
Rotation and Lighting Invariant Template MathingKimmo Fredriksson� Veli M�akineny Gonzalo NavarrozAbstratWe address the problem of searhing for a two-dimensional pattern in a two-dimensional text(or image), suh that the pattern an be found even if it appears rotated and brighter or darkerthan its ourrene. Furthermore, we onsider approximate mathing under several toleranemodels. We obtain algorithms that are almost worst-ase optimal. The omplexities we obtainare very lose to the best urrent results for the ase where only rotations, but not lightinginvariane, are supported. These are the �rst results for this problem under a ombinatorialapproah.1 IntrodutionWe onsider the problem of �nding the ourrenes of a two-dimensional pattern of size m�m ellsin a two-dimensional text of size n� n ells, when all possible rotations of the pattern are allowedand also pattern and text may have di�erenes in brightness. This stands for rotation and lightinginvariant template mathing. Text and pattern are seen as images formed by ells, eah of whihhas a gray level value, also alled a olor.Template mathing has numerous important appliations from siene to multimedia, for ex-ample in image proessing, ontent based information retrieval from image databases, geographiinformation systems, proessing of aerial images, to name a few. In all these ases, we want to �nda small subimage (the pattern) inside a large image (the text) permitting rotations (a small de-gree or any). Furthermore, pattern and text may have been photographed under di�erent lightingonditions, so one may be brighter than the other.The traditional approah to this problem [2℄ is to ompute the ross orrelation between eahtext loation and eah rotation of the pattern template. This an be done reasonably eÆientlyusing the Fast Fourier Transform (FFT), requiring time O(Kn2 log n) where K is the number ofrotations sampled. Typially K is O(m) in the two-dimensional (2D) ase, and O(m3) in the 3Dase, whih makes the FFT approah very slow in pratie. In addition, lighting-invariant featuresmay be de�ned in order to make the FFT insensitive to brightness. Also, in many appliations,\lose enough" mathes of the pattern are also aepted. To this end, the user may speify, forexample, a parameter � suh that mathes that have at most � di�erenes with the pattern shouldbe aepted, or a parameter Æ suh that gray levels di�ering by less than Æ are onsidered equal.The de�nition of the mathing onditions is alled the \mathing model" in this paper.�Department of Computer Siene, University of Joensuu. kfredrik�s.joensuu.fi.yDepartment of Computer Siene, University of Helsinki. vmakinen�s.helsinki.fi.zDepartment of Computer Siene, University of Chile. gnavarro�d.uhile.l.1



Rotation invariant template mathing was �rst onsidered from a ombinatorial point of viewin [9, 10℄. Sine then, several fast �lters have been developed for diverse mathing models [11, 5,12, 7, 6, 8℄. These represent large performane improvements over the FFT-based approah. Theworst-ase omplexity of the problem was also studied [1, 7℄. However, lighting invariane has notbeen onsidered in this senario.On the other hand, transposition invariant string mathing was onsidered in musi retrieval[3, 13℄. The aim is to searh for (one-dimensional) patterns in texts suh that the pattern maymath the text after all its haraters (notes) are shifted by some value. The reason is that suhan ourrene will sound like the pattern to a human, albeit in a di�erent sale. In this ontext,eÆient algorithms for several approximate mathing funtions were developed in [14℄.We note that transposition invariane beomes lighting invariane when we replae musial notesby gray levels of ells in an image. Hene, the aim of this paper is to enrih the existing algorithms forrotation invariant template mathing [7℄ with the tehniques developed for transposition invariane[14℄ so as to obtain rotation and lighting invariant template mathing. It turns out that lightinginvariane an be added at very little extra ost. The key tehnique exploited is inremental distaneomputation; we show that several transposition invariant distanes an be omputed inrementallytaking the omputation done with the previous rotation into aount in the next rotation angle.Let us now determine whih are the reasonable mathing models. In [7℄, some of the modelsonsidered were useful only for binary images, a ase where obviously we are not interested in thispaper. We will address models that make sense for gray level images. We de�ne three transposition-invariant distanes: dt;ÆH , whih ounts how many pattern and text ells di�er by more than Æ; dt;�MAD,whih is the maximum olor di�erene between pattern and text ells when up to � outliers arepermitted; and dt;�SAD, whih is the sum of absolute olor di�erenes between pattern and text ellspermitting up to � outliers. Table 1 shows our omplexities to ompute these distanes for everypossible rotation of a pattern entered at a �xed text position. Variable � is the number of di�erentgray levels (assume � = 1 if the alphabet is not a �nite disrete range). We remark that a lowerbound to this problem is O(m3), and this is ahieved in [8℄ without lighting invariane.Distane Complexitydt;ÆH min(logm;� + (Æ + 1))m3dt;�MAD (min(�; �) + logmin(m;�))m3dt;�SAD (min(�; �) + logmin(m;�))m3Table 1: Worst-ase omplexities to ompute the di�erent distanes de�ned.We also de�ne three searh problems, onsisting in �nding all the transposition-invariant rotatedourrenes of P in T suh that: there are at most � ells of P di�ering by more than Æ from theirtext ell (Æ-mathing); the sum of absolute di�erene between ells in P and T , exept for �outliers, does not exeed  (-mathing); and P mathes both riteria at the same time, for a giventransposition and set of outliers ((Æ; )-mathing). Table 2 shows our results. Without transpositioninvariane the worst ases are all O(m3n2) [8℄.We remark that we have developed algorithms that work on arbitrary alphabets, but we havealso taken advantage of the ase where the alphabet is a disrete range of integer values.2



Problem ComplexityÆ-mathing min(logm;� + (Æ + 1))m3n2(min(�; �) + logmin(m;�))m3n2-mathing (min(�; �) + logmin(m;�))m3n2(Æ; )-mathing (min(�; �)p + logmin(m;�))m3n2Table 2: Complexities for di�erent searh problems. (Æ; ) mathing omplexity is valid only forinteger alphabets.2 De�nitionsLet T = T [1::n; 1::n℄ and P = P [1::m; 1::m℄ be arrays of unit squares, alled ells, in the (x; y)-plane. Eah ell has a value in an alphabet alled �, sometimes alled its gray level or its olor.A partiular ase of interest is that of � being a �nite integer range of size �. The orners of theell for T [i; j℄ are (i � 1; j � 1); (i; j � 1); (i � 1; j) and (i; j). The enter of the ell for T [i; j℄ is(i� 12 ; j � 12). The array of ells for pattern P is de�ned similarly. The enter of the whole patternP is the enter of the ell in the middle of P . Preisely, assuming for simpliity that m is odd, theenter of P is the enter of ell P [m+12 ; m+12 ℄.Assume now that P has been moved on top of T using a rigid motion (translation and rotation),suh that the enter of P oinides exatly with the enter of some ell of T (enter-to-enterassumption). The loation of P with respet to T an be uniquely given as ((i; j); �) where (i; j) isthe ell of T that mathes the enter of P , and � is the angle between the x-axis of T and the x-axisof P . The (approximate) ourrene between T and P at some loation is de�ned by omparingthe values of the ells of T and P that overlap. We will use the enters of the ells of T for seletingthe omparison points. That is, for the pattern at loation ((i; j); �), we look whih ells of thepattern over the enters of the ells of the text, and ompare the orresponding values of thoseells. Figure 1 illustrates.
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Figure 1: Eah text ell is mathed against the pattern ell that overs the enter of the text ell.More preisely, assume that P is at loation ((i; j); �). For eah ell T [r; s℄ of T whose enterbelongs to the area overed by P , let P [r0; s0℄ be the ell of P suh that the enter of T [r; s℄ belongs3



to the area overed by P [r0; s0℄. Then M(T [r; s℄) = P [r0; s0℄, that is, our algorithms ompare theell T [r; s℄ of T against the ell M(T [r; s℄) of P .Hene the mathing funtion M is a funtion from the ells of T to the ells of P . Now onsiderwhat happens to M when angle � grows ontinuously, starting from � = 0. Funtion M hangesonly at the values of � suh that some ell enter of T hits some ell boundary of P . It was shownin [9℄ that this happens O(m3) times, when P rotates full 2� radians. This result was shown to bealso a lower bound in [1℄. Hene there are �(m3) relevant orientations of P to be heked. The setof angles for 0 � � � �=2 isA = f�; �=2 � � j � = arsin h+ 12pi2 + j2 � arsin jpi2 + j2 ;i = 1; 2; : : : ; bm=2; j = 0; 1; : : : ; bm=2;h = 0; 1; : : : ; bqi2 + j2g:By symmetry, the set of possible angles �, 0 � � < 2�, isA = A [ A+ �=2 [ A+ � [ A+ 3�=2:Furthermore, pattern P mathes at loation ((i; j); �) with lighting invariane if there is someinteger transposition t suh that T [r; s℄ + t = P [r0; s0℄ for all [r0; s0℄ in the area of P .One the position and rotation ((i; j); �) of P in T de�ne the mathing funtion, we an omputedi�erent kinds of distanes between the pattern and the text. Lighting-invariane versions of thedistanes hoose the transposition minimizing the basi distane. The following distanes areinteresting for gray level images.Hamming Distane (H): The number of times T [r; s℄ 6= P [r0; s0℄ ours, over all the ells of P ,that is dH(i; j; �; t) = Xr0;s0 if T [r; s℄ + t 6= P [r0; s0℄ then 1 else 0dtH(i; j; �) = mint dH(i; j; �; t)This an be extended to distane dÆH and its transposition-invariant version dt;ÆH , where olorsmust di�er by more than Æ in order to be onsidered di�erent, that is, T [r; s℄ + t 62 [P [r0; s0℄�Æ; P [r0; s0℄ + Æ℄.Maximum Absolute Di�erenes (MAD): The maximum value of jT [r; s℄ � P [r0; s0℄j over allthe ells of P , that is, dMAD(i; j; �; t) = maxr0;s0 jT [r; s℄ + t� P [r0; s0℄jdtMAD(i; j; �) = mint dMAD(i; j; �; t)This an be extended to distane d�MAD and its transposition-invariant version dt;�MAD, so thatup to � pattern ells are freed from mathing the text. Then the problem is to ompute theMAD distane with the best hoie of � outliers that are not inluded in the maximum.4



Sum of Absolute Di�erenes (SAD): The sum of the jT [r; s℄�P [r0; s0℄j values over all the ellsof P , that is, dSAD(i; j; �; t) = Xr0;s0 jT [r; s℄ + t� P [r0; s0℄jdtSAD(i; j; �) = mint dSAD(i; j; �; t)Similarly, this distane an be extended to d�SAD and its transposition-invariant version dt;�SAD,where up to � pattern ells an be removed from the summation.One the above distanes are de�ned, we an de�ne the following searh problems:Æ-Mathing: Report triples (i; j; �) suh that dtMAD(i; j; �) � Æ. A tolerane � an be permitted, sothat we only require dt;�MAD(i; j; �) � Æ. Observe that this ondition is the same as dt;ÆH (i; j; �) ��.-Mathing: Report triples (i; j; �) suh that dtSAD(i; j; �) � . Again, permitting tolerane �means requiring dt;�SAD(i; j; �) � .(Æ; )-Mathing: Report triples (i; j; �) suh that dMAD(i; j; �; t) � Æ and dSAD(i; j; �; t) �  forsome t. Tolerane � an be handled similarly, but the � exluded ells must be the same forboth distanes.3 EÆient AlgorithmsIn [1℄ it was shown that for the problem of the two dimensional pattern mathing allowing rotationsthe worst ase lower bound is 
(n2m3). We have shown in [7℄ a simple way to ahieve this lowerbound for any of the distanes under onsideration (without lighting invariane).The idea is that we will hek eah possible text enter, one by one. So we have to pay O(m3)per text enter to ahieve the desired omplexity. What we do is to ompute the distane we wantfor eah possible rotation, by reusing most of the work done for the previous rotation. One thedistanes are omputed, it is easy to report the triples (i; j; �) where these values are smaller thanthe given thresholds (Æ and/or ). Only distanes dH (with Æ = 0) and dSAD (with � = 0) wereonsidered.Assume that, when omputing the set of angles A = (�1; �2; : : :), we also sort the angles so that�i < �i+1, and assoiate with eah angle �i the set Ci ontaining the orresponding ell entersthat must hit a ell boundary at �i. Hene we an evaluate the distane funtions (suh as dSAD)inrementally for suessive rotations of P . That is, assume that the distane has been evaluatedfor �i, then to evaluate it for rotation �i+1 it suÆes to re-evaluate the ells restrited to the setCi. This is repeated for eah � 2 A. Therefore, the total time for evaluating the distane for Pentered at some position in T , for all possible angles, is O(Pi jCij). This is O(m3) beause eah�xed ell enter of T , overed by P , an belong to some Ci at most O(m) times. To see this, notethat when P is rotated the whole angle 2�, any ell of P traverses through O(m) ells of T .5



If we want to add lighting invariane to the above sheme, a naive approah is to run thealgorithm for every possible transposition, for a total ost of O(n2m3�). In ase of a generalalphabet there are O(m2) relevant transpositions at eah rotation (that is, eah pattern ell an bemade to math its orresponding text ell). Hene the ost raises to O(n2m5).In order to do better, we must be able to ompute the optimal transposition for the initialangle and then maintaining it when some haraters of the text hange (beause the pattern hasbeen aligned over a di�erent text ell). If we take f(m) time to do this, then our lighting invariantalgorithm beomes worst-ase time O(n2m3f(m)). In the following we show how an we ahievethis for eah of the distanes under onsideration.This tehnique an be inserted into the �lters that we present later in order to make them nearoptimal in the worst ase. All our �ltration algorithms are based on disarding most of the possible(i; j; �) loations and leaving a few of them to be veri�ed. If we manage to avoid verifying a giventext enter more than one, then we an apply our veri�ation tehnique and ensure that, overall,we annot pay more than O(n2m3f(m)).3.1 Distane dt;ÆH and Æ-MathingAs proved in [14℄, the optimal transposition for Hamming distane is obtained as follows. Eah ellP [r0; s0℄, aligned to T [r; s℄, votes for a range of transpositions [P [r0; s0℄�T [r; s℄�Æ; P [r0; s0℄�T [r; s℄+Æ℄,for whih it would math. If a transposition reeives v votes, then its Hamming distane is m2� v.Hene, the transposition that reeives most votes is the one yielding distane dt;ÆH . Let us nowseparate the ases of integer and general alphabets.3.1.1 Integer alphabet.The original algorithm [14℄ obtains O(�+jP j) time on integer alphabet, by buket-sorting the rangeextremes and then traversing them linearly so as to �nd the most voted transposition (a ounter isinremented when a range starts and deremented when it �nishes).In our ase, we have to pay O(� +m2) in order to �nd the optimal transposition for the �rstrotation angle. The problem is how to reompute the optimal transposition one some text ellT [r; s℄ hanges its value (due to a small hange in rotation angle). The net e�et is that the rangeof transpositions given by the old ell value loses a vote and a new range gains a vote.We use the fat that the alphabet is an integer range, so there are O(�) possible transpositions.Eah transposition an be lassi�ed aording to the number of votes it has. There are m2+1 listsLi, 0 � i � m2, ontaining the transpositions that urrently have i votes. Hene, when a rangeof transpositions loses/gains one vote, the 2Æ +1 transpositions are moved to the lower/upper list.We need to keep ontrol of whih is the highest-numbered non-empty list, whih is easily done inonstant time per operation beause transpositions move only from one list to the next/previous.Initially we pay O(� +m2) to initialize all the lists and put all the transpositions in list L0, thenO((Æ + 1)m2) to proess the votes of all the ells, and then O(Æ + 1) to proess eah ell thathanges. Overall, when we onsider all the O(m3) ell hanges, the sheme is O(� + (Æ + 1)m3).This is our omplexity to ompute distane dt;ÆH between a pattern and a text enter, onsideringall possible rotations and transpositions. 6



Æ-Mathing an be done simply by omputing dt;ÆH distanes at eah text enter and reportingtriples (i; j; �) where dt;ÆH (i; j; �) � �. In fat, the �nal state of the lists (rotation of 2�) is equalto their state when built for the �rst rotation (angle zero), so it is possible to turn bak to theinitial state at ost O(m2). Hene we an move to the next text ell without paying again the O(�)initialization time. This means that our overall searh time is O(� + (Æ + 1)n2m3).3.1.2 General alphabet.Let us resort to a more general problem of dynami range voting : In the stati ase we have amultiset S = f[`; r℄g of one-dimensional losed ranges, and we are interested in obtaining a pointp that is inluded in most ranges, that is maxvote(S) = maxp jf[`; r℄ 2 S j ` � p � rgj. In thedynami ase a new range is added to or an old one is deleted from S, and we must be able toreturn maxvote(S) after eah update.Notie that our original problem of omputing dt;ÆH from one rotation angle to another is aspeial ase of dynami range voting; multiset S is f[P [r0; s0℄ � T [r; s℄ � Æ; P [r0; s0℄ � T [r; s℄ + Æ℄ jM(T [r; s℄) = P [r0; s0℄g in one rotation angle, and in the next one some T [r; s℄ hanges its value.That is, the old range is deleted and the new one is inserted, after whih maxvote(S) is requestedto ompute the distane dt;ÆH = m2 �maxvote(S) in the new angle.We show that dynami range voting an be supported in O(log jSj) time, whih immediatelygives an O(m3 logm) time algorithm for omputing dt;ÆH between a pattern and a text enter,onsidering all possible rotations and transpositions.First, notie that the point that gives maxvote(S) an always be hosen among the endpointsof ranges in S. We store eah endpoint e in a balaned binary searh tree with key e. Let us denotethe leaf whose key is e simply by (leaf) e. With eah endpoint e we assoiate a value vote(e) (storedin leaf e) that gives the number jf[`; r℄ j ` � e � r; [`; r℄ 2 Sgj, where the set is onsidered as amultiset (same ranges an have multiple ourrenes). In eah internal node v, value maxvote(v)gives the maximum of the vote(e) values of the leaves e in its subtree. After all the endpoints eare added and the values vote(e) in the leaves and values maxvote(v) in the internal nodes areomputed, the stati ase is solved by taking the value maxvote(root) = maxvote(S) in the rootnode of the tree.A straightforward way of generalizing the above approah to the dynami ase would be toreompute all values vote(e) that are a�eted by the insertion/deletion of a range. This would,however, take O(jSj) time in the worst ase. To get a faster algorithm, we only store the hangesof the votes in the roots of ertain subtrees so that vote(e) for any leaf e an be omputed bysumming up the hanges from the root to the leaf e.For now on, we refer to vote(e) and maxvote(v) as virtual values, and replae them with ountersdi�(v) and values maxdi�(v). Counters di�(v) are de�ned impliitly so that for all leaves of thetree it holds vote(e) = Xv2path(root;e) di�(v); (1)where path(root; e) is the set of nodes in the path from the root to a leaf e (inluding the leaf).7



Values maxdi�(v) are de�ned reursively asmax(maxdi�(v:left) + di�(v:left);maxdi�(v:right) + di�(v:right)); (2)where v:left and v:right are the left and right hild of v, respetively. In partiular, maxdi�(e) = 0for any leaf node e. One easily noties thatmaxvote(v) = maxdi�(v) + Xv02path(root;v) di�(v0); (3)whih also gives as a speial ase Equation (1) one we notie that maxvote(e) = vote(e) for eahleaf node e.Our goal is to maintain di�() and maxdi�() values orretly during insertions and deletions.We have three di�erent ases to onsider: (i) How to ompute the value di�(e) for a new endpointof a range, (ii) how to update the values of di�() and maxdi�() when a range is inserted/deleted,and (iii) how to update the values during rotations to rebalane the tree.Case (i) is handled by storing in eah leaf an additional ounter end(e). It gives the numberof ranges whose rightmost endpoint is e. Assume that this value is omputed for all existingleaves. When we insert a new endpoint e, we either �nd a leaf labeled e or otherwise there isa leaf e0 after whih e is inserted. In the �rst ase vote(e) remains the same and in the latterase vote(e) = vote(e0) � end(e0), beause e is inluded in the same ranges as e0 exept those thatend at e0. Notie also that vote(e) = 0 in the degenerate ase when e is the leftmost leaf. The+1 vote indued by the new range whose endpoint e is, will be handled in ase (ii). To makevote(e) = Pv02path(root;e) di�(v0), we �x di�(e) so that vote(e) = di�(e) +Pv02path(root;v) di�(v0),where v is the parent of e. One the maxdi�() values are updated in the path from e to the root,we an onlude that all the neessary updates are done in O(log jSj) time.Let use then onsider ase (ii). Reall the one-dimensional range searh on a balaned binarysearh tree (see e.g. [4℄, Setion 5.1). We use the fat that one an �nd in O(log jSj) time theminimal set of nodes, say F , suh that the range [`; r℄ of S is partitioned by F ; the subtreesstarting at nodes of F ontain all the points in [`; r℄ \ S and only them. It follows that wheninserting (deleting) a range [`; r℄, we an set di�(v) = di�(v) + 1 (di�(v) = di�(v) � 1) at eahv 2 F . This is beause all the values vote(e) in these subtrees hange by �1 (inluding leaves ` andr). To keep also the maxdi�() values orretly updated, it is enough to reompute the values in thenodes in the paths from eah v 2 F to the root using Equation (2); other values are not a�etedby the insertion/deletion of the range [`; r℄. The overall number of nodes that need updating isO(log jSj).Finally, let us onsider ase (iii). Counters di�(v) are a�eted by rotations, but in ase arotation involving e.g. subtrees v:left, v:right:left and v:right:right takes plae, values di�(v)and di�(v:right) an be \pushed" down to the roots of the a�eted subtrees, and hene theybeome zero. Then the rotation an be arried out. Subtree maxima are easily maintained throughrotations.Hene, eah insertion/deletion takes O(log jSj) time, and maxvote(S) = maxdi�(root) +di�(root) is readily available in the root node. 8



3.2 Distane dt;�MAD and Æ-MathingLet us start with � = 0. As proved in [14℄, the optimal transposition for distane dtMAD is obtainedas follows. Eah ell P [r0; s0℄, aligned to T [r; s℄, votes for transposition P [r0; s0℄� T [r; s℄. Then, theoptimal transposition is the average between the minimum and maximum vote. The dtMAD distaneyielded is the di�erene of maximum minus minimum, divided by two. Hene an O(jP j) algorithmwas immediate.We need O(m2) to obtain the optimal transposition for the �rst angle, zero. Then, in orderto address hanges of text haraters (beause, due to angle hanges, the pattern ell was alignedto a di�erent text ell), we must be able to maintain minimum and maximum votes. Every timea text harater hanges, a vote disappears and a new vote appears. We an simply maintainbalaned searh trees with all the urrent votes so as to handle any insertion/deletion of votesin O(log(m2)) = O(logm) time, knowing the minimum and maximum at any time. If we havean integer alphabet of size �, there are only 2� + 1 possible votes, so it is not hard to obtainO(log �) omplexity. Hene dtMAD distane between a pattern and a text enter an be omputedin O(m3 logm) or O(m3 logmin(m;�)) time, for all possible rotations and transpositions.In order to aount for up to � outliers, it was already shown in [14℄ that it is optimal tohoose them from the pairs that vote for maximum or minimum transpositions. That is, if all thevotes are sorted into a list v1 : : : vm2 , then distane dt;�MAD is the minimum among distanes dtMADomputed in sets v1 : : : vm2��, v2 : : : vm2��+1, and so on until v�+1 : : : vm2 . Moreover, the optimumtransposition of the i-th value of this list is simply the average of maximum and minimum, that is,(vm2���1+i + vi)=2.So our algorithm for dt;�MAD is as follows. We make our tree threaded, so we an easily aessthe �+ 1 smallest and largest votes. After eah hange in the tree, we retraverse these �+ 1 pairsand reompute the minimum among the vm2���1+i � vi di�erenes. This takes O(m3(�+ logm))time. In ase of an integer alphabet, sine there annot be more than O(�) di�erent votes, this anbe done in time O(m3(min(�; �) + logmin(m;�))).The Æ-mathing problem an be alternatively solved by omputing this distane for ev-ery text ell, and reporting triples (i; j; �) where dt;�MAD(i; j; �) � Æ. This gives an alternativeO((�+logm)n2m3) or O((min(�; �)+ log min(m;�))n2m3) time algorithm to solve the Æ-mathingproblem.3.3 Distane dt;�SAD and -MathingLet us �rst onsider ase � = 0. This orresponds to the SAD model of [14℄, where it was shownthat, if we ollet votes P [r0; s0℄ � T [r; s℄, then the median vote (either one if jP j is even) is thetransposition that yields distane dtSAD. Then the atual distane an be obtained by using theformula for dSAD. Hene an O(jP j) time algorithm was immediate.In this ase we have to pay O(m2) to ompute the distane for the �rst rotation, and then haveto manage to maintain the median transposition and urrent distane when some text ells hangetheir value due to small rotations.We maintain a balaned and threaded binary searh tree for the votes, plus a pointer to themedian vote. Eah time a vote hanges beause a pattern ell aligns to a new text ell, we must9



remove the old vote and insert the new one. When insertion and deletion our at di�erent halvesof the sorted list of votes (that is, one is larger and the other smaller than the median), the medianmay move by one position. This is done in onstant time sine the tree is threaded.The median value itself an hange. One hange is due to the fat that one of the votes hangedits value. Given a �xed transposition, it is trivial to remove the appropriate summand and introduea new one in the formula for dSAD. Another hange is due to the fat that the median position anhange from a value in the sorted list to the next or previous. It was shown in [14℄ how to modifyin onstant time distane dtSAD in this ase. The idea is very simple: if we move from transpositionvj to vj+1, then all the j smallest votes inrease their value by vj+1 � vj , and the m � j largestvotes derease by vj+1 � vj . Hene distane dSAD at the new transposition is the value at the oldtransposition plus (2j �m)(vj+1 � vj).Hene, we an traverse all the rotations in time O(m3 logm). This an be redued toO(m3 logmin(m;�)) on �nite integer alphabet, by noting that there annot be more than O(�)di�erent votes, and taking some are in handling repeated values inside single tree nodes.If we want to ompute distane dt;�SAD, we have again that the optimal values to free frommathing are those voting for minimum or maximum transpositions. If we remove those values,then the median lies at positions m�d�=2e : : : m+ d�=2e in the list of sorted votes, where m is theposition of the median for the whole list.Hene, instead of maintaining a pointer to the median, we maintain two pointers to the rangeof � + 1 medians that ould be relevant. It is not hard to maintain left and right pointers whenvotes are inserted and deleted in the set. All the median values an be hanged one by one, andwe an hoose the minimum distane among the �+1 options. This gives us an O(m3(�+ logm))time algorithm to ompute dt;�SAD. On integer alphabet, this is O(m3(�+log min(m;�))), whih anbe turned into O(m3(min(�; �) + logmin(m;�))) by standard triks using the fat that there areO(�) possible median votes that have di�erent values.This immediately gives an O((� + logm)n2m3) or O((min(�; �) + logmin(m;�))n2m3) timealgorithm for -mathing. It is a matter of omputing dt;�SAD at eah text position and reportingtriples (i; j; �) suh that dt;�SAD(i; j; �) � .3.4 (Æ; )-Mathing with Tolerane �There are two reasons why solving this problem is not a matter of omputing dt;�MAD and dt;�SADat eah text position and reporting triples (i; j; �) where both onditions dt;�MAD(i; j; �) � Æ anddt;�SAD(i; j; �) �  hold. One is that the transposition ahieving this must be the same, and the otheris that the � outliers must be the same.Let us �rst onsider the ase � = 0. A simple (Æ; )-mathing algorithm is as follows. Werun the Æ-mathing algorithm based on dtMAD distane, and the -mathing algorithm based indtSAD distane at the same time. Every time we �nd a triple (i; j; �) that meets both riteria, weompute the range of transpositions t suh that dMAD(i; j; �; t) � Æ. This is very simple: Say thatdtMAD(i; j; �) � Æ, whih is obtained at the optimal transposition tMAD. Then, dMAD(i; j; �; t) � Æfor t 2 [tMAD1 ; tMAD2 ℄ = [tMAD � (Æ � dtMAD(i; j; �)); tMAD + (Æ � dtMAD(i; j; �))℄.The problem is now to determine whether dSAD(i; j; �; t) �  for some t in the above range. As10



a funtion of t, dSAD(i; j; �; t) has a single minimum at its optimum transposition tSAD (whih doesnot have to be the same tMAD). Hene, we have three hoies: (i) tMAD1 � tSAD � tMAD2 , in whihase the ourrene an be reported; (ii) tSAD < tMAD1 , in whih ase we report the ourreneonly if dSAD(i; j; �; tMAD1 ) � ; (iii) tSAD > tMAD2 , in whih ase we report the ourrene only ifdSAD(i; j; �; tMAD2 ) � .As in the worst ase we may have to hek O(m3n2) times for a (Æ; )-math, and omputingdSAD(i; j; �; t) takes O(m2) time, we ould pay as muh as O(m5n2), whih is as bad as the naiveapproah. However, on integer alphabet, we an do better. As we an reompute in onstant timedSAD from one transposition to the next [14℄, we an move stepwise from tSAD to tMAD1 or tMAD2 .Moreover, as we move away from tSAD, distane dSAD inreases and it quikly exeeds . As wemove i transpositions from the median, we have i votes ontributing in one unit eah to dSAD, soafter we move i times dSAD has inreased in O(i2) (this assumes that the alphabet is integer andthat we pak equal votes so as to proess them in one shot). Hene we annot work more thanO(p) before having dSAD out of range. Overall, searh time is O((p + logmin(m;�))n2m3).The situation is more omplex if we permit � outliers. Fortunately, both in dt;�MAD and dt;�SAD itturns out that the relevant outliers are those yielding the � minimum or maximum votes, so thesearh spae is small. That is, even when the seletion of outliers that produes distane dt;�MAD isnot the same produing distane dt;�SAD, it holds that if there is a seletion that produes a dt;�MADdistane of at most Æ and a dt;�SAD distane of at most , then the same is ahieved by a seletionwhere only those produing minimum or maximum votes an be hosen. This is easily seen beausethe dt;�MAD and dt;�SAD distanes an only derease if we replae the votes in the initial seletion byexluded minimum or maximum votes.Now we ompute dt;�MAD and dt;�SAD distanes and onsider every triple (i; j; �) where both riteriaoinide. There are only � + 1 relevant seletions of outliers (that is, hoosing �0 smallest and �00largest votes suh that �0 + �00 = �). For eah suh seletion we already have dt;�MAD and dt;�SADdistanes already omputed. Hene we have to run the above veri�ation algorithm for eah triple(i; j; �) and eah of the � + 1 seletions of outliers. This gives a worst-ase searh algorithm ofomplexity O((min(�; �)p + logmin(m;�))n2m3). We remark that this works only for integeralphabets.4 Conlusions and Future WorkWe have presented the �rst ombinatorial approah to the problem of two-dimensional templatemathing permitting rotations and lighting invariane, where in addition there is some toleranefor di�erene between the pattern and its ourrene. We have de�ned a set of meaningful distanemeasures and searh problems, whih extend previous searh problems [8℄. We have built on topof previous rotation-invariant (but not lighting-invariant) searh tehniques [8℄ and of previousone-dimensional lighting-invariant searh algorithms [14℄.We have developed eÆient algorithms to ompute the de�ned distanes, as well as algorithmsfor all the searh problems. We have shown that adding lighting invariane poses a small omputa-tional prie on top of previous rotation invariant searh algorithms [8℄, several of whih are alreadyoptimal. 11
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