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Abstract. Shannon’s entropy is a clear lower bound for statistical com-
pression. The situation is not so well understood for dictionary-based
compression. A plausible lower bound is b, the least number of phrases
of a general bidirectional parse of a text, where phrases can be copied
from anywhere else in the text. Since computing b is NP-complete, a
popular gold standard is z, the number of phrases in the Lempel-Ziv
parse of the text, where phrases can be copied only from the left. While
z can be computed in linear time, almost nothing has been known for
decades about its approximation ratio with respect to b. In this paper
we prove that z = O(blog(n/b)), where n is the text length. We also
show that the bound is tight as a function of n, by exhibiting a string
family where z = £2(blogn). Our upper bound is obtained by building a
run-length context-free grammar based on a locally consistent parsing of
the text. Our lower bound is obtained by relating b with r, the number of
equal-letter runs in the Burrows-Wheeler transform of the text. On our
way, we prove other relevant bounds between compressibility measures.

1 Introduction

Shannon [33] defined a measure of entropy that serves as a lower bound to the
attainable compression ratio on any source that emits symbols according to a
certain probabilistic model. An attempt to measure the compressibility of finite
texts T'[1..n], other than the non-computable Kolmogorov complexity [21], is the
notion of empirical entropy [7], where some probabilistic model is assumed and
its parameters are estimated from the frequencies observed in the text. Other
measures that, if the text is generated from a probabilistic source, converge to its
Shannon entropy, are derived from the Lempel-Ziv parsing [23] or the grammar-
compression [20] of the text.

Some text families, however, are not well modeled as coming from a proba-
bilistic source. A very current case is that of highly repetitive texts, where most
of the text can be obtained by copying long blocks from elsewhere in the same
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text. Huge highly repetitive text collections are arising from the sequencing of
myriads of genomes of the same species, from versioned document repositories
like Wikipedia, from source code repositories like GitHub, etc. Their growth is
outpacing Moore’s Law by a wide margin [34]. Understanding the compress-
ibility of highly repetitive texts is important to properly compress those huge
collections.

Lempel-Ziv and grammar compression are particular cases of so-called dic-
tionary techniques, where a set of strings is defined and the text is parsed as a
concatenation of those strings. On repetitive collections, the empirical entropy
ceases to be a relevant compressibility measure; for example the kth order per-
symbol entropy of T'T is the same as that of T', if k < n [22, Lem. 2.6], whereas
this entropy measure is generally meaningless for k > logn [12]. Some dictionary
measures, instead, capture much better the compressibility of repetitive texts.
For example, while an individual genome can rarely be compressed to much less
than 2 bits per symbol, Lempel-Ziv has been reported to compress collections
of human genomes to less than 1% [11]. Similar compression ratios are reported
in Wikipedia.®

Despite the obvious practical relevance of these compressibility measures,
there is not a clear entropy measure useful for highly repetitive texts. The num-
ber z of phrases generated by the Lempel-Ziv parse [23] is often used as a gold
standard, possibly because it can be implemented in linear time [30] and is never
larger than g, the size of the smallest context-free grammar that generates the
text [31,6]. However, z is not so satisfactory as an entropy measure: the value
changes if we reverse the text, for example. A much more robust lower bound on
compressibility is b, the size of the smallest bidirectional (macro) scheme [35].
Such a scheme parses the text into phrases such that each phrase appears some-
where else in the text (or it is a single explicit symbol), so that it is possible
to recover the text by copying source to target positions in an appropriate or-
der. This is arguably the strongest possible dictionary method, but finding the
smallest bidirectional scheme is NP-complete [13]. A relevant question is then
how good is the Lempel-Ziv parse as an efficiently implementable approximation
to the smallest bidirectional scheme. Almost nothing is known in this respect,
except that there are string families where z is nearly 2b [35].

In this paper we finally give a tight approximation ratio for z, showing
that the gap is larger than what was previously known. We prove that z =
O(blog(n/b)), and that this bound is tight as a function of n, by exhibiting a
string family where z = 2(blogn). To prove the upper bound, we show how
to build a run-length context-free grammar [28] (i.e., allowing rules of the form
X — Yt that count as size 1) of size g,; = O(blog(n/b)). This is done by carrying
out several rounds of locally consistent parsing [17] on top of T', reducing the
resulting blocks to nonterminals in each round, and showing that new nontermi-
nals appear only in the boundaries of the phrases of the bidirectional scheme. We
then further prove that z < 2g,;, by extending a classical proof [6] that relates
grammar with Lempel-Ziv compression. To prove the lower bound, we consider

® https://en.wikipedia.org/wiki/Wikipedia:Size of Wikipedia



another plausible compressibility measure: the number r of equal-symbol runs in
the Burrows-Wheeler transform (BWT) of the text [5]. We prove that the BWT
induces a valid bidirectional scheme, and thus r = 2(b). Then the bound follows
from known string families where z = £2(rlogn) [29].

2 Basic Concepts

A string is a sequence S[1..4] = S[1]5[2] ... S[¢] of symbols. A substring S[i] ... S[j]
of S is denoted STi..j]. A suffix of S is a substring of the form S[i..¢]. The juxtapo-
sition of strings and/or symbols represents their concatenation. We will consider
compressing a string T[1..n], called the text.

2.1 Bidirectional Schemes

A bidirectional scheme [35] partitions 7'[1..n] into b chunks By, ..., By, such that
each B; = T[t;..t; + ¢; — 1] (called a target) is either (1) copied from another
substring T'[s;..s; + ¢; — 1] (called a source) with s; # t;, which may overlap
T[t;..t; + £; — 1], or (2) formed by £; = 1 explicit symbol.

We define the function f : [1..n] — [1..n] so that, in case (1), f(t;+7) = si+J
for all 0 < j < ¢;, and in case (2), f(t;) = —1. Then, the bidirectional scheme
is valid if there is an order in which the sources s; + j can be copied onto the
targets t; + j so that all the positions of T' can be inferred.

Being a valid scheme is equivalent to saying that f has no cycles, that is,
there is no k£ > 0 and p such that f¥(p) = p: Initially we can set all the explicit
positions (type (2)), and then copy sources with known values to their targets.
If f has no cycles, we will eventually complete all the positions in T" because, for
every T[p], there is a k > 0 such that f¥(p) = —1, so we can obtain T[p] from
the symbol explicitly stored for T[f*~1(p)].

We use b to denote the smallest bidirectional scheme, which is NP-complete
to compute [13].

2.2 Lempel-Ziv Parsing

Lempel and Ziv [23] define a parsing of T into the fewest possible phrases T =
Zy...Z,, so that each phrase Z; is a substring (but not a suffix) of Z; ...Z;,
or a single symbol. This means that the source T'[s;..s; + £; — 1] of the target
Z; = Tt;..t; + £; — 1] must satisfy s; < t;, but sources and targets may overlap.
It turns out that the greedy left-to-right parsing indeed produces the optimal
number z of phrases [23, Thm. 1]. Further, the parsing can be obtained in O(n)
time [30, 35].

If we disallow that a phrase overlaps its source, that is, Z; must be a substring
of Zy ... Z;_4 or asingle symbol, then we call z,, the number of phrases obtained.
In this case it is also true that the greedy left-to-right parsing produces the
optimal number z,, of phrases [35, Thm. 10 with p = 1]. Since the Lempel-Ziv
parsing allowing overlaps is optimal among all left-to-right parsings, we also have



that 2,, > 2. This parsing can also be computed in O(n) time [8]. Note that, on
a text family like "= o, it holds that z,, = £2(zlogn).

Little is known about the relation between b and z except that z > b by
definition (z is the smallest unidirectional parsing) and that, for any constant
€ > 0, there is an infinite family of strings for which b < (3 + €) - min(z, 2%) [35,
Cor. 7.1], where 2% is the z of the reversed string.

2.3 Grammar Compression

Consider a context-free grammar (CFG) that generates T' and only T [20]. Each
nonterminal must be the left-hand side in exactly one rule, and the size g of the
grammar is the sum of the right-hand sides of the rules. In general, we will use
g to denote the minimum possible size of a grammar that generates T', which is
NP-complete to compute [31, 6].

If we allow, in addition, rules of the form X — Y, of size 1, the result is a
run-length context-free grammar (RLCFG) [28]. We will use g,; to denote the
size of the smallest RLCFG that generates T'. Thus, it is clear that g, < g.
Further, on the string family 7' = a™ it holds that g = (g, logn).

A well-known relation between z,, and ¢ is 2o < g = O(2no log(n/zn0)) [31,
6]. Further, it is known that g = O(zlog(n/z)) [14, Lem. 8]. Those papers exhibit
O(log n)-approximations to the smallest grammar, as well as several others [32,
17,18]. A negative result about the approximation are string families where
g = 2(znologn/loglogn) [6,15] and, recently, g.; = 2(zn, logn/loglogn) [3].

2.4 Runs in the Burrows-Wheeler Transform

Assume that T is terminated by the special symbol T'[n] = $, which is lexico-
graphically smaller than all the others. This makes any lexicographic comparison
between suffixes well defined.

The suffix array [25] of T'[1..n] is an array SA[l..n] storing a permutation of
[1..n] so that, for all 1 < i < n, the suffix T[SA[4]..] is lexicographically smaller
than the suffix T[SA[i 4 1]..]. Thus SA[i] is the starting position in T of the ith
smallest suffix of T" in lexicographic order.

The inverse permutation of SA, ISA[1..n], is called the inverse suffix array, so
that ISA[j] is the lexicographical position of the suffix T'[j..n| among the suffixes
of T.

The Burrows- Wheeler Transform of T[1..n], BWT[1..n] [5], is a string defined
as BWT[i] = T[SA[{] — 1] if SA[i] > 1, and BWT[i] = T[n] = $ if SA[{] = 1.
That is, BWT has the same symbols of T" in a different order, and is a reversible
transform.

The array BWT can be easily obtained from 7" and SA, which can be built in
O(n) time [19]. To obtain T from BWT [5], one considers two arrays, L[l..n] =
BWT and F[1..n], which contains all the symbols of L (or T') in ascending order.
Alternatively, F[i] = T[SA[i]], so F[i] follows L[i] in T. We need a function
that maps any L[i] to the position j of that same symbol in F. The formula



is LF(i) = C[c] + rank[i], where ¢ = L[i], C[c] is the number of occurrences of
symbols less than ¢ in L, and rank[i] is the number of occurrences of symbol
L[i] in L[1..4). Once C and rank are computed, we reconstruct T'n] = $ and
Tln—k] « LILF*Y (1) for k=1,...,n—1.

The number of equal-symbol runs r in the BWT of T can be bounded in
terms of the empirical entropy [24]. However, the measure is also interesting
on highly repetitive collections (where, in particular, z and z,, are small). For
example, there are string families where z = 2(rlogn) [29], and others where
r = £2(zno logn) [2,29].

2.5 Locally consistent parsing

A string can be parsed in a locally consistent way, in the sense that equal sub-
strings are largely parsed in the same form. We use a variant of locally consistent
parsing called recompression [17, 16].

Definition 1. A repetitive area in a string is a mazimal run of the same symbol,
of length 2 or more.

Definition 2. Two segments contained in [1..n] overlap if they are not disjoint
nor one contained in the other.

Lemma 1 ([17]). We can partition a string S[1..0] into at most (3/4)¢ blocks
so that, for every pair of identical substrings S[i..j] = S[i’..5'], if neither S[i +
1.7 —1] or S[i’ + 1.5 — 1] overlap a repetitive area, then the sequence of blocks
covering S[i + 1..5 — 1] and S[i’ + 1..77 — 1] are identical.

Proof. The parsing is obtained by, first, creating new symbols that represent
the repetitive areas. On the resulting sequence, the alphabet (which contains
original symbols and created ones) is partitioned into two subsets, left-symbols
and right-symbols. Then, every left-symbol followed by a right-symbol are paired
in a block. It is then clear that, if S[i+1..5 —1] and S[i’ +1..5' — 1] do not overlap
repetitive areas, then the parsing of S[i..j] and S[¢’..j'] may differ only in their
first position (if it is part of a repetitive area ending there, or if it is a right-
symbol that becomes paired with the preceding one) and in their last position (if
it is part of a repetitive area starting there, or if it is a left-symbol that becomes
paired with the following one). Jez [17] shows how to choose the pairs so that S
contains at most (3/4)¢ blocks. O

The lemma ensures a locally consistent parsing into blocks as long as the sub-
strings do not overlap repetitive areas, though the substrings may fully contain
repetitive areas.

3 Upper Bounds

In this section we obtain our main upper bound, z = O(blog(n/b)), along with
other byproducts. To this end, we first prove that g, = O(blog(n/b)), and



then that z < 2g,;. To prove the first bound, we build a RLCFG on top of a
bidirectional scheme. The grammar is built in several rounds of locally consistent
parsing on the text. In each round, the blocks of the locally consistent parsing
are converted into nonterminals and fed to the next round. The key is to prove
that distinct nonterminals are produced only at the boundaries of the phrases of
the bidirectional scheme. The second bound is an easy extension to the known
result z,, < g.

Theorem 1. Let T[1..n] have a bidirectional scheme of size b. Then there exists
a run-length context-free grammar of size g, = O(blog(n/b)) that generates T

Proof. Recalling Lemma 1, consider a locally consistent parsing of W = T into
blocks. We will count the number of different blocks we form, as this corresponds
to the number of nonterminals produced in the first round.

Recall from Section 2.1 that our bidirectional scheme represents T as a se-
quence of chunks, by means of a function f. To count the number of different
blocks produced, we will pessimistically assume that the first two and the last
two blocks intersecting each chunk are all different. The number of such border-
ing blocks is at most 4b. On the other hand, we will show that non-bordering
blocks do not need to be considered, because they will be counted somewhere
else, when they appear near the extreme of a chunk.

We show that this is true in both types of non-bordering blocks resulting
from Lemma 1:

1. The block is a pair of left- and right-alphabet symbols.® As these symbols can
be an original symbol or a maximal area, let us write the pair generically as
X =qal= beb, for some ¢,, 0, > 1, and let £ = £, + ¢} be the length of the block
X. If W[p..p+ £ — 1] = X is not bordering, then it is strictly contained in a
chunk. Thus, by the definition of a chunk, it holds that [f(p—1)..f(p+ )] =
[f(p) —1..f(p) + £], and that W[f(p) — 1..f(p) + ¢] = W[p — 1..p + £]. That
is, the block appears again at [f(p)..f(p) + ¢ — 1], surrounded by the same
symbols. Since, by the way Lemma 1 works, it must be W[f(p) — 1] =
Wip —1] # a and W[f(p) + €] = W[p+{] # b, and a’* is a left-symbol and
bt is a right-symbol, the locally consistent parsing must also form a block
W(f(p)..f(p)+£€—1] = X. If this block is bordering, then it will be counted.
Otherwise, by the same argument, W[f(p) — 1..f(p) + ¢] will be equal to
W([f?(p)—1..f*(p)+¥] and a block will be formed with W[f2(p)..f?(p)+£—1].
Since f has no cycles, there is a k > 0 for which f*(p) = —1. Thus for some
I < k it must be that X = W[f!(p)..f'(p) + £ — 1] is not bordering. At the
smallest such [, the block W[f!(p)..f!(p) + ¢ — 1] will be counted. Therefore,
X =W]p..p + ¢ — 1] is already counted somewhere else and we do not need
to count it at Wip..p + ¢ — 1].

2. The block is a single (original or maximal-run) symbol W[p..p+ ¢ — 1] = af,
for some £ > 1. It also holds that [f(p—1)..f(p+£)] = [f(p) —1..f(p)+£] and

5 For this case, we could have defined bordering in a stricter way, as the first or last
block of a chunk.



W(f(p) —1..f(p) +€] = W[p—1..p+£], because a’ is strictly inside a chunk.
Since W([f(p) — 1] = Wp —1] # a and W[f(p) + £] = W[p + {] # a, the
parsing forms the same maximal run a* = W[f(p)..f(p) + £ — 1]. Moreover,
since Wp..p+ £ — 1] is not bordering, the previous and next blocks produced
by the parsing, X = W[p'.p— 1] and Y = [p+ £..p"], are also strictly inside
the same chunk, and therefore they also appear preceding and following
WI{f(p)..f(p) +€—1], at X = WI[f(p')..f(p) —1] and Y = [f(p) + L..f(p")].
Since a’ was not paired with X nor Y at W(p..p + £ — 1], the parsing will
also not pair them at W{[f(p)..f(p) + £ — 1]. Therefore, the parsing will
leave a’ as a block also in [f(p)..f(p) + £ — 1]. If W[f(p)..f(p+ £ — 1)] is
bordering, then it will be counted, otherwise we can repeat the argument
with W[f2(p) — 1..f2(p) + £] and so on, as in the previous item.

Therefore, we produce at most 4b distinct blocks, and the RLCFG has at
most 12b nonterminals (for X = a‘“b’ we may need 3 nonterminals, A — a’e,
B —b%, and C — AB).

For the second round, we create a reduced sequence W' from W by replacing
all the blocks of length 2 or more by their corresponding nonterminals. The new
sequence is guaranteed to have length at most (3/4)n by Lemma 1.

We define a new bidirectional scheme (recall Section 2.1) on W, as follows:

1. For each bordering block in W, its nonterminal symbol position in W’ is
made explicit in the bidirectional scheme of W’. Note that this includes the
blocks covering the explicit symbols in the bidirectional scheme of W.

2. For the chunks B; = Wt;..t; + ¢; — 1] of W containing non-bordering blocks
(note B; cannot be an explicit chunk), let B; be obtained by trimming from
B; the bordering blocks near the extremes of B;. Then B appears inside
W(s;..s; + £; — 1] (with s; = f(¢;)), where the same sequence of blocks
is formed by our arguments above. We then form a chunk in W’ with se-
quence of nonterminals associated with the blocks of B; (all of which are
non-bordering), pointing to the identical sequence of nonterminals that ap-
pear as blocks inside W(s;..s; + £; — 1].

To bound the total number of nonterminals generated, let us call W} the
sequence W after k iterations (so T = Wj) and Ny the number of distinct
blocks created when converting Wy, into Wiy4.

In the first iteration, since there may be up to 4 bordering blocks around
each chunk limit, we may create N; < 4b distinct blocks. Those blocks become
new explicit chunks in the bidirectional scheme of W’ = Wj. Note that those
explicit chunks are grouped into b regions of up to 4 consecutive chunks. In each
new iteration, Wy is parsed into blocks again. We have shown that the blocks
formed outside regions (i.e., non-bordering blocks) are not distinct, so we can
focus on the number of new blocks produced to parse each of the b regions. The
parsing produces at most 4 new distinct blocks extending each region. However,
the parsing of the regions themselves may also produce new distinct blocks. Our
aim is to show that the number of those blocks is also bounded because they
decrease the length of the regions, which only grow by 4b per iteration.
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Fig. 1. llustration of Theorem 1. On top we see the limit between two long chunks
of Wy. In this example, the blocking always pairs two symbols. We show below Wy
the 4 bordering blocks formed with the symbols nearby the limit. Below, in W7, those
blocks are converted into 4 explicit chunks (of length 1). This region of 4 symbols is
then parsed into 2 blocks. The parsing also creates 4 new bordering blocks from the
ends of the long chunks. In W5, below, we have now a region of 6 explicit chunks. They
could have been 8, but we created 2 distinct blocks that reduced their number to 6.

Let ng be the number of new distinct blocks produced when parsing the
regions themselves. Therefore it holds that the number of distinct blocks Ny
produced in the kth iteration is at most 4b+ng, and the total number of distinct
blocks created up to building W is Zi:ol N; < 4bk + Zi:ol ;.

On the other hand, for each of the ny blocks created when parsing a region,
the length of the region decreases at least by 1 in Wyy1. Let us call Cy the
number of explicit chunks in Wj. Since only the 4 new bordering blocks at each
region are converted into explicit chunks, it holds that Cj < 4bk for all k£ > 0.
Moreover, it holds Cjy1 < Cj, + 4b — ng, and thus 0 < Cj, < 4bk — 37" n;.
Therefore, Zi:ol n; < 4bk and thus Zi:ol N; < 8bk. Since each nonterminal
may need 3 rules to represent a block, a bound on the number of nonterminals
created is 24bk.

After k rounds, the sequence is of length at most (3/4)¥n and we have
generated at most 24bk nonterminals. Therefore, if we choose to perform k& =
logy/3(n/b) rounds, the sequence will be of length at most b and the grammar
size will be O(blog(n/b)). To complete the process, we add O(b) nonterminals
to reduce the sequence to a single initial symbol.

The idea is illustrated in Figure 1. O

With Theorem 1, we can also bound the size z of the Lempel-Ziv parse [23]
that allows overlaps. The size without allowing overlaps is known to be bounded
by the size of the smallest CFG, z,, < g [31,6]. We can easily see that z < 2g,,
also holds by extending an existing proof [6, Lem. 9] to handle the run-length
rules. We call left-to-right parse of T' any parsing in which each new phrase is a
symbol or it occurs previously in 7.

Theorem 2. Let a RLCFG of size g, expand to a text T. Then the Lempel-Ziv
parse (allowing overlaps) of T produces z < 2g,; phrases.

Proof. Consider the parse tree of T', where all internal nodes representing any
but the leftmost occurrence of a nonterminal are pruned and left as leaves. The



number of nodes in this tree is precisely ¢,;. We say that the internal node of
nonterminal X is its definition. Our left-to-right parse of T is a sequence Z[1..z]
obtained by traversing the leaves of the pruned parse tree left to right. For a
terminal leaf, we append the symbol to Z. For a leaf representing nonterminal
X, we append to Z a reference to the area T[z..y] expanded by the leftmost
occurrence of X.

Rules X — Y are handled as follows. First, we expand them to X — Y- Y*~1,
that is, the node for X has two children for Y, and it is annotated with t—1. Since
the right child of X is not the first occurrence of Y, it must be a leaf. The left
child of X may or may not be a leaf, depending on whether Y occurred before or
not. Now, when our leaf traversal reaches the right child Y of a node X indicating
t — 1 repetitions, we append to Z a reference to T[x..y+ (t —2)(y —x +1)], where
T'[x..y] is the area expanded by the first child of X. Note that source and target
overlap if ¢t > 2. Thus a left-to-right parse of size 2g,; exists, and Lempel-Ziv is
the optimal left-to-right parse [23, Thm. 1]. O

By combining Theorems 1 and 2, we obtain a result on the long-standing
open problem of finding the approximation ratio of Lempel-Ziv compared to the
smallest bidirectional scheme.

Theorem 3. Let T[1..n] have a bidirectional scheme of size b. Then the Lempel-
Ziv parsing of T allowing overlaps has z = O(blog(n/b)) phrases.

We can also derive upper bounds for g, the size of the smallest CFG, and for
Zno, the size of the Lempel-Ziv parse that does not allow overlaps. It is sufficient
to combine the previous results with the facts that ¢ = O(zlog(n/z)) [14, Lem. §]
and z,, < g [31, 6].

Theorem 4. Let T[1..n] have a bidirectional scheme of size b. Then there exists
a context-free grammar of size g = O(blog®(n/b)) that generates T.

Theorem 5. Let T[1..n] have a bidirectional scheme of size b. Then the Lempel-
Ziv parsing of T without allowing overlaps has zn, = O(blog?(n/b)) phrases.

4 Lower Bounds

In this section we prove that the upper bound of Theorem 3 is tight as a function
of n, by exhibiting a family of strings for which z = 2(blogn). This confirms that
the gap between bidirectionality and unidirectionality is significantly larger than
what was previously known. The idea is to define phrases in T" accordingly to the
r runs in the BWT, and to show that these phrases induce a valid bidirectional
macro scheme of size 2r. This proves that r = £2(b). Then we use a well-known
family of strings where z = 2(r logn).

Definition 3. Let pi,ps,...,Dpr be the positions that start runs in the BWT, and
let 51 < 82 < ... < 8, be the corresponding positions in T, {SA[p;],1 <1i < r},
in increasing order. Note that sy = 1 because BWT[ISA[1]] = $ is a size-1 run,
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Fig. 2. Illustration of Lemma 2.

and assume s,41 = n—+ 1, so that T is partitioned into phrases T'[s;..s;4+1 — 1].
Let also ¢(i) = SA[ISA[i] — 1] if ISA[i] > 1 and ¢(i) = SA[n] otherwise. Then
we define the bidirectional scheme of the BWT:

1. For each 1 <i<r, T[d(s;)..0(si+1 — 2)] is copied from T[s;..s;+1 — 2].
2. For each 1 <1i <, T[p(si+1 — 1)] is stored explicitly.

We build on the following lemma, illustrated in Figure 2.

Lemma 2. Let [j — 1..j] be within a phrase of T. Then it holds that ¢(j — 1) =
¢(j) =1 and T[j — 1] = T[¢(j) — 1].

Proof. Consider the pair of positions T[j — 1..j] within a phrase. Let them be
pointed from SA[z] = j and SA[y] = j — 1, therefore ISA[j] = x, ISA[j — 1] = v,
and LF(x) = y. Now, since j is not a position at the beginning of a phrase, x is
not the first position in a BWT run. Therefore, BWT [z — 1] = BWT[z], from
which it follows that LF(x—1) = LF(x)—1 = y—1. Now let SA[z — 1] = 4, that
is, i = ¢(j). Then ¢(j — 1) = SA[ISA[j — 1] — 1) = SAly — 1] = SA[LF(z —1)] =
SAlx —1] -1 =1i—1 = ¢(j) — 1. It also follows that T[j — 1] = BWT[x] =
BWT[xz—-1]=T[i— 1] =T[¢(5) — 1]. O

Lemma 3. The bidirectional scheme of the BWT is a valid bidirectional scheme,
thus 2r > b.

Proof. By Lemma 2, it holds that ¢(j—1) = ¢(j)—1if [j—1..j] is within a phrase,
and that T'[j — 1] = T[¢(j) — 1]. Therefore, we have that ¢(s; +k) = ¢(s;) + k for
0<k<siy1—s;— 1, and then T[p(s;),...,d(si+1 — 2)] is indeed a contiguous
range. We also have that T[é(s;)..¢(siv1 — 2)] = T'[s;.-8i+1 — 2], and therefore
it is correct to make the copy. Since ¢ is a permutation, every position of T is
mentioned exactly once as a target in points 1 and 2.

Finally, it is easy to see that we can recover the whole T from those 2r
directives. We can, for example, follow the cycle ¢*(n), k = 0,...,n — 1 (note
that T[¢°(n)] = T'[n] is stored explicitly), and copy T[¢* (n)] to T[¢*T!(n)] unless
the latter is explicitly stored.

Since the bidirectional scheme of the BWT is of size 2r, it follows by definition
that 2r > b. O



We are now ready to obtain the lower bound on bidirectional versus unidi-
rectional parsings.

Theorem 6. There is an infinite family of strings over an alphabet of size 2 for
which z = 2(blogn).

Proof. Consider the family of the Fibonacci stings, F} = a, F» = b, and Fy =
Fj_1Fy_o for all k > 2. As observed by Prezza [29, Thm. 25], for F}, we have
r = 0(1) [26] and z = O(logn) [10]. By Lemma 3, it also holds that b = O(1),
and therefore z = 2(blogn). O

5 Conclusions

We have essentially closed the question of which is the approximation ratio of
the (unidirectional) Lempel-Ziv parse with respect to the optimal bidirectional
parse, therefore contributing to the understanding of the quality of this popular
heuristic that can be computed in linear time, whereas computing the optimal
bidirectional parse is NP-complete. Our bounds, which are shown to be tight,
show that the gap is in fact wider than what was previously known.

Figure 3 (left) illustrates the known asymptotic bounds that relate the repet-
itiveness measures we have studied: b, z, 2,0, g, g1, and r. We also include e,
the size of the CDAWG [4] of T (i.e., the smallest compact automaton that rec-
ognizes the substrings of T), which has received some attention recently [2]. Tt
is known that e > max(z,r) [2] and e = £2(g) [1].

Figure 3 (right) shows known lower bounds that hold for specific string
families. Apart from the lower bounds mentioned in Section 2, there are text
families for which e = 2(max(r,z) - n) [2] and thus e = 2(g - n/logn) since
g = O(zlogn); and r = 2(glogn/loglogn) (since on a de Bruijn sequence of
order k on a binary alphabet we have r = O(n) [2], z = O(n/logn), and thus
g = O(zlog(n/z)) = O(nloglogn/logn)). From the upper bounds that hold
for every string family, we can also deduce that, for example, there are string
families where r = 2(zlogn) and thus r = 2(blogn) (since r = 2(z,, logn));
{9, 9ris 2no} = 2(rlogn) (since z = 2(rlogn)) and z = N2(blogn) (since r =
£2(b), Theorem 6). We nevertheless included explicitly the most important of
these in the figure.

There are various interesting avenues of future work. For example, it is un-
known if r can be more than O(logn) times larger than z or g. It might also
be that our Theorem 1 can be proved without using run-length rules, yielding
g = O(blog(n/b)). These are questions of theoretical and also practical relevance,
since for example there exist compressed indexes for highly repetitive collections
that obtain different search performance depending on which compressibility
measure their space is bounded by [27, Sec. 13.2].

Another relevant research avenue is to look for alternatives to Lempel-Ziv
compression with a better approximation ratio. For example, a recent bidirec-
tional scheme, lepcomp, seems to always perform better than Lempel-Ziv in prac-
tice [9]. It would be interesting to research its approximation ratio with respect
to the optimal bidirectional parsing.
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Fig. 3. Known and new asymptotic bounds between repetitiveness measures. The
bounds on the left hold for every string family: an edge means that the lower mea-
sure is of the order of the upper. The thicker lines were proved in this paper. The
dashed lines on the right are lower bounds that hold for some string family. The solid
lines are inherited from the left, and since they always hold, they permit propagating
the lower bounds. Note that r appears twice.
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