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Abstract. Two recent lower bounds on the compressiblity of repetitive
sequences, δ ≤ γ, have received much attention. It has been shown that
a string S[1..n] can be represented within the optimal O(δ log n

δ
) space,

and further, that within that space one can find all the occ occurrences in
S of any pattern of length m in time O(m logn+ occ logε n) for any con-
stant ε > 0. Instead, the near-optimal search time O(m+(occ+ 1) logε n)
was achieved only within O(γ log n

γ
) space. Both results are based on

considerably different locally consistent parsing techniques. The ques-
tion of whether the better search time could be obtained within the
δ-optimal space was open. In this paper, we prove that both techniques
can indeed be combined in order to obtain the best of both worlds,
O(m+ (occ+ 1) logε n) search time within O(δ log n

δ
) space.

1 Introduction

The amount of data we are expected to handle has been growing steadily in the
last decades [20]. The fact that much of the fastest-growing data is composed
of highly repetitive sequences has raised the interest in text indexes whose size
can be bounded by some measure of repetitiveness [17], and in the study of
those repetitiveness measures [16]. Since statistical compression does not capture
repetitiveness well [13], various other measures have been proposed for this case.
Two recent ones, which have received much attention because of their desirable
properties, are the size γ of the smallest string attractor [9] and the substring
complexity δ [3,10]. It holds that δ ≤ γ for every string [3] (with δ = o(γ) in some
string families [11]), and that γ asymptotically lower-bounds a number of other
measures sensitive to repetitiveness [9] (e.g., the size of the smallest Lempel–Ziv
parse [14]). On the other hand, any string S[1..n] can be represented within
O(δ log n

δ ) space, and this bound is tight for every n and δ [18,10,11].
A more ambitious goal than merely representing S in compressed space is to

index it within that space so that, given any pattern P [1..m], one can efficiently
find all the occ occurrences of P in S. Interestingly, it has been shown that, for
any constant ε > 0, one can index S within the tight O(δ log n

δ ) space, so as to
search for P in time O(m log n+ occ logε n) time [10,11]. If one allows the higher
O(γ log n

γ ) space, the search time can be reduced to O(m+ (occ+ 1) logε n) [3],
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which is optimal in terms of the pattern length and near-optimal in the time
per reported occurrence. Within (significantly) more space, O(γ log n

γ log n), one
obtains truly optimal search time, O(m+ occ).

The challenge of obtaining the near-optimal search timeO(m+(occ+1) logε n)
within tight space O(δ log n

δ ) was posed [3,10,11], and this is what we settle on
the affirmative in this paper. Both previous results build a convenient context-
free grammar on S and then adapt a classical grammar-based index on it [4,5].
The index based on attractors [3] constructs a grammar from a locally consis-
tent parsing [15] of S that forms blocks in S ending at every minimum of a
randomized mapping on the alphabet, collapsing every block into a nonterminal
and iterating. The smaller grammar based on substring complexity [11] uses an-
other locally consistent parsing called recompression [7], which randomly divides
the alphabet into “left” and “right” symbols and combines every left-right pair
into a nonterminal, also iterating. The key to obtaining δ-bounded space is to
pause the pairing on symbols that become too long for the iteration where they
were formed [10,11]. We show that the pausing idea can be applied to the first
kind of locally consistent grammar as well and that, although it leads to possibly
larger grammars, it still yields the desired time and space complexities. The next
theorem summarizes our result.

Theorem 1.1. For every constant ε > 0, given a string S[1..n] with measure δ,
one can build in O(n) expected time a data structure using O(δ log n

δ ) words of
space such that, later, given a pattern P [1..m], one can find all its occ occurrences
in S in time O(m+ logε δ + occ logε(δ log n

δ )) ⊆ O(m+ (occ+ 1) logε n).

2 Notation and Basic Concepts

A string is a sequence S[1..n] = S[1] ·S[2] · · ·S[n] of symbols, where each symbol
belongs to an alphabet Σ = {1, . . . , σ}. We denote as Σ(S) the subset of Σ
consisting of symbols that occur in S. The length of S is denoted |S| = n. We
assume that the alphabet size is a polynomial function of n, that is, σ = nO(1).
The concatenation of strings S and S′ is denoted S · S′ = SS′. A string S′ is
a substring of S if S′ is the empty string ε or S′ = S[i..j] = S[i] · · ·S[j] for
some 1 ≤ i ≤ j ≤ n. We also use “(” and “)” to denote non-inclusive intervals:
S(i..j) = S[i + 1..j − 1], S(i..j] = S[i + 1..j], and S[i..j) = S[i..j − 1]. With
the term fragment, we refer to a particular occurrence S[i..j] of a substring in S
(not just the substring content). We use Srev to denote the reverse of S, that is,
Srev = S[n] · S[n− 1] · · ·S[1].

We use the RAM model of computation with word size w = Θ(log n) bits. By
default, we measure the space in words, which means that O(x) space comprises
of O(x log n) bits.

A straight line program (SLP) is a context-free grammar where each nonter-
minal appears once at the left-hand side of a rule, and where the nonterminals
can be sorted so that the right-hand sides refer to terminals and preceding non-
terminals. Such an SLP generates a single string. Furthermore, we refer to a



Near-Optimal Search Time in δ-Optimal Space 3

run-length straight line program (RLSLP) as an SLP that, in addition, allows
rules of the form A → Am1 , where A,A1 are nonterminals and m ∈ Z≥2, which
means that A is a rule composed by concatenating m copies of A1.

A parsing is a way to decompose a string S into non-overlapping blocks,
S = S1 · S2 · · ·Sk. A locally consistent parsing (LCP) [1] is a parsing where,
if two fragments S[i..j] = S[i′..j′] appear inside equal long enough contexts
S[i−α..j + β] = S[i′ −α..j′ + β], then the same blocks are formed inside S[i..j]
and S[i′..j′]. The meaning of “long enough” depends on the type of LCP [1,6,3].

3 A New δ-bounded RLSLP

The measure δ was originally introduced in a stringology context [18], but it was
formally defined later [3] as a way to construct a grammar of size O(γ log n

γ )

without knowing γ. For a given string S[1..n], let dk(S) be the number of dis-
tinct length-k substrings in S. The sequence of all values dk(S) is known as the
substring complexity of S. Then, δ is defined as

δ = max
{
dk(S)
k : k ∈ [1..n]

}
.

An RLSLP of size O(δ log n
δ ) was built [11] on top of the recompression

method [7]. In this section, we show that the same can be achieved on top of
the block-based LCP [15]. Unlike the previous construction, ours produces an
RLSLP with O(δ log n

δ ) rules in O(n) deterministic time, though we still need
randomization in order to ensure that the total grammar size is also O(δ log n

δ ).
We adapt the preceding construction [11], which uses the so-called restricted

recompression [12]. This technique pauses the processing for symbols whose ex-
pansion is too long for the current stage. A similar idea was used [2,8] for adapt-
ing another LCP, called signature parsing [19]. We apply restriction (the pausing
technique) to the LCP of [15] that forms blocks ending at local minima of a ran-
domized bijective function, which is interpreted as an alphabet permutation.
This LCP will be used later to obtain near-optimal search time, extending pre-
vious work [3]. We call our parsing restricted block compression.

3.1 Restricted Block Compression

Given a string S ∈ Σ+, our restricted block compression builds a sequence of
strings (Sk)k≥0 over the alphabet A defined recursively to contain symbols in
Σ, pairs formed by a symbol in A and an integer m ≥ 2, and sequences of at
least two symbols in A; formally, A is the least fixed point of the expression

A = Σ ∪ (A× Z≥2) ∪
∞⋃
i=2

Ai.

In the following, we denote
⋃∞
i=2Ai with A≥2.
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Symbols in A \ Σ are non-terminals, which are naturally associated with
productions (A1, . . . , Aj)→ A1 · · ·Aj for (A1, . . . , Aj) ∈ A≥2 and (A1,m)→ Am1
for (A1,m) ∈ A × Z≥2. Setting any A ∈ A as the starting symbol yields an
RLSLP. The string generated by this RLSLP is exp(A), where exp : A → Σ+

is the expansion function defined recursively:

exp(A) =


A if A ∈ Σ,
exp(A1) · · · exp(Aj) if A = (A1, . . . , Aj) for A1, . . . , Aj ∈ A,
exp(A1)

m if A = (A1,m) for A1 ∈ A and m ∈ Z≥2.

Then, for every string (Sk)k≥0 generated using restricted block compression,
if the expansion function is extended homomorphically to exp : A∗ → Σ∗, with
exp(A1 · · ·Am) = exp(A1) · · · exp(Am) for A1 · · ·Am ∈ A∗, then it must hold
that exp(Sk) = S for every k ∈ Z≥0. Starting from S0 = S, the strings (Sk)k≥1
are built by the alternate applications of two functions, both of which decom-
pose a string T ∈ A+ into blocks (by placing block boundaries between some
characters) and then collapse blocks of length m ≥ 2 into individual symbols
in A. In Definition 3.1, the blocks are maximal runs of the same symbol in a
subset B ⊆ A, and they are collapsed to symbols in A× Z≥2.

Definition 3.1 (Run-length encoding). Given T ∈ A+ and a subset of sym-
bols B ⊆ A, we define rleB(T ) ∈ A+ as the string obtained by decomposing T
into blocks and collapsing these blocks as follows:

1) For every i ∈ [1..|T |), place a block boundary between T [i] and T [i + 1] if
T [i] /∈ B, T [i+ 1] /∈ B, or T [i] 6= T [i+ 1].

2) For each block T [i..i+m) of m ≥ 2 equal symbols A, replace T [i..i+m) = Am

with the symbol (A,m) ∈ A.

In Definition 3.3, the blocks boundaries are determined by local minima of a
permutation on A, and the blocks are collapsed to symbols in A≥2.

Definition 3.2 (Local minima). Given T ∈ A+ and a bijective function π :
Σ(T )→ [1..|Σ(T )|], we say that j ∈ (1..|T |) is a local minimum if

π(T [j − 1]) > π(T [j]) and π(T [j]) < π(T [j + 1]).

Definition 3.3 (Restricted block parsing). Given T ∈ A+, a bijective func-
tion π : Σ(T )→ [1..|Σ(T )|], and a subset of symbols B ⊆ A, we define bcπ,B(T ) ∈
A+ as the string obtained by decomposing T into blocks and collapsing these
blocks as follows:

1) For every i ∈ [1..|T |), place a block boundary between T [i] and T [i + 1] if
T [i] /∈ B, T [i+ 1] /∈ B, or i is a local mimimum with respect to π.

2) For each block T [i..i+m) of length m ≥ 2, replace T [i..i+m) with a symbol
(T [i], . . . , T [i+m− 1]) ∈ A.
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Note that B consists of active symbols that can be combined into larger
blocks; we say that the other symbols are paused. The idea of our restricted
block compression is to create successive strings Sk, starting from S0 = S. At
the odd levels k we perform run-length encoding on the preceding string Sk−1.
On the even levels k, we perform block parsing on the preceding string Sk−1.
We pause the symbols whose expansions have become too long for that level.

Definition 3.4 (Restricted block compression). Given a string S ∈ Σ+,
the strings Sk for k ∈ Z≥0 are constructed as follows, where `k :=

(
4
3

)dk/2e−1,
Ak := {A ∈ A : |exp(A)| ≤ `k}, and πk : Σ(Sk−1)→ [1..|Σ(Sk−1)|] is a bijection
satisfying πk(A) < πk(B) for every A ∈ Σ(Sk−1) \ Ak and B ∈ Σ(Sk−1) ∩ Ak:
– If k = 0, then Sk = S.
– If k > 0 is odd, then Sk = rleAk

(Sk−1).
– If k > 0 is even, then Sk = bcπk,Ak

(Sk−1).

Note that exp(Sk) = S holds for all k ∈ Z≥0.

3.2 Grammar size analysis

Our RLSLP will be built by performing restricted block compression as long as
|Sk| > 1. Although the resulting RLSLP has infinitely many symbols, we can
remove those having no occurrences in any Sk. To define the actual symbols in the
grammar, for all k ∈ Z≥0, denote Sk := {Sk[j] : j ∈ [1..|Sk|]} and S :=

⋃∞
k=0 Sk.

We first prove an upper bound on |Sk| which, in particular, implies that
|Sk| = 1 holds after O(log n) iterations.

Lemma 3.5. For every k ∈ Z≥0, we have |Sk| < 1 + 4n
`k+1

.

Proof. We proceed by induction on k. For k = 0, we have |S0| = n < 1 + 4n =
1+ 4n

`1
. If k is odd, we note that |Sk| ≤ |Sk−1| < 1 + 4n

`k
= 1+ 4n

`k+1
. If k is even,

let us define
J = {j ∈ [1..|Sk−1|] : Sk−1[j] /∈ Ak}.

Since A /∈ Ak implies |exp(A)| > `k, we have |J | < n
`k
. Then, since no two

consecutive symbols can be local minima, we have

|Sk| ≤ 2|J |+ 1 + |Sk−1|−(2|J|+1)
2 = 1+|Sk−1|

2 + |J | < 1 + 2n
`k

+ n
`k

= 1 + 3n
`k

= 1 + 4n
`k+1

.

Our next goal is to prove that restricted block compression is a locally con-
sistent parsing. For this, we associate Sk with a decomposition of S into phrases.

Definition 3.6 (Phrase boundaries). For every k ∈ Z≥0 and j ∈ [1..|Sk|],
we define the level-k phrases of S induced by Sk as the fragments

S(|exp(Sk[1..j))|..|exp(Sk[1..j])|] = exp(Sk[j]).

We also define the set Bk of phrase boundaries induced by Sk:

Bk = {|exp(Sk[1..j])| : j ∈ [1..|Sk|]}.
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Lemma 3.7. Consider integers k,m, α ≥ 0 with α ≥ 8`k, as well as positions
i, i′ ∈ [m+ 2α..n− α] such that S(i−m− 2α..i+ α] = S(i′ −m− 2α..i′ + α].

1) If i ∈ Bk, then i′ ∈ Bk.
2) If S(i−m..i] is a level-k phrase, then S(i′ −m..i′] is a level-k phrase corre-

sponding to the same symbol in Sk.

Proof. We proceed by induction on k, with a weaker assumption α ≥ 7`k for odd
k. In the base case of k = 0, the claim is trivial because Bk = [1..n) and Sk = S.
Next, we prove that the claim holds for integers k > 0 and α > `k assuming
that it holds for all k − 1 and α− b`kc. This is sufficient for the inductive step:
If α ≥ 8`k for even k > 0, then α− b`kc ≥ 7`k = 7`k−1. Similarly, if α ≥ 7`k for
odd k, then α− b`kc ≥ 6`k = 8`k−1.

We start with the first item, where we can assume m = 0 without loss
of generality. For a proof by contradiction, suppose that S(i − 2α..i + α] =
S(i′ − 2α..i′ + α] and i ∈ Bk yet i′ /∈ Bk for some i, i′ ∈ [2α..n − α]. By
the inductive assumption (applied to positions i, i′), i ∈ Bk ⊆ Bk−1 implies
i′ ∈ Bk−1. Let us set j, j′ ∈ [1..|Sk−1|) so that i = |exp(Sk−1[1..j])| and i′ =
|exp(Sk−1[1..j′])|. By the assumptions on i, i′, the parsing of Sk−1 places a block
boundary between Sk−1[j] and Sk−1[j+1], but it does not place a block boundary
between Sk−1[j′] and Sk−1[j′ + 1]. By Definitions 3.1 and 3.3, the latter implies
Sk−1[j

′], Sk−1[j
′+1] ∈ Ak. Consequently, the phrases S(i′−`..i′] = exp(Sk−1[j

′])
and S(i′..i′+r] = exp(Sk−1[j

′+1]) around position i′ are of length at most b`kc.
Since i′ − b`kc ≤ i′ − ` ≤ i′ + r ≤ i′ + b`kc, the inductive assumption applied to
positions i′, i and i′ + r, i + r implies that S(i − `..i] and S(i..i + r] are parsed
into Sk−1[j] = Sk−1[j

′] and Sk−1[j + 1] = Sk−1[j
′ + 1], respectively.

If k is odd, then a boundary between two symbols in Ak is placed if and only
if the two symbols differ. Consequently, Sk−1[j′] = Sk−1[j

′ + 1] and Sk−1[j] 6=
Sk−1[j + 1]. This contradicts Sk−1[j] = Sk−1[j

′] and Sk−1[j + 1] = Sk−1[j
′ + 1].

Thus, it remains to consider the case of even k. Since the block parsing
places a boundary between Sk−1[j], Sk−1[j + 1] ∈ Ak, we conclude from Defini-
tion 3.3 that j must be a local minimum with respect to πk, i.e., πk(Sk−1[j −
1]) > πk(Sk−1[j]) < πk(Sk−1[j + 1]). Due to Sk−1[j] ∈ Ak, the condition
on πk imposed in Definition 3.4 implies Sk−1[j − 1] ∈ Ak. Consequently, the
phrase S(i− `′..i− `] = exp(Sk−1[j − 1]) is of length at most b`kc. Since i′ −
2b`kc ≤ i′ − `′ ≤ i′ − ` ≤ i′, the inductive assumption, applied to positions
i− `, i′− ` implies that S(i′− `′..i′− `] is parsed into Sk−1[j′− 1] = Sk−1[j− 1].
Thus, πk(Sk−1[j′ − 1]) = πk(Sk−1[j − 1]) > πk(Sk−1[j

′]) = πk(Sk−1[j]) <
πk(Sk−1[j

′ + 1]) = πk(Sk−1[j + 1]), which means that j′ is a local minimum
with respect to πk and, by Definition 3.3, contradicts i′ /∈ Bk.

Let us proceed to the proof of the second item. Let Sk−1(j −m′..j] be the
block corresponding to the level-k phrase S(i−m..i]. By the inductive assump-
tion, S(i′ −m..i′] consists of level-(k − 1) phrases that, in Sk−1, are collapsed
into a fragment Sk−1(j′ − m′..j′] matching Sk−1(j − m′..j]. Moreover, by the
first item, the parsing of Sk−1 places block boundaries before Sk−1[j′ − m′]
and after Sk−1[j′], but nowhere in between. Consequently, Sk−1(j −m′..j] and
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Sk−1(j
′ −m′..j′] are matching blocks, which means that they are collapsed into

matching symbols of Sk, Thus, the level-k phrases S(i −m..i] and S(i′ −m..i′]
are represented by matching symbols in Sk.

Our next goal is to prove that |S| = O(δ log n
δ ) (Corollary 3.12). As a first

step, we show that |Ak+1 ∩ Sk| = O(δ) (Lemma 3.9). The idea for this proof
is to consider the leftmost occurrence of all symbols of Sk and then bound
the set of those occurrences in relation to δ (Claims 3.10 and 3.11). At a high
level, we build on the arguments of [11], where the same bound was proved
in expectation, but we obtain worst-case results with our parsing. We start by
generalizing Lemma 3.5.

Lemma 3.8. For every k ∈ Z≥0 and every interval I ⊆ [1..n], we have

|Bk ∩ I| < 1 + 4|I|
`k+1

.

Proof. We proceed by induction on k. For k = 0, we have |Bk ∩ I| = |I| <
1+ 4|I| = 1+ 4|I|

`1
. If k is odd, we note that Bk ⊆ Bk−1 and therefore |Bk ∩ I| ≤

|Bk−1 ∩ I| < 1 + 4|I|
`k

= 1 + 4|I|
`k+1

. If k is even, let us define

J = {j ∈ [1..|Sk−1|] : Sk−1[j] /∈ Ak},
JI = {j ∈ J : |exp(Sk−1[1..j))| ∈ I} ⊆ Bk−1 ∩ I.

Since A /∈ Ak implies |exp(A)| > `k, we have |JI | < |I|
`k
. Then, since no two

consecutive symbols can be local minima, we have

|Bk ∩ I| ≤ 2|JI |+ 1 + |Bk−1∩I|−(2|JI |+1)
2 = 1+|Bk−1∩I|

2 + |JI |

< 1 + 2|I|
`k

+ |I|`k = 1 + 3|I|
`k

= 1 + 4|I|
`k+1

.

The following result is used to bound both the number of symbols |S| (where
we only care about |Sk ∩ Ak+1|, i.e., the number of substrings with m = 1 active
symbol) and the size of the RLSLP resulting from restricted block compression.

Lemma 3.9. If the string S has measure δ, then, for all integers k ≥ 0 and
m ≥ 1, the string Sk contains O(mδ) distinct length-m substrings in A∗k+1.

Proof. Denote α := d8`ke and ` := 3α+bm`k+1c, and let L be the set of positions
in S covered by the leftmost occurrences of substrings of S of length at most `,
as well as the trailing ` positions in S. We first prove two auxiliary claims.

Claim 3.10. The string Sk contains at most |L ∩ Bk| distinct length-m sub-
strings in A∗k+1.

Proof. Let us fix a length-m substring T ∈ A∗k+1 of Sk and let Sk(j − m..j]
be the leftmost occurrence of T in Sk. Moreover, let p = |exp(Sk[1..j − m])|
and q = |exp(Sk[1..j])| so that S(p..q] is the expansion of Sk(j − m..j]. By
Sk(j −m..j] ∈ A∗k+1, we have q − p ≤ mb`k+1c ≤ `− 3α.
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We shall prove that q ∈ L; for a proof by contradiction, suppose that q /∈ L.
Due to (0..`] ∪ (n − `..n] ⊆ L, this implies that q ∈ (`..n − `] is not covered
by the leftmost occurrence of any substrings of length at most `. In particular,
S(p − 2α..q + α] must have an earlier occurrence S(p′ − 2α..q′ + α] for some
p′ < p and q′ < q. Consequently, Lemma 3.7, applied to subsequent level-k
phrases comprising S(p..q], shows that S(p′..q′] consists of full level-k phrases
and the corresponding fragment of Sk matches Sk(j − m..j] = T . By q′ < q,
this contradicts the assumption that Sk(j −m..j] is the leftmost occurrence of
T in Sk, which completes the proof that q ∈ L.

A level-k phrase ends at position q, so we also have q ∈ Bk. Since the position
q is uniquely determined by the substring T , this yields an upper bound of
|L ∩Bk| on the number of choices for T .

Claim 3.11. The set L forms O(δ) intervals of total length O(δ`).

Proof. Each position in L ∩ (0..n − `] is covered by the leftmost occurrence of
a substring of length exactly `, and thus L forms at most b 1` |L|c intervals of
length at least ` each. Hence, it suffices to prove that the total length satisfies
|L| = O(δ`). For this, note that, for each position j ∈ L∩ [`..n− `], the fragment
S(j−`..j+`] is the leftmost occurrence of a length-2` substring of S; this because
any length-` fragment covering position j is contained within S(j − `..j + `].
Consequently, |L| ≤ d2`(S) + 2` = O(δ`) holds as claimed.

By Claim 3.10, it remains to prove that |L∩Bk| = O(δm). Let I be the family
of intervals covering L. For each I ∈ I, Lemma 3.8 implies |Bk ∩ I| ≤ 1 + 4|I|

`k+1
.

By the bounds on I following from Claim 3.11, this yields the announced result:

|Bk ∩ L| ≤ |I|+ 4
`k+1

∑
I∈I
|I| = O(δ + δ`

`k+1
) = O(δm).

The proof of our main bound |S| = O(δ log n
δ ) combines Lemmas 3.5 and 3.9.

Corollary 3.12. For every string S of length n and measure δ, we have |S| =
O(δ log n

δ ).

Proof. Note that |S| ≤ 1+
∑∞
k=0 |Sk \ Sk+1|. We combine two upper bounds on

|Sk \ Sk+1|, following from Lemmas 3.5 and 3.9, respectively.
First, we observe that Definition 3.4 guarantees Sk \ Sk+1 ⊆ Sk ∩ Ak+1.

Moreover, each symbol in Sk∩Ak+1 corresponds to a distinct length-1 substring
of Sk+1, and thus |Sk \ Sk+1| ≤ |Sk ∩ Ak+1| = O(δ) holds due to Lemma 3.9.
Secondly, we note that |Sk \ Sk+1| = 0 if |Sk| = 1 and |Sk \ Sk+1| ≤ |Sk| ≤
2(|Sk| − 1) if |Sk| ≥ 2. Hence, Lemma 3.5 yields

|Sk \ Sk+1| ≤ 2(|Sk| − 1) ≤ 8n
`k+1

= O(( 34 )
k/2n).
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We apply the first or the second upper bound on |Sk \ Sk+1| depending on
whether k < λ := 2blog4/3 nδ c. This yields

∞∑
k=0

|Sk \ Sk+1| =
λ−1∑
k=0

O(δ) +

∞∑
k=λ

O(( 34 )
k/2n)

= 2blog4/3 nδ c ·O(δ) +

∞∑
i=0

O(( 34 )
i/2δ) = O(δ log n

δ ).

Overall, we conclude that |S| = 1+O(δ log n
δ ) = O(δ log n

δ ) holds as claimed.

Next, we show that the total expected grammar size is O(δ log n
δ ).

Theorem 3.13. Consider the restricted block compression of a string S[1..n]
with measure δ, where the functions (πk)k≥0 in Definition 3.4 are chosen uni-
formly at random. Then, the expected size of the resulting RLSLP is O(δ log n

δ ).

Proof. Although Corollary 3.12 guarantees that |S| = O(δ log n
δ ), the remaining

problem is that the size of the resulting grammar (i.e., sum of production sizes)
can be larger. Every symbol in Σ∪(A×Z≥2) contributes O(1) to the RLSLP size,
so it remains to bound the total size of productions corresponding to symbols in
A≥2. These symbols are introduced by restricted block parsing, i.e., they belong
to Sk+1 \ Sk for odd k > 0. In order to estimate their contribution to grammar
size, we shall fix π0, . . . , πk and compute the expectation with respect to the
random choice of πk+1. In this setting, we prove the following claim:

Claim 3.14. Let k > 0 be odd and T ∈ Amk be a substring of Sk. Restricted block
parsing bcπk+1,Ak+1

(Sk) creates a block matching T with probability O(2−m).

Proof. Since Sk = rleAk
(Sk−1) and Ak+1 = Ak, every two subsequent symbols

of T are distinct. Observe that if T forms a block, then there is a value t ∈ [1..m]
such that πk+1(T [1]) < · · · < πk+1(T [t]) > · · · > πk+1(T [m]); otherwise, there
would be a local minimum within every occurrence of T in Sk−1. In particular,
denoting h := bm/2c, we must have πk+1(T [1]) < · · · < πk+1(T [h + 1]) (when
t > h) or πk+1(T [m − h]) > · · · > πk+1(T [m]) (when t ≤ h). However, the
probability that the values πk+1(·) for h+1 consecutive characters form a strictly
increasing (or strictly decreasing) sequence is at most 1

(h+1)! : either exactly
1

(h+1)!

(if the characters are distinct) or 0 (otherwise); this is because πk+1 shuffles
Σ(Sk) ∩ Ak+1 uniformly at random. Overall, we conclude that the probability
that T forms a block does not exceed 2

(h+1)! ≤ 2−Ω(m logm) ≤ O(2−m).

Next, note that every symbol in Sk+1 \Sk is obtained by collapsing a block of
m active symbols created within bcπk+1,Ak+1

(Sk) (with distinct symbols obtained
from distinct blocks). By Lemma 3.9, the string Sk has O(δm) distinct substrings
T ∈ Amk+1. By Claim 3.14, any fixed substring T ∈ Amk+1 yields a symbol in Sk+1\
Sk with probability O(2−m). Consequently, the total contribution of symbols in
Sk+1 \ Sk to the RLSLP size is, in expectation,

∑∞
m=2O(m · δm · 2−m) = O(δ).
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At the same time, Sk+1 \ Sk = ∅ if |Sk| = 1 and, if |Sk| ≥ 2, the contribution
of symbols in Sk+1 \ Sk to the RLSLP size is most |Sk| ≤ 2(|Sk| − 1) ≤ 8n

`k+1
=

O(( 34 )
k/2n), where the bound on |Sk| follows from Lemma 3.5. This sums up to

O(δ) across all odd levels k > λ := 2blog4/3 nδ c. Overall, we conclude that the
total expected RLSLP size is O(δ log n

δ + (λ+ 1)δ) = O(δ log n
δ ).

We are now ready to show how to build an RLSLP of size O(δ log n
δ ) in linear

expected time.

Corollary 3.15. Given S[1..n] with measure δ, we can build an RLSLP of size
O(δ log n

δ ) in O(n) expected time.

Proof. We apply Definition 3.4 on top of the given string S, with functions πk
choices uniformly at random. It is an easy exercise to carry out this construction
in O(

∑
k≥0 |Sk|) = O(n) worst-case time.

The expected size of the resulting RLSLP is c ·δ log n
δ for some constant c; we

can repeat the construction (with fresh randomness) until it yields an RLSLP of
size at most 2c · δ log n

δ . By Markov’s inequality, we succeed after O(1) attempts
in expectation. As a result, in O(n) expected time, we obtain a grammar of total
worst-case size O(δ log n

δ ).

Remark 3.16 (Grammar height). In the algorithm of Corollary 3.15, we can
terminate restricted block compression after λ := 2blog4/3 nδ c levels and com-
plete the grammar with an initial symbol rule Aλ → Sλ[1] · · ·Sλ[|Sλ|] so that
exp(Aλ) = S. Lemma 3.5 yields |Sλ| = O(1 + (34 )

λ/2n) = O(δ), so the resulting
RLSLP is still of size O(δ log n

δ ); however, the height is now O(log n
δ ).

4 Local Consistency Properties

We now show that the local consistency properties of our grammar enable fast
indexed searches. Previous work [3] achieves this by showing that, thanks to the
locally consistent parsing, only a set M(P ) of O(log |P |) pattern positions need
be analyzed for searching. To use this result, we now must take into account
the pausing of symbols. Surprisingly, this modification allows for a much simpler
definition of M(P ).

Definition 4.1. For every non-empty fragment S[i..j] of S, we define

Bk(i, j) = {p− i : p ∈ Bk ∩ [i..j)}

and

M(i, j) =
⋃
k≥0

(Bk(i, j)\[2αk+1..j−i−αk+1)∪{min(Bk(i, j)∩[2αk+1..j−i−αk+1))}),

where αk = d8`ke and {min ∅} = ∅.
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Intuitively, the set Bk(i, j) lists (the relative locations of) all level-k phrase
boundaries inside S[i..j]. For each level k ≥ 0, we include in M(i, j) the phrase
boundaries that are close to either of the two endpoints of S[i..j] (in the light
of Lemma 3.7, it may depend on the context of S[i..j] which of these phrase
boundaries are preserved in level k+1) as well as the leftmost phrase boundary
within the remaining internal part of S[i..j].

Lemma 4.2. The set M(i, j) satisfies the following properties:

1) For each k ≥ 0, if Bk(i, j) 6= ∅, then minBk(i, j) ∈M(i, j).
2) We have |M(i, j)| = O(log(j − i+ 2)).
3) If S[i′..j′] = S[i..j], then M(i′, j′) =M(i, j).

Proof. Let us express M(i, j) =
⋃
k≥0Mk(i, j), setting

Mk(i, j) := Bk(i, j)\[2αk+1..j−i−αk+1)∪{min(Bk(i, j)∩[2αk+1..j−i−αk+1))}.

As for Item 1, it is easy to see that minBk(i, j) ∈ Mk(i, j): we consider two
cases, depending on whether minBk(i, j) belongs to [2αk+1..j− i−αk+1) or not.

As for Item 2, let us first argue that |Mk(i, j)| = O(1) holds for every k ≥ 0.
Indeed, each element q ∈ Bk(i, j) ∩ [0..2αk+1) corresponds to q + i ∈ Bk ∩
[i..i + 2αk+1) and each element q ∈ Bk(i, j) ∩ [j − i − αk+1..j − i) corresponds
to q + i ∈ Bk ∩ [j − αk+1..j). By Lemma 3.8, we conclude that |Mk(i, j)| ≤
1+(1+ 8αk+1

`k+1
)+(1+ 4αk+1

`k+1
) = O(1). Moreover, if `k > 4(j− i), then Lemma 3.8

further yields |Bk(i, j)| = |Bk∩ [i..j)| ≤ 1. SinceMk(i, j) and Bk+1(i, j) are both
subsets of Bk(i, j), this means that

∣∣⋃
k:`k>4(j−i)Mk(i, j)

∣∣ ≤ 1. The number of
indices k satisfying `k ≤ 4(j − i) is O(log(j − i+ 2)), and thus

|M(i, j)| ≤ O(1) ·O(log(j − i+ 2)) + 1 = O(log(j − i+ 2)).

As for Item 3, we shall prove by induction on k that Mk(i, j) ⊆ M(i′, j′).
This implies M(i, j) ⊆ M(i′, j′) and, by symmetry, M(i, j) = M(i′, j′). In the
base case of k = 0, we have

M0(i, j) = ([0..2α1] ∪ [j − i− α1..j − i)) ∩ [0..j − i) =M0(i
′, j′).

Now, consider k > 0 and q ∈ Mk(i, j). If q ∈ Bk(i, j) \ [2αk..j − i − αk), then
q ∈Mk−1(i, j), and thus q ∈M(i′, j′) holds by the inductive assumption. As for
the remaining case, Mk(i, j)∩ [2αk..j− i−αk) =Mk(i

′, j′)∩ [2αk..j′− i′−αk) is
a direct consequence of Bk(i, j)∩ [2αk..j−i−αk) = Bk(i

′, j′)∩ [2αk..j′−i′−αk),
which follows from Lemma 3.7.

Definition 4.3. Let P be a substring of S and let S[i..j] be its arbitrary oc-
currence. We define M(P ) := M(i, j); by item 3 of Lemma 4.2, this does not
depend on the choice of the occurrence.

By Lemma 4.2, the set M(P ) is of size O(log |P |), yet, for every level k ≥ 0
and every occurrence P = S[i..j], it includes the leftmost phrase boundary in
Bk(i, j). Our index exploits the latter property for the largest k with Bk(i, j) 6= ∅.
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5 Indexing with our Grammar

In this section, we adapt the results on attractors [3, Sec. 6] to our modified
parsing, so as to obtain our main result.

Definition 5.1 ([3]). The grammar tree of a RLCFG is obtained by pruning
its parse tree: all but the leftmost occurrences of each nonterminal are converted
into leaves and their subtrees are pruned. We treat rules A→ As1 (assumed to be
of size 2) as A→ A1A

[s−1]
1 , where the node labeled A[s−1]

1 is always a leaf (A1 is
also a leaf unless it is the leftmost occurrence of A1).

Note that the grammar tree has exactly one internal node per distinct non-
terminal and its total number of nodes is the grammar size plus one. We identify
each nonterminal A with the only internal grammar tree node labeled A. We
also sometimes identify terminal symbols a with grammar tree leaves.

The search algorithm classifies the occurrences of a pattern P [1..m] in S
into “primary” and “secondary”, according to the partition of S induced by the
grammar tree leaves.

Definition 5.2 ([3]). The leaves of the grammar tree induce a partition of S
into phrases. An occurrence of P [1..m] at S[t..t + m) is primary if the lowest
grammar tree node deriving a range of S that contains S[t..t+m) is internal (or,
equivalently, the occurrence crosses the boundary between two phrases); otherwise
it is secondary.

The general idea of the search is to find the primary occurrences by looking
for prefix-suffix partitions of P and then find the secondary occurrences from
the primary ones [5].

5.1 Finding the primary occurrences

Let nonterminal A be the lowest (internal) grammar tree node that covers a
primary occurrence S[t..t +m) of P [1..m]. Then, if A → A1 · · ·As, there exists
some i ∈ [1..s) and q ∈ [1..m) such that (1) a suffix of exp(Ai) matches P [1..q],
and (2) a prefix of exp(Ai+1) · · · exp(As) matches P (q..m]. The idea is to index
all the pairs (exp(Ai)

rev, exp(Ai+1) · · · exp(As)) and find those where the first
and second component are prefixed by (P [1..q])rev and P (q..m], respectively.
Note that there is exactly one such pair per border between two consecutive
phrases (or leaves in the grammar tree).

Definition 5.3 ([3]). Let v be the lowest (internal) grammar tree node that
covers a primary occurrence S[t..t + m) of P . Let vi be the leftmost child of
v that overlaps S[t..t + m). We say that node v is the parent of the primary
occurrence S[t..t+m) of P and node vi is its locus.

The index [3] builds a two-dimensional grid data structure. It lexicographi-
cally sorts all the components exp(Ai)rev to build the x-coordinates, and all the
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components exp(Ai+1) · · · exp(As) to build the y-coordinates; then, it fills the
grid with points (exp(Ai)

rev, exp(Ai+1) · · · exp(As)), each associated with the
locus Ai. The size of this data structure is of the order of the number of points,
which is bounded by the grammar size, g = O(δ log n

δ ) in our case. The structure
can find all the p points within any orthogonal range in time O((p + 1) logε g),
where ε > 0 is any constant fixed at construction time.

Given a partition P = P [1..q] · P (q..m] to test, they search for P [1..q]rev in
a data structure that returns the corresponding range in x, search for P (q..m]
in a similar data structure that returns the corresponding range in y, and then
perform the corresponding range search on the geometric data structure.

They show [3, Sec. 6.3] that the x- and y-ranges of any τ cuts of P can be
computed in time O(m + τ log2m), within O(g) space. All they need from the
RLCFG to obtain this result is that (1) one can extract any length-` prefix or
suffix of any exp(A) in time O(`), which is proved for an arbitrary RLCFG; and
(2) one can compute a Karp–Rabin fingerprint of any substring of S in time
O(log2 `), which is shown to be possible for any locally contracting grammar,
which follows from our Lemma 3.8.

In total, if we have identified τ cuts of P that suffice to find all of its occur-
rences in S, then we can find all the occp ≤ occ primary occurrences of P in time
O(m+ τ(logε g + log2m) + occp log

ε g).

5.2 Parsing the pattern

The next step is to set a bound for τ with our parsing and show how to find the
corresponding cuts.

Lemma 5.4. Using our grammar of Section 3, there are only τ = O(logm) cuts
P = P [1..q] · P (q..m] yielding primary occurrences of P [1..m]. These positions
belong to M(P ) + 1 (see Definition 4.3).

Proof. Let A be the parent of a primary occurrence S[t..t+m), and let k be the
round where A is formed. There are two possibilities:

(1) A → A1 · · ·As is a block-forming rule, and for some i ∈ [1..s), a suffix of
exp(Ai) matches P [1..q], for some q ∈ [1..m). This means that q − 1 =
minBk−1(t, t+m− 1).

(2) A→ As1 is a run-length nonterminal, and a suffix of exp(A1) matches P [1..q],
for some q ∈ [1..m). This means that q − 1 = minBk−1(t, t+m− 1).

In either case, q ∈M(P ) + 1 by Lemma 4.2. Further, |M(P )| = O(logm).

The parsing is done in O(m) time almost exactly as in previous work [3,
Sec. 6.1], with the difference that we have to care about paused symbols. Es-
sentially, we store the permutations πk drawn when indexing S and use them
to parse P in the same way, level by level. We then work for O(logm) levels on
exponentially decreasing sequences, in linear time per level, which adds up to
O(m). There are a few differences with respect to previous work, however [3]:
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1) In the parsing of [3], the symbols are disjoint across levels, so the space to
store the permutations πk is proportional to the grammar size. In our case,
instead, paused symbols exist along several consecutive levels and participate
in several permutations. However, by Lemma 3.9, we have |Sk∩Ak+1| = O(δ)
active symbols in Sk. We store store the values of πk+1 only for these symbols
and observe that the values πk+1 for the remaining symbols do not affect the
placement of block boundaries in Definition 3.3: If Sk[j], Sk[j + 1] ∈ Ak+1,
then, due condition imposed on πk+1 in Definition 3.4, j may only be a local
minimum if Sk[j − 1] ∈ Ak+1. When parsing P , we can simply assume that
πk+1(A) = 0 on the paused symbols A ∈ Σ(Sk) \Ak+1 and obtain the same
parsing of S. By storing the values of πk only for the active symbols, we use
O(δ log n

δ ) total space.
2) They use that the number of symbols in the parsing of P halve from a level

to the next in order to bound the number of levels in the parse and the
total amount of work. While this is not the case in our parsing with paused
symbols, it still holds by Lemmas 3.5 and 3.8 that the number of phrases in
round k is less than 1+ 4m

`k+1
, which gives us, at most, h = 12+2blog4/3mc =

O(logm) parsing rounds and a total of
∑h
k=0(1 + 4m

`k+1
) = O(m) symbols

processed along the parsing of P .

5.3 Secondary occurrences and short patterns

The occs secondary occurrences can be obtained in O(occs) time given the pri-
mary ones, with a technique that works for any arbitrary RLCFG and within
O(g) space [3, Sec. 6.4]. Plugged with the preceding results, the total space of our
index is O(δ log n

δ ) and its search time is O(m+ τ(logε g+log2m)+occ logε g) =
O(m + logε g logm + occ logε g). This bound exceeds O(m + (occ+ 1) logε g)
only when m = O(logε g log log g). In that case, however, the middle term is
O(logε g log log g), which becomes O(logε g) again if we infinitesimally adjust ε.

The final touch is to reduce the O(m + logε g + occ logε g) complexity to
O(m+ logε δ + occ logε g). This is relevant only when occ = 0, so we need a way
to detect in time O(m+ logε δ) that P does not occur in S. We already do this
in time O(m + logε g) by parsing P and searching for its cuts in the geometric
data structure. To reduce the time, we note that logε g ∈ O(logε(δ log n

δ )) ⊆
O(logε δ+ log log n

δ ), so it suffices to detect in O(m) time the patterns of length
m ≤ ` = log log n

δ that do not occur in S. By definition of δ, there are at most
δ` strings of length ` in S, so we can store them all in a trie using total space
O(δ`2) ⊆ O(δ log n

δ ). By implementing the trie children with perfect hashing, we
can verify in O(m) time whether a pattern of length m ≤ ` occurs in S. We then
obtain Theorem 1.1.

6 Conclusions and Future Work

We have obtained the best of two worlds [3,10] in repetitive text indexing: an
index of asymptotically optimal size, O(δ log n

δ ), with nearly-optimal search time,
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O(m + (occ + 1) logε n), which is built in O(n) expected time. This closes a
question open in those previous works.

Our result could be enhanced in various ways, as done in the past with γ-
bounded indexes [3]. For example, is it possible to search in optimal O(m +
occ) time within O(δ log n

δ log
ε n) space? Can we count the number of pattern

occurrences in O(m+ log2+ε n) time within our optimal space, or in O(m) time
within O(δ log n

δ log n) space? We believe the answer to all those questions is
affirmative and plan to answer them in the extended version of this article.
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