
Under consideration for publication in Knowledge and Information
Systems

Compressed Vertical Partitioning for

Efficient RDF Management1

Sandra Álvarez-Garćıa1, Nieves Brisaboa1, Javier D. Fernández2,3,

Miguel A. Mart́ınez-Prieto2,3, and Gonzalo Navarro3

1 Database Lab, Facultade de Informática, University of A Coruña, Spain
2 DataWeb Research, Department of Computer Science, University of Valladolid, Spain
3 Department of Computer Science, University of Chile, Chile

Abstract. The Web of Data has been gaining momentum in recent years. This leads to
increasingly publish more and more semi-structured datasets following, in many cases,
the RDF (Resource Description Framework) data model based on atomic triple units
of subject, predicate, and object. Although it is a very simple model, specific compres-
sion methods become necessary because datasets are increasingly larger and various
scalability issues arise around their organization and storage. This requirement is even
more restrictive in RDF stores because efficient SPARQL solution on the compressed
RDF datasets is also required.

This article introduces a novel RDF indexing technique that supports efficient
SPARQL solution in compressed space. Our technique, called k2-triples, uses the
predicate to vertically partition the dataset into disjoint subsets of pairs (subject, ob-
ject), one per predicate. These subsets are represented as binary matrices of subjects ×
objects in which 1-bits mean that the corresponding triple exists in the dataset. This
model results in very sparse matrices, which are efficiently compressed using k2-trees.
We enhance this model with two compact indexes listing the predicates related to each
different subject and object in the dataset, in order to address the specific weaknesses
of vertically partitioned representations. The resulting technique not only achieves by
far the most compressed representations, but also achieves the best overall performance
for RDF retrieval in our experimental setup. Our approach uses up to 10 times less
space than a state of the art baseline, and outperforms its time performance by sev-
eral orders of magnitude on the most basic query patterns. In addition, we optimize
traditional join algorithms on k2-triples and define a novel one leveraging its specific
features. Our experimental results show that our technique also overcomes traditional

1 A preliminary version of this article appeared in Proc.17th Americas Conference on Infor-
mation Systems (AMCIS 2011): article 350.
Received Apr 01, 2013
Revised Feb 25, 2014
Accepted Jun 30, 2014

2 S. Álvarez-Garćıa et al.

vertical partitioning for join solution, reporting the best numbers for joins in which the
non-joined nodes are provided, and being competitive in most of the cases.

Keywords: RDF, compressed index, vertical partitioning, memory-based SPARQL
solution, k2-tree

1. Introduction

The Resource Description Framework (RDF) (Manola and Miller, 2004) pro-
vides a simple scheme for structuring and linking data that describe facts of the
world (Bizer et al., 2009). It models knowledge in the form of triples (subject,
predicate, object), in which the subject represents the resource being de-
scribed, the predicate is the property, and the object contains the value associ-
ated to the property for the given subject. RDF was originally conceived (under
a document-centric perspective of the Web) as a foundation for processing meta-
data and describing resources. However, this conception does not address its
actual usage. The current Recommendation2 considers RDF as the key to do for
machine processable information (application data) what the WWW has done
for hypertext, that is, to allow data to be processed outside the particular en-
vironment in which it was created, in a fashion that can work at Internet scale.
This statement describes the RDF status in the so-called Web of Data.

The Web of Data materializes the basic principles of the Semantic Web
(Berners-Lee et al., 2001) and interconnects datasets from diverse fields of knowl-
edge within a cloud of data-to-data hyperlinks that enables a ubiquitous and
seamless data integration at the lowest level of granularity. Thus, information
follows a data-centric organization within the Web of Data. The advances in ex-
traction mechanisms (Groza et al., 2013) or the annotation of massive amounts of
resources (Sánchez et al., 2011), among others, have motivated the growth of the
Web of Data in which the number (and scale) of semantic applications in use in-
creases, more RDF data are linked together, and increasingly larger datasets are
obtained. This popularity is the basis for the development of RDF management
systems (referred to as RDF stores), which play a central role in the Web of Data.
They provide support for RDF storage and also lookup infrastructure to access it
via SPARQL (Prud’hommeaux and Seaborne, 2008) query interfaces. Although
the increased amount of RDF available is good for semantic initiatives, it is
also causing performance bottlenecks in the RDF stores currently used (Huang
et al., 2011). Thus, scalability arises as a major issue, restricting popular RDF
applications, like inference-based ones, because traditional solutions are not suit-
able for large-scale deployments (Jing et al., 2009). The scalability management
is closely related to the RDF physical organization, storage and the mechanisms
designed for its retrieval.

Two families of RDF stores are mainly used within the current Web of Data.
On the one hand, relational stores are built on the generality, scalability, and
maturity of relational databases. Some logical models have been proposed for
organizing and storing RDF in relational stores (Sakr and Al-Naymat, 2010).
However, the relational model is quite strict to fit semi-structured RDF features,
and these systems reach only limited success. On the other hand, native solutions

2 http://www.w3.org/TR/rdf-syntax-grammar/

Compressed Vertical Partitioning for Efficient RDF Management 3

are custom designed from scratch and focus directly on specific RDF features.
Although various techniques have been proposed, multi-indexing ones are the
most frequently used in the current state of the art (Weiss et al., 2008; Atre
et al., 2010; Neumann and Weikum, 2010). Even so, these approaches also suffer
from lack of scalability because they raise huge space requirements.

We address this scenario with one main guideline: to reduce the space required
for organizing and storing RDF. Space savings also have a significative impact
in processing times because larger datasets can be managed and queried in main
memory, thus I/O costs are reduced. Our approach, called k2-triples, leverages
this fact to manage larger RDF datasets in main memory.

k2-triples revisits vertical partitioning (Abadi et al., 2007) by replacing
relational storage by compact k2-tree structures (Brisaboa et al., 2014). The
k2-tree provides indexed access to binary matrices and excels in compression
when these matrices are very sparse. This case arises when an RDF dataset is
vertically partitioned, because the number of subjects related to object-predicate
pairs, and the number of objects related to subject-predicate pairs, are very few
for real-world datasets (Fernández et al., 2013). This fact not only yields space
efficiency, outperforming the space of the best state-of-the-art alternatives by a
factor of 1.5 to 12. The k2-tree representation also enables efficient RDF retrieval
for triple patterns, which are the basic SPARQL queries. Our representation is
up to 5–7 orders of magnitude faster than the state of the art to solve most triple
patterns.

Our basic k2-triples approach is further enhanced with additional compact
data structures to speed up the processing of some SPARQL queries, in particular
those with no fixed predicate. This is the main weakness of vertical partitioning
and is directly related to the number of different predicates used for modeling a
dataset. We define two compact indexes that list the predicates related to each
subject and to each object in the dataset. These structures involve an acceptable
space overhead (less than 30% of the original space requirements), and improves
performance by more than an order of magnitude when these classes of queries
are solved on a dataset comprising a large predicate set.

We also focus on join operations, as they are the basis for building the Basic
Graph Patterns (BGPs) commonly used in SPARQL. We optimize the tradi-
tional merge and index join algorithms to take advantage of the basic retrieval
functionality provided in k2-triples. Besides, we describe an innovative join al-
gorithm that traverses several k2-trees in parallel and reports excellent results in
many practical scenarios. Our technique sharply outperforms traditional vertical
partitioning in join solution, by up to 5 orders of magnitude in joins involving
any variable predicate. The comparison with more advanced techniques shows
that k2-triples performs up to 3 orders of magnitude faster in joins providing
the non-joined nodes, while remaining competitive in the others.

Our experiments compare k2-triples with several state-of-the-art alterna-
tives on various real-life RDF datasets, considering space and query time. In
summary, k2-triples achieves the most compressed RDF representations to the
best of our knowledge, representing ≈ 200, 000 triples/MB in our largest dataset
(dbpedia), where the next best techniques in space usage (MonetDB and RDF-3X,
in this order) represent 125, 000 and 25, 000 triples per MB. When solving basic
triple patterns, our enhanced structure requires 0.01 to 1 millisecond (msec) per
query on dbpedia, whereas the next fastest alternative (RDF-3X) takes 1 to 10
msec and MonetDB takes 100 msec to 1 second. Finally, our best numbers in
join solution range from 0.01 to 10 msec per query (also on dbpedia), whereas

4 S. Álvarez-Garćıa et al.

RDF-3X always requires over 10 msec and MonetDB spends more than 1000 sec-
onds in the same cases. Generally our times are below 0.1 seconds per query,
which is comparable to the best performance reported in the state of the art
using RDF-3X.

The paper is organized as follows. The next section gives basic notions about
RDF and SPARQL, and reviews the state of the art on RDF stores. Section 3
introduces compact data structures and details the k2-tree index used as the basis
for our approach. The next three sections give a full description of our approach:
Section 4 explains how k2-trees are used for physical RDF organization and
storage, Section 5 describes the mechanisms designed for basic RDF retrieval
over this data partitioning, and Section 6 details the join algorithms designed
as the basis for BGP solution in SPARQL. Section 7 experimentally compares
k2-triples with state of the art RDF stores on various real-world datasets,
focusing both in space usage and query time performance. Finally, Section 8
gives our conclusions about the current scope of k2-triples and devises its
future evolution within the Web of Data.

2. State of the Art

The marriage of RDF and SPARQL is a cornerstone of the Web of Data because
they are the standards recommended by the W3C for describing and querying
semantic data. Both are briefly introduced to give basic notions about their use
and properties.

As previously described, RDF (Manola and Miller, 2004) provides a descrip-
tion framework for structuring and linking data in the form of triples (subject,
predicate, object). A triple can also be seen as an edge in labeled graph,

S
P
−→ O, where the subject S and the object O are represented as vertices and

the predicate P labels the edge that joins them. The graph modeling the whole
triple set is called the RDF Graph, a term formally introduced in the RDF
Recommendation (Manola and Miller, 2004).

Figure 1 models in RDF some information related to the Spanish National
Soccer Team (hereinafter referred to as Spanish Team) and some of its play-
ers3. Two equivalent notations are considered: (a) enumerates the set of triples
representing this information, whereas (b) shows its equivalent graph-based rep-
resentation. Following the triples representation in (a), we first state that the
Spanish Team represents Spain and Madrid is the capital of Spain. Then,
we describe the player Iker Casillas: he was born in Madrid, plays for the
Spanish Team in the position of goalkeeper and he is also the team captain.
Finally, both Iniesta and Xavi play for the Spanish Team in the position of
midfielder. These same relations can be found by traversing the labelled edges
in the graph (b).

SPARQL (Prud’hommeaux and Seaborne, 2008) is the W3C Recommenda-
tion for querying RDF. It is a graph-matching language built on top of triple
patterns, that is, RDF triples in which each subject, predicate or object may be a
variable. This means that eight different triple patterns are possible in SPARQL
(variables are preceded, in the pattern, by the symbol ?): (S,P,O), (S,?P,O),
(S,P,?O), (S,?P,?O), (?S,P,O), (?S,?P,O), (?S,P,?O), and (?S,?P,?O).

3 For simplicity, we have used strings instead of URIs and literals in the RDF excerpt.

Compressed Vertical Partitioning for Efficient RDF Management 5

Figure 1. Example of RDF-based modelling.

Figure 2. Examples of (a) SPARQL triple pattern and (b) SPARQL basic graph pattern.

SPARQL builds more complex queries (generically referred to as Basic Graph
Patterns, BGPs) by joining sets of triple patterns. Thus, competitive SPARQL
engines require, at least, fast triple pattern solution and efficient join methods.
Additionally, query optimizers are required to build efficient execution plans that
minimize the amount of intermediate results to be joined in the BGP. Query
optimization is orthogonal to our work; such techniques can be implemented on
top of k2-triples.

Figure 2 shows two simple SPARQL queries over the RDF excerpt described
in the example above:

– The first query (left), expressed in SPARQL syntax on the left of the figure,
represents the triple pattern (?S,P,O). It asks for all subjects related to the
Spanish Team through the predicate playFor. From a structural perspective,
this query is a subgraph comprising two nodes connected through the edge
labeled playFor: the destination node represents the element Spanish Team,
whereas the source node is a variable. This way, the query solution involves
graph pattern matching for locating all nodes that can play the source role in
this query subgraph. In this case, the valid nodes represent the players Iker
Casillas, Iniesta, and Xavi.

– The second query restricts the previous one to retrieve only the midfielder
players of the Spanish Team. This refinement is implemented through a sec-
ond triple pattern (?S,P,O) setting the predicate position and the object
midfielder. As can be seen on the right figure, the two triple patterns of the
query are joined by their subject. Its solution matches the query subgraph to
the RDF graph, and retrieves the elements conforming to the variable node;
in this case, the result contains the players Iniesta and Xavi.

RDF is defined as a logical data model, so no restrictions are posed on its
physical representation and/or storage. However, its implementation has a clear
effect on the retrieval efficiency, and therefore on the success of a SPARQL en-
gine within an RDF store. We review below the existing techniques for modeling,
partitioning, and indexing RDF, and discuss their use in some real RDF stores.
We aim to show the achievements and shortcomings in the state of the art to
highlight the potential for improvement on which our work focuses. We first de-

6 S. Álvarez-Garćıa et al.

scribe the approaches based on a relational infrastructure, and then the solutions
natively designed for handling RDF.

2.1. Relational Solutions

Some logical schemes have been proposed for representing RDF over the infras-
tructure provided by relational databases, but their success has been limited due
to the strictness of the relational model for handling the semi-structured RDF
features. Nevertheless, there is still room for optimization in the field of rela-
tional solutions for RDF management (Sakr and Al-Naymat, 2010); we describe
below the most frequently used schemes.

Single three-column table. This is the most straightforward scheme for mod-
elling RDF over relational infrastructure. It represents RDF triples as generic
tuples in a huge three-column table, so BGP solution involves many expensive
self-joins on this table. Systems such as 3store (Harris and Gibbins, 2003) or the
popular Virtuoso (Virtuoso Universal Server, 2013) implement this scheme.

Property tables. This model arises as a more practical scheme for RDF or-
ganization in relational databases because it creates relational-like property ta-
bles out of RDF data. These tables gather together information about multiple
predicates (properties) over a list of subjects. Thus, a given property table has
many columns, since different predicates (one per column) are used for describ-
ing the subjects it stores (in rows). Although this model significantly reduces
the number of self-joins, the cost of the query solution remains high. Besides,
the use of property tables induces two additional problems. On the one hand,
storage requirements increase because NULL values must be explicitly stored,
in each tuple, if the represented subject is not described for a given property in
the table. On the other hand, multi-valued attributes are abundant in semantic
datasets and they are somewhat awkward to express in property tables (Abadi
et al., 2007). Thus, property tables are a competitive choice for representing
well-structured datasets, but they lose potential in a general case. Systems like
Jena (Wilkinson, 2006) or Sesame (Broekstra et al., 2003) use property tables
for modeling RDF.

Vertical partitioning. The vertical partitioning (VP) scheme (Abadi et al.,
2007) can be seen as a specialized case of property tables in which each table
gathers information about a single predicate. This way, VP uses as many tables
as different predicates are used in the dataset, each one storing tuples (S,O)
that represent all (subject, object) pairs related through a given predicate. Each
table is sorted by the subject column, in general, so particular subjects can be
located quickly, and fast merge joins can be used to reconstruct information
about multiple properties for subsets of subjects (Abadi et al., 2007). However,
this decision penalizes queries by object, which require additional object indexing
for achieving competitive performance.

VP-based solutions avoid the weaknesses previously reported for property
tables because only non-NULL values are stored, and multi-valued attributes
are listed as successive tuples in the corresponding table. However, VP-based
solutions suffer from an important lack of efficiency for solving queries with
unbounded predicate; in this case, all tables must be queried and their results

Compressed Vertical Partitioning for Efficient RDF Management 7

must then be merged to obtain the final result. This cost increases linearly with
the number of different predicates used in the dataset, so VP is not the best
choice for representing datasets with many predicates.

Abadi et al. (2007; 2009) report that querying performance in column-oriented
databases is up to one order of magnitude better than that obtained in row-
oriented ones. This fact motivates the implementation of their system SW-
Store as an extension of the column-oriented database C-Store (Stonebraker
et al., 2005). SW-Store leverages all the advantages reported above, but also suf-
fers from lack of scalability for queries with unbounded predicate. SW-Store, like
some other approaches (such as those reviewed below: Hexastore, RDF3X, and
BitMat), first perform a dictionary encoding that maps long URIs and literal
values to integer IDs. This decision allows triples to be rewritten as three-ID
groups, and this is the representation finally stored in the database. Sidirour-
gos et al. (2008) show additional experiments on VP. They replace C-Store by
MonetDB (MonetDB, 2013) in the database layer; these systems show a couple
of differences (Schmidt et al., 2008): (i) data processing in C-Store is disk-based
while it is memory-based in MonetDB; and (ii) C-Store implements carefully
optimized merge joins and makes heavy use of them, whereas MonetDB uses
merge joins less frequently. Even so, MonetDB arises as a competitive choice in
this scenario (Sidirourgos et al., 2008).

2.2. Native Solutions

Native solutions are custom designed from scratch to better address RDF pe-
culiarities. Although some works (Bönström et al., 2003; Hayes and Gutiérrez,
2004; Anglés and Gutiérrez, 2005) propose different graph-based models, the
main line of research focuses on multi-indexing solutions. Harth and Decker
(2005) propose a six-index structure for managing quads4. This scheme allows
all quads conforming to a given query pattern (in which the context can also be
a variable) to be quickly retrieved. This experience has been integrated in some
systems within the current state of the art for RDF management.

Hexastore (Weiss et al., 2008) adopts the rationale of VP and multi-indexing,
but takes it further. In contrast to VP, Hexastore treats subjects, predicates,
and objects equally. That is, while VP prioritizes predicates and indexes pairs
(subject, object) around them, Hexastore builds specific indexes around each
dimension and defines a prioritization between the other two:

– For each subject S, two representations (P,O) and (O,P) are built.

– For each predicate P, two representations (S,O) and (O,S) are built.

– For each object O, two representations (S,P) and (P,S) are built.

Thus, Hexastore manages six indexes: (S,P,O), (S,O,P), (P,S,O), (P,O,S),
(O,S,P), and (O,P,S). In a naive comparison, the VP scheme (sorted by subject)
can be seen as an equivalent representation to the index (P,S,O) in Hexastore.
Thus, Hexastore stores triples in a combination of sorted sequences that requires,
in the worst case, 5 times the space used to index the full dataset in a single triples

4 A quad can be regarded as a triple enhanced with a fourth component of provenance:
(s,p,o,c), where c is the context of the triple (s,p,o).

8 S. Álvarez-Garćıa et al.

table. It can be less because some sequences can be shared between different
indexes (for instance, the object sequence is interchangeably used in the indexes
SPO and PSO). The Hexastore organization ensures primitive solution for all triple
patterns, and also ensures that the first step in pairwise joins can always be
implemented as fast merge-joins. However, its large storage requirements slow
down Hexastore when representing large datasets, because it is implemented to
be queried in main memory.

RDF3X (Neumann and Weikum, 2010) introduces index compression to reduce
the space usage of Hexastore. RDF3X creates its indexes over a single “giant
triples table” (with columns v1,v2,v3), and stores them in a (compressed) clus-
tered B+-tree. Triples, within each index, are lexicographically sorted, allowing
SPARQL patterns to be converted into range scans.

The collation order implemented in the RDF3X table causes neighboring
triples to be very similar. In most cases, neighboring triples share the values in v1
and v2, and the increases in v3 are very small. This enables the use of differential
compression to represent a given triple with respect to the previous one. This
scheme is leaf-oriented within the B+-tree, so the compression is individually
applied on each leaf. Although the authors test some well-known bitwise codes (γ-
codes, δ-codes, and Golomb codes (Salomon, 2007)), they finally apply a bytewise
code specifically designed for differential triple compression, which decompresses
much faster than bitwise techniques in exchange for a small loss in compression.
RDF3X also manages aggregated indexes (SP), (PS), (SO), (OS), (PO), and
(OP), which store the number of occurrences of each pair in the dataset. RDF3X
also contributes with a RISC-style query processor that mainly relies on merge
joins over the sorted indexes. Besides, it implements a query optimizer mostly
focused on join ordering in its generation of execution plans.

RDF3X reports very high performance, outperforming SW-Store by a large
margin. This makes it a leading reference in the area. However, despite its com-
pression improvements, the space requirements in RDF3X remain very high.
This impacts on the query performance because large amounts of data need to
be transferred from disk to memory, which can be very expensive with respect
to the query solution itself (Sidirourgos et al., 2008; Schmidt et al., 2008).

BitMat (Atre et al., 2010) goes one step further in compression, designing query
algorithms that directly perform on the compressed representation. BitMat in-
troduces an innovative compressed bit-matrix to represent the RDF structure. It
is conceptually designed as a bit-cube S×P×O, but its final implementation slices
to get two-dimensional matrices: SO and OS for each predicate P, PO for each sub-
ject S, and PS for each object O. These matrices are run-length (Salomon, 2007)
compressed by taking advantage of their sparseness. Two additional bit arrays
are used to mark non-empty rows and columns in the bit matrices SO and OS.
The results reported for BitMat show that it only overcomes the state of the
art for low-selectivity queries. However, it is an interesting achievement because
it demonstrates that avoiding materialization of intermediate results is a very
significative optimization for these queries.

Finally, hybrid (Sakr et al., 2012) and memory-based stores (Janik and Kochut,
2005; Binna et al., 2011) represent an emerging alternative in this scenario,
but their current results are limited for managing small datasets, as previously
shown for Hexastore. Their scalability is clearly compromised by the use of

Compressed Vertical Partitioning for Efficient RDF Management 9

structures, like indexes and hash tables, that demand large amounts of mem-
ory. Various semantic applications, such as inference-based ones, require scalable
memory-based stores because they perform orders of magnitude faster if the en-
tire dataset is in memory (Huang et al., 2011), and they also support a higher
degree of reasoning. New opportunities arise for memory-based stores thanks to
the advances in distributed computing. This class of solutions, recently studied
(Urbani et al., 2010; Huang et al., 2011) on the MapReduce framework, allows
arbitrarily large RDF data to be handled in main memory because more nodes
can be added to a cluster when more resources are necessary. Yet, these sys-
tems still require further research to ensure efficient RDF exchanging (Fernández
et al., 2013; Fernández et al., 2011) and efficient performance in each node.

3. Succinct Data Structures

Succinct data structures (Navarro and Mäkinen, 2007) aim at representing data
structures (e.g., sets, trees, hash tables, graphs, texts) using as little space as
possible, and manipulate them in that compressed form. They are able to ap-
proach the information theoretic minimum space required to store the original
data while retaining direct access to the data and efficiently supporting addi-
tional operations on it. These features yield competitive overall performance,
because they can implement specific functionality in faster levels of the memory
hierarchy due to the space reductions obtained. This section covers the basic
concepts about the succinct data structures involved in our approach.

3.1. Binary Sequences

Binary sequences (bitstrings) are the basis of many succinct data structures. A
bitstring B[1, n] stores a sequence of n bits and provides efficient solution for
three basic operations:

– ranka(B, i) counts the occurrences of the bit a in B[1, i].

– selecta(B, i) locates the position for the i-th occurrence of a in B.

– access(B, i) returns the bit stored in B[i].

All these operations can be solved in constant time using n + o(n) bits of
total space: n bits for B itself, and o(n) additional bits for the structures used
to answer the queries. In this paper, we consider an implementation (González
et al., 2005) which uses, in practice, 5% extra space on top of the original bitstring
size and provides fast query solution.

3.2. Directly Addressable Codes (DACs)

The use of variable-length codes is the basic principle of data compression: the
most frequent symbols are encoded with shorter codewords, whereas longer code-
words are used for representing less frequent symbols. However, variable-length
codes complicate random access to elements in the compressed sequence, which
is required in many practical scenarios (as those studied in this paper) for effi-
cient retrieval. Directly Addressable Codes (DACs) (Brisaboa et al., 2013) are a
practical solution to this problem.

10 S. Álvarez-Garćıa et al.

Figure 3. Example of k2-tree for an adjacency matrix of size 16× 16.

DACs start from a variable-length encoding of the symbols in a sequence.
Each codeword (a variable-length bit sequence) is accommodated in a number
of chunks of length b, using as many chunks as necessary, and thus the encoded
sequence can be regarded as a sequence of chunks. Those chunks are reordered
to enable direct access to any element in the encoded sequence.

Accessing a codeword in a DAC compressed sequence takes O(log(M)/b)
time in the worst case, where M is the longest codeword length. However, this
access time is lower for elements with shorter codewords, and these are the most
frequent ones.

3.3. K2-trees

The k2-tree (Brisaboa et al., 2014) is a succinct data structure for graph repre-
sentation. It models a graph of n vertices through its (binary) adjacency matrix,
M, of size n × n. Thus, M[i, j] = 1 iff the vertices represented in the i-th row
and the j-th column are related.

The k2-tree leverages sparseness and clustering features, which arise in some
classes of real-world graphs (such as Web graphs (Brisaboa et al., 2014) and social
networks (Claude and Ladra, 2011)), to achieve compression. These features
imply the existence of large “empty” areas (all cells have value 0), and the k2-
tree excels at compressing them. Conceptually, the k2-tree subdivides5 the matrix
into k2 sub-matrices of the same size, which results in k rows and k columns of
sub-matrices of size n2/k2. Each of those k2 sub-matrices is represented in the
tree using a single bit that is appended as a child of the root: a bit 1 is used for
representing those sub-matrices containing at least one cell with value 1, whereas
a 0-bit means that all cells in the sub-matrix are 0. Once this first level is built,
the method proceeds recursively for each child with value 1 until sub-matrices
full of 0s or the last level of the tree are reached. This process results in a non-
balanced k2-ary tree in which the bits in its last level correspond to the cell
values in the original matrix.

The k2-tree is implemented in a very compact way using two bitstrings: T

5 The division is similar to that proposed in the MX-Quadtree (Samet, 2006, Section 1.4.2.1).

Compressed Vertical Partitioning for Efficient RDF Management 11

(tree) and L (leaves).T stores all the bits in the k2-tree except those stored in the
last level. The bits are placed following a levelwise traversal: first the k2 binary
values of the children of the root node, then the values of the second level, and so
on. This configuration enables the k2-tree to be traversed by performing efficient
rank and select operations on the bitstring. On the other hand, L stores the
last level of the tree, comprising the cell values in the original matrix. Although
L is conceptually a bistring, in fact the decomposition stops when the matrices
reach size kL× kL and DACs are used to compress the submatrices according to
frequency, while retaining fast direct access to any leaf sub-matrix.

Besides its compression ability, the k2-tree provides various navigational op-
erations on the graph. In particular, for a given vertex v, the k2-tree supports
the operations of retrieving (i) all the vertices pointed by v (direct neighbors),
and (ii) all the vertices that point to v (inverse neighbors). Additionally, range
queries (retrieving all the connections within a sub-matrix), and the fast check
of a given cell value are also supported by the k2-tree.

Conceptually, direct neighbors retrieval, for a vertex vi, requires finding all
the cells with value 1 in the i-th row. Symmetrically, the inverse neighbors of
vi are retrieved by locating all the 1s in the i-th column. Both operations are
efficiently implemented on a top-down traversal of the tree, requiring O(1) time
per node visited (and O(n) overall time in the worst-case, but usually much
less in practice). This traversal starts at the root of the k2-tree, pos = 0, and
visits in each step the children of all nodes with value 1 in the previous level
and whose matrix area is not disjoint from the area one wants to retrieve. Given
a node, represented at the position posi of T, its k2 children are represented
consecutively from the position posi = rank1(T, pos) · k

2 of T:L. Analogous
algorithms implement the range queries and the check for a given cell value.

Example. Figure 3 shows a 16 × 16 adjacency matrix (left) and the k2-tree
(right) representing it, using k = 2. The configurations for the the two bitstrings,
T and L, implementing the k2-tree, are also shown on the bottom. The matrix is
conceptually divided into 22 = 4 sub-matrices. In the first step, the sub-matrices
are of size 8×8. To retrieve the direct neighbors of the 11-th vertex, we must find
all the cells with value 1 in the 11-th row of the adjacency matrix. The first step
starts at the root of the k2-tree, pos = 0, and computes the children overlapping
the eleventh row. These are the third and the fourth children (representing the
sub-matrices at the bottom of the original adjacency matrix), and these are
respectively represented in T[2] and T[3] (assuming that positions in T are
numbered from 0). In both cases, T[2] and T[3] have value 1, so both children
must be traversed. For simplicity we only detail the procedure for the third child,
so now pos = 2. The second step first computes the position representing the
first child of the current vertex: pos = rank1(T, 2) · 22 = 8, and checks the value
of the k2 = 4 bits stored from T[8]: [0100]. In this case, only the second child
(represented at pos = 9) has value 1, so this is the node to be visited in the third
step. The children for this node are located from pos = rank1(T, 9)·22 = 28, and
contain values [0101]. Although the second child is 1, this is not a valid match
for our query because it has no intersection with the 11-th row. This means that
only the fourth child (represented at pos = 31) is visited in the fourth step. The
new position pos = rank1(T, 31)·22 = 56 is larger than |T| = 36, so it represents
a leaf. Thus, the k2 resulting leaves must be checked from position 56− 36 = 20
of L. The bits [1000] represent this submatrix, so one connection is found for the
11-th row, and it is the 7-th column. ✷

12 S. Álvarez-Garćıa et al.

4. Compressed Vertical Partitioning on k2-triples

This section describes how the k2-tree structure can be applied to the problem
of RDF storage. Our approach is called k2-triples. We first perform a spe-
cific dictionary encoding that allows triples to be managed as three-ID groups:
(id1, id2, id3), in which id1 is the integer value that identifies the subject in the
dictionary, id2 identifies the predicate, and finally id3 identifies the object. This
decision simplifies data partitioning on k2-trees because a direct correspondence
can be established between rows and columns in the adjacency matrix and sub-
ject and object IDs in the dictionary.

4.1. Dictionary Encoding

Dictionary encoding is a common preliminary step performed before data parti-
tioning. All different terms used in the dataset are first extracted from the dataset
and mapped to integer values through a dictionary function. As explained above,
this allows long terms occurring in the RDF triples to be replaced by short IDs
referencing them within the dictionary. This simple decision greatly compacts
the dataset representation, and mitigates scalability issues.

We propose a dictionary organization comprising four independent categories,
in which terms are usually organized in lexicographic order (Atre et al., 2010;
Mart́ınez-Prieto et al., 2012; Fernández et al., 2013):

– Common subjects and objects (SO) organizes all the terms that play both
subject and object roles in the dataset. They are mapped to the range [1,|SO|].

– Subjects (S) organizes all the subjects that do not play an object role. They
are mapped to [|SO|+1,|SO|+|S|].

– Objects (O) organizes all the objects that do not play a subject role. They
are mapped to [|SO|+1,|SO|+|O|]. Note this interval overlaps with that for S,
since confusion cannot arise.

– Predicates (P) maps all the predicates to [1,|P|].

In this way, terms playing subject and object roles are represented only once.
This yields a significant reduction if we consider that up to 60% of the terms
in the dictionary are in the SO area for real-world datasets (Mart́ınez-Prieto
et al., 2012). Besides, this four-category organization improves performance for
subject-object joins because all their possible matches are elements playing both
subject and object roles, and all of them are in the range [1,|SO|]. In addition,
the intervals for subjects and objects are still contiguous.

How the dictionary is finally implemented is orthogonal to the problem ad-
dressed in this paper, and any existing technique in the state of the art could be
adapted to our organization. Nevertheless, we emphasize that RDF dictionaries
take up to 3 times more space than that required for representing the triples
structure (Mart́ınez-Prieto et al., 2012), so compressed dictionary indexes are
highly desirable for efficient and scalable management of huge RDF datasets.

Example. Figure 4 illustrates our dictionary organization over the RDF excerpt
used in Figure 1. As can be seen, the terms Madrid and Spanish Team (playing
as subject and object) are respectively identified with the values 1 and 2, the
three subjects are represented in the range [3,5], and equally the three objects

Compressed Vertical Partitioning for Efficient RDF Management 13

Figure 4. Example of dictionary encoding on k2-triples.

Figure 5. Vertical Partitioning on k2-triples (the parameter k is set to 2).

are identified with the same values: {3,4,5}. Finally, the six predicates used in
the example are identified with the range [1,6]. On the right of the figure, the
ID-based representation of the original triples is shown. ✷

4.2. Data Partitioning

k2-triples models RDF data following the well-known vertical partitioning ap-
proach. This scheme reorganizes a dataset into |P| disjoint subsets that contain
all the triples related to a given predicate. Thus, all triples in a subset can be
rewritten as pairs of subject and object (S,O), because the corresponding pred-
icate is implicitly associated to the given subset.

Each subset is independently indexed in a single k2-tree that represents sub-
jects and objects as rows and columns of the underlying matrix. That is, each
k2-tree models an adjacency matrix of |SO|+ |S| rows and |SO|+ |O| columns.

All the k2-trees used in our approach are physically built with a hybrid policy
that uses value k = 4 up to level 5 of the tree, and then k = 2 for the rest
(Brisaboa et al., 2014). The leaves, regarded as submatrices of size 8 × 8, are
encoded using DACs (Brisaboa et al., 2013).

Example. Figure 5 (left) shows the vertical partitioning of our excerpt of RDF.
As can be seen, six different subsets are obtained (one for each different pred-

14 S. Álvarez-Garćıa et al.

icate), and the triples are rewritten as pairs (S,O) within them. For example,
the triples for the predicate 5: (3,5,3), (4,5,4), (5,5,4), are rewritten as
pairs: (3,3), (4,4), (5,4), and they are then managed within the subset P5
associated to the predicate 5.

The right side of the figure shows the adjacency matrix underlying the k2-
tree used for representing subset P5. The shadow cells are the area SO in which
elements playing as subjects and objects are represented. Note that the matrix is
adjusted to the next power of k for simplicity. In this case, 1-bits are found in the
cells (3,3), (4,4), (5,4) in which the triples (3,5,3), (4,5,4), (5,5,4)
are represented. As can be seen, the resulting matrix contains a very sparse
distribution of 1-bits, and this is the best scenario for k2-trees because of their
ability to compress large empty areas. ✷

4.3. Indexing Predicates for Subjects (SP) and Objects (OP)

The solution of queries involving variable predicates is the main weakness of
systems that implement vertical partitioning. In our case, all k2-trees must be
traversed for solving triple patterns with unbounded predicate (see next section).
This is hardly scalable when a large number of predicates is used in the dataset.
In this section we enhance k2-Triples to minimize the number of k2-trees that
are traversed for solving triple patterns involving variable predicates.

The triple pattern classification, given in Section 2, shows that (?S,?P,?O)
is the only pattern with unbounded predicate that provides neither value for
the subject nor the object. However, this pattern always scans the full dataset
to retrieve all the triples within it, so no specific optimizations are possible for
it. Thus, we can leverage that subject and/or object values are provided in
interesting queries, and use them to optimize the number of k2-trees that must
be traversed for solving the remaining patterns with unbounded predicate. This
is achieved through two specific indexes:

– The Subject-Predicate (sp) index stores all the different predicates related to
each subject in the dataset.

– The Object-Predicate (op) index stores all the different predicates related to
each object in the dataset.

Empirical results (Fernández et al., 2013) show that the average size of these
lists of predicates for subjects and objects is, at most, one order of magnitude
less than the number of total predicates used in real-world datasets. Thus, the
great improvement for queries with unbounded predicate comes at the cost of
very limited additional space for the sp and op indexes.

Both sp and op indexes rely on a compact representation of their predicate
lists. The predicate list maintains, for a given subject, all the different predicates
related to it. These predicate lists are common for some subjects, and this can
be leveraged to reduce space. For this purpose, we obtain the set of all the
different predicate lists (which we call the predicate list vocabulary), and sort
them according to their frequency. In this way, the predicate lists appearing
in more subjects are encoded with shorter codewords. A similar procedure is
applied on the objects. We respectively refer to Vsp and Vop as the predicate
list vocabularies for subjects and objects.

Compressed Vertical Partitioning for Efficient RDF Management 15

Figure 6. Building sp and op indexes.

Example. Arrow 1 in Figure 6 shows the predicate lists obtained for the sub-
jects and objects in the RDF excerpt used in the previous examples. As can
be seen, the subject 1 is related to a 1-element list containing the predicate 2;
the list for the subject 2 contains the element 6; for the subject 3, its predicate
list contains four elements: 1,3,4,5; and the subjects 4 and 5 are related to
2-element predicate lists containing the elements 4,5. Arrow 2 shows how pred-
icate list vocabularies are obtained. Consider the case of subjects: the list 4,5 is
represented in the first position because it is related to two different subjects (4
and 5), whereas the other lists are only related to a single subject. The case of
objects is similar: the list 5 is related to the objects 3 and 4, and the remaining
lists appear only once. The first lists will receive a shorter codeword. ✷

We propose a succinct vocabulary representation based on two structures:

– An integer sequence S that concatenates all the predicate lists according to
their frequency. Thus, the most frequent lists appear at the beginning of the
sequence, whereas the least frequent ones are at the end. Each element in S
takes log(|P|) bits of space.

– A bitstring B that delimits and identifies predicate lists within the vocabulary.
That is, the i-th 1-bit in the position p of the bit sequence means that the
predicate list identified as i finishes in the p-th position of S.

B enables efficient list extraction within the vocabulary, because of the p-
th predicate list is stored in S[i, j], where i = select1(B, p − 1) + 1, and j =
select1(B, p)− 1 (assume select1(B, 0) = 1).

This representation allows the sp and op indexes to be easily modelled as
integer sequences. We detail sp; the same representation applies to op. The index
sp is modelled as a sequence of integer IDs of length |S|. In this way, the p-th
value in sp (referred to as sp[p]) contains the ID of the predicate list related to the
subject p, and it can be extracted from Vsp by using the simple extraction process
explained above. The elements of index sp are finally represented using DACs.
This retains direct access to any position in the index and also leverages the
frequency distribution of predicate lists to achieve compression. Note that DACs
assign shorter codewords to smaller integers and these are used for representing
the most frequent lists within the vocabulary.

16 S. Álvarez-Garćıa et al.

Example. Arrow 3, in Figure 6, illustrates the final sp and op index config-
urations. As can be seen, sp lists the IDs [2,3,4,1,1]. This means that the
first subject is related to the second predicate list, the second subject to the
third list, and so on. For instance, if we want to extract the list of predicates
related to the subject 3, we first retrieve its ID, sp[3] = 4. Thus, the fourth
list must be extracted from Vsp. This is represented in S from the position
i = select1(B, 3) + 1 = 4 + 1 = 5 to the position j = select1(B, 4) = 8, and
contains the predicates 1,3,4, and 5. ✷

5. Triple Pattern Solution over k2-triples

Triple patterns are the basic lookup unit on RDF triples; more complex SPARQL
queries can be translated into plans involving triple patterns. Thus, RDF retrieval
strongly relies on the performance achieved for solving triple patterns. This is
one of the main strengths of our approach, because k2-triples can answer all
patterns on the highly-optimized operations provided by the k2-tree structure:

– (S,P,O) is directly implemented on the operation that checks the value of a
given cell in the k2-tree. That is, the triple (S,P,O) is in the dataset iff the
cell (S,O) (in the matrix representing the subset of triples associated to the
predicate P) contains the bit 1. This operation returns a boolean value and it
is usually required within ASK queries.

– (S,?P,O) generalizes the previous pattern by checking the value of the cell
(S,O) in all the k2-trees. The result is an ID-sorted list of all the predicates
whose k2-tree contains a 1 in this cell. The process can be sped up by first
intersecting the predicate lists of sp and op respectively associated to S and
O, obtaining a list of predicates Pi that contain objects related to S as well as
subjects related to O. Then, only the k2-trees of those Pi need be considered
for pairs (S,O).

– (S,P,?O) can be seen as a forward navigation from S to all the objects related
to it through predicate P. Thus, it is equivalent to a direct neighbors retrieval
that locates all the columns with value 1 in the row associated to the subject
S within the k2-tree for P. The objects matching the pattern are returned in
sorted order.

– (S,?P,?O) generalizes the previous pattern by performing direct neighbor re-
trieval in all the k2-trees. In this case, the result comprises many ID-sorted
lists of objects for the predicates related to S. This is sped up by using the
information stored in the sp index. A subject-based query on this sp index
returns the predicate list containing all predicates Pi related to the subject S.
Thus, direct neighbors retrieval is only performed on the |Pi| k

2-trees modeling
the predicates within the list.

– (?S,P,O) corresponds to a backwards navigation from O to all the subjects
related to it through P. This is equivalent to a reverse neighbors retrieval that
locates all the rows with value 1 in the columns associated to the object O
within the k2-tree for P. The subjects matching the pattern are returned in
sorted order.

– (?S,?P,O) generalizes the previous pattern by performing reverse neighbors
retrieval in all the k2-trees. In this case, the result comprises many ID-sorted

Compressed Vertical Partitioning for Efficient RDF Management 17

lists of subjects for the predicates related to O. An object-based query on the
op index speeds up the query by restricting the predicate list to those Pj with
which object O relates to some subject.

– (?S,P,?O) is equivalent to retrieving all the values 1 in the k2-tree associated
to the predicate P. This is easily implemented by a range query performing a
full top-down traversal that retrieves all the pairs (S,O) in the structure.

– (?S,?P,?O) generalizes the previous pattern by obtaining all the 1s in all the
k2-trees used for representing the predicates in the dataset.

6. Join Solution over k2-triples

The core of SPARQL relies on the concept of Basic Graph Pattern (BGP), and
its semantics to build conjunctive expressions by joining triple patterns through
shared variables. BGPs are reordered and partitioned into pairs of triple pat-
terns sharing exactly one variable. Thus, the performance of BGPs is clearly
determined by the algorithms available for joining these patterns, and also for
the optimization strategies to order the joins. This second topic is orthogonal to
this paper and is not addressed.

k2-triples provides solutions for subject-subject and object-object joins. This
overcomes traditional vertical partitioning, which only gives direct support for
subject-subject joins, and requires an additional object index for efficient so-
lution of object-object joins. Besides, k2-triples also supports subject-object
joins. These are efficiently implemented by considering only the common area
SO in which nodes playing as subjects and objects are exclusively represented.
Our native support for cross-joins is a significant improvement with respect to
traditional vertical partitioning, in which framework cross-joins are described
as rather expensive and inefficient operations (Abadi et al., 2007). This fact is
a clear weakness for these traditional solutions because cross-joins are the ba-
sis for implementing the common path expressions queries. Abadi et al. (2007)
tackle the path expression query problem in a non-general way: the results of
only some selected paths are precalculated and stored for their efficient querying.
Finally, it is worth noting that operations involving predicates as join variables
are underused in practice (Arias et al., 2011).

This section describes the algorithms and mechanisms implemented on k2-
triples for solving joins. We first classify join operations and then detail the join
algorithms implemented by our approach. The section ends with the description
of the specific mechanisms provided by k2-triples for solving each kind of join
operation according to our different join algorithms.

6.1. Classifying Join Operations

Figure 7 categorizes the join operations according to the classes studied in this
section. Although all of them refer to subject-object joins, subject-subject and
object-object ones are similarly classified and solved on the same guidelines. We
refer to ?X as the join variable in each class.

Join operations are organized, by rows, according to the state of the predicates
in the two patterns involved in the join:

18 S. Álvarez-Garćıa et al.

Figure 7. Classification of subject-object joins supported in k2-triples.

– Row no variable predicates lists the joins in which both triple patterns provide
their predicates (classes A, B and C).

– Row one variable predicate lists the joins in which one triple pattern provides
its predicate, whereas the other one leaves it variable (classes D, E and F).

– Row two variable predicates lists the joins in which both triple patterns leave
as variables their corresponding predicates (classes G and H).

The column-based classification lists join operations according to the state of
the nodes in the triple patterns. If we consider that the join variable is represented
in two of these nodes, the remaining two determine the classes:

– Column no variable subject/object lists the joins in which the value of the two
not joined nodes are provided (classes A, D and G).

– Column one variable subject/object lists the joins in which one triple pattern
provides its not joined node, whereas the other one leaves it variable (classes
B, E and H). From this perspective, the class E is split into two subclasses:
in E.1, one pattern provides its predicate but leaves variable its node, whereas
the other pattern provides the node but leaves as variable its predicate; in E.2,
one pattern is full-of-variables (it does not provide neither the node nor the
predicate), whereas the other one provides both the node and the predicate.

– Column two variable subject/object lists the joins in which both triple patterns
leave as variables their not joined nodes (classes C and F).

We note that the eventual class I is not studied because joins full-of-variables:
(?S,?P1,?X) (?X,?P2,?O), are not used in practice.

6.2. Join Algorithms

Join algorithms have been widely studied for relational databases (Ramakrishnan
and Gehrke, 2000), and have been recently reviewed from the perspective of
semantic Web databases (Groppe, 2011). We gather this experience to propose
three join algorithms optimized for performing over k2-triples. We will use
a simple notation where Tl and Tr refer to the left and right triple patterns,
respectively, involved in the join.

Chain evaluation. This algorithm relies on the foundations of the traditional
index join: it first retrieves all the solutions for Tl, and then each one is used

Compressed Vertical Partitioning for Efficient RDF Management 19

for obtaining all the solutions for Tr. Our implementation first solves the less
expensive pattern (assume it is Tl), and gathers all the values Xi obtained for
the join variable ?X. All these values are then used for replacement in Tr. Note
that some of these values can be duplicated and these must be identified before
the replacement. These duplicates may be due to range queries or to multiple
direct/reverse neighbors. We implement an adaptive sort (Knuth, 1973) algo-
rithm that merges the results obtained for each predicate leveraging that these
are returned in sorted order.

Independent evaluation. This algorithm implements the well-known merge
join: it first solves both triple patterns and then intersects their respective solu-
tions, which come sorted by the join attribute.6

Interactive evaluation. This algorithm is strongly inspired on the Sideways
Information Passing (SIP) mechanism (Neumann and Weikum, 2009). SIP passes
information on-the-fly between the operands involved in the query in a way that
the processing performed in one of them can feed back the other and vice versa.
Thus, both triple patterns within the join are interactively evaluated and solved
without materialization of intermediate results. This interactive evaluation is eas-
ily implemented in k2-triples by means of a coordinated step-by-step traversal
performed on those k2-trees involved in the solution of each pattern within the
join. In the next example only two k2-trees are involved, the join attribute is the
subject in both trees, and the predicates and objects are fixed, but all the other
combinations can be handled similarly.

Example. Figure 8 illustrates how k2-triples implements the interactive eval-
uation of the join query shown in Figure 2(b). The original SPARQL query (?X,
playFor, Spanish Team) (?X, position, midfielder), is rewritten as (?X,
4,2) (?X,5,4) by performing the ID-based replacement of each term. Thus, the
join must be carried out on the k2-trees that respectively model the predicates
4 and 5. Both k2-trees are represented in Figure 8(a)7. Columns 2 and 4 are
respectively remarked for the predicates 4 and 5, since those are the ones we
have to join. We consider k = 2; the join is implemented as follows:

(a) The two matrices M4 and M5 are queried. They are divided into k2 = 4
submatrices (Figure 8(a)). Both right submatrices in both M4 and M5 are
discarded because they do not overlap with the columns involved in the
current query. The two pairs of left submatrices have value 1, so both may
contain results. Thus, we recursively consider the top-left and the bottom-left
submatrices ofM4 andM5. Note that we could have had to make more than
one recursive call per submatrix, had we obtained more than one relevant
top or bottom cell in M4 and M5 (not in this case, where the columns are
specified).

(b) In the top-left submatrices (Figure 8(b)) we discard in turn the right sub-
submatrices in M4 and the left subsubmatrices in M5, because they do
not intersect the query column. Further, both top subsubmatrices are 0,
so we need consider only, recursively, the bottom-left subsubmatrix of M4

6 This is done by traversing the k2-tree in the proper order or by sorting the results afterwards.
7 The relation (8,2) is added to P4 in order to provide a more interesting example of the
interactive evaluation algorithm.

20 S. Álvarez-Garćıa et al.

Figure 8. Example of interactive evaluation.

paired with the bottom-right subsubmatrix of M5. Similarly, the top-left
and top-right subsubmatrices of M4 and M5 are recursively considered on
the bottom-left submatrices.

(c) The last recursion level (Figure 8(c)) compares leaves in M4 and M5. As
in the previous step, we discard the cells that do not overlap with the query
columns, and intersect the remaining ones. Three cells are possible results
in M4: (3,2), (4,2) and (5,2), so only their corresponding counterparts
must be evaluated in M5. Whereas the cell (3,4) has value 0, the other
two ones, (4,4) and (5,4), contain 1-bits. Thus, the 4 and 5 represent the
subjects in the final query result: Iniesta (4) and Xavi (5).

✷

6.3. Implementing Joins over k2-triples

This section details how k2-triples uses the proposed algorithms for solving
all the join operations classified in Figure 7. We will refer to Tl and Tr as the

Compressed Vertical Partitioning for Efficient RDF Management 21

first and second patterns involved in each class of join. In general, interactive
evaluation can be used uniformly on all the cases, whereas chain and independent
evaluation can also be used with different strategies depending on the type of
join. As a general rule of thumb, chain evaluation is preferable over independent
evaluation when the outcome of one side of the join is expected to be much
smaller than the other. Interactive evaluation, instead, adapts automatically to
perform in the best way on each case. Finally, we remark that we will use indexes
sp and op whenever possible to restrict the set of predicates to consider when
the predicate is variable (we will remark this when their usage is less obvious).

Joins with no variable predicates. As explained, in these classes of joins
both triple patterns provide their predicates. This ensures high performance
for interactive evaluation because only two parallel k2-tree traversals must be
performed. Chain and independent evaluation are also possible, depending on
the number of variable nodes involved in each class:

– Joins A. It is the simplest class because only the join variable is not provided.
Chain evaluation is advantageous when one operand has much fewer results
than the other. Otherwise, independent evaluation is better, as it leverages
that both patterns return their results in sorted order.

– Joins B. This class leaves as variable a non-joined node. The subject node
of Tl is variable in the example: (?S,P1,?X) (?X,P2,O). Chain evaluation is
well-suited for this class because it first solves Tr, obtains all the values Xi
for ?X, and finally replaces them in Tl. In this way, Tl is transformed into a
group of patterns in which ?X is replaced by each Xi retrieved from Tr. The
final result comprises the union of all the results retrieved for the group of
patterns obtained from Tl. Nevertheless, independent evaluation also applies
for this class. On the one hand, Tr is solved through a reverse neighbors query,
which returns its results in order. On the other hand, a range query returns all
results for Tl, which must then be sorted by X. The results of both operations
are finally intersected producing the join result set.

– Joins C. Both patterns in the join leave as variables their non-joined nodes.
Chain evaluation first solves the pattern containing the less frequent predicate
(i.e., containing fewer (S,O) pairs), extracts all its pairs, and all their distinct
Xi components are then replaced in the other pattern (note we must remove
duplicates in the Xi list before replacing each in Tr). Then all the objects
found in Tr for each Xi are matched with all the subjects found in Tl for the
same Xi. Alternatively, independent evaluation generates all the pairs from
both operands, sorted by the ?X component in each case, and intersects the
sorted lists.

Joins with one variable predicate. These classes comprise a triple pattern
providing its predicate, and another that leaves it variable. In this case, interac-
tive evaluation traverses, in parallel, the k2-tree associated to the given predicate,
and the preds different k2-trees involved in the solution of other triple patterns.
In each recursive step, only a subset of the preds k2-trees stay active for the
corresponding submatrix. Chain and independent evaluation strategies are also
possible depending on the number of variable nodes involved in each operand:

– Joins D. This class, like Joins A, provides the two non-joined nodes but in-
cludes a variable predicate (say, that of Tr). In this case, chain evaluation first

22 S. Álvarez-Garćıa et al.

solves Tl, obtains all the values Xi for ?X, and finally replaces them in Tr for
its solution, which becomes a set of access to single cell queries. Independent
evaluation is also practical. First, Tl is efficiently solved with a direct neigh-
bors query and its results are retrieved in order. Second, Tr performs preds
inverse neighbor queries to obtain the result set for (?X,?P,O), which must
be adaptively sorted (for grouping the Xj values) before the final intersection.
Note that not only the op index can be used to restrict the predicates of Tr

to those related to O, but we can also restrict using sp to the union of all the
Xi values.

– Joins E. This class is split into two subclasses according to the pattern that
contains the unbounded predicate and the variable non-joined node.

· E.1. Chain evaluation can choose between two strategies, depending on
which starts with the smaller set of candidates. On the one hand, Tr, which
contains the unbounded predicate and provides the non-variable node, can
be first solved and its results be adaptively sorted to remove duplicates.
These results Xj for ?X are then replaced in Tl for its final solution using
inverse neighbor queries. On the other hand, we could collect all the (S,Xi)
pairs from P1, remove duplicates in Xi, and run access to single cell queries
on all the qualifying k2-trees for Tr. Independent evaluation is also possible,
much as done for Join D operations.

· E.2. Chain evaluation first solves Tr and all their bindings Xj for ?X are
then used for replacement in Tl (which is full-of-variables in this case) using
preds inverse neighbor queries.

– Joins F. In this class, Tl only provides the predicate, and Tr is full of variables.
Chain evaluation first solves Tl, filters duplicate Xi values, and these are finally
used for solving Tr. This last step is restricted using index sp.

Joins with two variable predicates. The triple patterns in this class leave
their two predicates as variables. This means that interactive evaluation traverses
in parallel all the different k2-trees involved in the solution of each pattern. Chain
and independent evaluation can proceed as follows.

– Joins G. This class provides the non-joined nodes and leaves the predicates as
variables. Chain evaluation first solves Tl, its bindings for ?X are cleaned from
duplicates, and these are finally replaced in Tr for its solution. Independent
evaluation is also suitable. It retrieves the results for each pattern sorted by
their ?X component, and then intersects the sorted lists.

– Joins H. In this case, Tl is full of variables and Tr binds the non-joined node.
Chain evaluation first solves Tr and its results, clean from duplicates, are used
for solving Tl.

Table 1 summarizes all presented choices for each class of join. The first col-
umn indicates the class of join and the second illustrates a representative of
the corresponding class. Column chain evaluation describes how this join strat-
egy is carried out, that is, Tl → Tr means that Tl is first executed and its
results are used for solving Tr, and vice versa. Column independent evaluation
indicates the classes where this strategy can be efficiently used. Finally, column
interactive evaluation indicates the k2-tree operations interactively performed

Compressed Vertical Partitioning for Efficient RDF Management 23

Table 1. Summary of solution of joins in k2-triples (∗ means that removing duplicates is
required for solving joins)

Join
Example Chain

Inde- Interactive

Class pendent Tl Tr

A (S,P1,?X)(?X,P2,O)
Tl → Tr

√
Direct Reverse

Tr → Tl

B (?S,P1,?X)(?X,P2,O) Tr → Tl

√
∗ Range Reverse

C (?S,P1,?X)(?X,P2,?O)
T∗

l
→ Tr

√
∗ Range Range

T∗

r
→ Tl

D (S,P1,?X)(?X,?P2,O) Tl → Tr

√
∗ Direct Reverse (×preds)

E.1 (?S,P1,?X)(?X,?P2,O)
T∗

l
→ Tr

√
∗ Range Reverse (×preds)

T∗

r
→ Tl

E.2 (?S,?P1,?X)(?X,P2,O) Tr → Tl Range (×preds) Reverse

F (?S,P1,?X)(?X,?P2,?O) T∗

l
→Tr Range Range (×preds)

G (S,?P1,?X)(?X,?P2,O)
T∗

l
→ Tr

√
∗ Direct (×preds) Reverse (×preds)

T∗

r
→ Tl

H (?S,?P1,?X)(?X,?P2,O) T∗

r
→ Tl Range (×preds) Reverse (×preds)

for solving each triple pattern in the join. We indicate with “×preds” the cases
where interactive operations involve unbounded predicates.

7. Experimentation

This section studies the performance of k2-triples on a heterogeneous experi-
mental setup comprising real-world RDF datasets from different areas of knowl-
edge. We study both compression effectiveness and querying performance, and
compare these results with respect to a consistent set of techniques from the
state of the art.

7.1. Experimental Setup

We run experiments on an AMD-PhenomTM-II X4 955@3.2 GHz, quad-core (4
cores - 4 siblings: 1 thread per core), 8GB DDR2@800MHz, running Ubuntu
9.10. We built two prototypes:

– k2-triples, the vertical partitioning on k2-trees without the sp and op in-
dexes.

– k2-triples+, which enhances the basic vertical partitioning model with the
indexes sp and op.

Both prototypes were developed in C, and compiled using gcc (version 4.4.1)
with optimization -O9.

RDF Stores. We compare our results with respect to three representative tech-
niques in the state of the art (Section 2):

24 S. Álvarez-Garćıa et al.

Table 2. Statistical dataset description

Dataset Size (MB) # Triples # Predicates # Subjects # Objects

jamendo 144.18 1,049,639 28 335,926 440,604
dblp 7,580.99 46,597,620 27 2,840,639 19,639,731

geonames 12,347.70 112,235,492 26 8,147,136 41,111,569
dbpedia 33,912.71 232,542,405 39,672 18,425,128 65,200,769

– A vertical partitioning solution following the approach of Abadi et al. (2007).
We implement it over MonetDB (MonetDB Database Server v1.6, Jul2012-SP2)
because it achieves better performance than the original C-Store based solution
(Sidirourgos et al., 2008).

– A memory-based system implemented over Hexastore8.

– A highly-efficient store: RDF3X9, which was recently reported as the fastest
RDF store (Huang et al., 2011).

All these techniques had been tested following the configurations and param-
eterization provided in their original sources.

RDF Datasets. We design a heterogeneous RDF data test for testing k2-
triples with respect to different data distributions, showing that our approach
is competitive in a general scenario. We choose four datasets based on the amount
of triples, topic coverage, availability and, if possible, previous use in benchmark-
ing:

– jamendo10 is a repository of Creative Commons licensed music.

– dblp11 provides information on Computer Science journals and proceedings.

– geonames12 is a geographical database covering all countries and containing a
large number of place names.

– dbpedia13 is the semantic evolution of Wikipedia, an encyclopedic dataset.
dbpedia is considered the “nucleus for a Web of Data” (Auer et al., 2007).

The main statistics of these datasets are given in Table 2. Note that a pre-
processing phase is applied to all datasets. First, we represent all the datasets in
N-Triples (Grant and Beckett, 2004), one of the most basic formats containing
one sentence per line. If the original dataset was not in N-Triples, it is converted
to this raw format with the Any23 tool14. Finally, the dataset file is lexico-
graphically sorted and duplicate triples are discarded. Table 2 shows the size in
N-Triples and the number of triples, different predicates, subjects and objects of
each dataset after this preprocessing.

As can be seen, we consider datasets of different sizes; we include jamendo as
a small dataset comprising 1 million triples. This allows (i) testing our proposal

8 Hexastore has been kindly provided by its authors.
9 http://code.google.com/p/rdf3x/
10 http://dbtune.org/jamendo/
11 http://dblp.l3s.de/dblp++.php
12 http://download.geonames.org/all-geonames-rdf.zip
13 http://wiki.dbpedia.org/Downloads351
14 http://any23.apache.org/ (version: any23-0.6.1)

Compressed Vertical Partitioning for Efficient RDF Management 25

also at small sizes and (ii) comparing it with other solutions indexing uncom-
pressed data in memory. In turn, we choose large datasets of incremental size to
show the overall scalability of the proposal, managing from 46 Million triples in
dblp up to more than 232 Million triples in dbpedia.

As stated, k2-triples represents subjects and objects as rows and columns
of the underlying matrix. We show the number of different subjects and objects
in the last columns of Table 2. As one could expect, the number of different
subjects is significantly lower than the number of objects; subjects describe the
resources in RDF, and they usually appear in multiple triples, whereas objects
hold the values of the descriptions, which could be unique for all the dataset
(e.g., a concrete timestamp, a textual description, an ID field, etc.).

Table 2 also reflects the fact that the number of predicates is generally low,
including three datasets with 26, 27 and 28 different predicates. However, since
queries with unbounded predicate are poorly solved using traditional solutions
based on vertical partitioning, we choose dbpedia as an extreme case in which
the number of predicates grows to the order of thousands due to the variability of
the represented information. This allows us analyzing how k2-triples performs
when the number of predicates increases. This is the worst case for queries with
unbounded predicate, on which VP-based solutions lack scalability.

Queries. We design experiments focused on demonstrating the retrieval ability
of all RDF stores included in our setup. First, we run triple pattern queries
to analyze basic lookup performance. These results feed back join experiments
which, in turn, predict the core performance for BGP solution in SPARQL.

We design a testbed15 of randomly generated queries covering the entire
spectrum of triple patterns and joins. For each dataset, we consider 500 random
triple patterns of each type. Note that in all datasets, except for dbpedia, the
triple pattern (?S,P,?O) is limited by the number of different predicates.

Join tests are generated by following the aforementioned classification (A-H,
as shown in Figure 7 for Subject-Object joins), and for each one we obtain specific
joins Subject-Object (SO), Subject-Subject (SS), and Object-Object (OO). We
generate 500 random queries of each join and perform a big-small classification
according to the number of intermediate results: for each join we take the product
of the number of results for the first triple pattern and the results of the second
triple pattern in the join. Given the mean of this product, we randomly choose
25 queries with a number of intermediate results over the mean (joins big) and
other 25 queries with fewer results than the mean (joins small).

We design two evaluation scenarios to analyze how I/O transactions penalize
on-disk RDF stores included in our setup. The warm evaluation is designed to
help query results be available in main memory. It was implemented taking the
mean solution time of six consecutive repetitions of each query. On the other
hand, the cold evaluation illustrates a real scenario in which queries are inde-
pendently performed. All the reported times were averaged on five independent
executions in which the elapsed time was considered.

15 The full testbed is available at http://dataweb.infor.uva.es/queries-k2triples.tgz

26 S. Álvarez-Garćıa et al.

Table 3. Space requirements (all sizes are expressed in MB)
On-disk Memory-based

MonetDB RDF-3X Hexastore k2-triples k2-triples+

jamendo 8.76 37.73 1,371.25 0.74 1.28
dblp 358.44 1,643.31 × 82.48 99.24

geonames 859.66 3,584.80 × 152.20 188.63
dbpedia 1,811.74 9,757.58 × 931.44 1178.38

7.2. Compression Results

We first focus on compression performance to measure the ability of k2-triples
to work in severely reduced space. This comparison involves on-disk based rep-
resentations, MonetDB and RDF3X, and memory-based ones, Hexastore and our
two k2-triples based approaches. In these cases, we consider the space required
for operating the representations in main memory. Table 3 summarizes the space
requirements for all stores and datasets in the current setup.

Among previous RDF stores, MonetDB is the most compact one. This is an
expected result according to the compressibility of column-oriented representa-
tions (Abadi et al., 2006). MonetDB demands roughly 4 times less space than
RDF3X for the smallest datasets, matching the theoretically expected difference
according to the features of each underlying model. This difference is greater
for dbpedia: in this case MonetDB uses ≈ 5.4 times less space than RDF3X. On
the other hand, Hexastore reports an oversized representation for jamendo and
cannot index the other datasets in our configuration.

Nevertheless, k2-triples requires much less space on all the datasets. It
sharply outperforms the other systems, taking advantage of its compact data
structures. This result can be analyzed from three complementary perspectives:

– k2-triples is more effective than column-oriented compression for vertically
partitioned representations. The comparison between our approach and MonetDB
shows that k2-triples requires several times less space than the column-
oriented database. The space used by MonetDB for the largest datasets is 2–5.5
times larger than k2-triples and 1.5–4.5 times larger than k2-triples+. Be-
sides, we also provide indexed access by object within this smaller space.

– k2-triples allows many more triples to be managed in main memory. If we
divide the number of triples in jamendo (1,049,644) by the space required
for their memory-based representation in Hexastore (1,371.25 MB), we ob-
tain that it represents roughly 765 triples/MB. This same analysis, in our
approaches, reports that k2-triples manages almost 1.5 million triples/MB,
and k2-triples+ represents more than 800,000 triples/MB. Although this rate
strongly depends on the dataset, its lowest values (reported for dbpedia) are
≈ 200,000 triples/MB. This means that k2-triples increases by more than
two orders of magnitude the number of triples that can be managed in main
memory on Hexastore because of its compression ability.

– k2-triples provides full RDF indexing in a space significantly smaller than
that used for systems based on sextuple indexing. This difference also depends
on the dataset; for instance, RDF3X uses roughly 8–10 times the space required
by our techniques for representing dbpedia.

K2-triples achieves compression ratios between 10 and 40 bits per triple (bpt)
in the datasets analyzed in this experiment (excluding the tiny dataset jamendo,

Compressed Vertical Partitioning for Efficient RDF Management 27

where a ratio of 5 bpt is obtained). However, meaningful differences are observed
depending on the features of the dataset. In dbpedia we need almost 34 bpt,
as opposed to the 12–15 bpt in geonames and dblp. The main reason for this
difference seems to be the high number of predicates used in dbpedia (39,672)
in contrast to the other datasets. Many of these k2-trees are poorly populated
(about 57% of the predicates contain less than 10 edges, and roughly 81% less
than 100 edges), obtaining poor compression ratios per edge (due to the overhead
of storing a full k2-tree for only a few edges).

Finally, we focus on the additional space required by k2-triples+ over the
original k2-triples representation. Leaving aside jamendo, whose size is tiny in
comparison to the other datasets, this extra cost ranges from ≈ 20% for dblp to
≈ 26.5% for dbpedia. Thus, the use of the additional sp and op indexes incurs
in an acceptable space overhead considering that our representation remains
the most compressed one even adding these new indexes. This space overhead
depends on two main factors. One is the different number of subjects and objects
of the dataset. An individual entry representing its corresponding predicate list
is maintained for each subject and object, so the cost of storing the indexes sp
and op is expected to be high for datasets where each element appears in a few
triples. Another factor is that too many different predicates will probably increase
the number of different predicate lists. As a result, the size of the predicate list
vocabulary is incremented, resulting in a higher space overhead. This factor can
be observed in the indexes sp and op for dbpedia, where the cost per element
(subject or object) is about 24 bits, in contrast to the other datasets where the
cost is about 6 bits per element. Nevertheless, as explained below, sp and op

indexes are mainly useful for datasets involving a large number of predicates.

7.3. Query Performance

This section focuses on query time performance. We report figures for the most
prominent experiments; the remaining ones are given in the appendixes.

Triple patterns. These experiments measure the capabilities of all stores for
RDF retrieval through triple pattern solution. These are the atomic SPARQL
queries, and are massively used in practice (Arias et al., 2011).

Figure 9 compares these times for jamendo (left) and dbpedia (right) in the
warm scenario, which is the most favorable for on-disk systems. The x axis lists
all the possible triple patterns16 and groups the results for each system; solution
times (in milliseconds) are reported in the y axis (logarithmic scale).

The comparison for jamendo includes Hexastore. As can be seen, this is
never the best choice and it only outperforms MonetDB in patterns with un-
bounded predicate. According to these results, we discard it because of its lack
competitivity in the current setup. On the contrary, k2-triples+ turns out to be
the most efficient choice, and only MonetDB slightly outperforms it for (?,P,?)
in all collections but dbpedia. Thus, in general, our approach reports the best
overall performance for RDF retrieval. This can be analyzed in more detail:

– Our approach overcomes the main vertical partitioning drawback and provides

16 The pattern (?,?,?), which returns all triples in the dataset, is excluded because it is rarely
used in practice.

28 S. Álvarez-Garćıa et al.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

SPO SP? ?PO S?O S?? ?P? ??O

T
im

e
(m

ili
se

co
nd

s)

Querying time for triple patterns (jamendo)

k2−triples
k2−triples+

RDF3X
MonetDB

Hexastore

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

SPO SP? ?PO S?O S?? ?P? ??O

T
im

e
(m

ili
se

co
nd

s)

Querying time for triple patterns (dbpedia)

k2−triples
k2−triples+

RDF3X
MonetDB

Figure 9. Solution time (in milliseconds) for triple patterns in jamendo and dbpedia (warm
scenario).

Table 4. Solution time (in milliseconds) for the patten (?,P,?) on dbpedia (warm scenario)
k2-triples+ RDF3X MonetDB

small 0.09 2.53 3.77
big 24.57 14.88 6.14

high performance for solving patterns with unbounded predicate. This is studied
on dbpedia because in these queries scalability is more seriously compromised
due to the large number of predicates. k2-triples+ leads the scene, whereas
RDF3X is close for (S,?,?), falls behind for (?,?,O), and is more than 2
orders of magnitude slower for (S,?,O). As expected, a larger improvement is
achieved with respect to our original k2-triples (between 1 and 3 orders of
magnitude), whereas our achievement is more significant in comparison with
MonetDB: the difference ranges from roughly 5 orders of magnitude in (S,?,?)
to 8 orders for (S,?,O).

– MonetDB excels above the other systems in solving the pattern (?,P,?), but
this comparison changes in dbpedia. This owes to the fact that predicates
tend to be uniformly used in the other datasets, whereas in dbpedia some
predicates are overused and the remaining ones are scarcely used. Thus, the
number of results to be obtained differs strongly and it affects the perfor-
mance. Table 4 summarizes solution times for predicates returning small and
big result sets. As can be seen, k2-triples+ dominates for less used predi-
cates, whereas MonetDB is better when more results are retrieved. Thus, the
optimized column-oriented representation provides the fastest solution when
the predicate is used in numerous triples, whereas k2-triples+ outperforms
it for more restrictive predicates.

Finally, it is worth noting that k2-triples+ obtains a competitive advan-
tage over the original k2-triples for datasets involving many predicates. For
instance, in the case of dbpedia (containing a high number of predicates), the
performance of the query pattern (S,?,?) is improved by 2 orders of magnitude.
This difference owes to the fact that, in k2-triples, 39, 672 row queries have to
be performed in order to answer that pattern. However, considering that the
average number of different predicates describing a subject (that is, its predi-
cate list size) is about 6 in this dataset, the number of k2-trees that have to be
queried is significantly reduced in k2-triples+. However, in the other datasets,
the maximum number of predicates that are checked in k2-triples is already
less than 30. As a result, the improvement in those datasets is lower and both

Compressed Vertical Partitioning for Efficient RDF Management 29

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join A (warm scenario)

chain
independent

interactive
RDF3X

MonetDB

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join B (warm scenario)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join C (warm scenario)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join D (warm scenario)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join E1 (warm scenario)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join F (warm scenario)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join E2 (warm scenario)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join G (warm scenario)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join H (warm scenario)

Figure 10. Solution time (in milliseconds) for joins in dbpedia (warm scenario).

techniques achieve comparable performance, yet k2-triples uses slightly less
space. Nevertheless, we will use k2-triples+ in all the remaining experiments.

Joins. After studying triple pattern performance, the next stage focuses on join
solution. The following experiments (i) analyze how our three different join eval-
uation algorithms perform: chain, independent and interactive, and (ii) compare
them with respect to RDF3X andMonetDB. All these experiments are performed
in the warm scenario in order to avoid penalizing on-disk solutions.

Figure 10 summarizes join results for dbpedia. This figure comprises 9 plots,
one for each class of join according to the classification described in Figure 7.
Each plot comprises three subsets of joins: Subject-Object (SO), Subject-Subject
(SS), and Object-Object (OO) in the x axis. The left group considers joins gen-
erating a small amount of intermediate results, whereas the right group gives
equivalent results for joins involving big intermediate result sets. Solution times
(in milliseconds) are reported on the y axis (logarithmic scale); note that times
over 107 milliseconds are discarded in all the experiments. We analyze results:

– k2-triples+ is the fastest technique for solving joins in which the value of the
two not joined nodes are provided (classes A, D and G). This is mainly be-

30 S. Álvarez-Garćıa et al.

cause all these classes are solved using, exclusively, direct and reverse neighbors
queries, which are very efficient in practice. Both chain and interactive evalua-
tion algorithms dominate Join A: they report, at least, one order of magnitude
of improvement with respect to RDF3X and MonetDB. Chain evaluation is
slightly faster in Join D, improving upon RDF3X by more than one order of
magnitude (except for OO big). Note that, in this case, MonetDB is no longer
competitive since it pays the penalty of solving a pattern with unbounded
predicate. Finally, interactive is the fastest choice for Join G, although chain
overcomes it for OO joins. While k2-triples+ is always faster than RDF3X
in all cases, it is worth noting that differences are reduced due to the need of
solving two patterns with unbounded predicate. Still we remain competitive,
while the performance of the vertical partitioning in MonetDB collapses (no
times are drawn in this class).

– The second column comprises joins leaving variable a not joined node and
fixing the other one (classes B, E, and H). k2-triples+ and RDF3X share
the lead in these experiments, whereas MonetDB remains competitive only in
Join B, although it is never the best choice. On the one hand, the results for
Join B and E1 leads to similar conclusions. k2-triples+ is the best choice
for joins generating small intermediate result sets: chain is fastest for OO, and
interactive for SO and SS. RDF3X overcomes k2-triples+ when big interme-
diate result sets are obtained, although our chain evaluation obtains the best
performance for OO joins. On the other hand, Join E2 and H give similar
conclusions, as well. In this case, RDF3X always achieves the best times, ex-
cept for OO joins, in which chain evaluation is the most efficient choice again.
In this case, interactive evaluation is less competitive because it performs mul-
tiple range queries.

– The third column comprises joins in which both triple patterns leave as vari-
ables their not joined nodes (classes C and F). In Join C, RDF3X is the best
choice for SO and OO joins, whereas MonetDB wins for SS. Note that our ap-
proach remains competitive for SS and SO, but its performance is significantly
degraded for OO. In Join F, our chain evaluation competes with RDF3X for
the best times, overcoming it for SS small. However, this turns out to be the
most costly query; note that no technique finishes on OO joins involving big
intermediate results.

Summarizing, k2-triples+ excels when triple patterns provide values for
the non-joined nodes, an it is clearly scalable when predicates are provided as
variables. Thus, in general terms, a query optimizer using k2-triples+ must
favor firstly joins A, D or G; then joins B, E, and H; and finally joins C and F.
In any case, joins involving small intermediate result sets are always preferable
over those generating big intermediate results.

These findings also apply, in general form, for the remaining datasets in our
setup. As we show in Appendix B, all of them draw broadly comparable figures. It
is worth noting that k2-triples+ overcomes the other techniques for the smallest
dataset (jamendo), dominating the comparison in most cases, and coming very
close to RDF3X in Joins C and F. Another interesting aspect is that MonetDB
is the one profiting most from the reduced number of predicates; it reports the
best performance in some particular cases.

Compressed Vertical Partitioning for Efficient RDF Management 31

8. Conclusions and Future Work

This paper introduces a specific compressed index for RDF called k2-triples.
Based on the well-known vertical partitioning model, this technique represents
(subject, object) pairs in very sparse binary matrices, which are effectively in-
dexed in compressed space using the recent k2-tree structures. This modelling
achieves the most compressed representations with respect to a state-of-the-art
baseline and also provides the most efficient performance for solving triple pat-
terns with fixed predicate. To overcome the lack of scalability arising for patterns
involving unbounded predicates, two additional indexes are also represented in
compressed space. This simple enhancement makes our technique dominant for
most RDF retrieval activities. Moreover, we report better numbers for join so-
lution, outperforming the state of the art for some classes of join, while being
competitive in most of the others.

Our future work focuses on getting a full-fledged RDF store over the current
k2-triples approach. This means, on the one hand, designing a specific query
optimizer able to leverage the current retrieval features and also the reported
performance for join operations. This would allow BGPs to be efficiently solved
and set the basis for providing a full SPARQL solution. On the other hand, we
will work to obtain a dynamic RDF storage that allows insertion, deletion and
updating of triples over the current data partitioning scheme. These objectives
are strongly stimulated by the recent advances reported on dynamic k2-trees
(Brisaboa et al., 2012).

Acknowledgements. This work was partially funded by the Spanish Ministry of
Economy and Competitiveness (PGE & FEDER), grants TIN2009-14560-C03-02 (first
and second authors) and TIN2013-46238-C4-3-R (first, second, third, and fourth au-
thors); CDTI, Spanish Ministry of Economy and Competitiveness, and Axencia Galega
de Innovación (CDTI EXP 00064563 / ITC-20133062), and the Xunta de Galicia with
FEDER ref. GRC2013/053 (first and second authors); and Chilean Fondecyt, refs. 1-
110066 and 1-140796. The first author is granted by the Spanish Ministry of Economy
and Competitiveness ref. BES-2010-039022. The third author is granted by the Re-
gional Government of Castilla y Leon (Spain) and the European Social Fund. The
fourth author has a Ibero-American Young Teachers and Researchers Grant funded by
Santander Universidades.

References

Abadi, D., Madden, S. and Ferreira, M. (2006), Integrating compression and execution in
column-oriented database systems, in ‘Proc. 33th International Conference on Management
of Data (SIGMOD)’, pp. 671–682.

Abadi, D., Marcus, A., Madden, S. and Hollenbach, K. (2007), Scalable semantic Web data
management using vertical partitioning, in ‘Proc. 33th International Conference on Very
Large Data Bases (VLDB)’, pp. 411–422.

Abadi, D., Marcus, A., Madden, S. and Hollenbach, K. (2009), ‘SW-store: a vertically parti-
tioned DBMS for semantic Web data management’, The VLDB Journal 18, 385–406.

Anglés, R. and Gutiérrez, C. (2005), Querying RDF data from a graph database perspective,
in ‘Proc. 2nd European Semantic Web Conference (ESWC)’, pp. 346–360.

Arias, M., Fernández, J. and Mart́ınez-Prieto, M. (2011), An empirical study of real-world
SPARQL queries, in ‘Proc. 1st International Workshop on Usage Analysis and the Web of
Data (USEWOD)’. Available at http://arxiv.org/abs/1103.5043.

Atre, M., Chaoji, V., Zaki, M. and Hendler, J. (2010), Matrix “bit” loaded: a scalable

32 S. Álvarez-Garćıa et al.

lightweight join query processor for RDF data, in ‘Proc. 19th International Conference
on World Wide Web (WWW)’, pp. 41–50.

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R. and Ives, Z. (2007), DBpedia:
a nucleus for a Web of open data, in ‘Proc. 6th International Semantic Web (ISWC)
Conference and 2nd Asian Semantic Web Conference (ASWC)’, pp. 722–735.

Berners-Lee, T., Hendler, J. and Lassila, O. (2001), ‘The semantic Web’, Scientific American
Magazine .

Binna, R., Gassler, W., Zangerle, E., Pacher, D. and Specht, G. (2011), SpiderStore: A na-
tive main memory approach for graph storage, in ‘Proc. 23rd Workshop Grundlagen von
Datenbanken (GvDB)’, pp. 91–96.

Bizer, C., Heath, T. and Berners-Lee, T. (2009), ‘Linked data – the story so far’, International
Journal on Semantic Web and Information Systems 5, 1–22.

Bönström, V., Hinze, A. and Schweppe, H. (2003), Storing RDF as a graph, in ‘Proc. 1st Latin
American Web Congress (LA-WEB)’, pp. 27–36.

Brisaboa, N., de Bernardo, G. and Navarro, G. (2012), Compressed dynamic binary relations,
in ‘Proc. 22th Data Compression Conference (DCC)’, pp. 52–61.

Brisaboa, N., Ladra, S. and Navarro, G. (2013), ‘DACs: Bringing direct access to variable-
length codes’, Information Processing and Management 49(1), 392–404.

Brisaboa, N., Ladra, S. and Navarro, G. (2014), ‘Compact representation of web graphs with
extended functionality’, Information Systems 39(1), 152–174.

Broekstra, J., Kampman, A. and van Harmelen, F. (2003), Spinning the Semantic Web, MIT
Press, chapter Sesame: An architecture for storing and querying RDF data and schema
information, pp. 197–222.

Claude, F. and Ladra, S. (2011), Practical representations for Web and social graphs, in ‘Proc.
20th ACM Conference on Information and Knowledge Management (CIKM)’, pp. 1185–
1190.

Fernández, J. D., Mart́ınez-Prieto, M. A., Gutiérrez, C. and Polleres, A. (2011), Binary
RDF Representation for Publication and Exchange (HDT), W3C Member Submission.
http://www.w3.org/Submission/2011/03/.

Fernández, J. D., Mart́ınez-Prieto, M. A., Gutiérrez, C., Polleres, A. and Arias, M. (2013),
‘Binary RDF Representation for Publication and Exchange (HDT)’, Journal of Web Se-
mantics . In Press. Available at: http://dx.doi.org/10.1016/j.websem.2013.01.002.

González, R., Grabowski, S., Mäkinen, V. and Navarro, G. (2005), Practical implementation
of rank and select queries, in ‘Proc. Posters of 4th Workshop on Experimental Algorithms
(WEA)’, pp. 27–38.

Grant, J. and Beckett, D. (2004), RDF Test Cases, W3C Recommendation.
http://www.w3.org/TR/rdf-testcases/.

Groppe, S. (2011), Data Management and Query Processing in Semantic Web Databases,
Springer.

Groza, T., Grimnes, G., Handschuh, S. and Decker, S. (2013), ‘From raw publications to linked
data’, Knowledge and Information Systems 34, 1–21.

Harris, S. and Gibbins, N. (2003), 3store: Efficient bulk RDF storage, in ‘Proc. 1st International
Workshop on Practical and Scalable Semantic Systems (PSSS)’, pp. 1–15.

Harth, A. and Decker, S. (2005), Optimized index structures for querying RDF from the Web,
in ‘Proc. 3rd Latin American Web Congress (LA-WEB)’, pp. 71–80.

Hayes, J. and Gutiérrez, C. (2004), Bipartite graphs as intermediate model for RDF, in ‘Proc.
3rd International Semantic Web Conference (ISWC)’, pp. 47–61.

Huang, J., Abadi, D. and Ren, K. (2011), ‘Scalable SPARQL querying of large RDF graphs’,
Proceedings of the VLDB Endowment 4(11), 1123–1134.

Janik, M. and Kochut, K. (2005), BRAHMS: A workbench RDF store and high performance
memory system for semantic association discovery, in ‘Proc. 4th International Semantic
Web Conference (ISWC)’, pp. 431–445.

Jing, Y., Jeong, D. and Baik, D. (2009), ‘Sparql graph pattern rewriting for owl-dl inference
queries’, Knowledge and Information Systems 20, 243–262.

Knuth, D. (1973), The Art of Computer Programming, volume 3: Sorting and Searching,
Addison Wesley.

Manola, F. and Miller, E., eds (2004), RDF Primer, W3C Recommendation.
http://www.w3.org/TR/rdf-primer/.

Mart́ınez-Prieto, M., Fernández, J. and Cánovas, R. (2012), ‘Querying RDF dictionaries in
compressed space’, ACM SIGAPP Applied Computing Reviews 12(2), 64–77.

MonetDB (2013). http://www.monetdb.org/.

Compressed Vertical Partitioning for Efficient RDF Management 33

Navarro, G. and Mäkinen, V. (2007), ‘Compressed full-text indexes’, ACM Computing Surveys
39(1), article 2.

Neumann, T. and Weikum, G. (2009), Scalable join processing on very large RDF graphs, in
‘Proc. 35th International Conference on Management of Data (SIGMOD)’, pp. 627–640.

Neumann, T. and Weikum, G. (2010), ‘The RDF-3X engine for scalable management of RDF
data’, The VLDB Journal 19, 91–113.

Prud’hommeaux, E. and Seaborne, A., eds (2008), SPARQL Query Language for RDF, W3C
Recommendation. http://www.w3.org/TR/rdf-sparql-query/.

Ramakrishnan, R. and Gehrke, J. (2000), Database Management Systems, Osborne/McGraw-
Hill.

Sakr, S. and Al-Naymat, G. (2010), ‘Relational processing of RDF queries: a survey’, SIGMOD
Records 38, 23–28.

Sakr, S., Elnikety, S. and He, Y. (2012), G-SPARQL: a hybrid engine for querying large at-
tributed graphs, in ‘Proc. 21st ACM Conference on Information and Knowledge Manage-
ment (CIKM)’, pp. 335–344.

Salomon, D. (2007), Variable-length Codes for Data Compression, Springer.
Samet, H. (2006), Foundations of Multidimensional and Metric Data Structures, Morgan Kauf-

mann Publishers Inc.
Sánchez, D., Isern, D. and Millan, M. (2011), ‘Content annotation for the semantic web: an

automatic web-based approach,’, Knowledge and Information Systems 27, 393–418.
Schmidt, M., Hornung, T., Küchlin, N., Lausen, G. and Pinkel, C. (2008), An experimental

comparison of RDF data management approaches in a SPARQL benchmark scenario, in
‘Proc. 7th International Conference on The Semantic Web (ISWC)’, pp. 82–97.

Sidirourgos, L., Goncalves, R., Kersten, M., Nes, N. and Manegold, S. (2008), ‘Column-store
support for RDF data management: not all swans are white’, Proceedings of the VLDB
Endowment 1(2), 1553–1563.

Stonebraker, M., Abadi, D., Batkin, A., Chen, X., Cherniack, M., Ferreira, M., Lau, E., Lin,
A., Madden, S., O’Neil, E., O’Neil, P., Rasin, A., Tran, N. and Zdonik, S. (2005), C-store: a
column-oriented DBMS, in ‘Proc. 31st International Conference on Very Large Data Bases
(VLDB)’, pp. 553–564.

Urbani, J., Maassen, J. and Bal, H. (2010), Massive semantic Web data compression with
MapReduce, in ‘Proc. 19th ACM International Symposium on High Performance Dis-
tributed Computing (HPDC)’, pp. 795–802.

Virtuoso Universal Server (2013). http://virtuoso.openlinksw.com/.
Weiss, C., Karras, P. and Bernstein, A. (2008), ‘Hexastore: Sextuple indexing for semantic

Web data management’, Proceedings of the VLDB Endowment 1(1), 1008–1019.
Wilkinson, K. (2006), Jena property table implementation, in ‘Proc. 2nd International Work-

shop on Scalable Semantic Web Knowledge Base Systems (SSWS)’, pp. 35–46.

Author Biographies

Sandra Álvarez-Garćıa is a Ph.D. student at the DataBase Labora-
tory (headed by Nieves R. Brisaboa), from the University of A Corua.
Her research is focused on Data Compression and Data Mining for
text and graph domains. Currently she is working in her thesis about
Compact Representation and Efficient mining of graph Databases.

34 S. Álvarez-Garćıa et al.

Nieves Brisaboa is the founder and director of the Database Lab-
oratory of the University of A Coruña (http://lbd.udc.es), which
counts with more than 20 researchers. As director of the laboratory,
she was the main researcher of more than 30 national and interna-
tional projects. She also supervised ten PhD theses. Currently, she is
a full professor within the Computer Science Department of the Uni-
versity of A Coruñna. Her research interests include digital libraries,
text retrieval, compressed text retrieval, deductive databases and spa-
tial databases

Javier D. Fernández holds a PhD in Computer Sciencie by the
University of Valladolid, Spain, and the University of Chile, Chile. He
performed this double diploma thanks to an Erasmus Mundus grant.
He is co-author of the HDT W3C Member Submission and his main
interests include scalable representations and indexes for querying the
Web of Data, data compression and efficient management of Big (se-
mantic) Data.

Miguel A. Mart́ınez-Prieto is Assistant Professor in the Depart-
ment of Computer Science at the University of Valladolid, Spain. He
completed his Ph.D in Computer Science from the same University
in 2010. His research interests are mainly related to data compression
and its application to the efficient representation, management, and
querying of huge datasets. He is co-author of HDT, the binary format
acknowledged by the W3C for publication and exchange of huge RDF
in the Web of Data.

Gonzalo Navarro is currently full-professor at the University of
Chile. His areas of interest include algorithms and data structures,
text searching, compression, and metric space searching. He is mem-
ber of the Steering Comittee of the SISAP conference, and of the Edi-
torial Board of Information Systems, Information Retrieval, and ACM
Journal of Experimental Algorithmics.

Correspondence and offprint requests to: Miguel A. Mart́ınez-Prieto, Escuela Universitaria de

Informática, Campus Maŕıa Zambrano, Segovia, Spain. Email: migumar2@infor.uva.es

Compressed Vertical Partitioning for Efficient RDF Management 1

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

SPO SP? ?PO S?O S?? ?P? ??O

T
im

e
(m

ili
se

co
nd

s)

Querying time for triple patterns (cold scenario)

k2−triples
k2−triples+

RDF3X
MonetDB

Hexastore

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

SPO SP? ?PO S?O S?? ?P? ??O

T
im

e
(m

ili
se

co
nd

s)

Querying time for triple patterns (warm scenario)

k2−triples
k2−triples+

RDF3X
MonetDB

Hexastore

Figure 11. Solution time (in milliseconds) for triple patterns in jamendo.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

SPO SP? ?PO S?O S?? ?P? ??O

T
im

e
(m

ili
se

co
nd

s)

Querying time for triple patterns (cold scenario)

k2−triples
k2−triples+

RDF3X
MonetDB

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

SPO SP? ?PO S?O S?? ?P? ??O

T
im

e
(m

ili
se

co
nd

s)

Querying time for triple patterns (warm scenario)

k2−triples
k2−triples+

RDF3X
MonetDB

Figure 12. Solution time (in milliseconds) for triple patterns in dblp.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

SPO SP? ?PO S?O S?? ?P? ??O

T
im

e
(m

ili
se

co
nd

s)

Querying time for triple patterns (cold scenario)

k2−triples
k2−triples+

RDF3X
MonetDB

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

SPO SP? ?PO S?O S?? ?P? ??O

T
im

e
(m

ili
se

co
nd

s)

Querying time for triple patterns (warm scenario)

k2−triples
k2−triples+

RDF3X
MonetDB

Figure 13. Solution time (in milliseconds) for triple patterns in geonames.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

SPO SP? ?PO S?O S?? ?P? ??O

T
im

e
(m

ili
se

co
nd

s)

Querying time for triple patterns (cold scenario)

k2−triples
k2−triples+

RDF3X
MonetDB

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

SPO SP? ?PO S?O S?? ?P? ??O

T
im

e
(m

ili
se

co
nd

s)

Querying time for triple patterns (warm scenario)

k2−triples
k2−triples+

RDF3X
MonetDB

Figure 14. Solution time (in milliseconds) for triple patterns in dbpedia.

A. Complete Triple Pattern Experiments

Figures from 11 to 14 summarize triple pattern experiments for all the datasets
in our setup. We provide figures for cold (left column) and warm (right column)
scenarios.

2 S. Álvarez-Garćıa et al.

jamendo

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join A (warm scenario)

chain
independent

interactive
RDF3X

MonetDB

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join B (warm scenario)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join C (warm scenario)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join D (warm scenario)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join E1 (warm scenario)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join F (warm scenario)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join E2 (warm scenario)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join G (warm scenario)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join H (warm scenario)

Figure 15. Solution time (in milliseconds) for joins in jamendo (warm scenario).

B. Further Join Experiments

We show join performance figures for the remaining datasets in our setup: jamendo
in Figure 15 discards all times over 100,000 milliseconds; dblp in Figure 16 dis-
cards all times over 106 milliseconds; and geonames in Figure 17 discards all times
over 106 milliseconds. All these numbers are obtained in warm state because so-
lution times for RDF3X and MonetDB are less competitive in cold scenarios.

Compressed Vertical Partitioning for Efficient RDF Management 3

dblp

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join A (warm scenario)

chain
independent

interactive
RDF3X

MonetDB

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join B (warm scenario)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join C (warm scenario)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join D (warm scenario)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join E1 (warm scenario)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join F (warm scenario)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join E2 (warm scenario)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join G (warm scenario)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join H (warm scenario)

Figure 16. Solution time (in milliseconds) for joins in dblp (warm scenario).

4 S. Álvarez-Garćıa et al.

geonames

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join A (warm scenario)

chain
independent

interactive
RDF3X

MonetDB

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join B (warm scenario)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join C (warm scenario)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join D (warm scenario)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join E1 (warm scenario)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join F (warm scenario)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join E2 (warm scenario)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join G (warm scenario)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

SO SS OO SO SS OO

T
im

e
(m

ili
se

co
nd

s)

 ============ Small ============ ============= Big =============

Querying time for Join H (warm scenario)

Figure 17. Solution time (in milliseconds) for joins in geonames (warm scenario).

