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Abstract. Two recent lower bounds on the compressiblity of repetitive
sequences, d < -, have received much attention. It has been shown that
a string S[1..n] can be represented within the optimal O(dlog %) space,
and further, that within that space one can find all the occ occurrences in
S of any pattern of length m in time O(mlogn + occlog® n) for any con-
stant € > 0. Instead, the near-optimal search time O(m+(occ + 1) log® n)
was achieved only within O(~log %) space. Both results are based on
considerably different locally consistent parsing techniques. The ques-
tion of whether the better search time could be obtained within the
d-optimal space was open. In this paper, we prove that both techniques
can indeed be combined in order to obtain the best of both worlds,
O(m + (occ + 1) log® n) search time within O(d log %) space.

1 Introduction

The amount of data we are expected to handle has been growing steadily in the
last decades [20]. The fact that much of the fastest-growing data is composed
of highly repetitive sequences has raised the interest in text indexes whose size
can be bounded by some measure of repetitiveness [17], and in the study of
those repetitiveness measures [16]. Since statistical compression does not capture
repetitiveness well [13], various other measures have been proposed for this case.
Two recent ones, which have received much attention because of their desirable
properties, are the size v of the smallest string attractor [9] and the substring
complexity § [3,10]. It holds that § < v for every string [3] (with § = o(~) in some
string families [11]), and that v asymptotically lower-bounds a number of other
measures sensitive to repetitiveness [9] (e.g., the size of the smallest Lempel-Ziv
parse [14]). On the other hand, any string S[1..n] can be represented within
O(élog %) space, and this bound is tight for every n and ¢ [18,10,11].

A more ambitious goal than merely representing S in compressed space is to
index it within that space so that, given any pattern P[1..m], one can efficiently
find all the occ occurrences of P in S. Interestingly, it has been shown that, for
any constant ¢ > 0, one can index S within the tight O(dlog %) space, so as to
search for P in time O(mlogn+ occlog® n) time [10,11]. If one allows the higher
O(vlog Z) space, the search time can be reduced to O(m + (occ + 1) log®n) [3],
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which is optimal in terms of the pattern length and near-optimal in the time
per reported occurrence. Within (significantly) more space, O( log % logn), one
obtains truly optimal search time, O(m + occ).

The challenge of obtaining the near-optimal search time O(m+(occ+1) log® n)
within tight space O(dlog %) was posed [3,10,11], and this is what we settle on
the affirmative in this paper. Both previous results build a convenient context-
free grammar on S and then adapt a classical grammar-based index on it [4,5].
The index based on attractors [3] constructs a grammar from a locally consis-
tent parsing [15] of S that forms blocks in S ending at every minimum of a
randomized mapping on the alphabet, collapsing every block into a nonterminal
and iterating. The smaller grammar based on substring complexity [11] uses an-
other locally consistent parsing called recompression |7], which randomly divides
the alphabet into “left” and “right” symbols and combines every left-right pair
into a nonterminal, also iterating. The key to obtaining d-bounded space is to
pause the pairing on symbols that become too long for the iteration where they
were formed [10,11]. We show that the pausing idea can be applied to the first
kind of locally consistent grammar as well and that, although it leads to possibly
larger grammars, it still yields the desired time and space complexities. The next
theorem summarizes our result.

Theorem 1.1. For every constant € > 0, given a string S[1..n] with measure 4,
one can build in O(n) expected time a data structure using O(0log %) words of
space such that, later, given a pattern P[1..m|, one can find all its occ occurrences
in S in time O(m 4+ log® § + occlog®(dlog %)) C O(m + (occ 4 1) log® n).

2 Notation and Basic Concepts

A string is a sequence S[1..n] = S[1]-5[2] - - - S[n] of symbols, where each symbol
belongs to an alphabet X = {1,...,0}. We denote as X'(S) the subset of X
consisting of symbols that occur in S. The length of S is denoted |S| = n. We
assume that the alphabet size is a polynomial function of n, that is, ¢ = n®1).
The concatenation of strings S and S’ is denoted S-S = SS’. A string S’ is
a substring of S if S’ is the empty string ¢ or S’ = S[i..j] = S[i]---S[j] for
some 1 <14 < j < n. We also use “(” and “)” to denote non-inclusive intervals:
S(i..j) = Sli+ 1..j — 1], S(i..j] = S[i + 1..4], and S[i..j) = S[i..j — 1]. With
the term fragment, we refer to a particular occurrence S[i..j] of a substring in S
(not just the substring content). We use S to denote the reverse of S, that is,
Srev = S[n] - S[n —1]--- S[1].

We use the RAM model of computation with word size w = ©(logn) bits. By
default, we measure the space in words, which means that O(x) space comprises
of O(xlogn) bits.

A straight line program (SLP) is a context-free grammar where each nonter-
minal appears once at the left-hand side of a rule, and where the nonterminals
can be sorted so that the right-hand sides refer to terminals and preceding non-
terminals. Such an SLP generates a single string. Furthermore, we refer to a
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run-length straight line program (RLSLP) as an SLP that, in addition, allows
rules of the form A — A7*, where A, A; are nonterminals and m € Z>9, which
means that A is a rule composed by concatenating m copies of A;.

A parsing is a way to decompose a string S into non-overlapping blocks,
S =81 -85y Sk. A locally consistent parsing (LCP) [1] is a parsing where,
if two fragments S[i..j] = S[i’..j’] appear inside equal long enough contexts
Sli — a..j+ B8] = S[i’ — a..j’ + ], then the same blocks are formed inside S[i..j]
and S[i’..j']. The meaning of “long enough” depends on the type of LCP [1,6,3].

3 A New é-bounded RLSLP

The measure ¢ was originally introduced in a stringology context [18], but it was
formally defined later [3] as a way to construct a grammar of size O(ylog2)
without knowing . For a given string S[1..n], let di(S) be the number of dis-
tinct length-k substrings in S. The sequence of all values dj(.S) is known as the
substring complexity of S. Then, § is defined as

d = max{@ ke [ln]}

An RLSLP of size O(élog %) was built [I1] on top of the recompression
method [7]. In this section, we show that the same can be achieved on top of
the block-based LCP [15]. Unlike the previous construction, ours produces an
RLSLP with O(élog %) rules in O(n) deterministic time, though we still need
randomization in order to ensure that the total grammar size is also O(dlog % ).

We adapt the preceding construction [11], which uses the so-called restricted
recompression [12]|. This technique pauses the processing for symbols whose ex-
pansion is too long for the current stage. A similar idea was used [2,3] for adapt-
ing another LCP, called signature parsing [19]. We apply restriction (the pausing
technique) to the LCP of [15] that forms blocks ending at local minima of a ran-
domized bijective function, which is interpreted as an alphabet permutation.
This LCP will be used later to obtain near-optimal search time, extending pre-
vious work [3]. We call our parsing restricted block compression.

3.1 Restricted Block Compression

Given a string S € X7, our restricted block compression builds a sequence of
strings (Sk)rk>0 over the alphabet A defined recursively to contain symbols in
X, pairs formed by a symbol in A4 and an integer m > 2, and sequences of at
least two symbols in A; formally, A is the least fixed point of the expression

A= ZUAxXZs)U| A

=2

In the following, we denote (J;o, A* with A=2.
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Symbols in A\ X are non-terminals, which are naturally associated with
productions (A1,...,Aj) — A1+ Aj for (Aq,..., A;) € A2% and (A1, m) — AP
for (A1,m) € A x Z>o. Setting any A € A as the starting symbol yields an
RLSLP. The string generated by this RLSLP is exp(A), where exp : A — X7
is the expansion function defined recursively:

A if Ae X,
exp(A) = ¢ exp(A1)---exp(4;) f A= (Ay,...,A;) for Ay,...,Aj € A,
exp(Ap)™ it A= (A1,m) for A1 € Aand m € Z>,.

Then, for every string (Sk)r>0 generated using restricted block compression,
if the expansion function is extended homomorphically to exp : A* — X*, with
exp(A;---Ay) = exp(Ay) - -exp(4y,) for A;--- A, € A*, then it must hold
that exp(Sk) = S for every k € Z>¢. Starting from Sy = S, the strings (Sk)r>1
are built by the alternate applications of two functions, both of which decom-
pose a string T € AT into blocks (by placing block boundaries between some
characters) and then collapse blocks of length m > 2 into individual symbols
in A. In Definition 3.1, the blocks are maximal runs of the same symbol in a
subset B C A, and they are collapsed to symbols in A x Z>s.

Definition 3.1 (Run-length encoding). Given T € A" and a subset of sym-
bols B C A, we define rleg(T) € AT as the string obtained by decomposing T
into blocks and collapsing these blocks as follows:

1) For every i € [1..|T), place a block boundary between T'[i] and T[i + 1] if
T[] & B, T[i + 1] ¢ B, or Ti] # Tli + 1].

2) For each block T[i..i+m) of m > 2 equal symbols A, replace T[i..i+m) = A™
with the symbol (A, m) € A.

In Definition 3.3, the blocks boundaries are determined by local minima of a
permutation on A, and the blocks are collapsed to symbols in AZ2.

Definition 3.2 (Local minima). Given T € AT and a bijective function  :
2(T) — [1..]X2(T)]], we say that j € (1..|T) is a local minimum if

m(T[j = 1)) > w(T[j]) and =(T[5]) < =(T[j + 1]).

Definition 3.3 (Restricted block parsing). Given T € A™, a bijective func-
tionm : X(T) — [1..|X(T)]], and a subset of symbols B C A, we define ber g(T') €
AT as the string obtained by decomposing T into blocks and collapsing these
blocks as follows:

1) For every i € [1..|T), place a block boundary between T[i] and T[i + 1] if
Tl ¢ B, Tli + 1] ¢ B, ori is a local mimimum with respect to .

2) For each block Ti..i+m) of length m > 2, replace T[i..i +m) with a symbol
(T[],...,Tli+m—1]) € A.
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Note that B consists of active symbols that can be combined into larger
blocks; we say that the other symbols are paused. The idea of our restricted
block compression is to create successive strings Sk, starting from Sy = 5. At
the odd levels k we perform run-length encoding on the preceding string Si_1.
On the even levels k, we perform block parsing on the preceding string Si_1.
We pause the symbols whose expansions have become too long for that level.

Definition 3.4 (Restricted block compression). Given a string S € X+,
the strings Sy for k € Z>o are constructed as follows, where £} := (% M/ﬂ_l,
A :={A € A:lexp(A)| <L}, and 2 X(Sk—1) — [1..|2(Sk-1)|] is a bijection

satisfying 7 (A) < m(B) for every A € X(Sk—1) \ Ak and B € X (Sk—1) N Ag:
— Ifk=0, then S, = S.
— If k>0 is odd, then Sy, = rle, (Sk—1).
— If k>0 is even, then Sy, = bcr, 4, (Sk—1)-

Note that exp(Sk) = S holds for all k € Z>.

3.2 Grammar size analysis

Our RLSLP will be built by performing restricted block compression as long as
[Sk| > 1. Although the resulting RLSLP has infinitely many symbols, we can
remove those having no occurrences in any Si. To define the actual symbols in the
grammar, for all k € Zs, denote Sy, := {Si[j] : j € [1..|Sk[]} and S := U,y Sk-

We first prove an upper bound on |Si| which, in particular, implies that
|Sk| =1 holds after O(logn) iterations.

4n
g1 ”

Lemma 3.5. For every k € Z>o, we have |Si| <1+

Proof. We proceed by induction on k. For k = 0, we have |So| =n < 1+4n =
1+ %. If k is odd, we note that |Sg| < |Sk—1] <1+ %—Z =1+ e;l%' If & is even,
let us define
= {5 € [1Skl)  Ser] & Au).
Since A ¢ Aj, implies |exp(A)| > lx, we have |J| < g-. Then, since no two
consecutive symbols can be local minima, we have

|Sk| < 21J] + 14 Bemal2EUHD _ ISl 4 g <420 g n— g 30
=1+ O

Lyr”

Our next goal is to prove that restricted block compression is a locally con-
sistent parsing. For this, we associate S with a decomposition of S into phrases.

Definition 3.6 (Phrase boundaries). For every k € Z>¢ and j € [1..|Sk]],
we define the level-k phrases of S induced by Sy as the fragments

S(lexp(Sk[1..5))].-|exp(Sk[L..5])[] = exp(Sk[j])-
We also define the set By of phrase boundaries induced by Sk :

By, = {Jexp(Si[L.j]) : j € [LISk[]}.
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Lemma 3.7. Consider integers k,m,a > 0 with o > 8¢y, as well as positions
i,i" € [m+ 2a..n — ] such that S(i —m — 2a.i+ o) = S(i' —m — 2a..4' + .

1) Ifi € By, then i’ € By.
2) If S(i —m..i| is a level-k phrase, then S(i' —m..i'] is a level-k phrase corre-
sponding to the same symbol in Sy.

Proof. We proceed by induction on k, with a weaker assumption o > 7/}, for odd
k. In the base case of k = 0, the claim is trivial because By, = [1..n) and S = S.
Next, we prove that the claim holds for integers &£ > 0 and a > ¢; assuming
that it holds for all £ — 1 and « — | ¢ |. This is sufficient for the inductive step:
If a > 8¢, for even k > 0, then « — || > Tl = Tlj—1. Similarly, if o > 74, for
odd k, then o — |5 | > 64y, = 805,_;.

We start with the first item, where we can assume m = 0 without loss
of generality. For a proof by contradiction, suppose that S(i — 2a..i + a] =
St — 2a.i’ + o] and i € By yet i’ ¢ By for some 4,7’ € [2a..n — a]. By
the inductive assumption (applied to positions 4,i'), i € By, C By_; implies
i’ € Bi_1. Let us set j,j" € [1..|Sk—1]) so that i = |exp(Sk—_1[1..])| and &' =
lexp(Sk—1[1..5])|- By the assumptions on 4,4, the parsing of S;_1 places a block
boundary between Sy,_1[j] and Sk_1[j+1], but it does not place a block boundary
between Sy_1[j'] and Sk_1[j’ + 1]. By Definitions 3.1 and 3.3, the latter implies
Si—117']; Sk—1[j'+1] € Ai. Consequently, the phrases S(i' —¢..i'] = exp(Sk-1[j])
and S(i'..t' +r] = exp(Sk_1[j' +1]) around position ' are of length at most | .
Since i’ — [ 4] <i' — €< +r <i 4 [{], the inductive assumption applied to
positions ¢’,4 and i’ 4+ r, ¢ + r implies that S(i — £..i] and S(i..i + r] are parsed
into Sk_1[j] = Sk—1[4’] and Sk_1[j + 1] = Sk—_1[j’ + 1], respectively.

If k£ is odd, then a boundary between two symbols in Ay, is placed if and only
if the two symbols differ. Consequently, Si_1[j'] = Sk—1[j’ + 1] and Sk_1[j] #
Sk—1[7 + 1]. This contradicts Si_1[j] = Sk—1[j'] and Sk_1[j + 1] = Sk_1[j’ + 1].

Thus, it remains to consider the case of even k. Since the block parsing
places a boundary between Si_1[j], Sk—1[j + 1] € Ag, we conclude from Defini-
tion 3.3 that j must be a local minimum with respect to g, i.e., mp(Sk—1[j —
1)) > me(Sk_1l4]) < mk(Sk_1[j + 1]). Due to Sk_1[j] € Ag, the condition
on 7 imposed in Definition 3.4 implies Sy_1[j — 1] € Ai. Consequently, the
phrase S(i — ¢'..i — £] = exp(Sk—1[j — 1]) is of length at most | ]. Since i’ —
214, < i =0 < i — ¢ < i, the inductive assumption, applied to positions
i — £, — ¢ implies that S(i' — ¢'..i' — ¢] is parsed into Sx_1[j' — 1] = Sk_1[j — 1].
Thus, mp(Sk—1[j" — 1)) = m(Sk—1lj — 1]) > me(Sk-1[i']) = me(Sk-1li]) <
Tk (Sk—1l7’ +1]) = 7k (Sk—1[j + 1]), which means that j’ is a local minimum
with respect to 7, and, by Definition 3.3, contradicts i’ ¢ By.

Let us proceed to the proof of the second item. Let Si_1(j — m'..j] be the
block corresponding to the level-k phrase S(i — m..i]. By the inductive assump-
tion, S(i’ — m..i’] consists of level-(k — 1) phrases that, in Sy_1, are collapsed
into a fragment Si_1(j° — m/'..j'] matching Sx_1(j — m/'..j]. Moreover, by the
first item, the parsing of Si_1 places block boundaries before Si_1[j’ — m/]
and after Si_1[j], but nowhere in between. Consequently, S;_1(j —m’..j] and
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Sk—1(4" —m’..j'] are matching blocks, which means that they are collapsed into
matching symbols of Sj, Thus, the level-k phrases S(i — m..i;] and S(i" — m..i']
are represented by matching symbols in Sj. O

Our next goal is to prove that |S| = O(dlog %) (Corollary 3.12). As a first
step, we show that |Agt1 N Sk| = O(4) (Lemma 3.9). The idea for this proof
is to consider the leftmost occurrence of all symbols of S; and then bound
the set of those occurrences in relation to ¢ (Claims 3.10 and 3.11). At a high
level, we build on the arguments of [11], where the same bound was proved
in expectation, but we obtain worst-case results with our parsing. We start by
generalizing Lemma 3.5.

Lemma 3.8. For every k € Z>o and every interval I C [1..n], we have

1Bp NI <1+ A

Lrt1

Proof. We proceed by induction on k. For k = 0, we have |By N I| = |I| <
1441 =14 %fl. If k is odd, we note that By C Bj_; and therefore |B, N 1| <
|[Bp_1NI| <14 %{I =1+ %. If k is even, let us define

J={j € [L[Skll: Skali] & Ar},

Jr={j € J:|exp(Sk-1[1..))| € I} C Bx_1 N 1.

Since A ¢ Ay, implies |exp(A)| > £, we have |J;| < % Then, since no two
consecutive symbols can be local minima, we have

B 01| < 2Jy] + 1+ [BetDIECUIED  IHB DI )

211 | |1 _ 31 411
< 1'+'jﬂj +‘z; =1+ T =14 O

Liyr”

The following result is used to bound both the number of symbols |S| (where
we only care about |S, N Ag41], i.e., the number of substrings with m = 1 active
symbol) and the size of the RLSLP resulting from restricted block compression.

Lemma 3.9. If the string S has measure §, then, for all integers k > 0 and
m > 1, the string Sy, contains O(md) distinct length-m substrings in A} ;.

Proof. Denote o := [8¢,] and ¢ := 3a+|m¥ly4+1], and let L be the set of positions
in S covered by the leftmost occurrences of substrings of S of length at most ¢,
as well as the trailing ¢ positions in S. We first prove two auxiliary claims.

Claim 3.10. The string Sy contains at most |L N By| distinct length-m sub-
strings in Ay ;.

Proof. Let us fix a length-m substring T € A; ; of S and let Si(j — m..j]
be the leftmost occurrence of T in Sj. Moreover, let p = |exp(Sk[l..; — m])]
and ¢ = |exp(Sk[1..j])| so that S(p..q] is the expansion of Si(j — m..j]. By
Sk(j —m..j] € Ay, we have ¢ —p < m|lp11] <L —3a.
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We shall prove that g € L; for a proof by contradiction, suppose that g ¢ L.
Due to (0..4] U (n — £..n] C L, this implies that ¢ € (¢..n — £] is not covered
by the leftmost occurrence of any substrings of length at most £. In particular,
S(p — 2a..q + «] must have an earlier occurrence S(p’ — 2a..¢' + « for some
p’ < p and ¢ < ¢. Consequently, Lemma 3.7, applied to subsequent level-k
phrases comprising S(p..q], shows that S(p’..q’] consists of full level-k phrases
and the corresponding fragment of Sy matches Si(j — m..j] = T. By ¢’ < g,
this contradicts the assumption that Sk (j — m..j] is the leftmost occurrence of
T in Sk, which completes the proof that g € L.

A level-k phrase ends at position g, so we also have g € By. Since the position
q is uniquely determined by the substring 7', this yields an upper bound of
|L N By| on the number of choices for T O

Claim 3.11. The set L forms O(0) intervals of total length O(d6¢).

Proof. Each position in L N (0..n — £] is covered by the leftmost occurrence of
a substring of length exactly ¢, and thus L forms at most [7|L|| intervals of
length at least ¢ each. Hence, it suffices to prove that the total length satisfies
|L| = O(d¢). For this, note that, for each position j € LN[¢..n — {], the fragment
S(j—L..j+1] is the leftmost occurrence of a length-2¢ substring of S; this because
any length-¢ fragment covering position j is contained within S(j — £..5 + £].
Consequently, |L| < da(S) + 2¢ = O(§¢) holds as claimed. O

By Claim 3.10, it remains to prove that |LNB| = O(dm). Let Z be the family
of intervals covering L. For each I € Z, Lemma 3.8 implies |[By N I| <1+ %.

By the bounds on Z following from Claim 3.11, this yields the announced result:

Bk NL| < [Z]+ 72> 1] = 06 + 24 ) = O(6m). O

L1 L1
IeT

The proof of our main bound |S| = O(élog %) combines Lemmas 3.5 and 3.9.

Corollary 3.12. For every string S of length n and measure §, we have |S| =
O(élog ).

Proof. Note that |S| <147 |Sk \ Sk+1]- We combine two upper bounds on
|Sk \ Sk+1], following from Lemmas 3.5 and 3.9, respectively.

First, we observe that Definition 3.4 guarantees Sk \ Sg+1 € Sk N Agt1.
Moreover, each symbol in S N Ag41 corresponds to a distinct length-1 substring
of Sk+1, and thus |S; \ Sk+1] < |Sk N Agy1| = O(5) holds due to Lemma 3.9.
Secondly, we note that |S; \ Sky1| = 0 if |Sk| = 1 and [Sk \ Sg41] < |Sk] <
2(1Sk| — 1) if |Sk| > 2. Hence, Lemma 3.5 yields

Sk \ Sk1| < 2(1Sk] — 1) < 22 = 0((3)"?n).

= Lr41
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We apply the first or the second upper bound on [Si \ Sk+1| depending on
whether k < A :=2[log, /5 % |. This yields

oo A—1 oo
SIS\ Sl = D 00) + > O((3)k/?n)
k=0 k=0
= 2|logy/3 %] JrZO ((3) 25) = O(Slog 3

Overall, we conclude that |S| = 1+0(dlog §) = O(d log §) holds as claimed. [
Next, we show that the total expected grammar size is O(dlog %§).

Theorem 3.13. Consider the restricted block compression of a string S[1..n]
with measure &, where the functions (m)k>0 in Definition 3.4 are chosen uni-
formly at random. Then, the expected size of the resulting RLSLP is O(6log % ).

Proof. Although Corollary 3.12 guarantees that |S| = O(dlog %), the remaining
problem is that the size of the resulting grammar (i.e., sum of production sizes)
can be larger. Every symbol in YU(AXZx5) contributes O(1) to the RLSLP size,
so it remains to bound the total size of productions corresponding to symbols in
AZ2. These symbols are introduced by restricted block parsing, i.e., they belong
to Sk41 \ Sk for odd k£ > 0. In order to estimate their contribution to grammar
size, we shall fix 7, ..., 7, and compute the expectation with respect to the
random choice of 1. In this setting, we prove the following claim:

Claim 3.14. Letk > 0 be odd and T € A} be a substring of Sk. Restricted block
parsing bex, .| A, (Sk) creates a block matching T' with probability O(27™).

Proof. Since Sy = rle, (Sk—1) and Agy1 = Ay, every two subsequent symbols
of T are distinct. Observe that if T forms a block, then there is a value t € [1..m)]
such that mp41(T[1]) < -+ < w1 (T[E]) > -+ > mg41(T[m]); otherwise, there
would be a local minimum within every occurrence of 7" in Si_1. In particular,
denoting h := |m/2], we must have 41 (T[1]) < -+ < 741 (T[h + 1]) (when
t > h) or mpp1(T[m — h]) > -+ > mp1(TIm]) (when ¢t < h). However, the
probability that the values my41(+) for h+1 consecutive characters form a strictly
increasing (or strictly decreasing) sequence is at most T +1)' : either exactly ( hil)!
(if the characters are distinct) or 0 (otherwise); this is because 71 shuffles
Y(Sk) N Ags1 uniformly at random. Overall we conclude that the probability
that 7" forms a block does not exceed (h+1)' < 27 %(mlogm) < O(2=™), O
Next, note that every symbol in S11\ Sk is obtained by collapsing a block of

m active symbols created within bcr, ., 4, , (Sk) (with distinct symbols obtained
from distinct blocks). By Lemma 3.9, the string Sy, has O(dm) distinct substrings
T € A}, ;- By Claim 3.14, any fixed substring 7' € A}, | yields a symbol in Sp41\
Sk with probability O(27™). Consequently, the total contribution of symbols in
Sk+1 \ Sk to the RLSLP size is, in expectation, Y o _, O(m - dm -27™) = O(9).
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At the same time, Sky1 \ Sk = 0 if |Sk| = 1 and, if |Sk| > 2, the contribution
of symbols in S;1 \ Sk to the RLSLP size is most |Si| < 2(|Sk| — 1) < 22 =

— L4t
O((%)"“/Qn)7 where the bound on |Sk| follows from Lemma 3.5. This sums up to
O(0) across all odd levels k > A := 2[log,,3 §]. Overall, we conclude that the
total expected RLSLP size is O(6log § + (A +1)d) = O(dlog %). O

We are now ready to show how to build an RLSLP of size O(d log % ) in linear
expected time.

Corollary 3.15. Given S[1..n] with measure 6, we can build an RLSLP of size
O(élog %) in O(n) expected time.

Proof. We apply Definition 3.4 on top of the given string S, with functions 7y
choices uniformly at random. It is an easy exercise to carry out this construction
in O(> ;>0 |Sk]) = O(n) worst-case time.

The expected size of the resulting RLSLP is c¢- 6 log 5 for some constant ¢; we
can repeat the construction (with fresh randomness) until it yields an RLSLP of
size at most 2c- ¢ log . By Markov’s inequality, we succeed after O(1) attempts
in expectation. As a result, in O(n) expected time, we obtain a grammar of total
worst-case size O(log % ). O

Remark 3.16 (Grammar height). In the algorithm of Corollary 3.15, we can
terminate restricted block compression after A := 2[log, 3 %] levels and com-
plete the grammar with an initial symbol rule Ay — Sx[1]---Sx\[|SA]] so that
exp(Ay) = S. Lemma 3.5 yields |S)| = O(1 4 (2)*?n) = O(6), so the resulting
RLSLP is still of size O(d1og % ); however, the height is now O(log % ).

4 Local Consistency Properties

We now show that the local consistency properties of our grammar enable fast
indexed searches. Previous work [3] achieves this by showing that, thanks to the
locally consistent parsing, only a set M (P) of O(log |P|) pattern positions need
be analyzed for searching. To use this result, we now must take into account
the pausing of symbols. Surprisingly, this modification allows for a much simpler
definition of M (P).

Definition 4.1. For every non-empty fragment S[i..j| of S, we define

By(i,j) ={p—i:p€ BpN[i..j)}

and

M(i,j) = | (Bulis )\ [2eths1-j =i )Ufmin( By (i, /)N [2ak+1..j—i—ai+1))}),
k>0

where oy, = [80;] and {min @} = 0.
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Intuitively, the set By(i, ) lists (the relative locations of) all level-k phrase
boundaries inside S[i..j]. For each level & > 0, we include in M (7, j) the phrase
boundaries that are close to either of the two endpoints of S[i..j] (in the light
of Lemma 3.7, it may depend on the context of S[i..j] which of these phrase
boundaries are preserved in level k4 1) as well as the leftmost phrase boundary
within the remaining internal part of S[i..j].

Lemma 4.2. The set M (i,j) satisfies the following properties:

1) For each k >0, if Bi(i,5) # 0, then min By (3,5) € M(i,7).
2) We have |M(i,7)] = O(log(j — i +2)).
3) If S[i'..5'] = S[i..j], then M(i',j") = M(i,7).

Proof. Let us express M(i, ) = Uy>o Mk (i, j), setting
Mk(i,j) = Bk(i,j)\[?()ék+1..j7Z‘7ak+1)U{miIl(Bk(Z‘,j)m[2ak+1..jfi7ak+1))}.

As for Ttem 1, it is easy to see that min By(4,j) € M(i,5): we consider two
cases, depending on whether min By (¢, j) belongs to [2aj11..j —%— 11) or not.

As for Ttem 2, let us first argue that | My (¢, )| = O(1) holds for every k > 0.
Indeed, each element g € By(i,5) N [0..2a,+1) corresponds to ¢ + i € By N
[i..i + 2a11) and each element ¢ € By(4,7) N [j — ¢ — agey1..J — ©) corresponds
to ¢g4+1i € By N[j— ags1..j). By Lemma 3.8, we conclude that |M(i, )] <
1+(1+ 82:&) +(1+ %) = O(1). Moreover, if £, > 4(j — i), then Lemma 3.8

41 k+1

further yields | By (i, 5)| = |BxN[i..j)| < 1. Since My (i, 5) and Bj4+1(%, j) are both
subsets of By(i, j), this means that | Useep>a(j—i) M;(i,5)| < 1. The number of
indices k satisfying ¢, < 4(j — i) is O(log(j — ¢ + 2)), and thus

[M(i, j)| < O(1) - O(log(j — i +2)) + 1 = O(log(j — i + 2)).

As for Item 3, we shall prove by induction on k that My (i,7) € M (7, ).
This implies M (i,7) € M(¢',j') and, by symmetry, M (i,j) = M (', 7). In the
base case of k = 0, we have

Mo(i,5) = ([0.201] U[j — i — a1.f — ) N [0.§ — i) = Mo(, 7).

Now, consider k¥ > 0 and ¢ € My(i,j). If ¢ € Bi(i,7) \ [20%..5 — i — ax), then
q € Mp_1(4,5), and thus ¢ € M (¢, j’) holds by the inductive assumption. As for
the remaining case, My (i, j) N [20..5 —i — ) = Mi(',§) N [20..5" —i' — ag) is
a direct consequence of By (i,7)N[2a..j —i—ay) = B (i, j )N [20..5" —i' — ay),
which follows from Lemma 3.7. U

Definition 4.3. Let P be a substring of S and let S[i..j] be its arbitrary oc-
currence. We define M (P) := M(i,5); by item 3 of Lemma 4.2, this does not
depend on the choice of the occurrence.

By Lemma 4.2, the set M (P) is of size O(log|P|), yet, for every level k > 0
and every occurrence P = S[i..j], it includes the leftmost phrase boundary in
By (1, 7). Our index exploits the latter property for the largest k with By (7, j) # 0.
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5 Indexing with our Grammar

In this section, we adapt the results on attractors [3, Sec. 6] to our modified
parsing, so as to obtain our main result.

Definition 5.1 ([3]). The grammar tree of a RLCFG is obtained by pruning
its parse tree: all but the leftmost occurrences of each nonterminal are converted
into leaves and their subtrees are pruned. We treat rules A — A5 (assumed to be
of size 2) as A — AlA[lsfl], where the node labeled A[lsfl] is always a leaf (Ay is
also a leaf unless it is the leftmost occurrence of Ay ).

Note that the grammar tree has exactly one internal node per distinct non-
terminal and its total number of nodes is the grammar size plus one. We identify
each nonterminal A with the only internal grammar tree node labeled A. We
also sometimes identify terminal symbols a with grammar tree leaves.

The search algorithm classifies the occurrences of a pattern P[l..m] in S
into “primary” and “secondary”, according to the partition of S induced by the
grammar tree leaves.

Definition 5.2 ([3]). The leaves of the grammar tree induce a partition of S
into phrases. An occurrence of P[l..m] at S[t..t + m) is primary if the lowest
grammar tree node deriving a range of S that contains S[t..t-+m) is internal (or,
equivalently, the occurrence crosses the boundary between two phrases); otherwise
it is secondary.

The general idea of the search is to find the primary occurrences by looking
for prefix-suffix partitions of P and then find the secondary occurrences from
the primary ones [5].

5.1 Finding the primary occurrences

Let nonterminal A be the lowest (internal) grammar tree node that covers a
primary occurrence S[t..t + m) of P[l..m]. Then, if A — A;--- Ay, there exists
some i € [1..s) and ¢ € [1..m) such that (1) a suffix of exp(A;) matches P[1..¢],
and (2) a prefix of exp(A;41) - - - exp(As) matches P(q..m]. The idea is to index
all the pairs (exp(4;)"®",exp(A4;4+1) - -exp(A;)) and find those where the first
and second component are prefixed by (P[l..¢g])"® and P(g..m], respectively.
Note that there is exactly one such pair per border between two consecutive
phrases (or leaves in the grammar tree).

Definition 5.3 ([3]). Let v be the lowest (internal) grammar tree node that
covers a primary occurrence S[t..t +m) of P. Let v; be the leftmost child of
v that overlaps S[t..t + m). We say that node v is the parent of the primary
occurrence S[t..t +m) of P and node v; is its locus.

The index [3] builds a two-dimensional grid data structure. It lexicographi-
cally sorts all the components exp(A;)"¢? to build the z-coordinates, and all the
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components exp(A;+1)---exp(As) to build the y-coordinates; then, it fills the
grid with points (exp(4;)"¢Y, exp(A;+1) - exp(As)), each associated with the
locus A;. The size of this data structure is of the order of the number of points,
which is bounded by the grammar size, g = O(d log %) in our case. The structure
can find all the p points within any orthogonal range in time O((p + 1)log* g),
where € > 0 is any constant fixed at construction time.

Given a partition P = P[l..q] - P(q..m] to test, they search for P[l..q]"®" in
a data structure that returns the corresponding range in x, search for P(q..m)|
in a similar data structure that returns the corresponding range in y, and then
perform the corresponding range search on the geometric data structure.

They show [3, Sec. 6.3] that the z- and y-ranges of any 7 cuts of P can be
computed in time O(m + 7log? m), within O(g) space. All they need from the
RLCFG to obtain this result is that (1) one can extract any length-¢ prefix or
suffix of any exp(A) in time O(¢), which is proved for an arbitrary RLCFG; and
(2) one can compute a Karp—Rabin fingerprint of any substring of S in time
O(log2 £), which is shown to be possible for any locally contracting grammar,
which follows from our Lemma 3.8.

In total, if we have identified 7 cuts of P that suffice to find all of its occur-
rences in S, then we can find all the occ, < occ primary occurrences of P in time
O(m + 7(log* g + log® m) + occ, log® g).

5.2 Parsing the pattern

The next step is to set a bound for 7 with our parsing and show how to find the
corresponding cuts.

Lemma 5.4. Using our grammar of Section 3, there are only T = O(logm) cuts
P = P[l..q] - P(q..m] yielding primary occurrences of P[1..m]. These positions
belong to M(P) + 1 (see Definition 4.53).

Proof. Let A be the parent of a primary occurrence S[t..t +m), and let k be the
round where A is formed. There are two possibilities:

(1) A — Ay--- A is a block-forming rule, and for some i € [1..s), a suffix of
exp(A4;) matches P[l..q], for some ¢ € [l..m). This means that ¢ — 1 =
min Bg_q(¢t,t +m — 1).

(2) A — Aj is a run-length nonterminal, and a suffix of exp(A4;) matches P[1..¢],
for some ¢ € [1..m). This means that ¢ — 1 = min By_1(¢t,t + m — 1).

In either case, ¢ € M(P) + 1 by Lemma 4.2. Further, |M(P)| = O(logm). O

The parsing is done in O(m) time almost exactly as in previous work [3,
Sec. 6.1], with the difference that we have to care about paused symbols. Es-
sentially, we store the permutations m; drawn when indexing S and use them
to parse P in the same way, level by level. We then work for O(logm) levels on
exponentially decreasing sequences, in linear time per level, which adds up to
O(m). There are a few differences with respect to previous work, however [3]:
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1) In the parsing of [3], the symbols are disjoint across levels, so the space to
store the permutations 7 is proportional to the grammar size. In our case,
instead, paused symbols exist along several consecutive levels and participate
in several permutations. However, by Lemma 3.9, we have |SyNAgt1| = O(9)
active symbols in Si. We store store the values of 71 only for these symbols
and observe that the values 741 for the remaining symbols do not affect the
placement of block boundaries in Definition 3.3: If Sy[j], Sk[j + 1] € Aky1,
then, due condition imposed on 741 in Definition 3.4, 7 may only be a local
minimum if Sg[j — 1] € Ag11. When parsing P, we can simply assume that
7r+1(A) = 0 on the paused symbols A € X'(Sk) \ Ag+1 and obtain the same
parsing of S. By storing the values of 7 only for the active symbols, we use
O(élog %) total space.

2) They use that the number of symbols in the parsing of P halve from a level
to the next in order to bound the number of levels in the parse and the
total amount of work. While this is not the case in our parsing with paused
symbols, it still holds by Lemmas 3.5 and 3.8 that the number of phrases in
round k is less than 1+ ﬁ, which gives us, at most, h = 12+2|logy /3 m| =

O(logm) parsing rounds and a total of 2220(1 + A™) = O(m) symbols

[

processed along the parsing of P.

5.3 Secondary occurrences and short patterns

The oces secondary occurrences can be obtained in O(oces) time given the pri-
mary ones, with a technique that works for any arbitrary RLCFG and within
O(g) space [3, Sec. 6.4]. Plugged with the preceding results, the total space of our
index is O(dlog %) and its search time is O(m + 7(log* g+log?m)+occlog® g) =
O(m + log® glogm + occlog® g). This bound exceeds O(m + (occ+ 1)log® g)
only when m = O(log® gloglogg). In that case, however, the middle term is
O(log® gloglog g), which becomes O(log® g) again if we infinitesimally adjust e.

The final touch is to reduce the O(m + log®g + occlog® g) complexity to
O(m +1og® § + occlog® g). This is relevant only when occ = 0, so we need a way
to detect in time O(m + log® d) that P does not occur in S. We already do this
in time O(m + log® g) by parsing P and searching for its cuts in the geometric
data structure. To reduce the time, we note that log®g € O(log*(dlog %)) €
O(log® ¢ +loglog %), so it suffices to detect in O(m) time the patterns of length
m < £ = loglog § that do not occur in S. By definition of 9, there are at most
0f strings of length ¢ in S, so we can store them all in a trie using total space
O(60?) C O(Slog %). By implementing the trie children with perfect hashing, we
can verify in O(m) time whether a pattern of length m < ¢ occurs in S. We then
obtain Theorem 1.1.

6 Conclusions and Future Work

We have obtained the best of two worlds [3,10] in repetitive text indexing: an
index of asymptotically optimal size, O(d log % ), with nearly-optimal search time,
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O(m + (occ + 1)log®n), which is built in O(n) expected time. This closes a
question open in those previous works.

Our result could be enhanced in various ways, as done in the past with -
bounded indexes [3]. For example, is it possible to search in optimal O(m +
occ) time within O(dlog % log®n) space? Can we count the number of pattern
occurrences in O(m + log?*®n) time within our optimal space, or in O(m) time
within O(élog % logn) space? We believe the answer to all those questions is

affirmative and plan to answer them in the extended version of this article.
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