com-
pressed form. The compression methods used by Elgohary et al. and the re-
searchers that followed them usually treat the rows of the matrices as sequences,
however — possibly after re-ordering the columns and/or rows — and thus have
difficulty taking advantage of repetitions of a pair of values in two columns when
they are separated by columns whose contents vary.

In contrast, over thirty years ago Bookstein and Klein [17] proposed com-
pressing collections of bitvectors as collections of sets: we can express one set in
terms of a similar one by recording their symmetric difference, and we can find
the best way to express a collection this way by considering the complete graph
whose vertices are the sets and whose edges are weighted by the cardinalities of
the symmetric differences of their endpoints, and building a spanning forest of
rooted trees that minimizes the sum of the cardinalities of the sets at the roots
(which we store explicitly) and the total weights of the edges in the forest.

Bookstein and Klein’s idea was reinvented several times [2, 12,13, 18], but it
seems Bjorklund and Lingas [13] were the first to observe that we can multiply
matrices in time bounded in terms of the weights of their forests (the cardinalities
of the sets at the roots and the total weights of the edges). To see why, consider
that if we have already multiplied a row u of binary matrix A by a column
v of binary matrix B and we know the symmetric difference of w and another
row u’ of A, viewed as sets, then we can compute the product of v’ and v
by multiplying the elements in that symmetric difference by the corresponding
elements in v and adjusting the product w-v ' appropriately. This observation
easily generalizes also to non-binary matrices.

In the case of adjacency matrices of webgraphs with the rows sorted by URL,
neighbouring rows are more likely to be similar. Boldi and Vigna [16, 15, 14] took
advantage of this tendency and considered only edges between rows close in that
ordering, in order to speed up the construction of spanning forests that usually
still have low weight in practice for webgraphs. They limited the possibilities of
compression in order to provide a reasonable extraction time for the adjacency
lists (i.e., the nonempty cells in a row). Grabowski and Bieniecki [26] optimized
their heuristic and Francisco et al. [25] observed that the compression could be
used to speed up matrix-vector multiplication. They were all apparently aware
of some earlier work but not Bookstein and Klein’s nor Bjérklund and Lingas’s
papers in particular.

In the case of coloured de Bruijn graphs (CDBGs) for bioinformatics, the
sets of colours of neighbouring vertices are more likely to be similar. Almodaresi
et al. [5] took advantage of this tendency when compressing CDBGs for use in
their tool Mantis [33] by considering only edges between sets of colours associated
with neighbouring vertices, and encoding the resulting color set on the minimum
spanning tree of the induced graph.



Alanko et al. [3] recently proposed compressing a collection of sets by finding,
for each set S in the collection, the smallest superset S’ of it in the collection
and making S’ the parent of S in a tree. They path-compress this tree to make
its height logarithmic in the size of the universe. They encode S as a bitvector
indicating which elements of S’ are in S, which allows them to support queries
such as predecessor and successor on the sets in logarithmic time. They tested
this idea on CDBGs in the tool Themisto [4] with 16 thousand bacterial genomes
and found it improved compression compared to Themisto’s default (0.18 bits
per element instead of 0.32 bits), although they did not report query times.

6 Conclusion and Further Work

We have introduced the set-difference Entropy, A(S), a measure of the space
needed to optimally represent a set S of sets by indicating which elements from
each set differ from those of some other set. Such representation has been used
already in various applications, which demonstrates its practical interest. Our
contributions are (1) formalizing the measure; (2) giving an improved algorithm
to compute it from S based on Prim’s algorithm with edge costs that are com-
puted incrementally; (3) designing an O(A(S))-space representation, based on
tree extraction, that supports the most fundamental operations on the sets of
S (membership, access, rank, predecessor, successor) in time at most O(logu),
where u is the universe size.

Our adaptation of Prim (2) is of independent interest: it assumes that (inte-
ger) edge costs ¢ can be computed incrementally: at any moment we know the
cost is at least ¢ and, in O(1) time, we can determine whether it is ¢ or greater. If
the maximum cost of an MST edge is ¢, then the total cost of our Prim’s variant
is the sum, for every edge of cost ¢, of min(c, ¢).

Another result of independent interest, in (3), is an O(logu)-time extension
of the known algorithm to find the ith smallest label among the ancestors of
a labeled tree node. In the extension, some nodes can be marked as “deleting”
a label that occurs upwards. We leave for future work to achieve O(log,, u)
time for this extension, which is the cost of the basic version with no deletion
marks. This would make the times of the five basic queries within O(A(S)) space
asymptotically the same as those we obtain within the larger space O(Z(S)).

We also leave for future work to obtain succinct space, A(S) g u+o(A(S) lgu)
bits, not just O(A(S)) words. The data structures of tree extraction [28,29] we
build on are indeed succinct, but we use several copies/versions of them. It is
easy to collapse all those into one if we aim at O(logu) for all query times, but
achieving succinctness without sacrificing query times is more challenging.

We can also use more refined concepts of entropy. For example, as it is evident
from Figure 1, one could reduce the number of nodes in the insertion tree by
factoring paths; say, the paths for Sg and S5/Ss could start with a shared part
with the elements 3 and 5. This corresponds to adding to & an extra subset
{3,5}. It is possible to define a more refined form of Z(S) (and of A(S)) where
one can optimally add subsets. While all our machinery to query the insertion-



tree-based representation would work verbatim, it is not clear that the optimal
sets to add can be found in polynomial time; approximations can be of interest.

On the other hand, it is possible to introduce more operations apart from
insertions and deletions of elements, for example set complements, or taking
the union or intersection of two sets. It is not clear, in this case, if one could
efficiently support the query operations on those representations, apart from the
possible hardness of building them optimally.
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