
Rotation and Lighting Invariant Template Mat
hingKimmo Fredriksson� Veli M�akineny Gonzalo NavarrozAbstra
tWe address the problem of sear
hing for a two-dimensional pattern in a two-dimensional text(or image), su
h that the pattern 
an be found even if it appears rotated and brighter or darkerthan its o

urren
e. Furthermore, we 
onsider approximate mat
hing under several toleran
emodels. We obtain algorithms that are almost worst-
ase optimal. The 
omplexities we obtainare very 
lose to the best 
urrent results for the 
ase where only rotations, but not lightinginvarian
e, are supported. These are the �rst results for this problem under a 
ombinatorialapproa
h.1 Introdu
tionWe 
onsider the problem of �nding the o

urren
es of a two-dimensional pattern of size m�m 
ellsin a two-dimensional text of size n� n 
ells, when all possible rotations of the pattern are allowedand also pattern and text may have di�eren
es in brightness. This stands for rotation and lightinginvariant template mat
hing. Text and pattern are seen as images formed by 
ells, ea
h of whi
hhas a gray level value, also 
alled a 
olor.Template mat
hing has numerous important appli
ations from s
ien
e to multimedia, for ex-ample in image pro
essing, 
ontent based information retrieval from image databases, geographi
information systems, pro
essing of aerial images, to name a few. In all these 
ases, we want to �nda small subimage (the pattern) inside a large image (the text) permitting rotations (a small de-gree or any). Furthermore, pattern and text may have been photographed under di�erent lighting
onditions, so one may be brighter than the other.The traditional approa
h to this problem [2℄ is to 
ompute the 
ross 
orrelation between ea
htext lo
ation and ea
h rotation of the pattern template. This 
an be done reasonably eÆ
ientlyusing the Fast Fourier Transform (FFT), requiring time O(Kn2 log n) where K is the number ofrotations sampled. Typi
ally K is O(m) in the two-dimensional (2D) 
ase, and O(m3) in the 3D
ase, whi
h makes the FFT approa
h very slow in pra
ti
e. In addition, lighting-invariant featuresmay be de�ned in order to make the FFT insensitive to brightness. Also, in many appli
ations,\
lose enough" mat
hes of the pattern are also a

epted. To this end, the user may spe
ify, forexample, a parameter � su
h that mat
hes that have at most � di�eren
es with the pattern shouldbe a

epted, or a parameter Æ su
h that gray levels di�ering by less than Æ are 
onsidered equal.The de�nition of the mat
hing 
onditions is 
alled the \mat
hing model" in this paper.�Department of Computer S
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Rotation invariant template mat
hing was �rst 
onsidered from a 
ombinatorial point of viewin [9, 10℄. Sin
e then, several fast �lters have been developed for diverse mat
hing models [11, 5,12, 7, 6, 8℄. These represent large performan
e improvements over the FFT-based approa
h. Theworst-
ase 
omplexity of the problem was also studied [1, 7℄. However, lighting invarian
e has notbeen 
onsidered in this s
enario.On the other hand, transposition invariant string mat
hing was 
onsidered in musi
 retrieval[3, 13℄. The aim is to sear
h for (one-dimensional) patterns in texts su
h that the pattern maymat
h the text after all its 
hara
ters (notes) are shifted by some value. The reason is that su
han o

urren
e will sound like the pattern to a human, albeit in a di�erent s
ale. In this 
ontext,eÆ
ient algorithms for several approximate mat
hing fun
tions were developed in [14℄.We note that transposition invarian
e be
omes lighting invarian
e when we repla
e musi
al notesby gray levels of 
ells in an image. Hen
e, the aim of this paper is to enri
h the existing algorithms forrotation invariant template mat
hing [7℄ with the te
hniques developed for transposition invarian
e[14℄ so as to obtain rotation and lighting invariant template mat
hing. It turns out that lightinginvarian
e 
an be added at very little extra 
ost. The key te
hnique exploited is in
remental distan
e
omputation; we show that several transposition invariant distan
es 
an be 
omputed in
rementallytaking the 
omputation done with the previous rotation into a

ount in the next rotation angle.Let us now determine whi
h are the reasonable mat
hing models. In [7℄, some of the models
onsidered were useful only for binary images, a 
ase where obviously we are not interested in thispaper. We will address models that make sense for gray level images. We de�ne three transposition-invariant distan
es: dt;ÆH , whi
h 
ounts how many pattern and text 
ells di�er by more than Æ; dt;�MAD,whi
h is the maximum 
olor di�eren
e between pattern and text 
ells when up to � outliers arepermitted; and dt;�SAD, whi
h is the sum of absolute 
olor di�eren
es between pattern and text 
ellspermitting up to � outliers. Table 1 shows our 
omplexities to 
ompute these distan
es for everypossible rotation of a pattern 
entered at a �xed text position. Variable � is the number of di�erentgray levels (assume � = 1 if the alphabet is not a �nite dis
rete range). We remark that a lowerbound to this problem is O(m3), and this is a
hieved in [8℄ without lighting invarian
e.Distan
e Complexitydt;ÆH min(logm;� + (Æ + 1))m3dt;�MAD (min(�; �) + logmin(m;�))m3dt;�SAD (min(�; �) + logmin(m;�))m3Table 1: Worst-
ase 
omplexities to 
ompute the di�erent distan
es de�ned.We also de�ne three sear
h problems, 
onsisting in �nding all the transposition-invariant rotatedo

urren
es of P in T su
h that: there are at most � 
ells of P di�ering by more than Æ from theirtext 
ell (Æ-mat
hing); the sum of absolute di�eren
e between 
ells in P and T , ex
ept for �outliers, does not ex
eed 
 (
-mat
hing); and P mat
hes both 
riteria at the same time, for a giventransposition and set of outliers ((Æ; 
)-mat
hing). Table 2 shows our results. Without transpositioninvarian
e the worst 
ases are all O(m3n2) [8℄.We remark that we have developed algorithms that work on arbitrary alphabets, but we havealso taken advantage of the 
ase where the alphabet is a dis
rete range of integer values.2



Problem ComplexityÆ-mat
hing min(logm;� + (Æ + 1))m3n2(min(�; �) + logmin(m;�))m3n2
-mat
hing (min(�; �) + logmin(m;�))m3n2(Æ; 
)-mat
hing (min(�; �)p
 + logmin(m;�))m3n2Table 2: Complexities for di�erent sear
h problems. (Æ; 
) mat
hing 
omplexity is valid only forinteger alphabets.2 De�nitionsLet T = T [1::n; 1::n℄ and P = P [1::m; 1::m℄ be arrays of unit squares, 
alled 
ells, in the (x; y)-plane. Ea
h 
ell has a value in an alphabet 
alled �, sometimes 
alled its gray level or its 
olor.A parti
ular 
ase of interest is that of � being a �nite integer range of size �. The 
orners of the
ell for T [i; j℄ are (i � 1; j � 1); (i; j � 1); (i � 1; j) and (i; j). The 
enter of the 
ell for T [i; j℄ is(i� 12 ; j � 12). The array of 
ells for pattern P is de�ned similarly. The 
enter of the whole patternP is the 
enter of the 
ell in the middle of P . Pre
isely, assuming for simpli
ity that m is odd, the
enter of P is the 
enter of 
ell P [m+12 ; m+12 ℄.Assume now that P has been moved on top of T using a rigid motion (translation and rotation),su
h that the 
enter of P 
oin
ides exa
tly with the 
enter of some 
ell of T (
enter-to-
enterassumption). The lo
ation of P with respe
t to T 
an be uniquely given as ((i; j); �) where (i; j) isthe 
ell of T that mat
hes the 
enter of P , and � is the angle between the x-axis of T and the x-axisof P . The (approximate) o

urren
e between T and P at some lo
ation is de�ned by 
omparingthe values of the 
ells of T and P that overlap. We will use the 
enters of the 
ells of T for sele
tingthe 
omparison points. That is, for the pattern at lo
ation ((i; j); �), we look whi
h 
ells of thepattern 
over the 
enters of the 
ells of the text, and 
ompare the 
orresponding values of those
ells. Figure 1 illustrates.
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Figure 1: Ea
h text 
ell is mat
hed against the pattern 
ell that 
overs the 
enter of the text 
ell.More pre
isely, assume that P is at lo
ation ((i; j); �). For ea
h 
ell T [r; s℄ of T whose 
enterbelongs to the area 
overed by P , let P [r0; s0℄ be the 
ell of P su
h that the 
enter of T [r; s℄ belongs3



to the area 
overed by P [r0; s0℄. Then M(T [r; s℄) = P [r0; s0℄, that is, our algorithms 
ompare the
ell T [r; s℄ of T against the 
ell M(T [r; s℄) of P .Hen
e the mat
hing fun
tion M is a fun
tion from the 
ells of T to the 
ells of P . Now 
onsiderwhat happens to M when angle � grows 
ontinuously, starting from � = 0. Fun
tion M 
hangesonly at the values of � su
h that some 
ell 
enter of T hits some 
ell boundary of P . It was shownin [9℄ that this happens O(m3) times, when P rotates full 2� radians. This result was shown to bealso a lower bound in [1℄. Hen
e there are �(m3) relevant orientations of P to be 
he
ked. The setof angles for 0 � � � �=2 isA = f�; �=2 � � j � = ar
sin h+ 12pi2 + j2 � ar
sin jpi2 + j2 ;i = 1; 2; : : : ; bm=2
; j = 0; 1; : : : ; bm=2
;h = 0; 1; : : : ; bqi2 + j2
g:By symmetry, the set of possible angles �, 0 � � < 2�, isA = A [ A+ �=2 [ A+ � [ A+ 3�=2:Furthermore, pattern P mat
hes at lo
ation ((i; j); �) with lighting invarian
e if there is someinteger transposition t su
h that T [r; s℄ + t = P [r0; s0℄ for all [r0; s0℄ in the area of P .On
e the position and rotation ((i; j); �) of P in T de�ne the mat
hing fun
tion, we 
an 
omputedi�erent kinds of distan
es between the pattern and the text. Lighting-invarian
e versions of thedistan
es 
hoose the transposition minimizing the basi
 distan
e. The following distan
es areinteresting for gray level images.Hamming Distan
e (H): The number of times T [r; s℄ 6= P [r0; s0℄ o

urs, over all the 
ells of P ,that is dH(i; j; �; t) = Xr0;s0 if T [r; s℄ + t 6= P [r0; s0℄ then 1 else 0dtH(i; j; �) = mint dH(i; j; �; t)This 
an be extended to distan
e dÆH and its transposition-invariant version dt;ÆH , where 
olorsmust di�er by more than Æ in order to be 
onsidered di�erent, that is, T [r; s℄ + t 62 [P [r0; s0℄�Æ; P [r0; s0℄ + Æ℄.Maximum Absolute Di�eren
es (MAD): The maximum value of jT [r; s℄ � P [r0; s0℄j over allthe 
ells of P , that is, dMAD(i; j; �; t) = maxr0;s0 jT [r; s℄ + t� P [r0; s0℄jdtMAD(i; j; �) = mint dMAD(i; j; �; t)This 
an be extended to distan
e d�MAD and its transposition-invariant version dt;�MAD, so thatup to � pattern 
ells are freed from mat
hing the text. Then the problem is to 
ompute theMAD distan
e with the best 
hoi
e of � outliers that are not in
luded in the maximum.4



Sum of Absolute Di�eren
es (SAD): The sum of the jT [r; s℄�P [r0; s0℄j values over all the 
ellsof P , that is, dSAD(i; j; �; t) = Xr0;s0 jT [r; s℄ + t� P [r0; s0℄jdtSAD(i; j; �) = mint dSAD(i; j; �; t)Similarly, this distan
e 
an be extended to d�SAD and its transposition-invariant version dt;�SAD,where up to � pattern 
ells 
an be removed from the summation.On
e the above distan
es are de�ned, we 
an de�ne the following sear
h problems:Æ-Mat
hing: Report triples (i; j; �) su
h that dtMAD(i; j; �) � Æ. A toleran
e � 
an be permitted, sothat we only require dt;�MAD(i; j; �) � Æ. Observe that this 
ondition is the same as dt;ÆH (i; j; �) ��.
-Mat
hing: Report triples (i; j; �) su
h that dtSAD(i; j; �) � 
. Again, permitting toleran
e �means requiring dt;�SAD(i; j; �) � 
.(Æ; 
)-Mat
hing: Report triples (i; j; �) su
h that dMAD(i; j; �; t) � Æ and dSAD(i; j; �; t) � 
 forsome t. Toleran
e � 
an be handled similarly, but the � ex
luded 
ells must be the same forboth distan
es.3 EÆ
ient AlgorithmsIn [1℄ it was shown that for the problem of the two dimensional pattern mat
hing allowing rotationsthe worst 
ase lower bound is 
(n2m3). We have shown in [7℄ a simple way to a
hieve this lowerbound for any of the distan
es under 
onsideration (without lighting invarian
e).The idea is that we will 
he
k ea
h possible text 
enter, one by one. So we have to pay O(m3)per text 
enter to a
hieve the desired 
omplexity. What we do is to 
ompute the distan
e we wantfor ea
h possible rotation, by reusing most of the work done for the previous rotation. On
e thedistan
es are 
omputed, it is easy to report the triples (i; j; �) where these values are smaller thanthe given thresholds (Æ and/or 
). Only distan
es dH (with Æ = 0) and dSAD (with � = 0) were
onsidered.Assume that, when 
omputing the set of angles A = (�1; �2; : : :), we also sort the angles so that�i < �i+1, and asso
iate with ea
h angle �i the set Ci 
ontaining the 
orresponding 
ell 
entersthat must hit a 
ell boundary at �i. Hen
e we 
an evaluate the distan
e fun
tions (su
h as dSAD)in
rementally for su

essive rotations of P . That is, assume that the distan
e has been evaluatedfor �i, then to evaluate it for rotation �i+1 it suÆ
es to re-evaluate the 
ells restri
ted to the setCi. This is repeated for ea
h � 2 A. Therefore, the total time for evaluating the distan
e for P
entered at some position in T , for all possible angles, is O(Pi jCij). This is O(m3) be
ause ea
h�xed 
ell 
enter of T , 
overed by P , 
an belong to some Ci at most O(m) times. To see this, notethat when P is rotated the whole angle 2�, any 
ell of P traverses through O(m) 
ells of T .5



If we want to add lighting invarian
e to the above s
heme, a naive approa
h is to run thealgorithm for every possible transposition, for a total 
ost of O(n2m3�). In 
ase of a generalalphabet there are O(m2) relevant transpositions at ea
h rotation (that is, ea
h pattern 
ell 
an bemade to mat
h its 
orresponding text 
ell). Hen
e the 
ost raises to O(n2m5).In order to do better, we must be able to 
ompute the optimal transposition for the initialangle and then maintaining it when some 
hara
ters of the text 
hange (be
ause the pattern hasbeen aligned over a di�erent text 
ell). If we take f(m) time to do this, then our lighting invariantalgorithm be
omes worst-
ase time O(n2m3f(m)). In the following we show how 
an we a
hievethis for ea
h of the distan
es under 
onsideration.This te
hnique 
an be inserted into the �lters that we present later in order to make them nearoptimal in the worst 
ase. All our �ltration algorithms are based on dis
arding most of the possible(i; j; �) lo
ations and leaving a few of them to be veri�ed. If we manage to avoid verifying a giventext 
enter more than on
e, then we 
an apply our veri�
ation te
hnique and ensure that, overall,we 
annot pay more than O(n2m3f(m)).3.1 Distan
e dt;ÆH and Æ-Mat
hingAs proved in [14℄, the optimal transposition for Hamming distan
e is obtained as follows. Ea
h 
ellP [r0; s0℄, aligned to T [r; s℄, votes for a range of transpositions [P [r0; s0℄�T [r; s℄�Æ; P [r0; s0℄�T [r; s℄+Æ℄,for whi
h it would mat
h. If a transposition re
eives v votes, then its Hamming distan
e is m2� v.Hen
e, the transposition that re
eives most votes is the one yielding distan
e dt;ÆH . Let us nowseparate the 
ases of integer and general alphabets.3.1.1 Integer alphabet.The original algorithm [14℄ obtains O(�+jP j) time on integer alphabet, by bu
ket-sorting the rangeextremes and then traversing them linearly so as to �nd the most voted transposition (a 
ounter isin
remented when a range starts and de
remented when it �nishes).In our 
ase, we have to pay O(� +m2) in order to �nd the optimal transposition for the �rstrotation angle. The problem is how to re
ompute the optimal transposition on
e some text 
ellT [r; s℄ 
hanges its value (due to a small 
hange in rotation angle). The net e�e
t is that the rangeof transpositions given by the old 
ell value loses a vote and a new range gains a vote.We use the fa
t that the alphabet is an integer range, so there are O(�) possible transpositions.Ea
h transposition 
an be 
lassi�ed a

ording to the number of votes it has. There are m2+1 listsLi, 0 � i � m2, 
ontaining the transpositions that 
urrently have i votes. Hen
e, when a rangeof transpositions loses/gains one vote, the 2Æ +1 transpositions are moved to the lower/upper list.We need to keep 
ontrol of whi
h is the highest-numbered non-empty list, whi
h is easily done in
onstant time per operation be
ause transpositions move only from one list to the next/previous.Initially we pay O(� +m2) to initialize all the lists and put all the transpositions in list L0, thenO((Æ + 1)m2) to pro
ess the votes of all the 
ells, and then O(Æ + 1) to pro
ess ea
h 
ell that
hanges. Overall, when we 
onsider all the O(m3) 
ell 
hanges, the s
heme is O(� + (Æ + 1)m3).This is our 
omplexity to 
ompute distan
e dt;ÆH between a pattern and a text 
enter, 
onsideringall possible rotations and transpositions. 6



Æ-Mat
hing 
an be done simply by 
omputing dt;ÆH distan
es at ea
h text 
enter and reportingtriples (i; j; �) where dt;ÆH (i; j; �) � �. In fa
t, the �nal state of the lists (rotation of 2�) is equalto their state when built for the �rst rotation (angle zero), so it is possible to turn ba
k to theinitial state at 
ost O(m2). Hen
e we 
an move to the next text 
ell without paying again the O(�)initialization time. This means that our overall sear
h time is O(� + (Æ + 1)n2m3).3.1.2 General alphabet.Let us resort to a more general problem of dynami
 range voting : In the stati
 
ase we have amultiset S = f[`; r℄g of one-dimensional 
losed ranges, and we are interested in obtaining a pointp that is in
luded in most ranges, that is maxvote(S) = maxp jf[`; r℄ 2 S j ` � p � rgj. In thedynami
 
ase a new range is added to or an old one is deleted from S, and we must be able toreturn maxvote(S) after ea
h update.Noti
e that our original problem of 
omputing dt;ÆH from one rotation angle to another is aspe
ial 
ase of dynami
 range voting; multiset S is f[P [r0; s0℄ � T [r; s℄ � Æ; P [r0; s0℄ � T [r; s℄ + Æ℄ jM(T [r; s℄) = P [r0; s0℄g in one rotation angle, and in the next one some T [r; s℄ 
hanges its value.That is, the old range is deleted and the new one is inserted, after whi
h maxvote(S) is requestedto 
ompute the distan
e dt;ÆH = m2 �maxvote(S) in the new angle.We show that dynami
 range voting 
an be supported in O(log jSj) time, whi
h immediatelygives an O(m3 logm) time algorithm for 
omputing dt;ÆH between a pattern and a text 
enter,
onsidering all possible rotations and transpositions.First, noti
e that the point that gives maxvote(S) 
an always be 
hosen among the endpointsof ranges in S. We store ea
h endpoint e in a balan
ed binary sear
h tree with key e. Let us denotethe leaf whose key is e simply by (leaf) e. With ea
h endpoint e we asso
iate a value vote(e) (storedin leaf e) that gives the number jf[`; r℄ j ` � e � r; [`; r℄ 2 Sgj, where the set is 
onsidered as amultiset (same ranges 
an have multiple o

urren
es). In ea
h internal node v, value maxvote(v)gives the maximum of the vote(e) values of the leaves e in its subtree. After all the endpoints eare added and the values vote(e) in the leaves and values maxvote(v) in the internal nodes are
omputed, the stati
 
ase is solved by taking the value maxvote(root) = maxvote(S) in the rootnode of the tree.A straightforward way of generalizing the above approa
h to the dynami
 
ase would be tore
ompute all values vote(e) that are a�e
ted by the insertion/deletion of a range. This would,however, take O(jSj) time in the worst 
ase. To get a faster algorithm, we only store the 
hangesof the votes in the roots of 
ertain subtrees so that vote(e) for any leaf e 
an be 
omputed bysumming up the 
hanges from the root to the leaf e.For now on, we refer to vote(e) and maxvote(v) as virtual values, and repla
e them with 
ountersdi�(v) and values maxdi�(v). Counters di�(v) are de�ned impli
itly so that for all leaves of thetree it holds vote(e) = Xv2path(root;e) di�(v); (1)where path(root; e) is the set of nodes in the path from the root to a leaf e (in
luding the leaf).7



Values maxdi�(v) are de�ned re
ursively asmax(maxdi�(v:left) + di�(v:left);maxdi�(v:right) + di�(v:right)); (2)where v:left and v:right are the left and right 
hild of v, respe
tively. In parti
ular, maxdi�(e) = 0for any leaf node e. One easily noti
es thatmaxvote(v) = maxdi�(v) + Xv02path(root;v) di�(v0); (3)whi
h also gives as a spe
ial 
ase Equation (1) on
e we noti
e that maxvote(e) = vote(e) for ea
hleaf node e.Our goal is to maintain di�() and maxdi�() values 
orre
tly during insertions and deletions.We have three di�erent 
ases to 
onsider: (i) How to 
ompute the value di�(e) for a new endpointof a range, (ii) how to update the values of di�() and maxdi�() when a range is inserted/deleted,and (iii) how to update the values during rotations to rebalan
e the tree.Case (i) is handled by storing in ea
h leaf an additional 
ounter end(e). It gives the numberof ranges whose rightmost endpoint is e. Assume that this value is 
omputed for all existingleaves. When we insert a new endpoint e, we either �nd a leaf labeled e or otherwise there isa leaf e0 after whi
h e is inserted. In the �rst 
ase vote(e) remains the same and in the latter
ase vote(e) = vote(e0) � end(e0), be
ause e is in
luded in the same ranges as e0 ex
ept those thatend at e0. Noti
e also that vote(e) = 0 in the degenerate 
ase when e is the leftmost leaf. The+1 vote indu
ed by the new range whose endpoint e is, will be handled in 
ase (ii). To makevote(e) = Pv02path(root;e) di�(v0), we �x di�(e) so that vote(e) = di�(e) +Pv02path(root;v) di�(v0),where v is the parent of e. On
e the maxdi�() values are updated in the path from e to the root,we 
an 
on
lude that all the ne
essary updates are done in O(log jSj) time.Let use then 
onsider 
ase (ii). Re
all the one-dimensional range sear
h on a balan
ed binarysear
h tree (see e.g. [4℄, Se
tion 5.1). We use the fa
t that one 
an �nd in O(log jSj) time theminimal set of nodes, say F , su
h that the range [`; r℄ of S is partitioned by F ; the subtreesstarting at nodes of F 
ontain all the points in [`; r℄ \ S and only them. It follows that wheninserting (deleting) a range [`; r℄, we 
an set di�(v) = di�(v) + 1 (di�(v) = di�(v) � 1) at ea
hv 2 F . This is be
ause all the values vote(e) in these subtrees 
hange by �1 (in
luding leaves ` andr). To keep also the maxdi�() values 
orre
tly updated, it is enough to re
ompute the values in thenodes in the paths from ea
h v 2 F to the root using Equation (2); other values are not a�e
tedby the insertion/deletion of the range [`; r℄. The overall number of nodes that need updating isO(log jSj).Finally, let us 
onsider 
ase (iii). Counters di�(v) are a�e
ted by rotations, but in 
ase arotation involving e.g. subtrees v:left, v:right:left and v:right:right takes pla
e, values di�(v)and di�(v:right) 
an be \pushed" down to the roots of the a�e
ted subtrees, and hen
e theybe
ome zero. Then the rotation 
an be 
arried out. Subtree maxima are easily maintained throughrotations.Hen
e, ea
h insertion/deletion takes O(log jSj) time, and maxvote(S) = maxdi�(root) +di�(root) is readily available in the root node. 8



3.2 Distan
e dt;�MAD and Æ-Mat
hingLet us start with � = 0. As proved in [14℄, the optimal transposition for distan
e dtMAD is obtainedas follows. Ea
h 
ell P [r0; s0℄, aligned to T [r; s℄, votes for transposition P [r0; s0℄� T [r; s℄. Then, theoptimal transposition is the average between the minimum and maximum vote. The dtMAD distan
eyielded is the di�eren
e of maximum minus minimum, divided by two. Hen
e an O(jP j) algorithmwas immediate.We need O(m2) to obtain the optimal transposition for the �rst angle, zero. Then, in orderto address 
hanges of text 
hara
ters (be
ause, due to angle 
hanges, the pattern 
ell was alignedto a di�erent text 
ell), we must be able to maintain minimum and maximum votes. Every timea text 
hara
ter 
hanges, a vote disappears and a new vote appears. We 
an simply maintainbalan
ed sear
h trees with all the 
urrent votes so as to handle any insertion/deletion of votesin O(log(m2)) = O(logm) time, knowing the minimum and maximum at any time. If we havean integer alphabet of size �, there are only 2� + 1 possible votes, so it is not hard to obtainO(log �) 
omplexity. Hen
e dtMAD distan
e between a pattern and a text 
enter 
an be 
omputedin O(m3 logm) or O(m3 logmin(m;�)) time, for all possible rotations and transpositions.In order to a

ount for up to � outliers, it was already shown in [14℄ that it is optimal to
hoose them from the pairs that vote for maximum or minimum transpositions. That is, if all thevotes are sorted into a list v1 : : : vm2 , then distan
e dt;�MAD is the minimum among distan
es dtMAD
omputed in sets v1 : : : vm2��, v2 : : : vm2��+1, and so on until v�+1 : : : vm2 . Moreover, the optimumtransposition of the i-th value of this list is simply the average of maximum and minimum, that is,(vm2���1+i + vi)=2.So our algorithm for dt;�MAD is as follows. We make our tree threaded, so we 
an easily a

essthe �+ 1 smallest and largest votes. After ea
h 
hange in the tree, we retraverse these �+ 1 pairsand re
ompute the minimum among the vm2���1+i � vi di�eren
es. This takes O(m3(�+ logm))time. In 
ase of an integer alphabet, sin
e there 
annot be more than O(�) di�erent votes, this 
anbe done in time O(m3(min(�; �) + logmin(m;�))).The Æ-mat
hing problem 
an be alternatively solved by 
omputing this distan
e for ev-ery text 
ell, and reporting triples (i; j; �) where dt;�MAD(i; j; �) � Æ. This gives an alternativeO((�+logm)n2m3) or O((min(�; �)+ log min(m;�))n2m3) time algorithm to solve the Æ-mat
hingproblem.3.3 Distan
e dt;�SAD and 
-Mat
hingLet us �rst 
onsider 
ase � = 0. This 
orresponds to the SAD model of [14℄, where it was shownthat, if we 
olle
t votes P [r0; s0℄ � T [r; s℄, then the median vote (either one if jP j is even) is thetransposition that yields distan
e dtSAD. Then the a
tual distan
e 
an be obtained by using theformula for dSAD. Hen
e an O(jP j) time algorithm was immediate.In this 
ase we have to pay O(m2) to 
ompute the distan
e for the �rst rotation, and then haveto manage to maintain the median transposition and 
urrent distan
e when some text 
ells 
hangetheir value due to small rotations.We maintain a balan
ed and threaded binary sear
h tree for the votes, plus a pointer to themedian vote. Ea
h time a vote 
hanges be
ause a pattern 
ell aligns to a new text 
ell, we must9



remove the old vote and insert the new one. When insertion and deletion o

ur at di�erent halvesof the sorted list of votes (that is, one is larger and the other smaller than the median), the medianmay move by one position. This is done in 
onstant time sin
e the tree is threaded.The median value itself 
an 
hange. One 
hange is due to the fa
t that one of the votes 
hangedits value. Given a �xed transposition, it is trivial to remove the appropriate summand and introdu
ea new one in the formula for dSAD. Another 
hange is due to the fa
t that the median position 
an
hange from a value in the sorted list to the next or previous. It was shown in [14℄ how to modifyin 
onstant time distan
e dtSAD in this 
ase. The idea is very simple: if we move from transpositionvj to vj+1, then all the j smallest votes in
rease their value by vj+1 � vj , and the m � j largestvotes de
rease by vj+1 � vj . Hen
e distan
e dSAD at the new transposition is the value at the oldtransposition plus (2j �m)(vj+1 � vj).Hen
e, we 
an traverse all the rotations in time O(m3 logm). This 
an be redu
ed toO(m3 logmin(m;�)) on �nite integer alphabet, by noting that there 
annot be more than O(�)di�erent votes, and taking some 
are in handling repeated values inside single tree nodes.If we want to 
ompute distan
e dt;�SAD, we have again that the optimal values to free frommat
hing are those voting for minimum or maximum transpositions. If we remove those values,then the median lies at positions m�d�=2e : : : m+ d�=2e in the list of sorted votes, where m is theposition of the median for the whole list.Hen
e, instead of maintaining a pointer to the median, we maintain two pointers to the rangeof � + 1 medians that 
ould be relevant. It is not hard to maintain left and right pointers whenvotes are inserted and deleted in the set. All the median values 
an be 
hanged one by one, andwe 
an 
hoose the minimum distan
e among the �+1 options. This gives us an O(m3(�+ logm))time algorithm to 
ompute dt;�SAD. On integer alphabet, this is O(m3(�+log min(m;�))), whi
h 
anbe turned into O(m3(min(�; �) + logmin(m;�))) by standard tri
ks using the fa
t that there areO(�) possible median votes that have di�erent values.This immediately gives an O((� + logm)n2m3) or O((min(�; �) + logmin(m;�))n2m3) timealgorithm for 
-mat
hing. It is a matter of 
omputing dt;�SAD at ea
h text position and reportingtriples (i; j; �) su
h that dt;�SAD(i; j; �) � 
.3.4 (Æ; 
)-Mat
hing with Toleran
e �There are two reasons why solving this problem is not a matter of 
omputing dt;�MAD and dt;�SADat ea
h text position and reporting triples (i; j; �) where both 
onditions dt;�MAD(i; j; �) � Æ anddt;�SAD(i; j; �) � 
 hold. One is that the transposition a
hieving this must be the same, and the otheris that the � outliers must be the same.Let us �rst 
onsider the 
ase � = 0. A simple (Æ; 
)-mat
hing algorithm is as follows. Werun the Æ-mat
hing algorithm based on dtMAD distan
e, and the 
-mat
hing algorithm based indtSAD distan
e at the same time. Every time we �nd a triple (i; j; �) that meets both 
riteria, we
ompute the range of transpositions t su
h that dMAD(i; j; �; t) � Æ. This is very simple: Say thatdtMAD(i; j; �) � Æ, whi
h is obtained at the optimal transposition tMAD. Then, dMAD(i; j; �; t) � Æfor t 2 [tMAD1 ; tMAD2 ℄ = [tMAD � (Æ � dtMAD(i; j; �)); tMAD + (Æ � dtMAD(i; j; �))℄.The problem is now to determine whether dSAD(i; j; �; t) � 
 for some t in the above range. As10



a fun
tion of t, dSAD(i; j; �; t) has a single minimum at its optimum transposition tSAD (whi
h doesnot have to be the same tMAD). Hen
e, we have three 
hoi
es: (i) tMAD1 � tSAD � tMAD2 , in whi
h
ase the o

urren
e 
an be reported; (ii) tSAD < tMAD1 , in whi
h 
ase we report the o

urren
eonly if dSAD(i; j; �; tMAD1 ) � 
; (iii) tSAD > tMAD2 , in whi
h 
ase we report the o

urren
e only ifdSAD(i; j; �; tMAD2 ) � 
.As in the worst 
ase we may have to 
he
k O(m3n2) times for a (Æ; 
)-mat
h, and 
omputingdSAD(i; j; �; t) takes O(m2) time, we 
ould pay as mu
h as O(m5n2), whi
h is as bad as the naiveapproa
h. However, on integer alphabet, we 
an do better. As we 
an re
ompute in 
onstant timedSAD from one transposition to the next [14℄, we 
an move stepwise from tSAD to tMAD1 or tMAD2 .Moreover, as we move away from tSAD, distan
e dSAD in
reases and it qui
kly ex
eeds 
. As wemove i transpositions from the median, we have i votes 
ontributing in one unit ea
h to dSAD, soafter we move i times dSAD has in
reased in O(i2) (this assumes that the alphabet is integer andthat we pa
k equal votes so as to pro
ess them in one shot). Hen
e we 
annot work more thanO(p
) before having dSAD out of range. Overall, sear
h time is O((p
 + logmin(m;�))n2m3).The situation is more 
omplex if we permit � outliers. Fortunately, both in dt;�MAD and dt;�SAD itturns out that the relevant outliers are those yielding the � minimum or maximum votes, so thesear
h spa
e is small. That is, even when the sele
tion of outliers that produ
es distan
e dt;�MAD isnot the same produ
ing distan
e dt;�SAD, it holds that if there is a sele
tion that produ
es a dt;�MADdistan
e of at most Æ and a dt;�SAD distan
e of at most 
, then the same is a
hieved by a sele
tionwhere only those produ
ing minimum or maximum votes 
an be 
hosen. This is easily seen be
ausethe dt;�MAD and dt;�SAD distan
es 
an only de
rease if we repla
e the votes in the initial sele
tion byex
luded minimum or maximum votes.Now we 
ompute dt;�MAD and dt;�SAD distan
es and 
onsider every triple (i; j; �) where both 
riteria
oin
ide. There are only � + 1 relevant sele
tions of outliers (that is, 
hoosing �0 smallest and �00largest votes su
h that �0 + �00 = �). For ea
h su
h sele
tion we already have dt;�MAD and dt;�SADdistan
es already 
omputed. Hen
e we have to run the above veri�
ation algorithm for ea
h triple(i; j; �) and ea
h of the � + 1 sele
tions of outliers. This gives a worst-
ase sear
h algorithm of
omplexity O((min(�; �)p
 + logmin(m;�))n2m3). We remark that this works only for integeralphabets.4 Con
lusions and Future WorkWe have presented the �rst 
ombinatorial approa
h to the problem of two-dimensional templatemat
hing permitting rotations and lighting invarian
e, where in addition there is some toleran
efor di�eren
e between the pattern and its o

urren
e. We have de�ned a set of meaningful distan
emeasures and sear
h problems, whi
h extend previous sear
h problems [8℄. We have built on topof previous rotation-invariant (but not lighting-invariant) sear
h te
hniques [8℄ and of previousone-dimensional lighting-invariant sear
h algorithms [14℄.We have developed eÆ
ient algorithms to 
ompute the de�ned distan
es, as well as algorithmsfor all the sear
h problems. We have shown that adding lighting invarian
e poses a small 
omputa-tional pri
e on top of previous rotation invariant sear
h algorithms [8℄, several of whi
h are alreadyoptimal. 11



The results 
an be extended to more dimensions. In three dimensions, for example, there areO(m12) di�erent mat
hing fun
tions for P [11℄, and O(um2) features of length u. The algorithmsretain their 
omplexity as long as we repla
e O(m3n2) by O(m12n3).It would also be good to obtain an algorithm for (Æ; 
)-mat
hing that works for general alphabets,as the 
urrent one only works for integer alphabet.Referen
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