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1 IntrodutionTransposition invariant string mathing is the problem of mathing two stringswhen all the haraters of either of them an be �shifted� by some amount t.By �shifting� we mean that the strings are sequenes of numbers and we addor subtrat t from eah harater of one string.Interest in transposition invariant string mathing problems has reently arisenin the �eld of musi information retrieval (MIR) [11,28,29℄. In musi analysisand retrieval, one often wants to ompare two musi piees to test how simi-lar they are. One way to do this is to de�ne a distane measure between theorresponding note sequenes. Transposition invariane is one of the proper-ties that suh a distane measure should ful�ll to re�et a human sense ofsimilarity. There are other appliation areas where transposition invariane isuseful, like time series omparison [5℄, image omparison [21℄, and others (seeSetion 3).In this paper we study how transposition invariane an be ahieved whenevaluating some of the lassial distane measures for strings. We fous onmeasures that have been used in pratie and have appliations in MIR. Weare interested in the intrinsi di�ulty of the problem, fousing on the essentialaspets and in worst ase omplexities. Our aim is to build a foundation ontop of whih one an develop pratial improvements suh as good averageases, threshold-sensitive omputation, bit-parallel simulation, four-russianstehniques, �ltering approahes, and so on.We show that several transposition invariant string mathing problems anbe redued to sparse dynami programming, and demonstrate the onnetionbetween the latter and multidimensional range-minimum searhing. In someases our new sparse dynami programming tehniques are inferior omparedto the best existing solutions, but in other ases we give improved solutionsto well known problems suh as sparse omputation of longest ommon subse-quenes and Levenshtein distane. Moreover, our tehniques are �exible andan be suessfully extended to ases of interest that annot be handled by thebest urrent algorithms, for example to distanes where mathing haratersannot be too far apart. As a result, we show that all the distane measuresstudied allow inluding transposition invariane without a signi�ant inreasein the asymptoti running times (in most ases we pay polylogarithmi penaltyfators).The paper is organized as follows. In Setion 2 we give the main de�nitionswe use, inluding the string similarity measures we fous on. In Setion 3 weover related work and give at the same time motivations for some of thestring mathing problems addressed. In Setion 4 we summarize our main2



results. Setion 5 is devoted to the so-alled �edit distanes� (where haratersin both strings an be ignored) and Setion 6 to the simpler distanes where allharaters must be aligned one by one. Finally, Setion 7 gives our onlusionsand future work diretions.2 De�nitionsLet Σ be a numerial alphabet, whih is a subset of some totally ordereduniverse U that is losed under addition and subtration. Let A = a1a2 . . . amand B = b1b2 . . . bn be two strings in Σ∗, that is, ai, bj ∈ Σ for all 1 ≤ i ≤
m, 1 ≤ j ≤ n. We will assume w.l.o.g. that m ≤ n, sine the distane measureswe study are symmetri 3 . String A′ is a substring of A if A′ = Ai...j = ai . . . ajfor some 1 ≤ i ≤ j ≤ m. String A′′ is a subsequene of A, denoted by A′′ ⊑ A,if A′′ = ai1ai2 . . . ai|A′′|

for some indexes 1 ≤ i1 < i2 < · · · < i|A′′| ≤ m.The following measures an be de�ned between two strings A and B. Thesemeasures an be found in any standard text book of string algorithms, see forexample [17,25℄. The length of the longest ommon subsequene (LCS) of Aand B is lcs(A, B) = max{|S| | S ⊑ A, S ⊑ B}. The dual problem of omput-ing LCS is to ompute distane dID, whih is the minimum number of haraterinsertions and deletions neessary to onvert A into B (or vie versa). The du-ality is lear sine dID(A, B) = m + n− 2 · lcs(A, B). For onveniene, we willmainly use the minimization problem dID (not lcs) in the sequel. If we permitharater substitutions in addition to insertions and deletions, the result isthe unit ost Levenshtein distane dL [30℄. This is a partiular ase of moreomplex distanes that assign a di�erent ost to eah operation and minimizethe total ost of operations [39,35℄. Finally, if only deletions of haraters of
B are allowed, we get distane dD. We all dID, dL and dD olletively �editdistanes�.When m = n, the following distanes an also be de�ned. The Hamming dis-tane dH between strings A and B is dH(A, B) = |{i | ai 6= bi, 1 ≤ i ≤ m}|. Thesum of absolute di�erenes distane dSAD between A and B is dSAD(A, B) =
∑m

i=1 |ai−bi|. The maximum absolute di�erene distane dMAD between A and
B is dMAD(A, B) = max{|ai − bi| | 1 ≤ i ≤ m}. Note that dSAD is in fatthe Manhattan metri (l1 norm) and dMAD is the maximum metri (l∞ norm)when we interpret A and B as points in m-dimensional Eulidean spae.String A is a transposed opy of B (denoted by A =t B) if B = A + t =
(a1 + t)(a2 + t) · · · (am + t) for some t ∈ U. The transposition invariant versionsof the above distane measures d∗ where ∗ ∈ {ID, L, D, H, SAD, MAD} an
3 Exept for dD, but in this ase it is neessary that m ≤ n.3



now be stated as dt
∗(A, B) = mint∈U d∗(A + t, B).So far our de�nitions allow either only exat (transposition invariant) mathesbetween some haraters (dt

ID, dt
L, dt

D, dt
H), or approximate mathes between allharaters (dt

SAD, dt
MAD). To relax these onditions, we introdue a onstant

δ > 0. We write a =δ b when |a− b| ≤ δ, a, b ∈ Σ. By replaing the equalities
a = b with a =δ b, we get more error-tolerant versions of the distane measures:
dt,δ

ID, dt,δ
L , dt,δ

D , and dt,δ
H . Similarly, by introduing another onstant κ > 0, wean de�ne distanes dt,κ

SAD, dt,κ
MAD suh that the κ largest di�erenes |ai− bi| aredisarded.We an also de�ne α�limited versions of the edit distane measures, wherethe distane (gap) between any two onseutive mathing haraters in Aor B is limited by a onstant α > 0. That is, if in order to obtain d(A, B)haraters ai1 , ai2 , . . . , air math bj1, bj2 , . . . , bjr , while the others are inserted,deleted or substituted (depending on the distane), then iℓ− iℓ−1− 1 ≤ α and

jℓ − jℓ−1 − 1 ≤ α for all 1 < ℓ ≤ r. We get distanes dt,δ,α
ID , dt,δ,α

L , and dt,δ,α
D .The approximate string mathing problem, based on the above distane fun-tions, is to �nd the minimum distane between A and any substring of B. Inthis ase we all A the pattern and denote it P1...m = p1p2 · · · pm, and all Bthe text and denote it T1...n = t1t2 · · · tn, and usually assume that m << n. Alosely related problem is the thresholded searh problem where, given P , T ,and a threshold value k ≥ 0, one wants to �nd all the text positions jr suhthat d(P, Tjl...jr) ≤ k for some jl. We will refer olletively to these two loselyrelated problems as the searh problem.In partiular, if distane dD is used in approximate string mathing, we obtaina problem known as episode mathing [31,18℄, whih an also be stated asfollows: Find the shortest substring of the text that ontains the pattern asa subsequene. Another searh problem related to dSAD and dMAD is alled�(δ, γ)�mathing� [7℄, where one wants to �nd all ourrenes jr suh that

dMAD(P, Tjr−m+1...jr) ≤ δ and dSAD(P, Tjr−m+1...jr) ≤ γ.Our omplexity results will vary depending on the form of the alphabet Σ. Wewill distinguish two ases. An integer alphabet is any �nite alphabet Σ ⊂ Z.For integer alphabets, |Σ| will denote max(Σ)−min(Σ)+1. A general alphabetwill be any other Σ, �nite or not, and we will omit any referene to |Σ|. Wewill only assume that Σ is totally ordered and losed under addition andsubtration (a good example to �x ideas is Σ = R). On the other hand, forany string A = a1 . . . am, we will all ΣA = {ai | 1 ≤ i ≤ m} the alphabet of
A. In these ases we will use |ΣA| = max(ΣA)−min(ΣA) + 1 ≤ |Σ| when ΣAis taken as an integer alphabet. On general alphabets, |ΣA| ≤ m will denotethe ardinality of the set ΣA. 4



3 Related Work and MotivationWe start by notiing that the problem of exat transposition invariant stringmathing is extremely easy to solve. For the omparison problem, the onlypossible transposition is t = b1 − a1. For the searh problem, one an use therelative enoding of both the pattern (p′1 = p2 − p1, p
′
2 = p3 − p2, . . .) and thetext (t′1 = t2−t1, t

′
2 = t3−t2, . . .), and use the whole arsenal of methods devel-oped for exat string mathing. Unfortunately, this relative enoding seems tobe of no use when the exat string omparison is replaed by an approximateone.Transposition invariane, as far as we know, was introdued in the stringmathing ontext in the work of Lemström and Ukkonen [29℄. They pro-posed, among other measures, transposition invariant longest ommon sub-sequene (LCTS) as a measure of similarity between two musi (pith) se-quenes. They gave a desriptive nikname for the measure: �Longest CommonHidden Melody�. As the alphabet of pithes is some limited integer alphabet

Σ ⊂ Z, the transpositions that have to be onsidered are T = {b−a | a, b ∈ Σ}.This gives a brute fore algorithm for omputing the length of the LCTS [29℄:Compute lcs(A + t, B) using O(mn) dynami programming for eah t ∈ T.The running time of this algorithm is O(|Σ|mn), where typially |Σ| = 128.In the general ase, where Σ an be unlimited, one ould instead use the setof transpositions T
′ = {b− a | a ∈ ΣA, b ∈ ΣB}. This is beause some hara-ters must math in any meaningful transposition. The size of T

′ ould be mn,whih gives O(m2n2) worst ase time for general alphabets. Thus it is of bothpratial and theoretial interest to improve this algorithm.The Levenshtein distane allows substituting a note by some other note. Anatural extension would be to make the ost of a substitution operation dependon the distane between the notes. This is however problemati sine there isno natural way of de�ning osts of insertions and deletions in this setting. Wehave hosen an alternative approah: A tolerane δ > 0 is allowed for mathingpith levels. This an be used to allow mathes between pith levels that arerelatively lose. In pratie, one ould use di�erent values δ for eah pith levelto better re�et musial loseness.While the LCS and the edit distane in general are useful tools for omparingtwo sequenes that represent whole musial piees, simpler measures ould beused in the searh problem. An espeially suitable relaxation of the LCS isepisode mathing [31,18℄. Assume that the pattern is (a disretized version ofa signal) given by humming. The goal is to searh for the mathing musialpiees in a large musi database. The pattern obtained by humming would usu-ally ontain the melody in its simplest form, but the searhed ourrenes inthe musi database might additionally ontain some �deorative� notes, whih5



were forgotten by the person humming the piee. Episode mathing would�nd the ourrenes that ontain the fewest deorative notes. This is a goodobjetive, sine an ourrene with a large number of additional notes wouldnot be reognized as the same piee of musi. A version of episode mathinghas been proposed in the ontext of MIR [?,13℄, where the number of theseadditional notes between two mathing pithes is limited by a onstant. Thisvariant, as well as the original problem, an be solved using dynami pro-gramming in O(mn) time. Inluding transposition invariane has not beenonsidered. We will study this problem and �mathing with α�limited gaps�in general, where an additional restrition to the dID, dL and dD distanes isthat the gap between two onseutive mathing haraters is limited by aninteger α > 0. This aims at avoiding seriously distorted ourrenes where, al-though the total number of extra notes is a small fration of the whole string,they are all onentrated in the same plae, so that a human would not reog-nize both strings as variants of the same melody. Moreover, suh restritionsbeome neessary in other types of edit distanes, see for example the editdistanes for point-patterns developed in [33℄. Here we will only onentrateon the α-limitation on well-known distane measures, sine this is enough todemonstrate the key tehniques.Even simpler measures have been proposed for the searh problem. These in-lude variants of dδ
H, dSAD and dMAD, suh as the (δ, γ)�mathing problem[7,12,15,16℄, where ourrenes should have limited dMAD and dSAD distanesto the pattern, simultaneously. Algorithms for exat string mathing an begeneralized to this speial ase, and bit-parallel algorithms an be applied[7,16℄. These algorithms are fast in the average ase and in pratie, but theirworst ase is still O(mn). In fat, for δ = ∞ the problem is known as theweighted k-mismathes problem [32℄, for whih it has long been an open ques-tion whether the quadrati bound an be improved. We will not answer thathere, but we will show that within the same bounds one an solve the harderproblem where transposition invariane is inluded.So far we have disussed problems for monophoni musial sequenes. Poly-phoni musi is muh more hallenging. Usually one would be interested in�nding ourrenes of a monophoni pattern in a polyphoni musi. The ba-si approah would be to separate polyphoni musi into parallel monophonipith sequenes (eah instrument separately). This ase an be handled easilyby applying algorithms for monophoni musi. This would however lose themelodies that �jump� between instruments. To �nd these melodies one shouldrepresent the polyphoni musi as a sequene of subsets of pith levels. Theexat mathing is in this ase alled subset mathing, for whih novel (butimpratial) algorithms have been developed [8�10℄. To allow transpositioninvariane, one ould simulate these algorithms with eah possible transposi-tion. The time omplexity would then be O(|Σ|s log2 s) [10℄, where s is thesum of the subset sizes. A pratial approah has been taken by Lemström6



and Tarhio [28℄, who developed a fast �lter for the problem with transposi-tion invariane, as well as a simple veri�ation algorithm that has runningtime O(|Σ|n + sm). We note that the edit distane problems an easily beadapted to the ase in whih the text onsists of subsets. A more robust ex-tension of episode mathing for polyphoni musi, where the number of jumpsis ontrolled, was also studied [27℄.Other appliations for transposition invariane an be found, for example, inimage proessing and time series omparison. In image omparison, one ouldfor example use the sum of absolute di�erenes to �nd approximate our-renes of a template pattern inside a larger image. This measure is used, forinstane, by Fredriksson in his study of rotation invariant template mathing[21℄. Transposition invariane would mean �lighting invariane� in this ontext.As images usually ontain a lot of noise, the measure where κ largest di�er-enes an be disarded ould be useful. We study the ombination of rotationand lighting invarianes in a subsequent paper [22℄.In time series omparison, many of the measures mentioned an be used. Infat, episode mathing was �rst introdued in this ontext [31℄. Reently, aproblem losely related to transposition invariant LCS was studied by Bol-lobás et al. [5℄. They studied a more di�ult problem where not only transpo-sition (translation), but also saling was allowed. They also allowed a toleranebetween mathed values, but did not onsider transpositions alone. Our algo-rithms ould be useful to improve these results, as dynami programmingalgorithms are used as a blak box in their tehniques, and we give improved(sparse) dynami programming algorithms.4 Summary of ResultsOur results are two-fold. For evaluating the easier distane measures(dt,δ
H , dt,κ

SAD, dt,κ
MAD) we ahieve almost the same bounds that are known withouttransposition invariane. These results are ahieved by notiing that the op-timum transposition an be found without evaluating the distanes for eahpossible transposition.For the more di�ult measures (dt,δ,α

ID , dt,δ,α
L , and dt,δ,α

D ) we still need to om-pute the distanes for eah possible transposition. This would be ostly ifthe standard dynami programming algorithms for these problems were used.However, we show that sparse dynami programming algorithms an be usedto obtain muh better worst ase bounds. Then we show the onnetion be-tween the resulting sparse dynami programming problems and multidimen-sional range-minimum queries. We obtain simple yet e�ient algorithms forthese distanes. 7



For LCS (and thus for dID) there already exists Hunt-Szymanski [26℄ type(sparse dynami programming) algorithms whose time omplexities dependon the number r of mathing harater pairs between the ompared strings.The omplexity of the Hunt-Szymanski algorithm is O(r log n) one the math-ing pairs are given in orret order. As the sum of values r over all di�erenttranspositions is mn, we get the bound O(mn log n) for the transposition in-variant ase. Later improvements [2,20℄ permit reduing this omplexity to
O(mn log log n) time (see Setion 5.2). We improve this to O(mn log log m) bygiving a new O(r log log min(m, r)) sparse dynami programming algorithmfor LCS. This algorithm an also be generalized to the ase where gaps arelimited by a onstant α, giving O(mn log m) time for evaluating dt,α

ID (A, B).Eppstein et al. [20℄ have proposed sparse dynami programming algorithmsfor more omplex distane omputations suh as the Wilbur-Lipman frag-ment alignment problem [40,41℄. The unit ost Levenshtein distane an alsobe solved using these tehniques [24℄. Using this algorithm, the transposi-tion invariant ase an be solved in O(mn log log n) time. However, the algo-rithm does not generalize to the ase of α-limited gaps, and thus we developan alternative solution that is based on two-dimensional semi-stati rangeminimum queries. This gives us O(mn log2 m) time for evaluating dt,α
L (A, B).However, we develop in passing an improved O(r log log m) sparse dynamiprogramming algorithm for Levenshtein distane, whih permits omputing

dt
L in O(mn log log m) time. Also, we note that our algorithm to ompute

dt,α
L (A, B) an be applied to the ase without transpositions, where it is still

O(mn log2 m), and hene better than the existing O(αmn) time algorithm [33℄for α = Ω(log2 m).Finally, we give a new O(r) time sparse dynami programming algorithmfor episode mathing. This gives us O(mn) time for transposition invariantepisode mathing.The searh problems on the edit distanes an be solved in general withinthe same time bounds of the distane omputation problems. For the simplerdistanes, on the other hand, our only solution is to evaluate them at everytext position.Table 1 gives a simpli�ed list of upper bounds that are known for theseproblems without transposition invariane. Table 2 gives the ahieved upperbounds for the transposition invariant versions of these problems.We start by desribing our solutions to the edit distanes, sine they arethe main emphasis of this paper. Then we brie�y give the other results forHamming distane and related measures.8



distane distane evaluation searhingexat O(m) O(m + n)

dH O(m) O(n
√

m log m) [1℄
dδ
H O(m) O(mn)

dSAD O(m) O(mn)

dMAD O(m) O(mn)

(δ, γ)�mathing O(m) O(mn)

dID, dL O(mn/ log m) O(mn/ log m) [14℄
dδ,α
ID O(mn) O(mn) [33℄

dδ,α
L O(αmn) O(αmn) [33℄

dD O(mn/ log m) O(mn/ log m) [18℄
dδ,α
D O(mn) O(mn) [13℄Table 1Upper bounds for string mathing without transposition invariane. We omit boundsthat depend on the threshold k in the searh problems.distane distane evaluation searhingexat O(m) O(m + n)

dt,δ
H O(m log m) O(mn log m)

dt,κ
SAD O(m + κ log κ) O((m + κ log κ)n)

dt,κ
MAD O(m + κ log κ) O((m + κ log κ)n)

(δ, γ)�mathing O(m) O(mn)

dt,δ
ID O(δmn log log m) O(δmn log log m)

dt,δ,α
ID O(δmn log m) O(δmn log m)

dt,δ
L O(δmn log log m) O(δmn log log m)

dt,δ,α
L O(δmn log2 m) O(δmn log2 m)

dt,δ,α
D O(δmn) O(δmn)Table 2Our upper bounds for transposition invariant string mathing. On an integer alpha-bet, term m log m in dt,δ

H an be replaed by |Σ|+m, and κ log κ by |Σ|+κ. We havenot added, for larity, the preproessing time of Theorem 2 for the edit distanemeasures. Finally, δ should be understood as (2δ + 1)/µ, where µ is the minimumdi�erene between any two di�erent ai − bj values (µ = 1 on integer alphabets).9



5 Transposition Invariant Edit DistanesLet us �rst review how the edit distanes an be omputed using dynamiprogramming [30,39,35℄. Let A = a1a2 · · ·am and B = b1b2 · · · bn. For dID,evaluate an (m + 1) × (n + 1) matrix (dij), 0 ≤ i ≤ m, 0 ≤ j ≤ n, using thereurrene
di,j = min((if ai = bj then di−1,j−1 else∞), di−1,j + 1, di,j−1 + 1), (1)with initialization di,0 = i for 0 ≤ i ≤ m and d0,j = j for 0 ≤ j ≤ n.The matrix (dij) an be evaluated (in some suitable order, like row-by-row orolumn-by-olumn) in O(mn) time, and the value dmn equals dID(A, B).A similar method an be used to alulate distane dL(A, B). Now, the reur-rene is
di,j = min((di−1,j−1 + if ai = bj then 0 else 1), di−1,j + 1, di,j−1 + 1),(2)with initialization di,0 = i for 0 ≤ i ≤ m and d0,j = j for 0 ≤ j ≤ n.The reurrene for distane dD(A, B), whih is used in episode mathing, is
di,j = if ai = bj then di−1,j−1 else di,j−1 + 1, (3)with initialization di,0 =∞ for 0 ≤ i ≤ m and d0,j = j for 1 ≤ j ≤ n.The orresponding searh problems an be solved by assigning zero to thevalues in the �rst row, d0,j = 0 (reall that we identify pattern P = A andtext T = B). To �nd the best approximate math, we take min0≤j≤n dm,j. Forthresholded searhing, we report the end positions of the ourrenes, that is,those j where dm,j ≤ k.A useful alternative formulation of these distane omputation problems isto see them as a shortest path problem on a graph. The graph ontains onenode for eah matrix ell. For dID(A, B), there are (horizontal) edges of ost1 that onnet every ell (i, j − 1) to (i, j), as well as (vertial) edges of ost1 that onnet every ell (i − 1, j) to (i, j). Whenever ai = bj , there is also a(diagonal) zero-ost ell that onnets (i− 1, j − 1) to (i, j). It is not hard tosee that dm,n is the minimum path ost that onnets ell (0, 0) to ell (m, n).For dL this graph has also diagonal edges of ost 1 from every ell (i−1, j−1)to (i, j). For dD, the graph ontains only the horizontal edges and the zero-ostdiagonal edges. For searhing, we add zero-ost edges onneting (0, j − 1) to

(0, j) for every j. 10



To solve our transposition invariant problems, we ompute the distanes inall required transpositions, but we use algorithms that are more e�ient thanthe above basi dynami programming solutions, suh that the overall om-plexity does not exeed by muh the worst ase omplexities of omputing thedistanes for a single transposition.Let M be the set of mathing haraters (also alled math set) between strings
A and B, that is, M = M(A, B) = {(i, j) | ai = bj , 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Themath set orresponding to a transposition t will be alled Mt = M(A+t, B) =
{(i, j) | ai+t = bj}. Let r = r(A, B) = |M(A, B)|. Let us de�ne T to be the setof those transpositions that make some haraters math between A and B,that is T = {bj−ai | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. One ould ompute the above editdistanes and solve the searh problems by running the above reurrenes overall pairs (A + t,B), where t ∈ T. In an integer alphabet this takes O(|Σ|mn)time, and O(|ΣA||ΣB|mn) = O(m2n2) time in a general alphabet. This kindof proedure an be signi�antly sped up if the basi dynami programmingalgorithms are replaed by suitable �sparse dynami programming� algorithms.Moreover, we are atually interested in omputing the edit distanes allowingapproximate mathes between the haraters (reall the versions with param-eter δ). To take these approximate mathes into aount, let us rede�ne ourmath set Mt as M δ

t = {(i, j) | |bj − (ai + t)| ≤ δ}.We note that, if δ = 0, then the sum of the sizes of all the math sets ismn, thatis,∑t |Mt| = mn. However, if δ > 0 then eah ell may partiipate in more thanone relevant transposition, and the total size of the math sets, ∑t |M δ
t |, mayperfetly exeed mn. On an integer alphabet, eah ell an partiipate at mostin 2δ +1 math sets, so the overall size is ∑t |M δ

t | ≤ (2δ +1)mn. On a generalalphabet, this is not enough. Let us all µ the smallest di�erene between twodi�erent relevant transpositions, then it holds ∑t |M δ
t | ≤ (2δ + 1)mn/µ. Notethat µ = 1 on an integer alphabet.Lemma 1 If distane d(A, B) an be omputed in O(g(r(A, B))f(m, n)) time,where g() is a onave inreasing funtion, then the transposition invariantdistane dt(A, B) = mint∈T d(A + t, B) an be omputed in O(g(mn)f(m, n))time. The δ-tolerant distane dt,δ(A, B) = mint∈T dδ(A+t, B) an be omputedin O(g(

∑

t |M δ
t |)f(m, n)) time.

PROOF. For δ = 0, let rt = |Mt| = r(A + t, B) be the number of mathingharater pairs between A + t and B. Then11



∑

t∈T

g(rt)f(m, n) = f(m, n)
∑

t∈T

g

(

m
∑

i=1

|{j | ai + t = bj , 1 ≤ j ≤ n}|
)

≤ f(m, n)g





m
∑

i=1

∑

t∈T

|{j | ai + t = bj , 1 ≤ j ≤ n}|




= f(m, n)g

(

m
∑

i=1

n

)

= g(mn)f(m, n).The ase δ > 0 is similar (hange the order of the summations in the seondline above, and ∑t∈T M δ
t shows up). 2The rest of the setion is devoted to developing algorithms that depend on r.However, we start by onsidering how to obtain the sets Mt = M(A + t, B).5.1 PreproessingAs a �rst step, we need a way of onstruting the math sets Mt sorted insome order that enables sparse evaluation of matrix (dij).We must be areful in onstruting these math sets for all transpositions sothat the overall preproessing time does not exeed the time needed for theatual distane omputations. For example, one ould easily onstrut a mathset by onsidering all the mn pairs (i, j) in any desired order and adding eahpair (i, j) to Mbj−ai

, �rst initializing it if the transposition t = bj − ai didnot previously exist. This method gives us O(|Σ| + mn) time on an integeralphabet and O(mn log(|ΣA||ΣB|)) = O(mn log n) on a general alphabet (byusing a balaned tree of existing transpositions).Let us now onsider the ase δ > 0. Now eah pair (ai, bj) de�nes a rangeof relevant transpositions, [bj − ai − δ, bj − ai + δ]. However, only at the ex-tremes of those ranges the sets M δ
t an hange, so it is enough to onsidertwo transpositions, bj − ai − δ and bj − ai + δ, for eah pair (ai, bj). More-over, if t′ = t + ǫ suh that a range �nishes between t and t′ and all the reststays the same, then M δ

t′ ⊆ M δ
t , and beause of the de�nitions of edit dis-tanes, d(A + t, B) ≤ d(A + t′, B) for any edit distane. This shows that it isenough to onsider only the plaes where ranges start (or, symmetrially, allthe plaes where ranges �nish, but not both). Hene, we will ompute M δ

t for
t ∈ {bj − ai − δ}.Theorem 2 The math sets M δ

t = {(i, j) | |bj−(ai+t)| ≤ δ}, eah sorted in adesired ell order, for all relevant transpositions t ∈ T = {b−a−δ, a ∈ ΣA, b ∈
ΣB}, an be onstruted in time O(|Σ|+(2δ+1)mn) on an integer alphabet, and12



in time O(m log |ΣA|+n log |ΣB|+ |ΣA||ΣB| log(min(|ΣA|, |ΣB|))+
∑

t∈T |M δ
t |)on a general alphabet.PROOF. On an integer alphabet we an proeed naively to obtain O(|Σ|+

mn) time using array lookup to get the transposition bj − ai where eah pair
(i, j) has to be added. For δ > 0 eah pair (i, j) is added to entries from
bj − ai − δ to bj − ai + δ, in O(|Σ|+ (2δ + 1)mn) time.The ase of general alphabets is solved as follows.
(i) Start by obtaining the sets of di�erent haraters in A and B. Createa balaned binary searh tree TA where every harater a = ai of A isinserted, maintaining for eah suh a ∈ ΣA a list La of the positions i of A,in inreasing order, suh that a = ai. Do the same for B and TB. This osts

O(m log |ΣA|+ n log |ΣB|).
(ii) Then, obtain a sorted list of all the relevant transpositions, with dupli-ates. Let us assume |ΣA| ≤ |ΣB| (otherwise do it the symmetri way). Foreah a ∈ TA, traverse all b in TB in order and generate a list of inreasingtranspositions and their orresponding position lists (b−a−δ,La,Lb). Thenmerge the |ΣA| lists into a unique ordered list of relevant transpositions andpositions, where there are possible dupliates in the b − a − δ values (butthese are all ontiguous). Sine we hoose the smaller alphabet to traversethe larger, this part osts O(|ΣA||ΣB| log(min(|ΣA|, |ΣB|))) time.
(iii) Now, reate list T of relevant transpositions and assoiate the set ofpositions M δ

t to eah t ∈ T. We will need to �ll simultaneously a matrix Cof m rows and n olumns, suh that eah ell Ci,j points to the proper node
M δ

t in T. Traverse the sorted list of transpositions and remove dupliatetranspositions, appending a new node t = b− a− δ at the end of T, where
M δ

t is stored, initially empty. At the same time, eah time a list entry
(b − a− δ,La,Lb) is proessed, assign a pointer to M δ

t at eah ell Ci,j forevery i ∈ La and j ∈ Lb. This osts O(mn) sine every ell of C will bevisited exatly one.
(iv) Finally, �ll the M δ

t sets. Traverse matrix C in any desired order, and foreah proessed entry (i, j), add (i, j) to the set pointed to by Ci,j (that is,
M δ

bj−ai−δ). This osts O(mn). If δ > 0 add entry (i, j) not only to Ci,j, butalso move forward in the sorted list T, adding entry (i, j) to next transpo-sitions b′ − a′ while (b′ − a′)− (b− a) ≤ 2δ. This osts ∑t∈T |M δ
t |. 2In the rest of this setion, we will only onsider expliitly the ase δ = 0 anddevelop algorithms that ompute a distane d(A, B) using a math set Mt.However, all algorithms an be used for omputing the orresponding errortolerant distane dδ(A + t, B) in a given transposition t by running them on

M δ
t instead of on M . All the omplexities for δ = 0 will inlude a term of the13



form mn, whih has to be replaed by∑t∈T |M δ
t | ≤ (2δ+1)mn/µ if δ > 0. Notethat a simple upper bound on the preproessing time for general alphabets is

O(mn log m + n log n) for δ = 0 and O(mn(log m + (2δ + 1)/µ) + n log n) ingeneral.5.2 Computing the Longest Common SubsequeneFor LCS (and thus for dID) there exist algorithms that depend on r. The las-sial Hunt-Szymanski [26℄ algorithm has running time O(r log n) if the set ofmathes M is already given in the proper order. Using Lemma 1 we an on-lude that there is an algorithm for transposition invariant LCS that has timeomplexity O(mn log n). There are even faster algorithms for LCS: Eppsteinet al. [20℄ improved an algorithm of Apostolio and Guerra [2℄ ahieving run-ning time O(D log log min(D, mn
D

)), where D ≤ r is the number of dominantmathes (see, for example, [2℄ for a de�nition). Using this algorithm, we havethe bound O(mn log log n) for the transposition invariant ase (note that thisis a tight estimate, sine it an be ahieved when D = Θ(mn/D) at eahtransposition).The existing sparse dynami programming algorithms for LCS, however, donot extend to the ase of α�limited gaps. We will give a simple but e�-ient algorithm for LCS that generalizes to this ase. We will also use thesame tehnique when developing an e�ient algorithm for the Levenshteindistane with α�limited gaps. Moreover, by replaing the data struture usedin the algorithm by a more e�ient one desribed in Lemma 8, we an ahieve
O(r log log m) omplexity, whih gives O(mn log log m) for the transpositioninvariant LCS (this is better than the previous bound, sine m ≤ n).Reall the set of mathing harater pairs M = {(i, j) | ai = bj}. Let M̄ =
M ∪ {(0, 0), (m + 1, n + 1)}. We have the following sparsity property for dID.Lemma 3 Distane dID(A, B) an be omputed by evaluating di,j for (i, j) ∈
M̄ using the reurrene

di,j = min{di′,j′ + i− i′ + j − j′ − 2 | (i′, j′) ∈ M̄, i′ < i, j′ < j}, (4)with initialization d0,0 = 0. Value dm+1,n+1 equals dID(A, B).PROOF. Let us regard again the omputation of matrix d as a shortest pathomputation on a graph. Every path from ell (0, 0) to a ell (i, j) that is thetarget of a zero-ost edge an be divided into two parts: (i) from ell (0, 0)until a ell (i′, j′) that is the target of the last zero-ost edge traversed beforereahing (i, j), and from ell (i′, j′) until ell (i, j). The path from (i′, j′) to (i, j)14



moves �rst to (i−1, j−1) traversing only horizontal and vertial ost-1 edges,and then moves for free from (i−1, j−1) to (i, j). Overall, (i−1)− i′ vertialand (j−1)−j′ horizontal edges are traversed, for a total ost of i−i′+j−j′−2.Hene the ost of this partiular path is di′,j′ + i− i′ + j − j′ − 2. M ontainsall the ells that are targets of zero-ost edges, and therefore minimizing overall ells (i′, j′) ∈M yields the optimal ost, exept for the possibility that theoptimal path does not use any zero-ost edge before (i, j). This last possibilityis overed by adding ell (0, 0) to M̄ , with d0,0 = 0 (whih is also a way tostate that our paths must start at ell (0, 0)). Finally, as we wish to obtainvalue dm,n, we ould have added ell (m, n) to M̄ , but our reasoning appliesonly to ells that are target of zero-ost edges. Hene, we add ell (m+1, n+1)as suh a target, so dm,n = dm+1,n+1 is orretly omputed. 2The obvious strategy to use the above lemma is to keep the already omputedvalues di′,j′ in a data struture suh that their minimum an be retrievede�iently when omputing the value of the next di,j. One di�ulty here isthat the values stored are not omparable as suh sine we want the minimumonly after i− i′ + j − j′ − 2 is added. This an be solved by storing the path-invariant values di′,j′ − i′ − j′ instead. Then, after retrieving the minimumvalue, one an add i + j − 2 to get the orret value for di,j. To get theminimum value di′,j′− i′− j′ from range (i′, j′) ∈ [−∞, i)× [−∞, j), we need adata struture supporting dynami one-dimensional range minimum queries.To see that it is enough to use query range [−∞, i), notie that if we omputepoints (i, j) olumn�by�olumn (that is, for inreasing j), eah olumn frombottom to up (that is, for dereasing i), then the query points that are inthe range [−∞, i) are also those in the range [−∞, j). We all this order thereverse olumn�by�olumn order : (i′, j′) preedes (i, j) if j′ < j, or if j′ = jand i′ > i.Hene we need an e�ient data struture where we an store the row numbers
i′ as the sort keys, and values v(i′) = d(i′, j′) − i′ − j′ assoiated to them,and query it by minimum values over a range of keys. Furthermore, we willneed later to remove points from this data struture, so we want it to bedynami. The following well-known lemma establishes the existene of suh adata struture. Laking any referene, we prove it.Lemma 4 There is a data struture T supporting the following operations in
O(log n) time, where n is the amount of elements urrently in the struture.
T .Insert(k, v) : Inserts value v into the struture with key k. If key k alreadyexists, the value of the element is updated to v if v is smaller than the urrentvalue.
T .Delete(k) : Deletes the element with key k.
v = T .Minimum(I) : Returns the minimum of values whose keys are in the15



one-dimensional range I = [ℓ, r].PROOF. A modi�ed balaned binary searh tree (AVL, for example) orga-nized by keys k and storing assoiated values v(k) is a suitable data struture.Let us speak indistintly of nodes and keys, and denote left and right hil-dren of a node k by k.left and k.right. This tree is augmented with a �eld
minv(k) stored at eah node, where the minimum of values in the subtreerooted at k is maintained. The tree is easily updated when a new key k isinserted, as the only additional operation is to update the value minv(k′) ofany traversed internal node k′ to min(minv(k′), v). One a node k is deleted,values minv(k′) in the path from the root to the parent of k need to be reom-puted (if the deleted node is internal and hene replaed by a leaf, this updateis done from the parent of the removed leaf). This updating is easy sine
minv(k) = min(v(k), minv(k.left), minv(k.right)) is reomputed in onstanttime per node. For the same reason, minv(k) values are also easily reomputedwhen the tree is rebalaned by rotations.Minimum over ranges of keys [ℓ, r] are obtained as follows. The tree is searhedfor ℓ and r simultaneously until node s∗ is reahed where the searh path splits.From s∗.left the searh is ontinued with ℓ and at every node s where thesearh path of ℓ goes left, value minv(s.right) is ompared to the minimumvalue obtained so far. Similarly, the searh is ontinued with r at s∗.right,and at every node s where the searh path of r goes right, value minv(s.left)is onsidered for updating the omputed minimum. Also, the v(k) values ofnodes k visited are inluded in the minimization whenever ℓ ≤ k ≤ r. A notso infrequent speial ase ours when the searh path splits before the rootnode, and hene node s∗ does not exist. In this ase both searhes for ℓ and rstart at the root node. 2We are ready to give the algorithm now. Initialize the tree T of Lemma 4 byadding the value of d0,0 − i − j = 0 with key i = 0: T .Insert(0, 0). Proeedwith the math set M̄ \ {(0, 0)} that is sorted in reverse olumn�by�olumnorder and make the following operations at eah suh pair (i, j):(1) Take the minimum value from T whose key is smaller than the urrentrow number i: d = T .Minimum([−∞, i)). Add i + j − 2 to this value:

d← d + i + j − 2.(2) Add the urrent value d minus urrent row and olumn number, i + j, into
T , with the urrent row number as its key: T .Insert(i, d− i− j).Finally, after ell (m+1, n+1) has been proessed, we have that dID(A, B) = d.The above algorithm works orretly: The reverse olumn�by�olumn evalu-ation and the range query restrited by the row number in T guarantee that16



onditions i′ < i and j′ < j hold. The only point where the work on tree Tdeviates from what Lemma 3 requires is that new keys overwrite equal oldkeys. That is, if a new ell (i, j) is inserted, an old ell (i, j′) is virtually re-moved if it existed. It is easy to see that the old ell is of no use one thenew ell is inserted. Say that ell (i, j′) obtained its value from ell (i0, j0), sothat di,j′ = di0,j0 + i − i0 + j′ − j0 − 2. Hene ell (i0, j0) is also a andidateto di,j ≤ di0,j0 + i − i0 + j − j0 − 2, so di,j ≤ di′,j′ + j − j′. Now, assume alater ell (i′′, j′′) uses ell (i, j′), so that di′′,j′′ = di,j′ + i′′ − i + j′′ − j′ − 2.But then it an also use ell (i, j) to obtain a smaller or equal value using
di′′,j′′ = di,j + i′′ − i + j′′ − j − 2 ≤ di′,j′ + i′′− i + j′′− j′− 2. Note that this issimply a onsequene of the fat that ell (i, j) dominates (i, j′) [2℄.Clearly, the time omplexity of the algorithm is O(r log m), where r = |M |,sine we an only have m+1 di�erent row numbers stored in T at any moment.Figure 1 gives an example.
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Fig. 1. Example of omputation of dID on a sparse matrix. Blak irles represent themathing pairs (i, j). Eah suh matrix position has an in�uene area representedby a gray retangle (darker grays represent larger di�erenes from the standardvalue i + j). Next to eah position we represent the matrix value di,j we ompute.The value of interest is the lowest rightmost position. In partiular, we depit theomputation of the ell (24,39), for whih we have to onsider all the positionsinluded in the dashed retangle. On the right we show our tree data struture.Eah node orresponds to a ell (i, j) and is represented as i [v] {minv}, where iis the tree key, v is the value (meaning that the real ell value is (i + j) + v), and
minv is the minimum v value in the subtree. The searh for ell (24,39) inludes allthe nodes below the dashed line, and it takes the minimum d over all the underlinedvalues. Its new value is d24,39 = d + 24 + 39 − 2 = 57, so we will insert a new nodewith key 24 and value 57− 24− 39 = −6 in the tree.The algorithm also generalizes easily to the searh problem: The 0 values in the�rst row an be added impliitly by using d← min(i, d+ i+ j − 2) in step (1)above. Also, every value di,j = d omputed in step (2) above indues a value
dm,j+s ≤ d + (m− i) + s in the last row, whih an be used either to keep theminimum dm,j value (in whih ase we onsider only ase s = 0), or to reportall values dm,j ≤ k in thresholded searhing. In order to report ourrenes17



only one and in order, two arrays S(1 . . . n) and E(1 . . . n) of ounters aremaintained: The ounters are initialized to zero, and at eah pair (i, j) ∈ M̄suh that di,j +(m− i) ≤ k we set S(j) = S(j)+1 and E(j +s) = E(j +s)+1for the maximum s suh that d + (m − i) + s ≤ k. This marks the start andend points of the ourrenes. Then it is easy to ollet all the ourrenes in
O(n) time by using S() and E() to keep trak on how many ranges are ativeat any position j of the text.The queries [−∞, i) we use are semi-in�nite. We will show in Lemma 8 (Se-tion 5.3) that the balaned binary searh tree an be replaed by a moreadvaned data struture in this ase. That is, semi-in�nite queries for mini-mum and insertions an be supported in amortized O(log log u) time, where
[1, u] is the integer range of keys that are inserted into the struture. In ourase u = m, whih gives us O(log log m) query time. The next theorem followsimmediately.Theorem 5 Given two strings A = a1 . . . am and B = b1 . . . bn, m ≤ n, andthe r ells (i, j) suh that ai = bj in reverse olumn�by�olumn order, thenthe LCS between A and B an be omputed in time O(r log log min(r, m)).Let us now onsider the ase with α�limited gaps. The only hange we needin our algorithm is to make sure that, in order to ompute di,j, we only takeinto aount the mathes that are in the range (i′, j′) ∈ [i − α − 1, i) × [j −
α − 1, j). What we need to do is to hange the searh range [−∞, i) into
[i − α − 1, i) in T , as well as to delete any elements in olumn j − α − 1after proessing elements in olumn j. The former is easily aomplished byusing query T .Minimum([i−α−1, i)) at step (1) of the algorithm. The latterneeds that we delete nodes from T when their olumns beome too old. Morespei�ally, we maintain a pointer to the oldest (that is, smallest olumn)element in M that is still stored in T . When we �nish proessing olumn j,we hek whether the pointed ell is of the form (i′, j − α − 1) for some i′. Ifit is, we remove key i′ using T .Delete(i′) and advane the pointer until thepointed ell belongs to a later olumn. Sine the traking takes onstant timeper ell of M , its e�et in the omplexity is negligible.Note that it might be that key i′ in T atually orresponds to a later olumnthat has overwritten ell (i′, j − α − 1). In this ase we must advane thepointer but not delete the key. In order to hek this, we also store in T nodesthe urrent j′ value orresponding to eah key i′.Notie that we annot obtain O(log log m) query time anymore, sine thequery ranges are no longer semi-in�nite. On the other hand, we ould haveused two-dimensional queries instead of deleting points from T but, as shownin Lemma 8, the omplexity would be worse. An illustration of the algorithmfor LCS with α�limited gaps is given in Figure 2.18
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Fig. 2. Example of α�gapped omputation of dID on a sparse matrix, for α = 10. Thesame onventions of Figure 1 apply. The di�erene is that now the in�uene areasare restrited to width and height α, so we delete values whih orrespond to olumnnumbers whih are small enough to have beome irrelevant and perform a two-sidedrange searh over the tree, so only its middle part quali�es. In this example, thetree has only one element when omputing ell (24,39), and it is outside the searhrange. In this ase the value of the ell is i + j − 2 = 61.By using Lemma 1 and the above algorithms, we get the following result.Theorem 6 The transposition invariant distane dt
ID(A, B) (or, equivalently,LCS) an be omputed in O(mn log log m) time. The orresponding searhproblem an be solved within the same time bound. For the distane dt,α

ID (A, B)the time bounds are O(mn log m) for distane omputation and for searhing.The preproessing ost of Theorem 2 must be added to these bounds.The algorithms use O(mn) spae, sine the overall size of the sets for di�erenttranspositions is mn (note that the algorithm itself needs only O(m) spae).This might be problemati espeially for the searh problem, when the twostrings are of very di�erent size.We an ahieve spae omplexity O(m2) in the searh problem as follows. Di-vide the text into O(n/m) segments of the form T1...2m, Tm+1...3m, T2m+1...4m,and so on. Run the whole algorithm (inluding generating the sets of trans-positions) separately over those O(n/m) text segments, one after the other.When proessing text segment Tmi+1...m(i+2), report the mathes found in thearea Tm(i+1)+1...m(i+2). This way, eah text position is proessed twie and henethe omplexity remains the same. The spae, however, is that to proess onetext segment, O(m2). With respet to orretness, we remark that, given thatell di,j reeives value i from ell (0, j), no olumn before j −m an in�ueneit (indeed, no olumn before j − i). Hene, in order to report orretly themathes in area Tm(i+1)+1...m(i+2) we only need to start m positions behind,thus proessing area Tmi+1...m(i+2). This tehnique is rather general and an beapplied to other edit distanes as well.In partiular, in the ase of α�limited gaps we an use the same tehnique19



both for distane omputation and for searhing, sine only the last α olumnsproessed an a�et urrent values. Hene we an ompute dt,α
ID (A, B) using

O(αm) spae.We reall that, when δ > 0 and we onsider distanes dt,δ
ID and dt,δ,α

ID , all terms
mn are replaed by ∑t∈T |M δ

t | in the time and spae omplexities.5.3 Computing the Levenshtein DistaneFor the Levenshtein distane, there exists an O(r log log min(r, mn/r)) sparsedynami programming algorithm [20,24℄. Using this algorithm, the transposi-tion invariant ase an be solved in O(mn log log n) time. As with the LCS,this algorithm does not generalize to the ase of α�limited gaps. We developan alternative solution for the Levenshtein distane by generalizing our LCSrange query approah. This new algorithm an be further generalized to solvethe problem of α�limited gaps. On the other hand, we show that the sparseomputation an be done in O(r log log m) time.The Levenshtein distane dL has a sparsity property similar to the one givenfor dID in Lemma 3. Reall that M̄ = M ∪ {(0, 0), (m + 1, n + 1)}, where Mis the set of mathing harater pairs.Lemma 7 Distane dL(A, B) an be omputed by evaluating di,j for (i, j) ∈ M̄using the reurrene
di,j = min











{di′,j′ + j − j′ − 1 | (i′, j′) ∈ M̄, i′ < i, j′ − i′ < j − i}
{di′,j′ + i− i′ − 1 | (i′, j′) ∈ M̄, j′ < j, j′ − i′ ≥ j − i}

(5)with initialization d0,0 = 0. Value dm+1,n+1 equals dL(A, B).PROOF. Following the proof of Lemma 3 it is enough to show that theminimum path ost to reah ell (i − 1, j − 1) from math point (i′, j′) is (i)
j − j′ − 1 when j′ − i′ < j − i, and (ii) i − i′ − 1 otherwise. The reason isthat, in both ases, we use as many diagonal edges as possible and the restare horizontal or vertial edges, depending on the ase. 2The reurrene relation is now more omplex than the one for dID. In the aseof dID we ould store values di′,j′ in a omparable format (by storing di′,j′−i′−j′instead) so that the minimum di′,j′− i′−j′ of (i′, j′) ∈ [−∞, i)× [−∞, j) ouldbe retrieved e�iently. For dL there does not seem to be suh a omparableformat, sine the path length from (i′, j′) to (i, j) may be either i − i′ − 1 or
j − j′ − 1. 20



Figure 3 illustrates the geometri setting impliit in (5). The lower region(below diagonal j−i) ontains math points suh that their extension by math
(i, j) will add j − j′ − 1 to the sore, and the upper region (above diagonal)ontains math points suh that their extension by math (i, j) will add i −
i′ − 1 to the sore. The sore of the new math is omputed as the minimumbetween the lowest possible sore obtained by extending a math from thelower region and from the upper region. Therefore, eah math will have itssores maintained in two strutures, one struture representing sores to beextended as �lower region� sores, and other for �upper region� extensions.Let L denote the data struture for the lower region and U the data struturefor the upper region. If we store values di′,j′−j′ in L, we an take the minimumover those values plus j − 1 to get the value of di,j. However, we want thisminimum over a subset of values stored in L, that is, over those di′,j′ − j′whose oordinates satisfy i′ < i, j′ − i′ < j − i. Similarly, if we store values
di′,j′ − i′ in U , we an take minimum over those values whose oordinatessatisfy j′ < j, j′ − i′ ≥ j − i, plus i − 1 to get the value of di,j. The atualminimum is then the minimum of upper region and lower region minima.What is left to be explained is how the minima of subsets of L and U an beobtained. For the upper region, we an use the same struture as for dID: Ifwe keep values di′,j′ − i′ in a balaned binary searh tree U with key j′ − i′,we an make one-dimensional range searh to loate the minimum of values
di′,j′−i′ whose oordinates satisfy j′−i′ ≥ j−i. The reverse olumn�by�olumntraversal guarantees that U only ontains values di′,j′ − i′ whose oordinatessatisfy j′ < j. Thus, the upper region an be handled e�iently.The problem is the lower region. We ould use row�by�row traversal to handlethis ase e�iently, but then we would have the symmetri problem with theupper region. No traversal order seems to allow us to limit to one-dimensionalrange searhes in both regions simultaneously; we will need two-dimensionalrange searhing in one of them. Let us onsider the two-dimensional rangesearh for the lower region. We would need a query that retrieves the minimumof values di′,j′ − j′ whose oordinates satisfy i′ < i, j′ − i′ < j − i. We makea oordinate transformation to turn this triangle region into a retangle: Wemap eah value di′,j′− j′ into an xy-plane at oordinate i′, j′− i′. In this planewe perform a retangle query [−∞, i) × [−∞, j − i). The following lemma,adapted from Gabow, Bentley and Tarjan [23℄, provides the required datastruture for the lower region. We summarize some other related results in thesame lemma that we will soon use in the α�limited ase (we already referredto the one-dimensional result in the algorithm for dID).Lemma 8 (Gabow, Bentley, Tarjan [23℄) There is a data struture Rthat stores a two-dimensional point-set S with a value assoiated to eah point,and supports the following operations in amortized O(log n log log n) time after21



O(n log n) time preproessing on S, where n = |S|:
• R.Update(x, y, v): Update value of point s = (x, y) ∈ S to v, under theondition (*) that the urrent value of s is larger than v.
• v = R.Minimum(I): Retrieve the minimum value from a range I of S,where I is semi-in�nite at least in one �xed oordinate.There is another struture P that supports the same operations in O(log2 n)time, where ondition (*) does not need to hold, and searh range I needs notbe semi-in�nite in either oordinateSemi-in�nite queries an be supported in O(log log n) time in the one-dimensional ase, if the point oordinates s ∈ S are integers in the range
[1, n]. In this ase ondition (*) must hold.PROOF. We will review the proof of the O(log n log log n) bound [23℄ inorder to over the one-dimensional ase and the losed range ase.The basi struture supporting operations in time O(log2 n) is a range tree(see, for example, [3, Setion 5℄), where the seondary strutures are replaedby the ones given in Lemma 4. The struture is a balaned (primary) searhtree for the x-oordinate range searhes, where eah node w stores another(seondary) balaned tree for y-oordinate searhes among the points thatare stored in the subtree of w in the primary tree. As shown in Lemma 4,the seondary trees support minimum queries and unrestrited updates ofvalues. To update a value, its node in the primary tree is found and then itis neessary to update the orresponding nodes in all the O(log n) seondarytrees stored at the anestors of the primary tree node. For range searhing, we�nd in O(log n) time the O(log n) nodes of the primary tree whose subtreesover the x-oordinate range, and then pay O(log n) time in eah suh nodeto �nd the minimum of points in the y-oordinate range. Hene, updating andsearhing an be done in O(log2 n) time. Note that it is ostly to maintain theinvariants of the seondary trees ontents upon rebalaning the primary tree,so insertions and deletions of points are not supported. Rather, the trees arebuilt in a preproessing stage in perfetly balaned form and stay with thatshape. Preproessing ost is proportional to the spae needed by the datastruture, whih is O(n log n).Let us then review how O(log log n) time an be ahieved in the one-dimensional ase for integer point sets. As our query is w.l.o.g. min{v(s) |
s ∈ [−∞, r)}, where v(s) gives the value of s, it is enough to hoose the min-imum among those points s whose value v(s) is the minimum in the range
[−∞, s]; these are alled left�to�right minima. It is easy to see that othervalues v(s) an never be the minimum in any range [−∞, r). Note that left�to�right minima form a dereasing sequene. The data struture of van Emde22



Boas [37,38℄, whih we will denote Q, supports operations Q.insert(s) (in-serts s into Q), Q.delete(s) (deletes s from Q), Q.successor(s) (returns thelargest point stored in Q smaller than s), and Q.predecessor(s) (returns thesmallest point stored in Q larger than s) in O(log log n) time, where s is aninteger in the range [1, n]. We will store only left�to�right minima from S inQ.When inserting a new point s with value v = v(s) into Q, we �rst hek that
v(Q.predecessor(s)) > v(s), otherwise we do not insert s. If s is inserted, werepeat operation Q.delete(Q.successor(s)) until v(Q.successor(s)) < v(s).These operations guarantee that v(Q.predecessor(r)) is the answer to ourquery [−∞, r). Note that it is possible to replae the value v of an alreadyinserted point by a smaller value, by a proess similar to insertion, but weannot hange v to a larger value.The O(log n log log n) bound for the semi-in�nite two-dimensional queries thenfollows easily by replaing the seondary trees of the range tree with datastrutures Q: Consider a query [l, r] × [−∞, t]. We build the primary treeon the x-oordinates and the seondary trees on the y-oordinates. Insteadof adding the y-oordinates as suh, we use the rank of eah point in thesorted order of the points where y-oordinate is used as the primary key and
x-oordinate as the seondary key. To answer the query, we �nd the rank ρ of
(t,∞) (plae where it would be inserted) in the sorted set of points by binarysearh in time O(log n), then query eah of the O(log n) seondary strutures
Q found by the x-oordinate range searh with s = Q.predecessor(ρ), andselet the minimum v(s). 2We are now ready to give a sparse dynami programming algorithm for theLevenshtein distane. Initialize a balaned binary tree U for the upper regionby adding the value of d0,0 − i = 0 with key i = 0: U .Insert(0, 0). Initializea data struture L for the lower region (R of Lemma 8) with the triples
(i, j− i,∞) suh that (i, j) ∈ M̄ . Update value of d0,0− j = 0 with keys i = 0and j−i = 0: L.Update(0, 0, 0). Proeed with the math set M̄ \{(0, 0)} that issorted in reverse olumn�by�olumn order and make the following operationsat eah pair (i, j):(1) Take the minimum value from U whose key is larger than or equal to theurrent diagonal j− i: d′ = U .Minimum([j− i,∞]). Add i−1 to this value:

d′ ← d′ + i− 1.(2) Take the minimum value from L inside the retangle [−∞, i)× [−∞, j− i):
d′′ = L.Minimum([−∞, i) × [−∞, j − i)). Add j − 1 to this value: d′′ ←
d′′ + j − 1.(3) Choose the minimum of d′ and d′′ as the urrent value d = di,j.(4) Add the urrent value d minus i into U with key j− i: U .Insert(j− i, d− i).(5) Add the urrent value d minus j into L with keys i and j−i: L.Update(i, j−
i, d− j). 23



Finally, after ell (m+1, n+1) has been proessed, we have that dL(A, B) = d.The orretness of the algorithm should be lear from the above disussion.The time omplexity is O(r log r log log r) (r = |M | elements are inserted andupdated in the lower region struture, and r times it is queried). The spaeusage is O(r log r). Figure 3 gives an example.
0

8

13

22
24
26

32

3 0

0 9 20 23 26 39 4836

(0,0) [0]

query: min([−inf,24) x [−inf,15))+39−1 = −2+39−1 = 36
21

19

24

35

36

45

(22,−13) [12]

(13,13) [−2]

(8,12) [−1]
(3,33) [−1]

24

(26,−3) [1]

i

j−i

Fig. 3. Example of omputation of dL on a sparse matrix. The same onventions ofFigure 1 apply. We distinguish in the matrix the lower and upper regions onsideredto solve ell (24,39). Sine the upper region is handled just like for dID, we show onthe right only the data struture of the lower region. It supports minimum operationsover two dimensional ranges. Eah relevant matrix position (i, j) is represented inthe range searh struture at position (i, j−i). The value in brakets is [y−j], where
y is the value of ell (i, j). To solve ell (24,39) we take the minimum in the range
[−∞, 24) × [−∞, 39− 24) (inside the dashed retangle on the right), whih returns
−2, and add j − 1 to it to obtain 36. After this, point (24,15) will be updated tovalue 36− 39 = −3.Atually, we an swith the roles of x and y in L, so that the seondarystrutures are searhed for i values. As explained in Setion 5.2 we do notneed to store di�erent points with the same i oordinate in the seondarystrutures; it is enough to retain the last point inserted with oordinate i,sine it dominates previous ones (that is, the new value we are inserting isnever larger than the existing points with oordinate i). As we have shownin the proof of Lemma 8, the struture permits us replaing the value ofa point with a new, smaller, one. Hene we an in fat store only uniqueoordinates in the range 0 . . .m, eah assoiated to the last (that is, smallest)value v(i) inserted so far. The advantage is that the time omplexity beomes
O(r log r log log min(r, m)). Moreover, we do not need to rank the points, butan diretly searh the i values.The algorithm an be modi�ed for the searh problem similarly as dID, byimpliitly adding values 0 in the �rst row of the urrent olumn and onsideringthe e�et of eah omputed di,j value in the last row of the matrix. Now ell
(i, j) indues values dm,j+s ≤ di,j + max(m − i, s). Applying the same textsegmenting tehnique used for distane dID yields O(r log m log log m) time,24



slightly better for our purposes than distane omputation.We show now a general tehnique to make distane omputation
O(r log m log log m) time as well. Segment the text into O(r/m) regions, suhthat eah text region ontains between m and 2m ells in M̄ (we must be�exible beause there may be several ells in a olumn). Run the algorithmfor eah region separately, one after the other. At the end of eah region, insertells in M̄ so that M̄ overs all the ells of the last olumn of the region. Usethose last values to initialize the data struture for the next region (via ellupdates). This ensures ontinuity in the omputation aross regions. Overallwe proess at most 3r ells, and eah region ontains O(m) ells, so the searhtime is O(r log m log log m). We observe that the same time omplexity wouldbe obtained if we used regions of O(mc) entries, for any onstant c.Using this algorithm, the transposition invariant Levenshtein distane ompu-tation, as well as the searh problem, an be solved in O(mn log m log log m)time and O(mn log n) spae. Note that in this ase the spae omplexity isdominated by the data struture L. Removing unneessary elements (thosethat annot give minima for the urrent olumn) is no longer possible, sinethe struture for the lower region is semi-stati.With the tehniques used for splitting the text into regions, however, the datastruture L needs only O(m2 log m) spae. Distane omputation still needs
O(mn) additional spae to store the transpositions. We annot, as in the textsegmenting approah used for searhing, proess the transpositions region byregion to obtain O(m2) spae, beause this time region limits are di�erent foreah transposition and we need to remember the state of the omputation forevery di�erent transposition.We reall that the sparse dynami programming algorithm by Eppstein etal. [20℄ is better than ours, O(r log log r). Our text regions approah, however,permits improving Eppstein's algorithm. We an use the latter as a blak boxand apply it over text regions as with our algorithm. The result is given in thenext theorem.Theorem 9 Given two strings A = a1 . . . am and B = b1 . . . bn, m ≤ n, andthe r ells (i, j) suh that ai = bj in reverse olumn�by�olumn order, then theLevenshtein distane between A and B an be omputed in time O(r log log m).Using this theorem, the time omplexity for transposition invariant Leven-shtein distane omputation dereases to O(mn log log m).Our range query approah, although slower, has the advantage of letting useasily solve the ase of α�limited gaps. First onsider the easier upper region.We need the minimum over the values whose oordinates (i′, j′) satisfy i′ ∈
[i − α − 1, i), j′ ∈ [j − α − 1, j), and j′ − i′ ≥ j − i. These an be simpli�ed25



to j′ < j (whih omes for free with the reverse olumn�by�olumn order),
i′ ≥ i − α − 1 and j′ − i′ ≥ j − i. We an use struture R of Lemma 8to support minimum queries in the range [i − α − 1,∞] × [j − i,∞]. Thelower region is more ompliated. Its limiting onditions, i′ ∈ [i − α − 1, i),
j′ ∈ [j−α−1, j), and j′−i′ < j−i, an be simpli�ed to i′ < i, j′ ≥ j−α−1 and
j′−i′ < j−i. Instead of resorting to three-dimensional searhing, whih wouldost O(log2 n log log n) [23℄, we use struture P of Lemma 8, whih supportsunlimited updates of values. One moving from olumn j to j + 1, we updateeah value in the seondary strutures at olumn j − α − 1 to ∞. As in the
α�limited ase of dID, we keep a pointer to the last ative olumn in the mathset M to determine whih ells (i′, j−α−1) have to be virtually deleted using
P.Update(i′, j − α− 1− i,′∞). If we do this, ondition j′ ≥ j − α− 1 an beignored, and P is built over the other two onditions and queried with range
[−∞, i)× [−∞, j − i).Again, text segmenting tehniques an be used to maintain time omplexitiesin O(r log2 m). An illustration of the algorithm for Levenshtein distane with
α�limited gaps is given in Figure 4.
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Fig. 4. Example of omputation of α�gapped dL on a sparse matrix. The sameonventions of Figure 3 apply. On the right we show now both two-dimensionalrange searh strutures, U and L. To solve ell (24,39) we take the minimum in therange [24,∞]× [15,∞] on U and [−∞, 24)× [−∞, 15) on L. The area in U is empty,and that in L is virtually empty beause we have set old olumn ell values to ∞.Combining Lemma 1 with the above results, we obtain the following boundsfor the transposition invariant ase.Theorem 10 Transposition invariant Levenshtein distane dt
L(A, B) an beomputed in O(mn log log m) time. The orresponding searh problem an besolved within the same time bounds. For the ase of α�limited gaps, dt,α

L (A, B),26



the time requirements are O(mn log2 m), both for distane omputation and forsearhing. The preproessing ost of Theorem 2 must be added to these bounds.As before, the spae omplexity is O(m2 log m) plus that of storing the sets
Mt, that is, O(mn) for distane omputation and O(m2) for searhing. Also,the α�limited version an be solved using O(αm) spae. In ase δ > 0, the mnin the omplexities beomes ∑t∈T |M δ

t |.5.4 Episode MathingTo onlude the edit distane setion we look at the episode mathing problemand dt
D distane, whih have a simple sparse dynami programming solution.Reall that M̄ = M ∪ {(0, 0), (m + 1, n + 1)}, where M is the set of mathingharater pairs. The following lemma for dD is easy to prove using similararguments as in Lemma 3, sine the last zero-ost edge in a path to (i, j) mustbe in row i− 1.Lemma 11 Distane dD(A, B) an be omputed by evaluating di,j for (i, j) ∈

M̄ using the reurrene
di,j = min{di−1,j′ + j − j′ − 1 | j′ < j, (i− 1, j′) ∈ M̄}, (6)with initialization d0,0 = 0. Value dm+1,n+1 equals dD(A, B).Consider an algorithm that traverses the math set M̄ in reverse olumn�by�olumn order. We maintain for eah row i′ a value d(i′) that gives the minimum

di′,j′− j′ value seen so far in that row among pairs (i′, j′) ∈ M̄ . First, initialize
d(0) = 0 and d(i) = ∞ for 1 ≤ i ≤ m. Let (i, j) ∈ M̄ be the urrent pairwhose value we need to evaluate. Then d = di,j an simply be omputed as
d = j − 1 + d(i − 1), sine j − 1 + d(i − 1) = j − 1 + min{di−1,j′ − j′ | j′ <
j, (i − 1, j′) ∈ M̄} (ondition j′ < j holds beause (i, j) preedes (i− 1, j) inreverse olumn�by�olumn order). After d = di,j is omputed, we an safelyupdate the row minimum d(i) = min(d(i), d− j). The algorithm takes overall
O(|M̄ |) = O(r) time.The above algorithm generalizes to the searh problem (that is, to episodemathing) by impliitly onsidering all values d0,j as zero for all j. That is,
d(0) is assumed to be j − 1 if a ell d1,j is being proessed. The problem of
α�limited gaps an also be handled easily. Let c(i− 1) give the last olumn j′where d(i−1) has been updated (even if its value stayed the same). One easilynoties that c(i−1) is always the last math (i−1, j′) seen so far in that row.Therefore, we simply avoid updating d(i) as de�ned when j−c(i−1)−1 > α.In this ase we set d(i) =∞. Using Lemma 1 we get the following result.27



Theorem 12 The transposition invariant omputation of distane dt
D(A, B),as well as transposition invariant episode mathing, an be solved in O(mn)time. The same bound applies in the ase of α�limited gaps. The preproessingost of Theorem 2 must be added to these bounds.Note again that the algorithm needs only O(m) spae, but the overall spae is

O(mn), beause of the need to store the transpositions. It is interesting thatin this ase we annot redue the spae to O(m2) for the searh problem, as itis not true anymore that the previous m olumns de�ne the matrix ontents.On the other hand, in the ase of α�limited gaps we still an use O(αm) spae.6 Transposition Invariant Hamming Distane and VariantsSo far we have seen that sparse dynami programming is the key in solvingtransposition invariant distane omputation problems. It ould be used tosolve other simpler distanes suh as Hamming distane. However, for suhsimpler distane measures, it is possible to �nd the optimal transposition di-retly, and do the distane omputation only for that transposition. To demon-strate this, we onsider in this setion the omputation of some error tolerantversions of Hamming, SAD and MAD distanes, where the strings are alignedposition-wise (ai with bi) and hene have the same length.For this setion, let us rede�ne T = {ti = bi − ai | 1 ≤ i ≤ m} as the setof transpositions that make some haraters ai and bi math. Note that theoptimal transposition does not need, in priniple, to be inluded in T, but wewill show that this is the ase for dt
H and dt,κ

SAD. Note also that |T| = O(|Σ|)on an integer alphabet and |T| = O(m) in any ase.6.1 Hamming DistaneLet A = a1 . . . am and B = b1 . . . bm, where ai, bi ∈ Σ for 1 ≤ i ≤ m.We onsider the omputation of transposition invariant Hamming distane
dt,δ

H (A, B). That is, we searh for a transposition t maximizing the size of set
{i | |bi − (ai + t)| ≤ δ, 1 ≤ i ≤ m}.Theorem 13 Given two numeri strings A and B, both of length m, thereis an algorithm for omputing distane dt,δ

H (A, B) in O(|Σ| + m) time on aninteger alphabet, or in O(m logm) time on a general alphabet.PROOF. It is lear that the Hamming distane is minimized for the trans-position in T that makes the maximum number of haraters math. What28



follows is a simple voting sheme, where the most voted transposition wins.Sine we allow a tolerane δ in the mathed values, ti votes for range
[ti − δ, ti + δ]. Construt sets S = {(ti − δ, �open�) | 1 ≤ i ≤ m} and
E = {(ti + δ, �lose�) | 1 ≤ i ≤ m}. Sort S ∪E into a list I using order

(x′, y′) <H (x, y) if x′ < x or (x′ = x and y′ < y),where �open�<�lose�. Initialize variable count = 0. Do for i = 1 to |I| if I(i) =
(x, �open�) then count = count+1 else count = count−1. Let maxcount be thelargest value of count in the above algorithm. Then learly dt,δ

H (A, B) = m−
maxcount, and the optimal transposition is any value in the range [xi, xi+1],where I(i) = (xi, ∗), for any i where maxcount is reahed. The omplexity ofthe algorithm is O(m log m). Sorting an be replaed by array lookup when Σis an integer alphabet, whih gives the bound O(|Σ|+ m) for that ase. 26.2 Sum of Absolute Di�erenes DistaneWe shall �rst look at the basi ase where κ = 0. That is, we searh for atransposition t minimizing dSAD(A + t, B) =

∑m
i=1 |bi − (ai + t)|.Theorem 14 Given two numeri strings A and B, both of length m, there isan algorithm for omputing distane dt

SAD(A, B) in O(m) time on both integerand general alphabets.PROOF. Let us onsider T as a multiset, where the same element an repeatmultiple times. Then |T| = m, sine there is one element in T for eah bi− ai,where 1 ≤ i ≤ m. Sorting T in asending order gives a sequene ti1 ≤ ti2 ≤
. . . ≤ tim . Let topt be the optimal transposition. We will prove by indution that
topt = ti⌊m/2⌋+1

, that is, the optimal transposition is the median transpositionin T.To start the indution we laim that ti1 ≤ topt ≤ tim . To see this, notie that
dSAD(A + (ti1 − ǫ), B) = dSAD(A + ti1 , B) + mǫ, and dSAD(A + (tim + ǫ), B) =
dSAD(A + tim , B) + mǫ, for any ǫ ≥ 0.Our indution assumption is that tik ≤ topt ≤ tim−k+1

for some k. We mayassume that tik+1
≤ tim−k

, sine otherwise the result follows anyway. Firstnotie that, independently of the value of topt in the above interval, the ost
∑k

l=1 |bil − (ail + topt)| +
∑m

l=m−k+1 |bil − (ail + topt)| will be the same. Thennotie that∑m−k
l=k+1 |bil−(ail +tik+1

−ǫ)| = ∑m−k
l=k+1 |bil−(ail +tik+1

)|+(m−2k)ǫ,and ∑m−k
l=k+1 |bil − (ail + tim−k

+ ǫ)| = ∑m−k
l=k+1 |bil − (ail + tim−k

)| + (m − 2k)ǫ.This ompletes the indution, sine we showed that tik+1
≤ topt ≤ tim−k

.29



The onsequene is that tik ≤ topt ≤ tim−k+1
for maximal k suh that tik ≤

tim−k+1
, that is, k = ⌈m/2⌉. When m is odd, it holds m− k + 1 = k and thereis only one optimal transposition, ti⌈m/2⌉

. When m is even, one easily notiesthat all transpositions topt, tim/2
≤ topt ≤ tim/2+1

, are equally good. Finally, themedian an be found in linear time [4℄. 2To get a fast algorithm for dt,κ
SAD when κ > 0 largest di�erenes an be dis-arded, we need a lemma that shows that the distane omputation an beinrementalized from one transposition to another. Let ti1 , ti2 , . . . , tim be thesorted sequene of T.Lemma 15 One values Sj and Lj suh that dSAD(A + tij , B) = Sj + Lj,

Sj =
∑j−1

j′=1 tij − tij′ , and Lj =
∑m

j′=j+1 tij′ − tij , are omputed, the values of
Sj+1 and Lj+1 an be omputed in O(1) time.PROOF. Value Sj+1 an be written as

Sj+1 =
j
∑

j′=1

tij+1
− tij′ =

j
∑

j′=1

tij+1
− tij + tij − tij′ = j(tij+1

− tij ) + Sj.Similar rearranging gives
Lj+1 =

m
∑

j′=j+2

tij′ − tij+1
= (m− j)(tij − tij+1

) + Lj .Thus both values an be omputed in onstant time given the values of Sjand Lj (and tij+1
). 2Theorem 16 Given two numeri strings A and B both of length m, there isan algorithm for omputing distane dt,κ

SAD(A, B) in O(m + κ log κ) time onboth integer and general alphabets. On integer alphabets, time O(|Σ|+ m + κ)an also be obtained.PROOF. Consider the sorted sequene ti1 , ti2, . . . , tim as in the proof of The-orem 14. Clearly the andidates for the κ outliers (largest di�erenes) are
M(k′, k′′) = {ti1, . . . , tik′ , tim−k′′+1

, . . . tim} for some k′ + k′′ = κ. The naive al-gorithm is then to ompute the distane in all these κ + 1 ases: Computethe median of T \M(k′, k′′) for eah k′ + k′′ = κ and hoose the minimumdistane indued by these medians. These κ + 1 medians an be found asfollows: First selet values tκ+1 and tm−κ using the linear time seletion al-gorithm [4℄. Then ollet and sort all values smaller than tκ+1 or larger than30



tm−κ. After seleting the median m0,κ of T \M(0, κ) and mκ,0 of T \M(κ, 0),one an ollet all medians mk′,k′′ of T \M(k′, k′′) for k′ + k′′ = κ, sine the
mk′,k′′ values are those between m0,κ and mκ,0. The κ + 1 medians an thusbe olleted and sorted in O(m + κ log κ) time, and the additional time toompute the distanes for all of these κ + 1 medians is O(κm). However, theomputation of distanes given by onseutive transpositions an be inre-mentalized using Lemma 15. First one has to ompute the distane for themedian of T \M(0, κ), dSAD(A + m0,κ, B), and then ontinue inrementallyfrom dSAD(A+mk′,k′′, B) to dSAD(A+mk′+1,k′′−1, B), until we reah the medianof T \M(κ, 0), dSAD(A + mκ,0, B) (this is where we need the medians sorted).Sine the set of outliers hanges when moving from one median to another,one has to add value tik′ − tim to Sm and value tim − tik′′ to Lm, where Smand Lm are the values given by Lemma 15 (here we need the outliers sorted).The time omplexity of the whole algorithm is O(m + κ log κ). On an integeralphabet, sorting an be replaed by array lookup to yield O(|Σ|+m+κ). 26.3 Maximum Absolute Di�erene DistaneWe onsider now how dt,κ

MAD an be omputed. In ase κ = 0, we searh fora transposition t minimizing dMAD(A + t, B) = maxm
i=1 |bi − (ai + t)|. In ase

κ > 0, we are allowed to disard the k largest di�erenes |bi − (ai + t)|.Theorem 17 Given two numeri strings A and B both of length m, there isan algorithm for omputing distane dt,κ
MAD(A, B) in O(m + κ log κ) time onboth integer and general alphabets. On integer alphabets, time O(|Σ|+ m + κ)an also be obtained.PROOF. When κ = 0 the distane is learly dt

MAD(A, B) = (maxi{ti} −
mini{ti})/2, and the transposition giving this distane is (maxi{ti} +
mini{ti})/2. When κ > 0, onsider again the sorted sequene ti1 , ti2 , . . . , timas in the proof of Theorem 14. Again the κ outliers are M(k′, k′′) for some
k′+k′′ = κ in the optimal transposition. The optimal transposition is then thevalue (tim−k′′

+ tik′+1
)/2 that minimizes (tim−k′′

− tik′+1
)/2, where k′ + k′′ = κ.The minimum value an be omputed in O(κ) time, one the κ + 1 smallestand largest ti values are sorted. These values an be seleted in O(m) timeand then sorted in O(κ logκ) time, or O(|Σ|+ κ) on integer alphabets. 26.4 SearhingUp to now we have onsidered distane omputation. Any algorithm to om-pute the distane between A and B an be trivially onverted into a searh31



algorithm for P in T by omparing P against every text window of the form
Tj−m+1...j. Atually, we do not have any searh algorithm better than this.Lemma 18 For distanes dt,δ

H , dt,κ
SAD, and dt,κ

MAD, if the distane an be evalu-ated in O(f(m)) time, then the orresponding searh problem an be solved in
O(f(m)n) time.On the other hand, it is not immediate how to perform transposition invariant
(δ, γ)�mathing. We show how the above results an be applied to this ase.Note that one an �nd in O(mn) time all the ourrenes {j} suhthat dt

MAD(P, Tj−m+1...j) ≤ δ, and all the ourrenes {j′} where
dt

SAD(P, Tj′−m+1...j′) ≤ γ. The (δ, γ)�mathes are a subset of {j} ∩ {j′}, butidentity does not neessarily hold. This is beause the optimal transpositionan be di�erent for dt
MAD and dt

SAD.What we need to do is to verify this set of possible ourrenes {j} ∩ {j′}.This an be done as follows. For eah possible math j′′ ∈ {j} ∩ {j′} one anompute limits s and l suh that dMAD(P +t, Tj′′−m+1...j′′) ≤ δ for all s ≤ t ≤ l:If the distane d = dMAD(P + topt, Tj′′−m+1...j′′) is given, then s = topt− (δ− d)and l = topt+(δ−d). On the other hand, note that dSAD(P +t, Tj′′...j′′+m−1), asa funtion of t, is dereasing until t reahes the median of the transpositions,and then inreasing. Thus, depending on the relative order of the median ofthe transpositions with respet to s and l, we only need to ompute distane
dSAD(P + t, Tj′′−m+1...j′′) in one of them (t = s, t = l, or t = t⌈m/2⌉). This givesthe minimum value for dSAD in the range [s, l]. If this value is ≤ γ, we havefound a math.One an see that using the results of Theorems 14 and 17 with κ = 0, theabove proedures an be implemented so that only O(m) time at eah possibleourrene is needed. There are at most n ourrenes to test.Theorem 19 Given two numeri strings P (pattern) and T (text) of lengths
m and n, there is an algorithm for �nding all the transposition invariant (δ, γ)�ourrenes of P in T in O(mn) time on both integer and general alphabets.7 Conlusions and Future WorkWe have studied two tehniques for solving transposition invariant stringmathing problems. The �rst tehnique, appliable to several �edit distane�measures, onsidered all the possible transpositions. However, sine mosttranspositions produe sparse instanes of the edit distane matrix, speializedalgorithms ould be used to solve these sparse instanes e�iently. These kind32



of algorithms already existed in the literature. We devised improved sparsedynami programming algorithms in those ases (for example LCS and Lev-enshtein distane), as well as new ones when they did not exist (for exampleepisode mathing and α�limited gaps in all the distanes). The problem ofmathing with α�limited gaps most learly demonstrated the onnetion be-tween sparse dynami programming and range-minimum searhing.The seond tehnique was to diretly identify the optimal transposition andompute the distane in that transposition. This identi�ation was shown to bee�iently omputable for several distane measures where the i-th haraterof one string is ompared only against the i-th harater of the other.In general, we found that inluding transposition invariane in the studieddistanes inreases the time omplexity only slightly, usually by a polyloga-rithmi fator.To demonstrate the pratiality of the developed methods, we implemented thetransposition invariant LCS algorithm. This implementation is now inludedin the C-Brahms musi retrieval engine [6℄.An interesting remaining question is whether the log fators ould be avoidedto ahieve O(mn) for transposition invariant edit distanes. For episode math-ing we ahieved the O(mn) bound, exept that the preproessing an (in veryunommon situations on general alphabets) take O(mn log m + n log n) time.Independently, it would be nie to redue preproessing time to O(mn), so thatit an never a�et the real dynami programming omplexities. The bottlenekis in sorting mn values of the form bj−ai, one the {ai} and the {bj} sequenes,of length n and m, have been sorted. We ould do it in O(mn log min(m, n))time, but maybe it an be done better. Also, the spae needed to arrangethe transpositions for distane omputation is O(mn). We have been able toredue all the other spae omplexities to small polynomials in m, so it wouldbe interesting to do the same with the transpositions. We tried, with no result,to mix generation and proessing of the ells. The problem is that there maybe too many ative transpositions at any time.Also, we are on�dent that the searh times for the easier measures that westudied an be improved at least in the average ase. For the edit distane mea-sures, algorithms that depend on the minimum (transposition invariant) dis-tane an be derived. For example, an algorithm that proesses only diagonalareas of the dynami programming matrix [36℄ an be generalized to give timebounds like O(|T|dn), where T is the set of transpositions and d = dt
∗(A, B).This an be ombined with the sparse evaluation to get an algorithm that isfast both in pratie and in the worst ase, O(dn log log m). The hallenge isto derive a similar bound for the searh problem.Finally, a more ambitious goal is to handle more general distane funtions,33
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