
Towards a Definitive Measure of Repetitiveness?

Tomasz Kociumaka1,??[0000−0002−2477−1702], Gonzalo
Navarro2,3,? ? ?[0000−0002−2286−741X], and Nicola Prezza4[0000−0003−3553−4953]

1 Dept. of Computer Science, Bar-Ilan University, Ramat Gan, Israel
kociumaka@mimuw.edu.pl

2 Millennium Institute for Foundational Research on Data (IMFD), Chile
3 Dept. of Computer Science, University of Chile, Chile gnavarro@dcc.uchile.cl

4 Dept. of Business and Management, Luiss Guido Carli, Rome, Italy
nprezza@luiss.it

Abstract. Unlike in statistical compression, where Shannon’s entropy is
a definitive lower bound, no such clear measure exists for the compress-
ibility of repetitive sequences. Since statistical entropy does not capture
repetitiveness, ad-hoc measures like the size z of the Lempel–Ziv parse
are frequently used to estimate repetitiveness. Recently, a more principled
measure, the size γ of the smallest string attractor, was introduced. The
measure γ lower bounds all the previous relevant ones (including z), yet
length-n strings can be represented and efficiently indexed within space
O(γ log n

γ
), which also upper bounds most measures (including z). While

γ is certainly a better measure of repetitiveness than z, it is NP-complete
to compute, and no o(γ logn)-space representation of strings is known.

In this paper, we study a smaller measure, δ ≤ γ, which can be computed
in linear time. We show that δ better captures the compressibility of
repetitive strings. For every length n and every value δ ≥ 2, we construct
a string such that γ = Ω(δ log n

δ
). Still, we show a representation of any

string S in O(δ log n
δ

) space that supports direct access to any character
S[i] in time O(log n

δ
) and finds the occ occurrences of any pattern P [1 . .m]

in time O(m logn+ occ logε n) for any constant ε > 0. Further, we prove
that no o(δ logn)-space representation exists: for every length n and every
value 2 ≤ δ ≤ n1−ε, we exhibit a string family whose elements can only
be encoded in Ω(δ log n

δ
) space. We complete our characterization of δ by

showing that, although γ, z, and other repetitiveness measures are always
O(δ log n

δ
), for strings of any length n, the smallest context-free grammar

can be of size Ω(δ log2 n/ log logn). No such separation is known for γ.

Keywords: Data compression · Lempel–Ziv parse · Repetitive sequences

? Part of this work was carried out during the Dagstuhl Seminar 19241, “25 Years of
the Burrows–Wheeler Transform”.

?? Supported by ISF grants no. 1278/16, 824/17, and 1926/19, a BSF grant no. 2018364,
and an ERC grant MPM (no. 683064) under the EU’s Horizon 2020 Research and
Innovation Programme.

? ? ? Supported in part by Fondecyt grant 1-170048, Chile; Millennium Institute for
Foundational Research on Data (IMFD), Chile.

2 T. Kociumaka, G. Navarro, and N. Prezza

1 Introduction

The recent rise in the amount of data we aim to handle [41] is driving research
into compressed data representations that can be used directly in compressed
form [32]. Interestingly, much of today’s fastest-growing data is highly repetitive,
which enables space reductions of orders of magnitude [19]: genome collections,
versioned text and software repositories, periodic sky surveys, and other sources
produce data where each element in the collection is very similar to others.

Since a significant fraction of the data of interest consists of sequences, text
indexes are important actors in this research. These are data structures that offer
fast pattern matching (and possibly other more sophisticated capabilities) over a
collection of strings. Though compressed text indexes are already mature [33]
and offer fast pattern searching within space close to the statistical entropy of the
string collection, such kind of entropy is unable to capture repetitiveness [28,32].
Achieving orders-of-magnitude space reductions requires instead to resort to
other kinds of compressors, such as Lempel–Ziv [29], grammar compression [26],
run-length compressed Burrows–Wheeler transform [19], and others. Various
compressed indexes build on those methods; see a thorough review [19].

Unlike statistical compression, where Shannon’s notion of entropy [40] is a
clear lower bound to what compressors can achieve, a similar notion capturing
repetitiveness has been elusive. Beyond Kolmogorov’s complexity [27], which is
uncomputable, repetitiveness is measured in ad-hoc terms, as the results of what
specific compressors achieve. A list of such measures on a string S[1 . . n] follows:

Lempel–Ziv compression [29] parses S into a sequence of phrases, with each
phrase defined as the longest string that has appeared previously in S. The
associated measure is the number z of phrases produced. The measure can
be computed in O(n) time [38].

Bidirectional macro schemes [42] extend Lempel–Ziv so that the source of
each phrase may precede or follow it, as long as no circular dependencies are
introduced. The associated measure b is the number of phrases of the smallest
parsing. It holds b ≤ z = O(b log n

b) [18], but computing b is NP-complete [20].
Grammar-based compression [26] builds a context-free grammar that gen-

erates S and only S. The associated measure is the size g of the smallest
grammar (i.e., the total length of the right-hand sides of the rules). It holds
z ≤ g = O(z log n

z) and, while it is NP-complete to compute g, grammars of
size O(z log n

z) can be constructed in linear time [39,11,21].
Run-length grammar compression [35] allows in addition rules A→ Bt (t

repetitions of B) of constant size. The measure is the size grl of the smallest
run-length grammar, and it holds z

2 ≤ grl ≤ g and grl = O(b log n
b) [18].

Collage systems [25] extend run-length grammars by allowing truncation: in
constant space we can refer to a prefix or a suffix of another nonterminal.
The associated measure c satisfies c ≤ grl and c = O(z) [31].

Burrows–Wheeler transform (BWT) [10] is a permutation of S that tends
to have long runs of equal letters if S is repetitive. The number r of maximal
equal-letter runs in the BWT can be found in linear time. It is known that
grl = O(r log n

r) [19] and b
2 ≤ r = O(b log2 n) = O(z log2 n) [18,23].

Towards a Definitive Measure of Repetitiveness 3

CDAWGs [9] are automata that recognize every substring of S. The associated
measure of repetitiveness is e, the size of the smallest such automaton
(compressed by dissolving states of in-degree and out-degree one), which is
built in linear time [9]. The measure e is always larger than r, g, and z [4,3].

An improvement to this situation is the recent introduction of the concept
of string attractor [24]. An attractor Γ is a set of positions in S such that any
substring of S has an occurrence covering a position in Γ . The size γ of the smallest
attractor asymptotically lower bounds all the repetitiveness measures listed
above. Recent results [24,34,36,13] show that efficient queries can be supported
within O(γ log n

γ) space5 and that grl = O(γ log n
γ). Previous solutions support

random access to S, or indexed searches on S, within space O(z log n
z) [5,6,12,17],

O(g) [14,15,16,8,1], O(grl) [19], O(r) or O(r log n
r) [30,4,19], and O(e) [2,3], none

improving in general upon the space O(γ log n
γ) within which one can offer

efficient access [24] and indexing [34,13]. Using indexes based on γ is not exempt
of problems, however. Computing γ is NP-hard [24], and therefore one has to
resort to approximations like z, in which case the representation is only guaranteed
to be of size O(z log n

z). While this problem has been recently sidestepped [13], it
is still unclear whether γ is the definitive measure of repetitiveness. In particular,
it is unknown whether one can always represent S within O(γ) space (while this
is possible in O(b) space) or even within o(γ log n) space.

Our contributions. In this paper, we study a new measure of repetitiveness,
δ, which arguably captures better the concept of compressibility in repetitive
strings and is more convenient to deal with. Although this measure was already
introduced in a stringology context [37] and used to build indexes of size O(γ log n

γ)

without knowing γ [13], its properties and full potential have not been explored.
It always holds that δ ≤ γ, and δ can be computed in O(n) time [13]. First, we
show that δ can be asymptotically strictly smaller than γ: for every length n and
every value δ ≥ 2, there exist a string such that γ = Ω(δ log n

δ). Still, we develop
a representation of S of size O(δ log n

δ) that allows accessing any character S[i]
in time O(log n

δ) and finds the occ occurrences of any pattern P [1 . .m] in time
O(m log n + occ logε n) for any constant ε > 0. For this, we reduce the size of
block trees [5] to O(δ log n

δ). Therefore, we obtain improved space and the same
time performance compared to previous results based on γ [24,34,36].6 Further,
we show that, for every length n and every value 2 ≤ δ ≤ n1−ε (where ε > 0 is
an arbitrary constant), there exists a string family whose elements can only be
represented in Ω(δ log n

δ) space. Thus, o(δ log n) space is unreachable in general;
no such limit is known for γ. We complete our characterization of δ by proving
that, although γ, b, z, and c are always O(δ log n

δ), the smallest context-free

grammar can be of size g = Ω(δ log2 n/ log log n) for strings of any length n.
Again, no such lower bound is known to hold on γ.

5 Throughout the paper, the size of data structures is measured in machine words.
6 The most recent index [13] locates patterns in O(m + (occ + 1) logε n) time and
O(γ log n

γ
) space (being thus faster but still using more space).

4 T. Kociumaka, G. Navarro, and N. Prezza

2 Measure δ

The measure δ has recently been defined by Christiansen et al. [13, Section 5.1],
though it is based on the expression dk(S)/k, introduced by Raskhodnikova et
al. [37] to approximate z. Below we summarize what is known about it.

Definition 1. Let dk(S) be the number of distinct length-k substrings in S. Then

δ = max{dk(S)/k : k ∈ [1 . . n]}.

Lemma 1 (Based on [37, Lemma 3]). It always holds that z = O(δ log n
δ).

Proof. Raskhodnikova et al. [37] prove that if d`(S) ≤ m · ` for every ` ≤ `0,
then z ≤ 4(m log `0 + n

`0
). Plugging `0 = n

δ and m = δ, we conclude that
z ≤ 4(δ log n

δ + δ) = O(δ log n
δ). ut

Since b, c, and γ are O(z), these three measures are all upper bounded by
O(δ log n

δ). Additionally, we conclude that grl ≤ g = O(z log n
z) = O(δ log2 n

δ),

and note that r = O(δ log2 n) has been proved recently [23].
Before we proceed, let us recall the concept of an attractor.

Definition 2 (Kempa and Prezza [24]). An attractor of a string S[1 . . n] is
a set of positions Γ ⊆ [1 . . n] such that every substring S[i . . j] has at least one
occurrence S[i′ . . j′] = S[i . . j] that covers an attractor position p ∈ Γ ∩ [i′ . . j′].

Lemma 2 ([13, Lemma 5.6]). Every string S satisfies δ ≤ γ.

Proof. Every length-k substring has an occurrence covering an attractor position,
so there can be at most kγ distinct substrings, i.e., dk(S)/k ≤ γ for all k ≤ n. ut

Lemma 3 ([13, Lemma 5.7]). The measure δ can be computed in O(n) time
and space given S[1 . . n].

Proof. One can use the suffix tree or the LCP table of S to retrieve dk(S) for all
k ∈ [1 . . n] in O(n) time, and then compute δ from this information. ut

3 Lower Bounds in Terms of δ

In this section, we prove lower bounds in terms of the measure δ. First, we show
that there exist string families where δ = o(γ); in fact, δ can be smaller by up to
a logarithmic factor. Second, we prove that there are string families that cannot
be encoded in o(δ log n) space: for every length n and every value 2 ≤ δ ≤ n1−ε
(where ε > 0 is an arbitrary constant), there is a string family whose elements
require Ω(δ log n

δ) space to represent. Third, although in the next section we give
an O(δ log n

δ)-space representation, below we construct a family of strings which
cannot be represented using context-free grammars of size O(δ log n

δ); a nearly
logarithmic-factor separation exists.

Towards a Definitive Measure of Repetitiveness 5

3.1 Lower bounds on attractors

Consider an infinite string S∞[1 . .], where S∞[i] = b if i = 2j for some integer
j ≥ 0, and S∞[i] = a otherwise. For n ≥ 1, let Sn be the length-n prefix of S.
We shall prove that the strings in this family satisfy δ = O(1) and γ = Ω(log n).

Lemma 4. For every n ≥ 1, the string Sn satisfies δ ≤ 2 and γ ≥ 1
2blog nc.

Proof. For each j ≥ 1, every pair of consecutive bs in S∞[2j−1 + 1 . .] is at
distance at least 2j . Therefore, the only distinct substrings of length k ≤ 2j

in S∞[2j−1 + 1 . .] are of the form ak or aibak−i−1 for i ∈ [0 . . k − 1]. Hence,
the distinct length-k substrings of S∞ are those starting up to position 2j−1,
S∞[i . . i + k − 1] for i ∈ [1 . . 2j−1], and the k + 1 already mentioned strings,
for a total of dk(S∞) ≤ 2j−1 + k + 1. Plugging j = dlog ke, we get dk(S∞) ≤
2dlog ke−1 + k + 1 ≤ 2log k + k ≤ 2k, concluding that δ(Sn) ≤ 2 holds for every n.

Next, observe that for each j ≥ 0, the substring ba2
j−1b has its unique

occurrence in S∞ at S∞[2j . . 2j+1]. The covered regions are disjoint across
even integers j, so each one requires a distinct attractor element. Consequently,
γ(Sn) ≥ j

2 for n ≥ 2j . Plugging j = blog nc, we get γ(Sn) ≥ 1
2blog nc. ut

We can also show that there are strings with δ = o(γ) as long as 2 ≤ δ ≤ o(n).

Theorem 1. For every length n and value δ ∈ [2 . . n], there is a string S[1 . . n]
with γ = Ω(δ log n

δ).

Proof. Let us first fix an integer m ≥ 1 such that n ≥ 4m − 1 and decompose
n−m+ 1 =

∑m
i=1 ni roughly equally (so that ni ≥ 3 and ni = Ω(nm)). We shall

build a string S over an alphabet consisting of 3m− 1 characters: ai and bi for
i ∈ [1 . .m] and $i for i ∈ [1 . .m− 1]. For this, we take S(i) to be the string Sni
built for Lemma 4, with alphabet {a, b} replaced by {ai, bi}, and we define S to
be the concatenation of the strings S(i) interleaved with sentinels $i.

Notice that, for each k, we have dk(S) ≤ (m−1)k+
∑m
i=1 dk(S(i)) because every

substring contains $i or is contained in S(i) for some i. Hence, δ(S) ≤ 3m−1. (In
fact, δ(S) = 3m−1 because d1(S) = 3m−1.) Furthermore, γ(S) ≥

∑m
i=1 γ(S(i)) =

Ω(m log n
m) = Ω(δ log n

δ) since the alphabets of S(i) are disjoint.
This construction proves the theorem for δ = 3m − 1 and n ≥ 4m − 1. If

δ mod 3 6= 2, we pad the string with O(1) additional sentinels. Each one increases
δ(S), γ(S), and n by 1. Finally, we note that the claim for δ = Ω(n) reduces to
γ = Ω(δ), and the latter relation follows directly from Lemma 2. ut

3.2 Lower bounds on text entropy and grammar size

We now show that there are string families that cannot be encoded in o(δ log n)
space, that is, o(δ log2 n) bits. It is not known if the same occurs with γ.

Consider a family S∗ consisting of variants of the infinite string S∞ constructed
in the previous section, where the positions of bs are further apart and slightly
perturbed. More specifically, for each S ∈ S∗, the first b is placed at position S[1]
and then, for j ≥ 2, the jth b is placed anywhere in S[2 · 4j−2 + 1 . . 4j−1]. The
family S∗n consists of length-n prefixes of the infinite strings of the family S∗.

6 T. Kociumaka, G. Navarro, and N. Prezza

Lemma 5. For every n ≥ 1, the family S∗n needs Ω(log2 n) bits to be encoded.

Proof. In our definition of S∗, the location of the jth b can be chosen among
2 · 4j−2 positions, and each combination of these choices generates a different
string in S∗n as long as n ≥ 4j−1. Hence, |S∗n| =

∏i+1
j=2 2 · 4j−2 = 2Ω(i2) for n ≥ 4i.

To distinguish strings in S∗n, any encoding needs log |S∗n| = Ω(log2 n) bits. ut

Theorem 2. For every length n and value δ ∈ [2 . . n], there exists a family of
length-n strings of common measure δ that needs Ω(δ log2 n

δ) bits to be encoded.

Proof. By Lemma 5, encoding S∗n requires Ω(log2 n) bits. Below, we prove that
the measure δ for any string in S∗n is at most 2. Starting from position 4j−1 + 1,
the distances between two consecutive bs are at least 4j . Therefore, the distinct
substrings of length k ≤ 4j are either those that start at position i ∈ [1 . . 4j−1]
or those of the form ak or aibak−i−1 for i ∈ [0 . . k − 1], which yields a total of

dk(S) ≤ 4j−1+k+1. Plugging j = d 12 log ke, we get dk(S) ≤ 4d
1
2 log ke−1+k+1 ≤

4
1
2 log k + k ≤ 2k. By definition of δ, we conclude that δ(S) ≤ 2 for every S ∈ S∗n.
As in the proof of Theorem 1, one can generalize this result to larger δ. ut

The family S∗n also gives strings that do not satisfy g = O(δ log n).

Theorem 3. For every length n, there is a string with g = Ω(δ log2 n/ log log n).

Proof. Consider the same family S∗n, which needs Ω(log2 n) bits to be represented.
If we could encode it with a grammar of size g, each grammar element would be
a nonterminal that could be encoded with O(log g) bits. Therefore, our grammar
representation would require O(g log g) bits. Since this must be Ω(log2 n), it
follows that g = Ω(log2 n/ log log n) for any grammar of size g encoding S∗n. Since
δ = O(1) for every string S ∈ S∗n, it follows that g = Ω(δ log2 n/ log log n). ut

4 Block Trees in δ-Bounded Space

The block tree [5] is a data structure designed to represent repetitive strings
S[1 . . n] in O(z log n

z) space while offering efficient access. In this section, we
show that the block tree is easily tuned to use O(δ log n

δ) space while retaining
its functionality. Note that, given the lower bounds of Section 3, we cannot hope
for a representation of size o(δ log n

δ).

4.1 Block trees

Given integer parameters r and s, the root of the block tree divides S into s
equal-sized (that is, with the same number of characters) blocks (assume for
simplicity that n = s · rt for some integer t).7 Blocks are then classified into

7 If not, we simply pad S with spurious symbols at the end; whole spurious blocks are
not represented. The extra space incurred is only O(rh) for a block tree of height h.
The actual construction [5] uses instead blocks of sizes bn/sc and dn/sc.

Towards a Definitive Measure of Repetitiveness 7

marked and unmarked. If two adjacent blocks B1, B2 form the leftmost occurrence
of the underlying substring B1B2, then both B1 and B2 are marked. Blocks B
that remain unmarked are replaced by a pointer to the pair of adjacent blocks
B1, B2 that contains the leftmost occurrence of B, and the offset ε ≥ 0 where B
starts inside B1. Marked blocks are divided into r equal-sized sub-blocks, which
form the children of the current block tree’s level, and processed similarly in a
recursive fashion. Let σ be the alphabet size. The level where the blocks become
of length below logσ n corresponds to the leaves of the block tree, and its blocks
store their plain string content using O(log n) bits. The height of the block tree

is then h = O(logr
n/s

logσ n
) = O(logr

n log σ
s logn) ⊆ O(log n

s).

The block tree construction guarantees that the blocks B1 and B2 to which
any unmarked block points exist and are marked. Therefore, any access to a
position S[i] can be carried out in O(h) time, by descending from the root to a
leaf and spending O(1) time in each level: To obtain B[i] from a marked block
B, we simply compute to which sub-block B[i] belongs among the children of B.
To obtain B[i] from an unmarked block B pointing to B1, B2 with offset ε, we
switch either to B1[ε+ i] or to B2[ε+ i− |B1|], which are marked blocks.

By storing further data associated with marked and unmarked blocks, the
block tree offers the following functionality [5]:

Access: any substring S[i . . i+ `− 1] is extracted in time O(hd`/ logσ ne).
Rank: ranka(S, i) is the number of times symbol a occurs in S[1 . . i]. It is

computed in time O(h) by multiplying the space by O(σ).
Select: selecta(S, j) is the position of the jth occurrence of symbol a in S. It is

computed in time O(log log n
s + h log log r) by multiplying the space by O(σ).

It is shown that there are only O(zr) blocks in each level of the block tree
(except the first, which has s); therefore its size is O(s+ zr logr

n log σ
s logn).

4.2 Bounding the space in terms of δ

We now prove that there are only O(δr) blocks in each level of the block tree, and
therefore, choosing s = δ yields a structure of size O(δr logr

n log σ
δ logn) with height

O(logr
n log σ
δ logn). For r = O(1), the space is O(δ log n

δ) and the height is O(log n
δ).

Let us call level k of the block tree the one where blocks are of length rk. In
level k, then, S is covered regularly with blocks B = S[rk(i − 1) + 1 . . rki] of
length rk (though not all of them are present in the block tree). Note that k
reaches its maximum in the root (where we have the largest blocks) and the
minimum in the leaves of the block tree.

Lemma 6. The number of marked blocks of length rk in the block tree is O(δ).

Proof. Any marked block B must belong to a sequence of three blocks, B− ·B ·B+,
such that B is inside the leftmost occurrence of B− ·B or B ·B+, or both (B−

and B+ do not exist for the first and last block, respectively).
For the sake of computing our bound, let # be a symbol not appearing in S

and let us add 2 ·rk characters equal to # at the beginning of S and rk characters

8 T. Kociumaka, G. Navarro, and N. Prezza

equal to # at the end of S. We index the added prefix in negative positions (up to

index 0), so that S[−2·rk+1 . . 0] = #2·rk . Now consider all the rk text positions p
belonging to a marked block B. The long substring E = S[p−2 ·rk . . p+2 ·rk−1]
centered at p, of length 4rk, contains B− · B · B+, and thus E contains the
leftmost occurrence L of B− · B or B · B+. All those long substrings E must
then be distinct: if two long substrings E and E′ are equal, and E′ appears after
E in S, then E′ does not contain the leftmost occurrence of any substring L.

Since we added a prefix of length 2 · rk and a suffix of length rk consisting
of character # to S, the number of distinct substrings of length 4rk is at most
d4rk(S) + 3rk. Therefore, there can be at most d4rk(S) + 3rk long substrings E
as well, because they must all be distinct. Since each position p inside a block
B induces a distinct long substring E, and each marked block B contributes
rk distinct positions p, there are at most (d4rk(S) + 3rk)/rk marked blocks B
of length rk. The total number of marked blocks of length rk is thus at most
(d4rk(S) + 3rk)/rk = 4 · d4rk(S)/(4rk) + 3rk/rk ≤ 4δ + 3. ut

Since the block tree has at most 4δ + 3 marked blocks per level, it has O(δr)
blocks across all the levels except the first. This yields the following result.

Theorem 4. Let S[1 . . n], over alphabet [1 . . σ], have compressibility measure δ.
Then the block tree of S, with parameters r and s, is of size O(s+ δr logr

n log σ
s logn)

words and height h = O(logr
n log σ
s logn).

Note that n
δ = O(nz log n

δ) = O(nz
√

n
δ) due to Lemma 1, so log n

δ = O(log n2

z2)
= O(log n

z) = O(log n
γ). Hence, the query time we obtain using O(δ log n

δ) space is

asymptotically the same as the O(log n
γ) time obtained in O(γ log n

γ) space [34,36]

or the O(log n
z) time obtained in O(z log n

z) space [5].

5 Text Indexing in δ-Bounded Space

We now show that not only efficient access of S can be supported within O(δ log n
δ)

space, but also text indexing, that is, efficiently listing all the positions in S
where a pattern P [1 . .m] appears. For consistency with previous works, in this
section we speak of a text T [1 . . n] instead of a string S[1 . . n].

Our index builds on top of a slight variant of the block tree of the previous
sections, with r = 2, s = δ, and stopping only when the leaves are of length 1.
This block tree is of size O(δ log n

δ) and of height O(log n
δ).

To build the index, we follow the same ideas of the “universal index” [34],
whose space will be improved without affecting its search time complexities. That
index builds on a variant of block trees designed for attractors: the Γ -tree has a
first level with γ equal-sized blocks, and at any other level k, it marks the blocks
that are at distance < 2k from an attractor position. Unmarked blocks B then
point to some copy of B that crosses an attractor position (the blocks overlapping
that copy are marked by definition). In the Γ -tree pointers can go leftward or
rightward, not necessarily to a leftmost occurrence. The space of the Γ -tree is

Towards a Definitive Measure of Repetitiveness 9

Θ(γ log n
γ), which we now know, by Theorem 4, that is never asymptotically

smaller than that of block trees with parameters r = 2 and s = δ.
Karp–Rabin fingerprinting [22] assigns a string S[1 . . `] the signature κ(S) =

(
∑`
i=1 S[i] · ci−1) mod µ for suitable integers c > 1 and prime µ. It is possible to

build a signature formed by a pair of functions 〈κ1, κ2〉 guaranteeing no collisions
between substrings of S[1 . . n], in O(n log n) expected time [7]. Our index will
need to compute Karp–Rabin fingerprints κ(T [i . . j]) in time O(log n

δ). This is
done on block trees by using the same algorithm described for the Γ -tree.

Lemma 7. Let T [1 . . n] have compressibility measure δ, and let κ be a Karp–
Rabin function. Then we can store a data structure of size O(δ log n

δ) supporting
the computation of κ on any substring of T in O(log n

δ) time.

Proof. The structure is the described block tree variant, with some further fields.
We store κ(T [1 . . 2ki]) at the ith top-level block, for all i and k = dlog n

δ e. We
also store κ(B) for each block B stored in the tree and, for the unmarked blocks
B pointing to B1, B2 with offset ε, we also store κ(B1[1 + ε . .]). Navarro and
Prezza [34, Lem. 1] show that this suffices to compute κ(T [i . . j]) within O(1)
time per level of the Γ -tree; their proof holds verbatim for the block tree. ut

Let us say that a block is explicit if it is stored in the block tree. Thus, a block
is explicit if and only if it is marked or it is the child of a marked block.

Lemma 8 (See [34, Lem. 2]). Any substring T [i . . j] of length at least 2 either
overlaps two consecutive explicit blocks or is completely inside an unmarked block.

Proof. The leaves of the block tree, read left to right, partition T into a sequence
of explicit blocks. The leaves are either unmarked blocks or blocks of length 1.
Since |T [i . . j]| ≥ 2, if it is not completely inside an unmarked block, it cannot be
contained in a leaf, so it must cross a boundary between two explicit blocks. ut

We now divide the possible occurrences of P [1 . .m] in T into primary (those
overlapping two consecutive explicit blocks) and secondary (those inside an
unmarked block). The technique used on Γ -trees [34, Sec. 3] applies verbatim
here: Primary occurrences are found using a grid of (s − 1) × (s − 1), where
s = O(δ log n

δ) is the number of leaves in the block tree, which finds the occp
primary occurrences in time O((m+ occp) logε s), for any constant ε > 0. The
ranges to search in the grid are obtained using their following result [34, Lem. 3].

Lemma 9. Let X be a sorted set of suffixes of T , and κ a Karp–Rabin function.
If one can extract a substring of length ` from T in time fe(`) and compute
κ on it in time fh(`), then one can build a data structure of size O(|X |) that
obtains the lexicographic ranges in X of the m− 1 suffixes of a given pattern P
in worst-case time O(m(fh(m) + logm) + fe(m)), provided that κ is collision-free
among substrings of T whose lengths are powers of two.

Since in our case fe(m) = O(m log n
δ) and fh(m) = O(log n

δ), we can find all
the ranges to search for in time O(m log nm

δ). The occs secondary occurrences
are obtained as on Γ -trees [34, Sec. 3.2], within O((occp + occs) log log n

δ) time.

10 T. Kociumaka, G. Navarro, and N. Prezza

Theorem 5. Let T [1 . . n] have measure δ. Then there exists a data structure
of size O(δ log n

δ) such that the occurrences of any pattern P [1 . .m] in T can be
located in time O(m log n+ occ logε n), for any constant ε > 0.

6 Conclusions

We have made a step towards establishing the right measure of repetitiveness for
a string S[1 . . n]. Compared with the most principled prior measure, the size γ of
the smallest attractor, the proposed measure δ has several important advantages:

1. It lower bounds the previous measure, δ ≤ γ, and can be computed in linear
time, while finding γ is NP-hard.

2. We can always encode S in O(δ log n
δ) space, and this is worst-case optimal

in terms of δ: for any length n and any value 2 ≤ δ ≤ n1−ε (where ε > 0 is an
arbitrary constant), there are text families needing Ω(δ log n

δ) space. Thus,
o(δ log n) space is unreachable. Instead, no text family is known to require
ω(γ) space, nor it is known if o(γ log n) space can be reached.

3. Measures γ, b, c, and z are upper bounded by O(δ log n
δ), and g = O(δ log2 n

δ),
but there are text families where the smallest context-free grammar is of size
g = Ω(δ log2 n/ log log n). This lower bound is not known to hold on γ.

4. The encodings using O(δ log n
δ) space support direct access and indexed

searches, with the same complexities obtained within attractor-bounded
space, O(γ log n

γ). An exception is a very recent faster index [13].

An ideal compressibility measure for repetitive sequences should be always
reachable and string-wise optimal, apart from being practical to compute. Measure
δ log n

δ is reachable and fast to compute, though optimal only in a coarse sense
(i.e., not string-wise but within the class of all the strings with the same δ value).

Note that we do not know if one can always encode a string within O(γ)
space. If this was the case, then γ would be a better measure than δ log n

δ , except
for being hard to compute. Otherwise, a good alternative could be b, which is
always reachable and might be string-wise optimal within some broad class of
representations that exploit repetitiveness, yet NP-hard to compute. It is not
known, however, if b or γ are monotone, that is, smaller on T than on TT ′,
whereas δ clearly is. This fascinating quest is then still open.

On the more practical side, it would be interesting to obtain faster indexes of
size O(δ log n

δ). Our index requires O(m log n+ occ logε n) search time, while in
O(γ log n

γ) space, it is possible to search in O(m+ (occ+ 1) logε n) time [13].

References

1. Belazzougui, D., Cording, P.H., Puglisi, S.J., Tabei, Y.: Access, rank, and se-
lect in grammar-compressed strings. In: Proc. 23rd ESA. pp. 142–154 (2015).
https://doi.org/10.1007/978-3-662-48350-3 13

2. Belazzougui, D., Cunial, F.: Fast label extraction in the CDAWG. In: Proc. 24th
SPIRE. pp. 161–175 (2017). https://doi.org/10.1007/978-3-319-67428-5 14

https://doi.org/10.1007/978-3-662-48350-3_13
https://doi.org/10.1007/978-3-319-67428-5_14

Towards a Definitive Measure of Repetitiveness 11

3. Belazzougui, D., Cunial, F.: Representing the suffix tree with the CDAWG. In:
Proc. 28th CPM. pp. 7:1–7:13 (2017). https://doi.org/10.4230/LIPIcs.CPM.2017.7

4. Belazzougui, D., Cunial, F., Gagie, T., Prezza, N., Raffinot, M.: Composite
repetition-aware data structures. In: Proc. 26th CPM. pp. 26–39. Springer (2015).
https://doi.org/10.1007/978-3-319-19929-0 3

5. Belazzougui, D., Gagie, T., Gawrychowski, P., Kärkkäinen, J., Pereira, A.O., Puglisi,
S.J., Tabei, Y.: Queries on LZ-bounded encodings. In: Proc. 25th DCC. pp. 83–92
(2015). https://doi.org/10.1109/DCC.2015.69

6. Bille, P., Ettienne, M.B., Gørtz, I.L., Vildhøj, H.W.: Time-space trade-offs
for Lempel-Ziv compressed indexing. Theor. Comput. Sci. 713, 66–77 (2018).
https://doi.org/10.1016/j.tcs.2017.12.021

7. Bille, P., Gørtz, I.L., Sach, B., Vildhøj, H.W.: Time-space trade-offs
for longest common extensions. J. Discrete Algorithms 25, 42–50 (2014).
https://doi.org/10.1016/j.jda.2013.06.003

8. Bille, P., Landau, G.M., Raman, R., Sadakane, K., Satti, S.R., Weimann, O.:
Random access to grammar-compressed strings and trees. SIAM J. Comput. 44(3),
513–539 (2015). https://doi.org/10.1137/130936889

9. Blumer, A., Blumer, J., Haussler, D., McConnell, R.M., Ehrenfeucht, A.: Complete
inverted files for efficient text retrieval and analysis. J. ACM 34(3), 578–595 (1987).
https://doi.org/10.1145/28869.28873

10. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
Tech. Rep. 124, Digital Equipment Corporation (1994), https://www.hpl.hp.com/
techreports/Compaq-DEC/SRC-RR-124.pdf

11. Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A.,
Shelat, A.: The smallest grammar problem. IEEE Trans. Inf. Theory 51(7), 2554–
2576 (2005). https://doi.org/10.1109/TIT.2005.850116

12. Christiansen, A.R., Ettienne, M.B.: Compressed indexing with signature grammars.
In: Proc. 13th LATIN. pp. 331–345 (2018). https://doi.org/10.1007/978-3-319-
77404-6 25

13. Christiansen, A.R., Ettienne, M.B., Kociumaka, T., Navarro, G., Prezza, N.:
Optimal-time dictionary-compressed indexes (2019), https://arxiv.org/abs/

1811.12779
14. Claude, F., Navarro, G.: Self-indexed grammar-based compression. Fundam. Inform.

111(3), 313–337 (2011). https://doi.org/10.3233/FI-2011-565
15. Claude, F., Navarro, G.: Improved grammar-based compressed indexes. In: Proc.

19th SPIRE. pp. 180–192 (2012). https://doi.org/10.1007/978-3-642-34109-0 19
16. Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: A

faster grammar-based self-index. In: Proc. 6th LATA. pp. 240–251 (2012).
https://doi.org/10.1007/978-3-642-28332-1 21

17. Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: LZ77-based
self-indexing with faster pattern matching. In: Proc. 11th LATIN. pp. 731–742.
Springer (2014). https://doi.org/10.1007/978-3-642-54423-1 63

18. Gagie, T., Navarro, G., Prezza, N.: On the approximation ratio of Lempel-Ziv
parsing. In: Proc. 13th LATIN. pp. 490–503 (2018). https://doi.org/10.1007/978-3-
319-77404-6 36

19. Gagie, T., Navarro, G., Prezza, N.: Fully-functional suffix trees and opti-
mal text searching in BWT-runs bounded space. J. ACM 67(1), 1–54 (2020).
https://doi.org/10.1145/3375890

20. Gallant, J.K.: String Compression Algorithms. Ph.D. thesis, Princeton Univ. (1982)
21. Jeż, A.: A really simple approximation of smallest grammar. Theor. Comput. Sci.

616, 141–150 (2016). https://doi.org/10.1016/j.tcs.2015.12.032

https://doi.org/10.4230/LIPIcs.CPM.2017.7
https://doi.org/10.1007/978-3-319-19929-0_3
https://doi.org/10.1109/DCC.2015.69
https://doi.org/10.1016/j.tcs.2017.12.021
https://doi.org/10.1016/j.jda.2013.06.003
https://doi.org/10.1137/130936889
https://doi.org/10.1145/28869.28873
https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf
https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf
https://doi.org/10.1109/TIT.2005.850116
https://doi.org/10.1007/978-3-319-77404-6_25
https://doi.org/10.1007/978-3-319-77404-6_25
https://arxiv.org/abs/1811.12779
https://arxiv.org/abs/1811.12779
https://doi.org/10.3233/FI-2011-565
https://doi.org/10.1007/978-3-642-34109-0_19
https://doi.org/10.1007/978-3-642-28332-1_21
https://doi.org/10.1007/978-3-642-54423-1_63
https://doi.org/10.1007/978-3-319-77404-6_36
https://doi.org/10.1007/978-3-319-77404-6_36
https://doi.org/10.1145/3375890
https://doi.org/10.1016/j.tcs.2015.12.032

12 T. Kociumaka, G. Navarro, and N. Prezza

22. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
J. Res. Dev. 31(2), 249–260 (1987). https://doi.org/10.1147/rd.312.0249

23. Kempa, D., Kociumaka, T.: Resolution of the Burrows-Wheeler transform conjecture
(2019), https://arxiv.org/abs/1910.10631

24. Kempa, D., Prezza, N.: At the roots of dictionary compression: String attractors. In:
Proc. 50th STOC. pp. 827–840 (2018). https://doi.org/10.1145/3188745.3188814

25. Kida, T., Matsumoto, T., Shibata, Y., Takeda, M., Shinohara, A., Arikawa, S.: Col-
lage system: A unifying framework for compressed pattern matching. Theor. Comput.
Sci. 298(1), 253–272 (2003). https://doi.org/10.1016/S0304-3975(02)00426-7

26. Kieffer, J.C., Yang, E.: Grammar-based codes: A new class of univer-
sal lossless source codes. IEEE Trans. Inf. Theory 46(3), 737–754 (2000).
https://doi.org/10.1109/18.841160

27. Kolmogorov, A.N.: Three approaches to the quantitative defini-
tion of information. Int. J. Comput. Math. 2(1-4), 157–168 (1968).
https://doi.org/10.1080/00207166808803030

28. Kreft, S., Navarro, G.: On compressing and indexing repetitive sequences. Theor.
Comput. Sci. 483, 115–133 (2013). https://doi.org/10.1016/j.tcs.2012.02.006

29. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inf. Theory
22(1), 75–81 (1976). https://doi.org/10.1109/TIT.1976.1055501

30. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of
highly repetitive sequence collections. J. Comput. Biol. 17(3), 281–308 (2010).
https://doi.org/10.1089/cmb.2009.0169

31. Navarro, G., Ochoa, C., Prezza, N.: On the approximation ratio of ordered parsings
(2019), https://arxiv.org/abs/1803.09517

32. Navarro, G.: Compact Data Structures – A practical approach. Cambridge Univer-
sity Press (2016). https://doi.org/10.1017/cbo9781316588284

33. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Surveys
39(1) (2007). https://doi.org/10.1145/1216370.1216372

34. Navarro, G., Prezza, N.: Universal compressed text indexing. Theor. Comput. Sci.
762, 41–50 (2019). https://doi.org/10.1016/j.tcs.2018.09.007

35. Nishimoto, T., I, T., Inenaga, S., Bannai, H., Takeda, M.: Fully dynamic data
structure for LCE queries in compressed space. In: Proc. 41st MFCS. pp. 72:1–72:15
(2016). https://doi.org/10.4230/LIPIcs.MFCS.2016.72

36. Prezza, N.: Optimal rank and select queries on dictionary-compressed text. In: Proc.
30th CPM. pp. 4:1–4:12 (2019). https://doi.org/10.4230/LIPIcs.CPM.2019.4

37. Raskhodnikova, S., Ron, D., Rubinfeld, R., Smith, A.D.: Sublinear algorithms
for approximating string compressibility. Algorithmica 65(3), 685–709 (2013).
https://doi.org/10.1007/s00453-012-9618-6

38. Rodeh, M., Pratt, V.R., Even, S.: Linear algorithm for data compression via string
matching. J. ACM 28(1), 16–24 (1981). https://doi.org/10.1145/322234.322237

39. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theor. Comput. Sci. 302(1-3), 211–222 (2003).
https://doi.org/10.1016/S0304-3975(02)00777-6

40. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27,
398–403 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

41. Stephens, Z.D., Lee, S.Y., Faghri, F., Campbell, R.H., Zhai, C., Efron,
M.J., Iyer, R., Schatz, M.C., Sinha, S., Robinson, G.E.: Big data:
Astronomical or genomical? PLOS Biology 13(7), e1002195 (2015).
https://doi.org/10.1371/journal.pbio.1002195

42. Storer, J.A., Szymanski, T.G.: Data compression via textual substitution. J. ACM
29(4), 928–951 (1982). https://doi.org/10.1145/322344.322346

https://doi.org/10.1147/rd.312.0249
https://arxiv.org/abs/1910.10631
https://doi.org/10.1145/3188745.3188814
https://doi.org/10.1016/S0304-3975(02)00426-7
https://doi.org/10.1109/18.841160
https://doi.org/10.1080/00207166808803030
https://doi.org/10.1016/j.tcs.2012.02.006
https://doi.org/10.1109/TIT.1976.1055501
https://doi.org/10.1089/cmb.2009.0169
https://arxiv.org/abs/1803.09517
https://doi.org/10.1017/cbo9781316588284
https://doi.org/10.1145/1216370.1216372
https://doi.org/10.1016/j.tcs.2018.09.007
https://doi.org/10.4230/LIPIcs.MFCS.2016.72
https://doi.org/10.4230/LIPIcs.CPM.2019.4
https://doi.org/10.1007/s00453-012-9618-6
https://doi.org/10.1145/322234.322237
https://doi.org/10.1016/S0304-3975(02)00777-6
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.1145/322344.322346

	Towards a Definitive Measure of Repetitiveness

