Rotation and Lighting Invariant Template Matching

Kimmo Fredriksson* Veli Mikinen' Gonzalo Navarro!

Abstract

We address the problem of searching for a two-dimensional pattern in a two-dimensional text
(or image), such that the pattern can be found even if it appears rotated and brighter or darker
than its occurrence. Furthermore, we consider approximate matching under several tolerance
models. We obtain algorithms that are almost worst-case optimal. The complexities we obtain
are very close to the best current results for the case where only rotations, but not lighting
invariance, are supported. These are the first results for this problem under a combinatorial
approach.

1 Introduction

We consider the problem of finding the occurrences of a two-dimensional pattern of size m x m cells
in a two-dimensional text of size n X n cells, when all possible rotations of the pattern are allowed
and also pattern and text may have differences in brightness. This stands for rotation and lighting
invariant template matching. Text and pattern are seen as images formed by cells, each of which
has a gray level value, also called a color.

Template matching has numerous important applications from science to multimedia, for ex-
ample in image processing, content based information retrieval from image databases, geographic
information systems, processing of aerial images, to name a few. In all these cases, we want to find
a small subimage (the pattern) inside a large image (the text) permitting rotations (a small de-
gree or any). Furthermore, pattern and text may have been photographed under different lighting
conditions, so one may be brighter than the other.

The traditional approach to this problem [2] is to compute the cross correlation between each
text location and each rotation of the pattern template. This can be done reasonably efficiently
using the Fast Fourier Transform (FFT), requiring time O(Kn*logn) where K is the number of
rotations sampled. Typically K is O(m) in the two-dimensional (2D) case, and O(m?) in the 3D
case, which makes the FF'T approach very slow in practice. In addition, lighting-invariant features
may be defined in order to make the FFT insensitive to brightness. Also, in many applications,
“close enough” matches of the pattern are also accepted. To this end, the user may specify, for
example, a parameter s such that matches that have at most x differences with the pattern should
be accepted, or a parameter § such that gray levels differing by less than ¢ are considered equal.
The definition of the matching conditions is called the “matching model” in this paper.

*Department of Computer Science, University of Joensuu. kfredrik@cs.joensuu.fi.
TDepartment of Computer Science, University of Helsinki. vmakinen@cs.helsinki.fi.
iDepartment of Computer Science, University of Chile. gnavarro@dcc.uchile.cl.

Rotation invariant template matching was first considered from a combinatorial point of view
in [9, 10]. Since then, several fast filters have been developed for diverse matching models [11, 5,
12, 7, 6, 8]. These represent large performance improvements over the FFT-based approach. The
worst-case complexity of the problem was also studied [1, 7]. However, lighting invariance has not
been considered in this scenario.

On the other hand, transposition invariant string matching was considered in music retrieval
[3, 13]. The aim is to search for (one-dimensional) patterns in texts such that the pattern may
match the text after all its characters (notes) are shifted by some value. The reason is that such
an occurrence will sound like the pattern to a human, albeit in a different scale. In this context,
efficient algorithms for several approximate matching functions were developed in [14].

We note that transposition invariance becomes lighting invariance when we replace musical notes
by gray levels of cells in an image. Hence, the aim of this paper is to enrich the existing algorithms for
rotation invariant template matching [7] with the techniques developed for transposition invariance
[14] so as to obtain rotation and lighting invariant template matching. It turns out that lighting
invariance can be added at very little extra cost. The key technique exploited is incremental distance
computation; we show that several transposition invariant distances can be computed incrementally
taking the computation done with the previous rotation into account in the next rotation angle.

Let us now determine which are the reasonable matching models. In [7], some of the models
considered were useful only for binary images, a case where obviously we are not interested in this
paper. We will address models that make sense for gray level images. We define three transposition-
invariant distances: d%ﬁ, which counts how many pattern and text cells differ by more than §; dg/}'ZD,
which is the maximum color difference between pattern and text cells when up to k outliers are
permitted; and dg’:D, which is the sum of absolute color differences between pattern and text cells
permitting up to s outliers. Table 1 shows our complexities to compute these distances for every
possible rotation of a pattern centered at a fixed text position. Variable ¢ is the number of different
gray levels (assume o = oo if the alphabet is not a finite discrete range). We remark that a lower
bound to this problem is O(m?), and this is achieved in [8] without lighting invariance.

Distance Complexity
d%ﬁ min(logm,o + (§ + 1))m3
di&ZD (min(k, o) + log min(m, o))m?
dgﬁn (min(k, o) + log min(m, o))m?

Table 1: Worst-case complexities to compute the different distances defined.

We also define three search problems, consisting in finding all the transposition-invariant rotated
occurrences of P in T such that: there are at most & cells of P differing by more than § from their
text cell (d-matching); the sum of absolute difference between cells in P and T, except for s
outliers, does not exceed v (y-matching); and P matches both criteria at the same time, for a given
transposition and set of outliers ((d, v)-matching). Table 2 shows our results. Without transposition
invariance the worst cases are all O(m?*n?) [8].

We remark that we have developed algorithms that work on arbitrary alphabets, but we have
also taken advantage of the case where the alphabet is a discrete range of integer values.

Problem Complexity
d-matching min(log m, o + (§ + 1))m3n?
(min(k, o) + log min(m, o))m3 n
vy-matching (min(k, o) + log min(m, o))m3n?
(6, y)-matching | (min(k,0),/7 + log min(m, o))m?*n?

Table 2: Complexities for different search problems. (J,7) matching complexity is valid only for
integer alphabets.

2 Definitions

Let T = T[l..n,1..n] and P = P[l..m,1..m] be arrays of unit squares, called cells, in the (x,y)-
plane. Each cell has a value in an alphabet called X, sometimes called its gray level or its color.
A particular case of interest is that of ¥ being a finite integer range of size . The corners of the
cell for Tli,j] are (i — 1,57 —1),(i,j —1),(i — 1,4) and (7,5). The center of the cell for T[i,j] is
(i—5,7— —) The array of cells for pattern P is defined similarly. The center of the whole pattern
P is the center of the cell in the middle of P. Precisely, assuming for simplicity that m is odd, the
center of P is the center of cell P[4l ML,

Assume now that P has been moved on top of T' using a rigid motion (translation and rotation),
such that the center of P coincides exactly with the center of some cell of T (center-to-center
assumption). The location of P with respect to T' can be uniquely given as ((i,7),#) where (i, j) is
the cell of T' that matches the center of P, and 0 is the angle between the z-axis of T" and the z-axis
of P. The (approximate) occurrence between T and P at some location is defined by comparing
the values of the cells of T" and P that overlap. We will use the centers of the cells of T" for selecting
the comparison points. That is, for the pattern at location ((i,7),6), we look which cells of the
pattern cover the centers of the cells of the text, and compare the corresponding values of those
cells. Figure 1 illustrates.

y A

00 i x
Figure 1: Each text cell is matched against the pattern cell that covers the center of the text cell.

More precisely, assume that P is at location ((i,7),0). For each cell T[r, s] of T" whose center
belongs to the area covered by P, let P[r’, s'] be the cell of P such that the center of T'[r, s] belongs

to the area covered by P[r',s']. Then M(T[r,s]) = P[r',s'], that is, our algorithms compare the
cell T[r, s] of T against the cell M (T[r,s]) of P.

Hence the matching function M is a function from the cells of T to the cells of P. Now consider
what happens to M when angle # grows continuously, starting from # = 0. Function M changes
only at the values of § such that some cell center of T" hits some cell boundary of P. It was shown
in [9] that this happens O(m?) times, when P rotates full 27 radians. This result was shown to be
also a lower bound in [1]. Hence there are ©(m?) relevant orientations of P to be checked. The set
of angles for 0 < 0 < /2 is

A={Bm/2-p 18 m 2 in ——
={p,7/2 — = arcsin ——== — arcsin ——;
Vit + j? Vi2 4 52

i=1,2,....m/2];7=0,1,...,m/2];h =0,1,..., [\/i* + 52|}
By symmetry, the set of possible angles 6, 0 < 0 < 27, is
A=A U A+7/2 U A+71 U A+ 3n/2.

Furthermore, pattern P matches at location ((7,7j),#) with lighting invariance if there is some
integer transposition ¢ such that T'[r, s] +t = P[r’,s'] for all [/, s'] in the area of P.

Once the position and rotation ((i, 7),6) of P in T define the matching function, we can compute
different kinds of distances between the pattern and the text. Lighting-invariance versions of the
distances choose the transposition minimizing the basic distance. The following distances are
interesting for gray level images.

Hamming Distance (H): The number of times T'[r, s] # P[r', s'] occurs, over all the cells of P,

that is
du(i,j,0,t) = Y ifT[r,s]+t+# P[r',s'] then 1 else 0
;rl7s/
diy(i,j.0) = mindu(i.j,6,1)

This can be extended to distance d% and its transposition-invariant version d}c{’a, where colors
must differ by more than ¢ in order to be considered different, that is, T'[r, s]+ ¢ & [P[r', s'] —
5, P[r', s'] + 4].

Maximum Absolute Differences (MAD): The maximum value of |T[r,s] — P[r', s']| over all
the cells of P, that is,

dvian(i,7,0,t) = max|T[r,s]+t— P[r',s']|
rls!
dyap(i:j.6) = mindyan(i, .. 1)

This can be extended to distance df;,p and its transposition-invariant version dﬁ;{'zD, so that
up to k pattern cells are freed from matching the text. Then the problem is to compute the
MAD distance with the best choice of x outliers that are not included in the maximum.

Sum of Absolute Differences (SAD): The sum of the |T'[r, s]— P[r’, s']| values over all the cells
of P, that is,

dsap(i,7,0,t) = Z T[r,s] +t— P[r', 5"

dgAD(iajv 9) = mtin dsap(i.j, 0,t)

Similarly, this distance can be extended to d§,p, and its transposition-invariant version dg’:D,
where up to k pattern cells can be removed from the summation.

Once the above distances are defined, we can define the following search problems:

d-Matching: Report triples (i, j,) such that dg/IAD(i,j, 0) < 6. A tolerance x can be permitted, so

that we only require dltv’[HAD(ia J,0) < d. Observe that this condition is the same as d%’é(z, J,0) <
K.

v-Matching: Report triples (i, j,0) such that dgAD(i,j,Q) < ~. Again, permitting tolerance
means requiring dg’:D(i,j, 0) <.

(6,v)-Matching: Report triples (i,7,6) such that dyap(i,j,0,t) < § and dsap(i,j,0,t) < v for
some t. Tolerance x can be handled similarly, but the x excluded cells must be the same for
both distances.

3 Efficient Algorithms

In [1] it was shown that for the problem of the two dimensional pattern matching allowing rotations
the worst case lower bound is Q(n?m?). We have shown in [7] a simple way to achieve this lower
bound for any of the distances under consideration (without lighting invariance).

The idea is that we will check each possible text center, one by one. So we have to pay O(m?)
per text center to achieve the desired complexity. What we do is to compute the distance we want
for each possible rotation, by reusing most of the work done for the previous rotation. Once the
distances are computed, it is easy to report the triples (i, j,) where these values are smaller than
the given thresholds (6 and/or 7). Only distances dy (with 6 = 0) and dgap (with k = 0) were
considered.

Assume that, when computing the set of angles A = (31, 32, ...), we also sort the angles so that
Bi < Bi+1, and associate with each angle 3; the set C; containing the corresponding cell centers
that must hit a cell boundary at (3;. Hence we can evaluate the distance functions (such as dsap)
incrementally for successive rotations of P. That is, assume that the distance has been evaluated
for 5;, then to evaluate it for rotation ;11 it suffices to re-evaluate the cells restricted to the set
C;. This is repeated for each 5 € A. Therefore, the total time for evaluating the distance for P
centered at some position in 7', for all possible angles, is O(Y; |C;]). This is O(m?3) because each
fixed cell center of T', covered by P, can belong to some C; at most O(m) times. To see this, note
that when P is rotated the whole angle 27, any cell of P traverses through O(m) cells of T.

If we want to add lighting invariance to the above scheme, a naive approach is to run the
algorithm for every possible transposition, for a total cost of O(n?m3c). In case of a general
alphabet there are O(m?) relevant transpositions at each rotation (that is, each pattern cell can be
made to match its corresponding text cell). Hence the cost raises to O(n?m?®).

In order to do better, we must be able to compute the optimal transposition for the initial
angle and then maintaining it when some characters of the text change (because the pattern has
been aligned over a different text cell). If we take f(m) time to do this, then our lighting invariant
algorithm becomes worst-case time O(n?m?f(m)). In the following we show how can we achieve
this for each of the distances under consideration.

This technique can be inserted into the filters that we present later in order to make them near
optimal in the worst case. All our filtration algorithms are based on discarding most of the possible
(i,7,0) locations and leaving a few of them to be verified. If we manage to avoid verifying a given
text center more than once, then we can apply our verification technique and ensure that, overall,
we cannot pay more than O(n?m? f(m)).

3.1 Distance d%‘s and /-Matching

As proved in [14], the optimal transposition for Hamming distance is obtained as follows. Each cell
P[r', s'], aligned to T[r, s], votes for a range of transpositions [P[r’, s'|=T[r, s|—d, P[r', s'|—T[r, s]+4],

for which it would match. If a transposition receives v votes, then its Hamming distance is m? — v.

Hence, the transposition that receives most votes is the one yielding distance d%’d. Let us now
separate the cases of integer and general alphabets.

3.1.1 Integer alphabet.

The original algorithm [14] obtains O(o+|P|) time on integer alphabet, by bucket-sorting the range
extremes and then traversing them linearly so as to find the most voted transposition (a counter is
incremented when a range starts and decremented when it finishes).

In our case, we have to pay O(c + m?) in order to find the optimal transposition for the first
rotation angle. The problem is how to recompute the optimal transposition once some text cell
Tr, s] changes its value (due to a small change in rotation angle). The net effect is that the range
of transpositions given by the old cell value loses a vote and a new range gains a vote.

We use the fact that the alphabet is an integer range, so there are O(o) possible transpositions.
Each transposition can be classified according to the number of votes it has. There are m? + 1 lists
L;, 0 < i < m?, containing the transpositions that currently have i votes. Hence, when a range
of transpositions loses/gains one vote, the 20 4+ 1 transpositions are moved to the lower/upper list.
We need to keep control of which is the highest-numbered non-empty list, which is easily done in
constant time per operation because transpositions move only from one list to the next/previous.
Initially we pay O(c + m?) to initialize all the lists and put all the transpositions in list Lg, then
O((6 + 1)m?) to process the votes of all the cells, and then O(§ + 1) to process each cell that
changes. Overall, when we consider all the O(m?) cell changes, the scheme is O(o + (§ + 1)m?).

This is our complexity to compute distance d%a between a pattern and a text center, considering
all possible rotations and transpositions.

d0-Matching can be done simply by computing d%’é distances at each text center and reporting

triples (i,7,60) where d%é(i,j, 0) < k. In fact, the final state of the lists (rotation of 27) is equal
to their state when built for the first rotation (angle zero), so it is possible to turn back to the
initial state at cost O(m?). Hence we can move to the next text cell without paying again the O(o)
initialization time. This means that our overall search time is O(o + (6 + 1)n?m?).

3.1.2 General alphabet.

Let us resort to a more general problem of dynamic range voting: In the static case we have a
multiset S = {[¢,r]} of one-dimensional closed ranges, and we are interested in obtaining a point
p that is included in most ranges, that is maxvote(S) = max, [{[(,r] € S | ¢ < p < r}|. In the
dynamic case a new range is added to or an old one is deleted from S, and we must be able to
return maxvote(S) after each update.

Notice that our original problem of computing dgl’d from one rotation angle to another is a
special case of dynamic range voting; multiset S is {[P[r',s'] — T[r,s] — 0, P[r',s'] = T[r,s] + 0] |
M(T|[r,s]) = P[r',s']} in one rotation angle, and in the next one some T[r,s] changes its value.

That is, the old range is deleted and the new one is inserted, after which maxvote(S) is requested

to compute the distance d%’(s = m? — maxvote(S) in the new angle.

We show that dynamic range voting can be supported in O(log|S|) time, which immediately

gives an O(m3logm) time algorithm for computing dgl’d between a pattern and a text center,
considering all possible rotations and transpositions.

First, notice that the point that gives maxvote(S) can always be chosen among the endpoints
of ranges in S. We store each endpoint e in a balanced binary search tree with key e. Let us denote
the leaf whose key is e simply by (leaf) e. With each endpoint e we associate a value vote(e) (stored
in leaf e) that gives the number [{[(,r] | { < e < r[(,r] € S}|, where the set is considered as a
multiset (same ranges can have multiple occurrences). In each internal node v, value maxvote(v)
gives the maximum of the vote(e) values of the leaves e in its subtree. After all the endpoints e
are added and the values vote(e) in the leaves and values maxvote(v) in the internal nodes are
computed, the static case is solved by taking the value maxvote(root) = maxvote(S) in the root
node of the tree.

A straightforward way of generalizing the above approach to the dynamic case would be to
recompute all values vote(e) that are affected by the insertion/deletion of a range. This would,
however, take O(]S|) time in the worst case. To get a faster algorithm, we only store the changes
of the votes in the roots of certain subtrees so that vote(e) for any leaf e can be computed by
summing up the changes from the root to the leaf e.

For now on, we refer to vote(e) and maxvote(v) as virtual values, and replace them with counters
diff(v) and values maxdiff(v). Counters diff(v) are defined implicitly so that for all leaves of the
tree it holds

vote(e) = Z diff(v), (1)

vepath(root,e)

where path(root, e) is the set of nodes in the path from the root to a leaf e (including the leaf).

Values maxdiff(v) are defined recursively as
max(maxdiff(v.le ft) + diff(v.left), maxdiff(v.right) + diff(v.right)), (2)

where v.left and v.right are the left and right child of v, respectively. In particular, maxdiff(e) = 0
for any leaf node e. One easily notices that

maxvote(v) = maxdiff(v) 4+ > diff(v"), (3)
o'epath(root,v)

which also gives as a special case Equation (1) once we notice that maxvote(e) = vote(e) for each
leaf node e.

Our goal is to maintain diff() and maxdiff() values correctly during insertions and deletions.
We have three different cases to consider: (i) How to compute the value diff(e) for a new endpoint
of a range, (ii) how to update the values of diff() and maxdiff() when a range is inserted/deleted,
and (iii) how to update the values during rotations to rebalance the tree.

Case (i) is handled by storing in each leaf an additional counter end(e). It gives the number
of ranges whose rightmost endpoint is e. Assume that this value is computed for all existing
leaves. When we insert a new endpoint e, we either find a leaf labeled e or otherwise there is
a leaf ¢’ after which e is inserted. In the first case vote(e) remains the same and in the latter
case vote(e) = vote(e’) — end(e’), because e is included in the same ranges as e’ except those that
end at ¢/. Notice also that vote(e) = 0 in the degenerate case when e is the leftmost leaf. The
+1 vote induced by the new range whose endpoint e is, will be handled in case (ii). To make
vote(e) = > epath(root,e) diff(v"), we fix diff(e) so that vote(e) = diff(e) + 2 epath(root,o) diff(v"),
where v is the parent of e. Once the maxdiff() values are updated in the path from e to the root,
we can conclude that all the necessary updates are done in O(log |S|) time.

Let use then consider case (ii). Recall the one-dimensional range search on a balanced binary
search tree (see e.g. [4], Section 5.1). We use the fact that one can find in O(log|S|) time the
minimal set of nodes, say F', such that the range [(,r] of S is partitioned by F'; the subtrees
starting at nodes of F' contain all the points in [¢,7] NS and only them. It follows that when
inserting (deleting) a range [(,r], we can set diff(v) = diff(v) + 1 (diff(v) = diff(v) — 1) at each
v € F. This is because all the values vote(e) in these subtrees change by £1 (including leaves ¢ and
r). To keep also the maxdiff() values correctly updated, it is enough to recompute the values in the
nodes in the paths from each v € F to the root using Equation (2); other values are not affected
by the insertion/deletion of the range [¢,r]. The overall number of nodes that need updating is
Ollog S1).

Finally, let us consider case (iii). Counters diff(v) are affected by rotations, but in case a
rotation involving e.g. subtrees v.left, v.rightleft and v.right.right takes place, values diff(v)
and diff(v.right) can be “pushed” down to the roots of the affected subtrees, and hence they
become zero. Then the rotation can be carried out. Subtree maxima are easily maintained through
rotations.

Hence, each insertion/deletion takes O(log|S|) time, and maxvote(S) = maxdiff(root) +
diff(root) is readily available in the root node.

3.2 Distance dﬁ,ﬁD and 5-Matching

Let us start with £ = 0. As proved in [14], the optimal transposition for distance dEAAD is obtained
as follows. Each cell P[r’, s'], aligned to T'[r, s|, votes for transposition P[r’,s'] — T'[r, s]. Then, the
optimal transposition is the average between the minimum and maximum vote. The dlt\/IAD distance
yielded is the difference of maximum minus minimum, divided by two. Hence an O(|P|) algorithm
was immediate.

We need O(m?) to obtain the optimal transposition for the first angle, zero. Then, in order
to address changes of text characters (because, due to angle changes, the pattern cell was aligned
to a different text cell), we must be able to maintain minimum and maximum votes. Every time
a text character changes, a vote disappears and a new vote appears. We can simply maintain
balanced search trees with all the current votes so as to handle any insertion/deletion of votes
in O(log(m?)) = O(logm) time, knowing the minimum and maximum at any time. If we have
an integer alphabet of size o, there are only 20 + 1 possible votes, so it is not hard to obtain
O(log o) complexity. Hence dg/IAD distance between a pattern and a text center can be computed
in O(m3logm) or O(m?log min(m, o)) time, for all possible rotations and transpositions.

In order to account for up to x outliers, it was already shown in [14] that it is optimal to
choose them from the pairs that vote for maximum or minimum transpositions. That is, if all the
votes are sorted into a list v ... v,,2, then distance dltv’['zD is the minimum among distances dlt\/IAD
computed in sets vy ... v,2 4, V2... U2 .11, and so on until v,y ... v,,2. Moreover, the optimum
transposition of the i-th value of this list is simply the average of maximum and minimum, that is,
(Um27xfl+i + Uz)/2

So our algorithm for dg/]'ZD is as follows. We make our tree threaded, so we can easily access
the k + 1 smallest and largest votes. After each change in the tree, we retraverse these xk + 1 pairs
and recompute the minimum among the v,,2_,_;,; — v; differences. This takes O(m3(x + logm))
time. In case of an integer alphabet, since there cannot be more than O(o) different votes, this can
be done in time O(m?(min(k, o) 4 log min(m, o))).

The §-matching problem can be alternatively solved by computing this distance for ev-
ery text cell, and reporting triples (i,7,6) where dltvaD(z',j,G) < ¢§. This gives an alternative
O((k+1log m)n?m?) or O((min(k, o)+ log min(m, o))n?m?) time algorithm to solve the §-matching
problem.

3.3 Distance dg’;D and ~-Matching

Let us first consider case k = 0. This corresponds to the SAD model of [14], where it was shown
that, if we collect votes P[r’,s'] — T[r, s], then the median vote (either one if |P| is even) is the
transposition that yields distance dgAD. Then the actual distance can be obtained by using the
formula for dsap. Hence an O(|P|) time algorithm was immediate.

In this case we have to pay O(m?) to compute the distance for the first rotation, and then have
to manage to maintain the median transposition and current distance when some text cells change
their value due to small rotations.

We maintain a balanced and threaded binary search tree for the votes, plus a pointer to the
median vote. Each time a vote changes because a pattern cell aligns to a new text cell, we must

remove the old vote and insert the new one. When insertion and deletion occur at different halves
of the sorted list of votes (that is, one is larger and the other smaller than the median), the median
may move by one position. This is done in constant time since the tree is threaded.

The median value itself can change. One change is due to the fact that one of the votes changed
its value. Given a fixed transposition, it is trivial to remove the appropriate summand and introduce
a new one in the formula for dsap. Another change is due to the fact that the median position can
change from a value in the sorted list to the next or previous. It was shown in [14] how to modify
in constant time distance dgAD in this case. The idea is very simple: if we move from transposition
v; to vj41, then all the j smallest votes increase their value by v;y1 — v;, and the m — j largest
votes decrease by vjy1 — vj. Hence distance dsap at the new transposition is the value at the old
transposition plus (25 — m)(vj41 — vj).

Hence, we can traverse all the rotations in time O(m?logm). This can be reduced to
O(m? log min(m, o)) on finite integer alphabet, by noting that there cannot be more than O(o)
different votes, and taking some care in handling repeated values inside single tree nodes.

If we want to compute distance dg’:D, we have again that the optimal values to free from
matching are those voting for minimum or maximum transpositions. If we remove those values,
then the median lies at positions m — [k/2] ... m+ [k/2] in the list of sorted votes, where m is the
position of the median for the whole list.

Hence, instead of maintaining a pointer to the median, we maintain two pointers to the range
of Kk + 1 medians that could be relevant. It is not hard to maintain left and right pointers when
votes are inserted and deleted in the set. All the median values can be changed one by one, and
we can choose the minimum distance among the x + 1 options. This gives us an O(m?*(x + logm))
time algorithm to compute dg’:D. On integer alphabet, this is O(m?(k +log min(m, 0))), which can
be turned into O(m?(min(x, o) + log min(m, ¢))) by standard tricks using the fact that there are
O(o) possible median votes that have different values.

This immediately gives an O((x + logm)n?m?) or O((min(k, o) + logmin(m, o))n?

m3) time
algorithm for y-matching. It is a matter of computing dg’KD at each text position and reporting
triples (7, j,#) such that dg’:D(z’,j, 0) <.

3.4 (6,7)-Matching with Tolerance «

There are two reasons why solving this problem is not a matter of computing dlt\/’[IXD and dg’:D

at each text position and reporting triples (i,j,0) where both conditions dltv’l'[”AD(i,j,H) < 0 and

dg’:D(i,j, 0) < v hold. One is that the transposition achieving this must be the same, and the other

is that the s outliers must be the same.

Let us first consider the case k = 0. A simple (§,7y)-matching algorithm is as follows. We
run the d-matching algorithm based on d%/IAD distance, and the ~v-matching algorithm based in
dgAD distance at the same time. Every time we find a triple (7, j,#) that meets both criteria, we
compute the range of transpositions t such that dyap(i, j, 0,t) < §. This is very simple: Say that
dg/IAD(i,j, f) < 6, which is obtained at the optimal transposition tMAP. Then, dyap(i,j. 0,t) < 6
for t € [(YIAD IAP] — [MAD — (5 — af; (i, 5,0)), AP + (5 = digap (i, ,0))].

The problem is now to determine whether dsap(i, j,6,t) <~ for some t in the above range. As

10

a function of ¢, dsap (i, j, 6, t) has a single minimum at its optimum transposition AP (which does
not have to be the same tMAP). Hence, we have three choices: (i) tMAP < ¢5AD < ¢MAD 'ip which
case the occurrence can be reported; (ii) tSAD < tll\/[AD, in which case we report the occurrence
only if dsap(i, j,0,tY1AP) < ~; (i) t9AP > t)AD in which case we report the occurrence only if
dsap (ivja 9, t%/IAD) <7.

As in the worst case we may have to check O(m?3n?) times for a (§,7)-match, and computing
dsap (i, j, 0,t) takes O(m?) time, we could pay as much as O(m®n?), which is as bad as the naive
approach. However, on integer alphabet, we can do better. As we can recompute in constant time
dsap from one transposition to the next [14], we can move stepwise from t5AP to tMAP or t)TAD,
Moreover, as we move away from t5AP, distance dsap increases and it quickly exceeds 7. As we
move i transpositions from the median, we have i votes contributing in one unit each to dsap, so
after we move i times dsap has increased in O(i?) (this assumes that the alphabet is integer and
that we pack equal votes so as to process them in one shot). Hence we cannot work more than

O(/7) before having dgap out of range. Overall, search time is O((,/7 + log min(m, o))n*m?).

The situation is more complex if we permit s outliers. Fortunately, both in dg/’&D and dg’:D it

turns out that the relevant outliers are those yielding the x minimum or maximum votes, so the
search space is small. That is, even when the selection of outliers that produces distance dngD is
not the same producing distance dg’:D, it holds that if there is a selection that produces a dlti/,IKAD

distance of at most § and a dSKD distance of at most v, then the same is achieved by a selection
where only those producing minimum or maximum votes can be chosen. This is easily seen because
the dg;['ZD and dg’:D distances can only decrease if we replace the votes in the initial selection by
excluded minimum or maximum votes.

Now we compute dﬁ&'zD and dg’:D distances and consider every triple (i, j,) where both criteria
coincide. There are only s + 1 relevant selections of outliers (that is, choosing &’ smallest and "
largest votes such that " + x” = k). For each such selection we already have dlt\/’[IXD and dg’/';D
distances already computed. Hence we have to run the above verification algorithm for each triple
(i,7,0) and each of the k 4 1 selections of outliers. This gives a worst-case search algorithm of
complexity O((min(k,o)\/7 + log min(m, 0))n*m?). We remark that this works only for integer
alphabets.

4 Conclusions and Future Work

We have presented the first combinatorial approach to the problem of two-dimensional template
matching permitting rotations and lighting invariance, where in addition there is some tolerance
for difference between the pattern and its occurrence. We have defined a set of meaningful distance
measures and search problems, which extend previous search problems [8]. We have built on top
of previous rotation-invariant (but not lighting-invariant) search techniques [8] and of previous
one-dimensional lighting-invariant search algorithms [14].

We have developed efficient algorithms to compute the defined distances, as well as algorithms
for all the search problems. We have shown that adding lighting invariance poses a small computa-
tional price on top of previous rotation invariant search algorithms [8], several of which are already
optimal.

11

The results can be extended to more dimensions. In three dimensions, for example, there are
O(m!'2) different matching functions for P [11], and O(um?) features of length u. The algorithms
retain their complexity as long as we replace O(m3n?) by O(m'n?).

It would also be good to obtain an algorithm for (¢, v)-matching that works for general alphabets,
as the current one only works for integer alphabet.

References

[1] A. Amir, A. Butman, M. Crochemore, G. Landau, and M. Schaps. Two-dimensional pattern matching
with rotations. In Proc. 14th Annual Symposium on Combinatorial Pattern Matching (CPM 2003),
LNCS, 2003. To appear.

[2] L. G. Brown. A survey of image registration techniques. ACM Computing Surveys, 24(4):325-376, 1992.

[3] T. Crawford, C. Iliopoulos, and R. Raman. String matching techniques for musical similarity and
melodic recognition. Computing in Musicology, 11:71 100, 1998.

[4] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry: Algorithms
and Applications. Springer-Verlag, 2nd rev. edition, 2000.

[5] K. Fredriksson. Rotation invariant histogram filters for similarity and distance measures between digital
images. In Proc. 7th String Processing and Information Retrieval (SPIRE’2000), pages 105-115. IEEE
CS Press, 2000.

[6] K. Fredriksson, G. Navarro, and E. Ukkonen. Faster than FFT: Rotation Invariant Combinatorial
Template Matching, volume II, pages 75 112. Transworld Research Network, 2002.

[7] K. Fredriksson, G. Navarro, and E. Ukkonen. Optimal exact and fast approximate two dimensional pat-
tern matching allowing rotations. In Proc. 18th Annual Symposium on Combinatorial Pattern Matching
(CPM 2002), LNCS 2373, pages 235 248, 2002.

[8] K. Fredriksson, G. Navarro, and E. Ukkonen. Sequential and indexed two-dimensional pattern matching
allowing rotations. Technical Report TR/DCC-2003-2, Dept. of Computer Science, Univ. of Chile, May
2003.

[9] K. Fredriksson and E. Ukkonen. A rotation invariant filter for two-dimensional string matching. In
Proc. 9th Combinatorial Pattern Matching (CPM’98), LNCS 1448, pages 118-125, 1998.

[10] K. Fredriksson and E. Ukkonen. Combinatorial methods for approximate image matching under trans-
lations and rotations. Patt. Recog. Letters, 20(11 13):1249 1258, 1999.

[11] K. Fredriksson and E. Ukkonen. Combinatorial methods for approximate pattern matching under
rotations and translations in 3d arrays. In Proc. 7th String Processing and Information Retrieval
(SPIRE’2000), pages 96 104. IEEE CS Press, 2000.

[12] G. Navarro K. Fredriksson and E. Ukkonen. An index for two dimensional string matching allowing
rotations. In J. van Leeuwen, O. Watanabe, M. Hagiya, P.D. Mosses, and T. Ito, editors, IFIP TCS2000,
LNCS 1872, pages 59 75, 2000.

[13] K. Lemstrom and J. Tarhio. Detecting monophonic patterns within polyphonic sources. In Content-
Based Multimedia Information Access Conference Proceedings (RIAO’2000), pages 1261-1279, 2000.

[14] V. Mékinen, G. Navarro, and E. Ukkonen. Algorithms for transposition invariant string matching. In
Proc. 20th International Symposium on Theoretical Aspects of Computer Science (STACS 2003), LNCS
2607, pages 191-202, 2003. Extended version as technical report TR/DCC-2002-5, Dept. of Computer
Science, Univ. of Chile.

12

