Transposition Invariant String Matching *

Veli Mikinen !, Gonzalo Navarro?, and Esko Ukkonen !

aDepartment of Computer Science, P.O Box 26 (Teollisuuskatu 23), FIN-00014
University of Helsinki, Finland.

bCenter for Web Research, Department of Computer Science, University of Chile
Blanco Encalada 2120, Santiago, Chile.

Abstract

Given strings A = ajas...a;, and B = biby...b, over an alphabet ¥ C U,
where U is some numerical universe closed under addition and subtraction, and
a distance function d(A, B) that gives the score of the best (partial) matching
of A and B, the transposition invariant distance is mingey{d(A + t, B)}, where
A+t = (a;+t)(ag+t)...(am+t). We study the problem of computing the transpo-
sition invariant distance for various distance (and similarity) functions d, including
Hamming distance, longest common subsequence (LCS), Levenshtein distance, and
their versions where the exact matching condition is replaced by an approximate
one. For all these problems we give algorithms whose time complexities are close to
the known upper bounds without transposition invariance, and for some we achieve
these upper bounds. In particular, we show how sparse dynamic programming can
be used to solve transposition invariant problems, and its connection with multidi-
mensional range-minimum search. As a byproduct, we give improved sparse dynamic
programming algorithms to compute LCS and Levenshtein distance.

Key words: edit distance, music sequence comparison, transposition invariance,
sparse dynamic programming, range-minimum searching.

* Preliminary version appeared as [34].

Email addresses: vmakinen@cs.helsinki.fi (Veli Mékinen),
gnavarro@dcc.uchile.cl (Gonzalo Navarro), ukkonen@cs.helsinki.fi (Esko
Ukkonen).

I Supported by the Academy of Finland under grant 22584.
2 Supported by Millenium Nucleus Center for Web Research, Grant P01-029-F,
Mideplan, Chile.

Preprint submitted to Elsevier Science 1 September 2004



1 Introduction

Transposition invariant string matching is the problem of matching two strings
when all the characters of either of them can be “shifted” by some amount t.
By “shifting” we mean that the strings are sequences of numbers and we add
or subtract ¢ from each character of one string.

Interest in transposition invariant string matching problems has recently arisen
in the field of music information retrieval (MIR) [11,28,29|. In music analysis
and retrieval, one often wants to compare two music pieces to test how simi-
lar they are. One way to do this is to define a distance measure between the
corresponding note sequences. Transposition invariance is one of the proper-
ties that such a distance measure should fulfill to reflect a human sense of
similarity. There are other application areas where transposition invariance is
useful, like time series comparison [5], image comparison [21], and others (see
Section 3).

In this paper we study how transposition invariance can be achieved when
evaluating some of the classical distance measures for strings. We focus on
measures that have been used in practice and have applications in MIR. We
are interested in the intrinsic difficulty of the problem, focusing on the essential
aspects and in worst case complexities. Our aim is to build a foundation on
top of which one can develop practical improvements such as good average
cases, threshold-sensitive computation, bit-parallel simulation, four-russians
techniques, filtering approaches, and so on.

We show that several transposition invariant string matching problems can
be reduced to sparse dynamic programming, and demonstrate the connection
between the latter and multidimensional range-minimum searching. In some
cases our new sparse dynamic programming techniques are inferior compared
to the best existing solutions, but in other cases we give improved solutions
to well known problems such as sparse computation of longest common subse-
quences and Levenshtein distance. Moreover, our techniques are flexible and
can be successfully extended to cases of interest that cannot be handled by the
best current algorithms, for example to distances where matching characters
cannot be too far apart. As a result, we show that all the distance measures
studied allow including transposition invariance without a significant increase
in the asymptotic running times (in most cases we pay polylogarithmic penalty
factors).

The paper is organized as follows. In Section 2 we give the main definitions
we use, including the string similarity measures we focus on. In Section 3 we
cover related work and give at the same time motivations for some of the
string matching problems addressed. In Section 4 we summarize our main



results. Section 5 is devoted to the so-called “edit distances” (where characters
in both strings can be ignored) and Section 6 to the simpler distances where all
characters must be aligned one by one. Finally, Section 7 gives our conclusions
and future work directions.

2 Definitions

Let ¥ be a numerical alphabet, which is a subset of some totally ordered
universe U that is closed under addition and subtraction. Let A = aqas . .. a,,
and B = biby...b, be two strings in X*, that is, a;,b; € X for all 1 < ¢ <
m,1 < j < n. We will assume w.l.o.g. that m < n, since the distance measures
we study are symmetric®. String A’ is a substring of Aif A’ = A, ; =a;...q,
for some 1 <7 < j < m. String A” is a subsequence of A, denoted by A” C A,
if A = a; a4, .. i, for some indexes 1 <y <ip < -+ - < gpar <.

The following measures can be defined between two strings A and B. These
measures can be found in any standard text book of string algorithms, see for
example [17,25]. The length of the longest common subsequence (LCS) of A
and B is les(A4, B) = max{|S| | S C A, S C B}. The dual problem of comput-
ing LCS is to compute distance dip, which is the minimum number of character
insertions and deletions necessary to convert A into B (or vice versa). The du-
ality is clear since dip(A, B) = m+n — 2 -lcs(A, B). For convenience, we will
mainly use the minimization problem dip (not lcs) in the sequel. If we permit
character substitutions in addition to insertions and deletions, the result is
the unit cost Levenshtein distance dy, [30]|. This is a particular case of more
complex distances that assign a different cost to each operation and minimize
the total cost of operations [39,35]. Finally, if only deletions of characters of
B are allowed, we get distance dp. We call dip, di, and dp collectively “edit
distances”.

When m = n, the following distances can also be defined. The Hamming dis-
tance dy between strings A and B is dy(A, B) = |{i | a; # b;, 1 < i < m}|. The
sum of absolute differences distance dsap between A and B is dsap(A, B) =
" |a; —b;|. The mazimum absolute difference distance dyap between A and
B is dyap(A, B) = max{|a; — b;] | 1 < i < m}. Note that dsap is in fact
the Manhattan metric (/; norm) and dyap is the maximum metric (/o norm)
when we interpret A and B as points in m-dimensional Euclidean space.

String A is a transposed copy of B (denoted by A =! B) if B = A+t =
(a1 +t)(ag+t) - (a,+1t) for some ¢t € U. The transposition invariant versions
of the above distance measures d, where * € {ID,L,D,H,SAD, MAD} can

3 Except for dp, but in this case it is necessary that m < n.



now be stated as dt(A, B) = min,ey d.(A+t, B).

So far our definitions allow either only exact (transposition invariant) matches
between some characters (djp, dj , d},, di;), or approximate matches between all
characters (d§yp, diap)- To relax these conditions, we introduce a constant
§ > 0. We write a =° b when |a — b| < J, a,b € X. By replacing the equalities
a = b with a =° b, we get more error-tolerant versions of the distance measures:
dfg,df‘s, d]tg"s, and dh"s. Similarly, by introducing another constant x > 0, we

. t t .
can define distances dgxp, dyfap such that the s largest differences |a; — b;| are

discarded.

We can also define « limited versions of the edit distance measures, where
the distance (gap) between any two consecutive matching characters in A
or B is limited by a constant a > 0. That is, if in order to obtain d(A, B)
characters a;,, a;,, ..., a; match b; ,b;,,...,0; , while the others are inserted,
deleted or substituted (depending on the distance), then i, —i, 1 —1 < v and

je—jer —1<aforalll <¢<r. We get distances di>® di*, and di.

The approzimate string matching problem, based on the above distance func-
tions, is to find the minimum distance between A and any substring of B. In
this case we call A the pattern and denote it Py _,, = pip2- - - pm, and call B
the text and denote it T _,, = tity - - -t,, and usually assume that m << n. A
closely related problem is the thresholded search problem where, given P, T,
and a threshold value k£ > 0, one wants to find all the text positions j, such
that d(P, T}, ;) < k for some j;. We will refer collectively to these two closely
related problems as the search problem.

In particular, if distance dp is used in approximate string matching, we obtain
a problem known as episode matching |31,18|, which can also be stated as
follows: Find the shortest substring of the text that contains the pattern as
a subsequence. Another search problem related to dsap and dyap is called
“(0,7v) matching” [7], where one wants to find all occurrences j,. such that

dyiap (P, T, —m+1..5,) < 0 and dsap(P, Tj,—mi1..5,) <7

Our complexity results will vary depending on the form of the alphabet . We
will distinguish two cases. An integer alphabet is any finite alphabet ¥ C Z.
For integer alphabets, |X| will denote max(X)—min(X)+1. A general alphabet
will be any other X, finite or not, and we will omit any reference to |X|. We
will only assume that Y is totally ordered and closed under addition and
subtraction (a good example to fix ideas is 3 = R). On the other hand, for
any string A = ay...a,,, we will call ¥4 = {a; | 1 <i < m} the alphabet of
A. In these cases we will use |24 = max(X4) — min(X,4) + 1 < |X| when ¥4
is taken as an integer alphabet. On general alphabets, |X4| < m will denote
the cardinality of the set X 4.



3 Related Work and Motivation

We start by noticing that the problem of exact transposition invariant string
matching is extremely easy to solve. For the comparison problem, the only
possible transposition is t = by — a;. For the search problem, one can use the
relative encoding of both the pattern (pj = pas — p1,p5 = ps — pa, . ..) and the
text (t) = ta—t1,th, = t3—ta,...), and use the whole arsenal of methods devel-
oped for exact string matching. Unfortunately, this relative encoding seems to
be of no use when the exact string comparison is replaced by an approximate
one.

Transposition invariance, as far as we know, was introduced in the string
matching context in the work of Lemstrom and Ukkonen [29|. They pro-
posed, among other measures, transposition invariant longest common sub-
sequence (LCTS) as a measure of similarity between two music (pitch) se-
quences. They gave a descriptive nickname for the measure: “Longest Common
Hidden Melody”. As the alphabet of pitches is some limited integer alphabet
Y. C Z, the transpositions that have to be considered are T = {b—a | a,b € X}.
This gives a brute force algorithm for computing the length of the LCTS |29]:
Compute les(A + ¢, B) using O(mn) dynamic programming for each ¢ € T.
The running time of this algorithm is O(|X|mn), where typically |¥| = 128.
In the general case, where > can be unlimited, one could instead use the set
of transpositions T' = {b —a | a € ¥ 4,b € Xp}. This is because some charac-
ters must match in any meaningful transposition. The size of T’ could be mn,
which gives O(m?n?) worst case time for general alphabets. Thus it is of both
practical and theoretical interest to improve this algorithm.

The Levenshtein distance allows substituting a note by some other note. A
natural extension would be to make the cost of a substitution operation depend
on the distance between the notes. This is however problematic since there is
no natural way of defining costs of insertions and deletions in this setting. We
have chosen an alternative approach: A tolerance § > 0 is allowed for matching
pitch levels. This can be used to allow matches between pitch levels that are
relatively close. In practice, one could use different values 0 for each pitch level
to better reflect musical closeness.

While the LCS and the edit distance in general are useful tools for comparing
two sequences that represent whole musical pieces, simpler measures could be
used in the search problem. An especially suitable relaxation of the LCS is
episode matching [31,18]. Assume that the pattern is (a discretized version of
a signal) given by humming. The goal is to search for the matching musical
pieces in a large music database. The pattern obtained by humming would usu-
ally contain the melody in its simplest form, but the searched occurrences in
the music database might additionally contain some “decorative” notes, which



were forgotten by the person humming the piece. Episode matching would
find the occurrences that contain the fewest decorative notes. This is a good
objective, since an occurrence with a large number of additional notes would
not be recognized as the same piece of music. A version of episode matching
has been proposed in the context of MIR [?,13], where the number of these
additional notes between two matching pitches is limited by a constant. This
variant, as well as the original problem, can be solved using dynamic pro-
gramming in O(mn) time. Including transposition invariance has not been
considered. We will study this problem and “matching with a-limited gaps”
in general, where an additional restriction to the dip, dr, and dp distances is
that the gap between two consecutive matching characters is limited by an
integer a > 0. This aims at avoiding seriously distorted occurrences where, al-
though the total number of extra notes is a small fraction of the whole string,
they are all concentrated in the same place, so that a human would not recog-
nize both strings as variants of the same melody. Moreover, such restrictions
become necessary in other types of edit distances, see for example the edit
distances for point-patterns developed in [33|. Here we will only concentrate
on the a-limitation on well-known distance measures, since this is enough to
demonstrate the key techniques.

Even simpler measures have been proposed for the search problem. These in-
clude variants of df, dsap and dyap, such as the (d,7) matching problem
[7,12,15,16], where occurrences should have limited dyap and dsap distances
to the pattern, simultaneously. Algorithms for exact string matching can be
generalized to this special case, and bit-parallel algorithms can be applied
[7,16]. These algorithms are fast in the average case and in practice, but their
worst case is still O(mn). In fact, for § = oo the problem is known as the
weighted k-mismatches problem [32], for which it has long been an open ques-
tion whether the quadratic bound can be improved. We will not answer that
here, but we will show that within the same bounds one can solve the harder
problem where transposition invariance is included.

So far we have discussed problems for monophonic musical sequences. Poly-
phonic music is much more challenging. Usually one would be interested in
finding occurrences of a monophonic pattern in a polyphonic music. The ba-
sic approach would be to separate polyphonic music into parallel monophonic
pitch sequences (each instrument separately). This case can be handled easily
by applying algorithms for monophonic music. This would however lose the
melodies that “jump” between instruments. To find these melodies one should
represent the polyphonic music as a sequence of subsets of pitch levels. The
exact matching is in this case called subset matching, for which novel (but
impractical) algorithms have been developed [8 10]. To allow transposition
invariance, one could simulate these algorithms with each possible transposi-
tion. The time complexity would then be O(|2|slog®s) [10], where s is the
sum of the subset sizes. A practical approach has been taken by Lemstrom



and Tarhio [28], who developed a fast filter for the problem with transposi-
tion invariance, as well as a simple verification algorithm that has running
time O(|X|n + sm). We note that the edit distance problems can easily be
adapted to the case in which the text consists of subsets. A more robust ex-
tension of episode matching for polyphonic music, where the number of jumps
is controlled, was also studied [27].

Other applications for transposition invariance can be found, for example, in
image processing and time series comparison. In image comparison, one could
for example use the sum of absolute differences to find approximate occur-
rences of a template pattern inside a larger image. This measure is used, for
instance, by Fredriksson in his study of rotation invariant template matching
[21]. Transposition invariance would mean “lighting invariance” in this context.
As images usually contain a lot of noise, the measure where x largest differ-
ences can be discarded could be useful. We study the combination of rotation
and lighting invariances in a subsequent paper [22|.

In time series comparison, many of the measures mentioned can be used. In
fact, episode matching was first introduced in this context [31]|. Recently, a
problem closely related to transposition invariant LCS was studied by Bol-
lobéas et al. [5]. They studied a more difficult problem where not only transpo-
sition (translation), but also scaling was allowed. They also allowed a tolerance
between matched values, but did not consider transpositions alone. Our algo-
rithms could be useful to improve these results, as dynamic programming
algorithms are used as a black box in their techniques, and we give improved
(sparse) dynamic programming algorithms.

4 Summary of Results

Our results are two-fold. For evaluating the easier distance measures
(dtﬁa, dshy, dyrap) we achieve almost the same bounds that are known without
transposition invariance. These results are achieved by noticing that the op-
timum transposition can be found without evaluating the distances for each
possible transposition.

For the more difficult measures (di, di*®, and d”®) we still need to com-
pute the distances for each possible transposition. This would be costly if
the standard dynamic programming algorithms for these problems were used.
However, we show that sparse dynamic programming algorithms can be used
to obtain much better worst case bounds. Then we show the connection be-
tween the resulting sparse dynamic programming problems and multidimen-
sional range-minimum queries. We obtain simple yet efficient algorithms for
these distances.



For LCS (and thus for dip) there already exists Hunt-Szymanski [26] type
(sparse dynamic programming) algorithms whose time complexities depend
on the number r of matching character pairs between the compared strings.
The complexity of the Hunt-Szymanski algorithm is O(rlogn) once the match-
ing pairs are given in correct order. As the sum of values r over all different
transpositions is mn, we get the bound O(mnlogn) for the transposition in-
variant case. Later improvements [2,20] permit reducing this complexity to
O(mnloglogn) time (see Section 5.2). We improve this to O(mn loglogm) by
giving a new O(rloglogmin(m,r)) sparse dynamic programming algorithm
for LCS. This algorithm can also be generalized to the case where gaps are
limited by a constant «, giving O(mnlogm) time for evaluating dy5 (A, B).

Eppstein et al. [20] have proposed sparse dynamic programming algorithms
for more complex distance computations such as the Wilbur-Lipman frag-
ment alignment problem [40,41|. The unit cost Levenshtein distance can also
be solved using these techniques [24]. Using this algorithm, the transposi-
tion invariant case can be solved in O(mnloglogn) time. However, the algo-
rithm does not generalize to the case of a-limited gaps, and thus we develop
an alternative solution that is based on two-dimensional semi-static range
minimum queries. This gives us O(mnlog?m) time for evaluating dy*(A, B).
However, we develop in passing an improved O(rloglogm) sparse dynamic
programming algorithm for Levenshtein distance, which permits computing
di in O(mnloglogm) time. Also, we note that our algorithm to compute
dEO‘(A, B) can be applied to the case without transpositions, where it is still
O(mnlog®m), and hence better than the existing O(amn) time algorithm [33]
for a = Q(log” m).

Finally, we give a new O(r) time sparse dynamic programming algorithm
for episode matching. This gives us O(mn) time for transposition invariant
episode matching.

The search problems on the edit distances can be solved in general within
the same time bounds of the distance computation problems. For the simpler
distances, on the other hand, our only solution is to evaluate them at every
text position.

Table 1 gives a simplified list of upper bounds that are known for these
problems without transposition invariance. Table 2 gives the achieved upper
bounds for the transposition invariant versions of these problems.

We start by describing our solutions to the edit distances, since they are
the main emphasis of this paper. Then we briefly give the other results for
Hamming distance and related measures.



distance distance evaluation searching

exact O(m) O(m +n)

du O(m) O(ny/mlogm) [1]
dy O(m) O(mn)

dsap O(m) O(mn)
dyaD O(m) O(mn)

(6, )—matching O(m) O(mn)

dip, d, O(mn/logm) O(mn/logm) [14]
dyy O(mn) O(mn) [33]
&> O(amn) O(amn) |33]
dp O(mn/logm) | O(mn/logm) [18]
& O(mn) O(mn) [13]

Table 1
Upper bounds for string matching without transposition invariance. We omit bounds
that depend on the threshold k in the search problems.

distance distance evaluation searching
exact O(m) O(m +n)

d;{’(s O(mlogm) O(mnlogm)
dgh s O(m + klog k) O((m + klog k)n)
dyinp O(m + rlog k) O((m + klog k)n)
(6,)—matching O(m) O(mn)

d;g O(dmnloglogm) | O(émnloglogm)
d;l’g’a O(dmnlogm) O(dmnlogm)
d}f; O(dmnloglogm) | O(émnloglogm)
v O(smnlog®m) O(dmnlog®m)
d]tj’é’a O(dmn) O(dmn)

Table 2

Our upper bounds for transposition invariant string matching. On an integer alpha-
bet, term mlogm in dt}’fs can be replaced by |X|+m, and xlog k by |X|+ k. We have
not added, for clarity, the preprocessing time of Theorem 2 for the edit distance
measures. Finally, § should be understood as (20 + 1)/u, where p is the minimum
difference between any two different a; — b; values (1 = 1 on integer alphabets).



5 Transposition Invariant Edit Distances

Let us first review how the edit distances can be computed using dynamic
programming [30,39,35|. Let A = ajas---a,, and B = biby---b,. For dp,
evaluate an (m + 1) x (n + 1) matrix (d;;), 0 < i <m, 0 < j < n, using the
recurrence

di,j = mln((if a; = b] then di—l,j—l else OO)7 di—l,j + 1, di,j—l + 1), (1)
with initialization d; o = ¢ for 0 < i <m and dy; = j for 0 < j < n.

The matrix (d;;) can be evaluated (in some suitable order, like row-by-row or
column-by-column) in O(mn) time, and the value d,,, equals dip(A, B).

A similar method can be used to calculate distance dp, (A, B). Now, the recur-
rence is

di,j = min((di_l,j_l + if a; = bj then O else 1), di—l,j + 1, di,j—l + 1),(2)
with initialization d; o = ¢ for 0 < i < m and dy; = j for 0 < j < n.

The recurrence for distance dp(A, B), which is used in episode matching, is

d@j = if a; = bj then di—l,j—l else di,j—l + 1, (3)
with initialization d; o = oo for 0 <¢ <m and dyp; = j for 1 <j <n.

The corresponding search problems can be solved by assigning zero to the
values in the first row, do; = 0 (recall that we identify pattern P = A and
text 7' = B). To find the best approximate match, we take ming<;<, d,, ;. For
thresholded searching, we report the end positions of the occurrences, that is,
those j where d,,, ; < k.

A useful alternative formulation of these distance computation problems is
to see them as a shortest path problem on a graph. The graph contains one
node for each matrix cell. For dip(A, B), there are (horizontal) edges of cost
1 that connect every cell (i,7 — 1) to (4,7), as well as (vertical) edges of cost
1 that connect every cell (i — 1, j) to (4,j). Whenever a; = b;, there is also a
(diagonal) zero-cost cell that connects (i — 1, — 1) to (¢, 7). It is not hard to
see that d,, ,, is the minimum path cost that connects cell (0,0) to cell (m,n).
For dy, this graph has also diagonal edges of cost 1 from every cell (i—1,j—1)
to (4, ). For dp, the graph contains only the horizontal edges and the zero-cost
diagonal edges. For searching, we add zero-cost edges connecting (0,7 — 1) to
(0, 7) for every j.

10



To solve our transposition invariant problems, we compute the distances in
all required transpositions, but we use algorithms that are more efficient than
the above basic dynamic programming solutions, such that the overall com-
plexity does not exceed by much the worst case complexities of computing the
distances for a single transposition.

Let M be the set of matching characters (also called match set) between strings
Aand B, thatis, M = M(A,B) = {(4,j) | a; = b;,1 <i <m,1 <j <n} The
match set corresponding to a transposition ¢ will be called M, = M (A+t, B) =
{(i,j) | a;+t =b;}. Let r = r(A, B) = |[M(A, B)|. Let us define T to be the set
of those transpositions that make some characters match between A and B,
thatis T = {b;—a; | 1 <i <m,1 <j <n}. One could compute the above edit
distances and solve the search problems by running the above recurrences over
all pairs (A +t,B), where ¢t € T. In an integer alphabet this takes O(|X|mn)
time, and O(|X4||Xg|mn) = O(m?n?) time in a general alphabet. This kind
of procedure can be significantly sped up if the basic dynamic programming
algorithms are replaced by suitable “sparse dynamic programming” algorithms.

Moreover, we are actually interested in computing the edit distances allowing
approximate matches between the characters (recall the versions with param-
eter ¢). To take these approximate matches into account, let us redefine our
match set M; as M) = {(i,5) | |b; — (a; + t)| < &}

We note that, if 6 = 0, then the sum of the sizes of all the match sets is mn, that
is, >, | M;| = mn. However, if 6 > 0 then each cell may participate in more than
one relevant transposition, and the total size of the match sets, Y, |Mf\, may
perfectly exceed mn. On an integer alphabet, each cell can participate at most
in 20 + 1 match sets, so the overall size is 3, |M?| < (254 1)mn. On a general
alphabet, this is not enough. Let us call i1 the smallest difference between two
different relevant transpositions, then it holds 3=, |M?| < (26 + 1)mn/u. Note
that 4 =1 on an integer alphabet.

Lemma 1 If distance d(A, B) can be computed in O(g(r(A, B)) f(m,n)) time,
where g() is a concave increasing function, then the transposition invariant
distance d*(A, B) = minger d(A + t, B) can be computed in O(g(mn)f(m,n))
time. The &-tolerant distance d*°(A, B) = miner d°(A+t, B) can be computed
in O(g(X, [ MP[).f(m, n)) time.

PROOF. For 6 =0, let r, = |M;| = r(A +t, B) be the number of matching
character pairs between A 4+ ¢ and B. Then

11



S g flmom) = Flm.m) g (fj Gt 1<) < n}\)

teT teT i=1

< f(m,n)g (i2|{j|ai+t:bjul <J S"}‘)

i=1teT

— fm,n)g (in) — gmn)f(m, ).

The case 6 > 0 is similar (change the order of the summations in the second
line above, and ¥ ,cr M? shows up). O

The rest of the section is devoted to developing algorithms that depend on 7.
However, we start by considering how to obtain the sets M; = M(A +t, B).

5.1 Preprocessing

As a first step, we need a way of constructing the match sets M; sorted in
some order that enables sparse evaluation of matrix (d;;).

We must be careful in constructing these match sets for all transpositions so
that the overall preprocessing time does not exceed the time needed for the
actual distance computations. For example, one could easily construct a match
set by considering all the mn pairs (7, j) in any desired order and adding each
pair (7,7) to My, _q,, first initializing it if the transposition ¢t = b; — a; did
not previously exist. This method gives us O(|X| + mn) time on an integer
alphabet and O(mnlog(|X4||Xg|)) = O(mnlogn) on a general alphabet (by
using a balanced tree of existing transpositions).

Let us now consider the case 6 > 0. Now each pair (a;,b;) defines a range
of relevant transpositions, [b; — a; — 0,b; — a; + J]. However, only at the ex-
tremes of those ranges the sets M can change, so it is enough to consider
two transpositions, b; — a; — § and b; — a; + 6, for each pair (a;,b;). More-
over, if ' = t 4+ € such that a range finishes between ¢ and ¢’ and all the rest
stays the same, then M3 C M/?, and because of the definitions of edit dis-
tances, d(A +t,B) < d(A+t, B) for any edit distance. This shows that it is
enough to consider only the places where ranges start (or, symmetrically, all
the places where ranges finish, but not both). Hence, we will compute M? for

tE{bj—CLZ'—(S}.

Theorem 2 The match sets MY = {(4,7) | |bj—(a;+t)| < 6}, each sorted in a
desired cell order, for all relevant transpositionst € T = {b—a—4d,a € ¥ 4,b €
Y}, can be constructed in time O(|X|4(264+1)mn) on an integer alphabet, and

12



in time O(mlog |Sa| +nlog |Sg|+|Xal|Ss|log(min(|Sal, |28])) + Xier | M?])
on a general alphabet.

PROOF. On an integer alphabet we can proceed naively to obtain O(|3| +
mn) time using array lookup to get the transposition b; — a; where each pair
(7,7) has to be added. For § > 0 each pair (4,7) is added to entries from
bj —a; — 6 to b —a; + 6, in O(|X] + (26 + 1)mn) time.

The case of general alphabets is solved as follows.

(1) Start by obtaining the sets of different characters in A and B. Create
a balanced binary search tree 74 where every character a = a; of A is
inserted, maintaining for each such a € X4 a list £, of the positions i of A,
in increasing order, such that a = a;. Do the same for B and 7. This costs
O(mlog|E4[ + nlog [X3]).

(#7) Then, obtain a sorted list of all the relevant transpositions, with dupli-
cates. Let us assume |X 4] < [Xp]| (otherwise do it the symmetric way). For
each a € Ty, traverse all b in 7g in order and generate a list of increasing
transpositions and their corresponding position lists (b—a—49, L,, L). Then
merge the |X 4] lists into a unique ordered list of relevant transpositions and
positions, where there are possible duplicates in the b — a — ¢ values (but
these are all contiguous). Since we choose the smaller alphabet to traverse
the larger, this part costs O(|X4||Xg|log(min(|X 4], |X5]))) time.

(77i) Now, create list T of relevant transpositions and associate the set of
positions M} to each t € T. We will need to fill simultaneously a matrix C
of m rows and n columns, such that each cell C;; points to the proper node
M? in T. Traverse the sorted list of transpositions and remove duplicate
transpositions, appending a new node t = b — a — ¢ at the end of T, where
M} is stored, initially empty. At the same time, each time a list entry
(b—a—0,L,, L) is processed, assign a pointer to M at each cell C;,; for
every i € L, and j € L. This costs O(mn) since every cell of C' will be
visited exactly once.

(iv) Finally, fill the M? sets. Traverse matrix C' in any desired order, and for
each processed entry (i, 7), add (4, j) to the set pointed to by C;; (that is,
Mli_ai_(S)' This costs O(mn). If 6 > 0 add entry (¢, ) not only to C; ;, but

also move forward in the sorted list T, adding entry (7, ) to next transpo-

sitions &' — a’ while (¥ — a’) — (b — a) < 26. This costs Yyer [M?]. O

In the rest of this section, we will only consider explicitly the case 6 = 0 and
develop algorithms that compute a distance d(A, B) using a match set M,.
However, all algorithms can be used for computing the corresponding error
tolerant distance d°(A + t, B) in a given transposition ¢ by running them on
M7 instead of on M. All the complexities for § = 0 will include a term of the

13



form mn, which has to be replaced by >,cp [M?]| < (25+1)mn/pif 6 > 0. Note
that a simple upper bound on the preprocessing time for general alphabets is
O(mnlogm + nlogn) for § = 0 and O(mn(logm + (26 + 1)/p) + nlogn) in
general.

For LCS (and thus for dip) there exist algorithms that depend on r. The clas-
sical Hunt-Szymanski [26] algorithm has running time O(rlogn) if the set of
matches M is already given in the proper order. Using Lemma 1 we can con-
clude that there is an algorithm for transposition invariant LCS that has time
complexity O(mnlogn). There are even faster algorithms for LCS: Eppstein
et al. [20] improved an algorithm of Apostolico and Guerra 2| achieving run-
ning time O(Dloglogmin(D, "5")), where D < r is the number of dominant
matches (see, for example, [2| for a definition). Using this algorithm, we have
the bound O(mnloglogn) for the transposition invariant case (note that this
is a tight estimate, since it can be achieved when D = ©(mn/D) at each
transposition).

The existing sparse dynamic programming algorithms for LCS, however, do
not extend to the case of a limited gaps. We will give a simple but effi-
cient algorithm for LCS that generalizes to this case. We will also use the
same technique when developing an efficient algorithm for the Levenshtein
distance with a—limited gaps. Moreover, by replacing the data structure used
in the algorithm by a more efficient one described in Lemma 8, we can achieve
O(rloglogm) complexity, which gives O(mnloglogm) for the transposition
invariant LCS (this is better than the previous bound, since m < n).

Recall the set of matching character pairs M = {(i,7) | a; = b;}. Let M =
M U{(0,0),(m+1,n+ 1)}. We have the following sparsity property for dip.

Lemma 3 Distance dip(A, B) can be computed by evaluating d, ; for (i,j) €
M using the recurrence

dij=min{dyy+i—i +j—j —2|(,j)e M <ij <j}, (4)

with initialization dyo = 0. Value dp41 41 equals dip(A, B).

PROOF. Let us regard again the computation of matrix d as a shortest path
computation on a graph. Every path from cell (0,0) to a cell (¢, 7) that is the
target of a zero-cost edge can be divided into two parts: (i) from cell (0,0)
until a cell (¢, 5') that is the target of the last zero-cost edge traversed before
reaching (4, j), and from cell (¢/, j/) until cell (4, j). The path from (¢, j) to (¢, 5)

14



moves first to (i — 1, j — 1) traversing only horizontal and vertical cost-1 edges,
and then moves for free from (i —1,j —1) to (¢, 7). Overall, (i — 1) — ¢’ vertical
and (j—1)—j" horizontal edges are traversed, for a total cost of i —i'+j—j" —2.
Hence the cost of this particular path is d; jy +¢ —4' 4+ j — j' — 2. M contains
all the cells that are targets of zero-cost edges, and therefore minimizing over
all cells (¢, j') € M yields the optimal cost, except for the possibility that the
optimal path does not use any zero-cost edge before (i, 7). This last possibility
is covered by adding cell (0,0) to M, with dyo = 0 (which is also a way to
state that our paths must start at cell (0,0)). Finally, as we wish to obtain
value d,, ,, we could have added cell (m,n) to M, but our reasoning applies
only to cells that are target of zero-cost edges. Hence, we add cell (m+1,n+1)
as such a target, so d, ,, = dy+1n41 1S correctly computed. O

The obvious strategy to use the above lemma is to keep the already computed
values dy j; in a data structure such that their minimum can be retrieved
efficiently when computing the value of the next d;;. One difficulty here is
that the values stored are not comparable as such since we want the minimum
only after i — i’ + j — j' — 2 is added. This can be solved by storing the path-
invariant values dy j; — i — j' instead. Then, after retrieving the minimum
value, one can add 7 + j — 2 to get the correct value for d; ;. To get the
minimum value d; j; — i — j' from range (7', j') € [—00,1) X [—00, j), we need a
data structure supporting dynamic one-dimensional range minimum queries.
To see that it is enough to use query range [—00, i), notice that if we compute
points (7, ) column-by-column (that is, for increasing j), each column from
bottom to up (that is, for decreasing i), then the query points that are in
the range [—00,1%) are also those in the range [—o0, j). We call this order the
reverse column by column order: (i',j") precedes (i,7) if j' < j, orif j/ = j
and 7 > 1.

Hence we need an efficient data structure where we can store the row numbers
i as the sort keys, and values v(i') = d(i’,j') — ¢ — 7' associated to them,
and query it by minimum values over a range of keys. Furthermore, we will
need later to remove points from this data structure, so we want it to be
dynamic. The following well-known lemma establishes the existence of such a
data structure. Lacking any reference, we prove it.

Lemma 4 There is a data structure T supporting the following operations in
O(logn) time, where n is the amount of elements currently in the structure.

T .Insert(k,v) : Inserts value v into the structure with key k. If key k already
exists, the value of the element is updated to v if v is smaller than the current
value.

T .Delete(k) : Deletes the element with key k.
v ="T.Minimum(I) : Returns the minimum of values whose keys are in the

15



one-dimensional range I = [, r].

PROOF. A modified balanced binary search tree (AVL, for example) orga-
nized by keys k and storing associated values v(k) is a suitable data structure.
Let us speak indistinctly of nodes and keys, and denote left and right chil-
dren of a node k by k.left and k.right. This tree is augmented with a field
minv(k) stored at each node, where the minimum of values in the subtree
rooted at k is maintained. The tree is easily updated when a new key k is
inserted, as the only additional operation is to update the value minv(k’) of
any traversed internal node £’ to min(minv(k’),v). Once a node k is deleted,
values minv (k") in the path from the root to the parent of £ need to be recom-
puted (if the deleted node is internal and hence replaced by a leaf, this update
is done from the parent of the removed leaf). This updating is easy since
minv(k) = min(v(k), minv(k.left), minv(k.right)) is recomputed in constant
time per node. For the same reason, minv(k) values are also easily recomputed
when the tree is rebalanced by rotations.

Minimum over ranges of keys [¢, r| are obtained as follows. The tree is searched
for £ and r simultaneously until node s* is reached where the search path splits.
From s*.left the search is continued with ¢ and at every node s where the
search path of ¢ goes left, value minv(s.right) is compared to the minimum
value obtained so far. Similarly, the search is continued with r at s*.right,
and at every node s where the search path of r goes right, value minuv(s.left)
is considered for updating the computed minimum. Also, the v(k) values of
nodes k visited are included in the minimization whenever ¢ < k < r. A not
so infrequent special case occurs when the search path splits before the root
node, and hence node s* does not exist. In this case both searches for £ and r
start at the root node. 0O

We are ready to give the algorithm now. Initialize the tree 7 of Lemma 4 by
adding the value of dyg — i — j = 0 with key ¢ = 0: T.Insert(0,0). Proceed
with the match set M \ {(0,0)} that is sorted in reverse column by column
order and make the following operations at each such pair (z, j):

(1) Take the minimum value from 7 whose key is smaller than the current
row number i: d = T.Minimum([—o0,4)). Add i + j — 2 to this value:
d—d+14+7—2.

(2) Add the current value d minus current row and column number, i + j, into
7, with the current row number as its key: 7.Insert(i,d —i — j).

Finally, after cell (m+1,n+1) has been processed, we have that dip(A, B) = d.

The above algorithm works correctly: The reverse column by column evalu-
ation and the range query restricted by the row number in 7 guarantee that

16



conditions ¢/ < ¢ and j' < j hold. The only point where the work on tree 7°
deviates from what Lemma 3 requires is that new keys overwrite equal old
keys. That is, if a new cell (7, ) is inserted, an old cell (7, 5') is virtually re-
moved if it existed. It is easy to see that the old cell is of no use once the
new cell is inserted. Say that cell (i, ;") obtained its value from cell (ig, jo), so
that d; j = d;, ;o + 1 — 1o + j' — jo — 2. Hence cell (i, jo) is also a candidate
tod;,; < djjo+t—io+Jj—Jo—2, s0d; <dyj+j—j. Now, assume a
later cell (i",7") uses cell (i,7"), so that dy v = d; jy +i" —i+ j" — 7' — 2.
But then it can also use cell (7,j) to obtain a smaller or equal value using
dim o =d; j+1" —i+j" —j—2<dyy+1i" —i+j" —j — 2. Note that this is
simply a consequence of the fact that cell (¢, 7) dominates (, ') [2].

Clearly, the time complexity of the algorithm is O(rlogm), where r = |M]|,
since we can only have m+1 different row numbers stored in 7 at any moment.
Figure 1 gives an example.

0 9 2023 26 36 39 48 N

2 0[0]{0} 13[-4]{-4} | 26[-4]{-4

®,,

Fig. 1. Example of computation of dip on a sparse matrix. Black circles represent the
matching pairs (7, 7). Each such matrix position has an influence area represented
by a gray rectangle (darker grays represent larger differences from the standard
value i + j). Next to each position we represent the matrix value d; ; we compute.
The value of interest is the lowest rightmost position. In particular, we depict the
computation of the cell (24,39), for which we have to consider all the positions
included in the dashed rectangle. On the right we show our tree data structure.
Each node corresponds to a cell (i,7) and is represented as i [v] {minv}, where i
is the tree key, v is the value (meaning that the real cell value is (i + j) + v), and
minv is the minimum v value in the subtree. The search for cell (24,39) includes all
the nodes below the dashed line, and it takes the minimum d over all the underlined
values. Its new value is dag 39 = d + 24 + 39 — 2 = 57, so we will insert a new node
with key 24 and value 57 — 24 — 39 = —6 in the tree.

The algorithm also generalizes easily to the search problem: The 0 values in the
first row can be added implicitly by using d «— min(i,d+i+j —2) in step (1)
above. Also, every value d; ; = d computed in step (2) above induces a value
dm,j+s < d+ (m —1)+ s in the last row, which can be used either to keep the
minimum d,, ; value (in which case we consider only case s = 0), or to report
all values d,,; < k in thresholded searching. In order to report occurrences

17



only once and in order, two arrays S(1...n) and E(1...n) of counters are
maintained: The counters are initialized to zero, and at each pair (i,5) € M
such that d; ;+(m—1i) <k weset S(j) =S(j)+1and E(j+s) = E(j+s)+1
for the maximum s such that d + (m — ¢) + s < k. This marks the start and
end points of the occurrences. Then it is easy to collect all the occurrences in
O(n) time by using S() and E() to keep track on how many ranges are active
at any position j of the text.

The queries [—00,7) we use are semi-infinite. We will show in Lemma 8 (Sec-
tion 5.3) that the balanced binary search tree can be replaced by a more
advanced data structure in this case. That is, semi-infinite queries for mini-
mum and insertions can be supported in amortized O(loglogu) time, where
[1,u] is the integer range of keys that are inserted into the structure. In our
case u = m, which gives us O(loglogm) query time. The next theorem follows
immediately.

Theorem 5 Given two strings A = ay...a,, and B =by...b,, m <n, and
the r cells (i,7) such that a; = b; in reverse column-by—column order, then
the LCS between A and B can be computed in time O(rloglogmin(r,m)).

Let us now consider the case with « limited gaps. The only change we need
in our algorithm is to make sure that, in order to compute d; ;, we only take
into account the matches that are in the range (¢/,j') € [i —a — 1,7) x [j —
a — 1,7). What we need to do is to change the search range [—o0,i) into
i —a —1,4) in 7, as well as to delete any elements in column j — o — 1
after processing elements in column j. The former is easily accomplished by
using query 7. Minimum([i—a—1,17)) at step (1) of the algorithm. The latter
needs that we delete nodes from 7 when their columns become too old. More
specifically, we maintain a pointer to the oldest (that is, smallest column)
element in M that is still stored in 7. When we finish processing column j,
we check whether the pointed cell is of the form (i, 7 — a — 1) for some ¢'. If
it is, we remove key i’ using 7 .Delete(i') and advance the pointer until the
pointed cell belongs to a later column. Since the tracking takes constant time
per cell of M, its effect in the complexity is negligible.

Note that it might be that key i’ in 7 actually corresponds to a later column
that has overwritten cell (¢, — «a — 1). In this case we must advance the
pointer but not delete the key. In order to check this, we also store in 7 nodes
the current j' value corresponding to each key 7’

Notice that we cannot obtain O(loglogm) query time anymore, since the
query ranges are no longer semi-infinite. On the other hand, we could have
used two-dimensional queries instead of deleting points from 7 but, as shown
in Lemma 8, the complexity would be worse. An illustration of the algorithm
for LCS with a-limited gaps is given in Figure 2.

18



9 2023 26 36 39 48

3[-21{-2}

22
24
26

32

® ;5

Fig. 2. Example of o gapped computation of dip on a sparse matrix, for a = 10. The
same conventions of Figure 1 apply. The difference is that now the influence areas
are restricted to width and height «, so we delete values which correspond to column
numbers which are small enough to have become irrelevant and perform a two-sided
range search over the tree, so only its middle part qualifies. In this example, the
tree has only one element when computing cell (24,39), and it is outside the search
range. In this case the value of the cell is i + j — 2 = 61.

By using Lemma 1 and the above algorithms, we get the following result.

Theorem 6 The transposition invariant distance dj,(A, B) (or, equivalently,
LCS) can be computed in O(mnloglogm) time. The corresponding search
problem can be solved within the same time bound. For the distance dyj (A, B)
the time bounds are O(mnlogm) for distance computation and for searching.
The preprocessing cost of Theorem 2 must be added to these bounds.

The algorithms use O(mn) space, since the overall size of the sets for different
transpositions is mn (note that the algorithm itself needs only O(m) space).
This might be problematic especially for the search problem, when the two
strings are of very different size.

We can achieve space complexity O(m?) in the search problem as follows. Di-
vide the text into O(n/m) segments of the form 11 om, Tont1. 3my Toms1...am,
and so on. Run the whole algorithm (including generating the sets of trans-
positions) separately over those O(n/m) text segments, one after the other.
When processing text segment T},;41. m(i+2), Teport the matches found in the
area L, (i41)4+1..m(i+2)- Lhis way, each text position is processed twice and hence
the complexity remains the same. The space, however, is that to process one
text segment, O(m?). With respect to correctness, we remark that, given that
cell d; j receives value ¢ from cell (0, j), no column before j —m can influence
it (indeed, no column before j — i). Hence, in order to report correctly the
matches in area T5,(i41)41..m(i+2) We only need to start m positions behind,
thus processing area 1,11, m(i+2). This technique is rather general and can be
applied to other edit distances as well.

In particular, in the case of a—limited gaps we can use the same technique

19



both for distance computation and for searching, since only the last a columns
processed can affect current values. Hence we can compute djj5 (A, B) using
O(am) space.

We recall that, when ¢ > 0 and we consider distances dﬁg and d;g’a, all terms
mn are replaced by >, |Mf| in the time and space complexities.

5.8  Computing the Levenshtein Distance

For the Levenshtein distance, there exists an O(rloglog min(r, mn/r)) sparse
dynamic programming algorithm |20,24|. Using this algorithm, the transposi-
tion invariant case can be solved in O(mnloglogn) time. As with the LCS,
this algorithm does not generalize to the case of a-limited gaps. We develop
an alternative solution for the Levenshtein distance by generalizing our LCS
range query approach. This new algorithm can be further generalized to solve
the problem of a—limited gaps. On the other hand, we show that the sparse
computation can be done in O(rloglogm) time.

The Levenshtein distance dy, has a sparsity property similar to the one given
for dip in Lemma 3. Recall that M = M U {(0,0), (m + 1,n+ 1)}, where M
is the set of matching character pairs.

Lemma 7 Distance di,(A, B) can be computed by evaluating d; ; for (i, j) € M
using the recurrence

d min {di’7j'+j_j/_1 | (i/>j/) € Mai/ < i?j/_i/ <]_2} (5)
i, — _
{di/JI—}-i—i'—l | (i',j/) EM,j/<j,j/—i/2j—i}

with initialization dyo = 0. Value dpi1.0+1 equals dL(A, B).

PROOF. Following the proof of Lemma 3 it is enough to show that the
minimum path cost to reach cell (i — 1,7 — 1) from match point (¢, 5') is (i)
j—7 —1when j' =4 < j —i, and (ii) i — ¢ — 1 otherwise. The reason is
that, in both cases, we use as many diagonal edges as possible and the rest
are horizontal or vertical edges, depending on the case. O

The recurrence relation is now more complex than the one for dip. In the case
of dip we could store values dy j in a comparable format (by storing dy j—i'—75’
instead) so that the minimum dy j —i' — 3" of (¢, j') € [—00, 1) x [—00, j) could
be retrieved efficiently. For df, there does not seem to be such a comparable
format, since the path length from (7', j') to (i, j) may be either i —i' — 1 or

j—j -1

20



Figure 3 illustrates the geometric setting implicit in (5). The lower region
(below diagonal j—i) contains match points such that their extension by match
(7,7) will add j — j* — 1 to the score, and the upper region (above diagonal)
contains match points such that their extension by match (¢, 7) will add i —
7' — 1 to the score. The score of the new match is computed as the minimum
between the lowest possible score obtained by extending a match from the
lower region and from the upper region. Therefore, each match will have its
scores maintained in two structures, one structure representing scores to be
extended as “lower region” scores, and other for “upper region” extensions.

Let £ denote the data structure for the lower region and U/ the data structure
for the upper region. If we store values d; j—j" in £, we can take the minimum
over those values plus j — 1 to get the value of d; ;. However, we want this
minimum over a subset of values stored in L, that is, over those d; j — j'
whose coordinates satisfy i < 4,5 — ¢ < j — i. Similarly, if we store values
dyj — i in U, we can take minimum over those values whose coordinates
satisfy j' < j,j' —¢ > j — i, plus i — 1 to get the value of d; ;. The actual

minimum is then the minimum of upper region and lower region minima.

What is left to be explained is how the minima of subsets of £ and i/ can be
obtained. For the upper region, we can use the same structure as for dip: If
we keep values dy ;s — i’ in a balanced binary search tree ¢/ with key j" — ',
we can make one-dimensional range search to locate the minimum of values
dy j—1i' whose coordinates satisfy j'—i’ > j—i. The reverse column-by-column
traversal guarantees that I/ only contains values dy j; — i’ whose coordinates
satisfy j* < 7. Thus, the upper region can be handled efficiently.

The problem is the lower region. We could use row by row traversal to handle
this case efficiently, but then we would have the symmetric problem with the
upper region. No traversal order seems to allow us to limit to one-dimensional
range searches in both regions simultaneously; we will need two-dimensional
range searching in one of them. Let us consider the two-dimensional range
search for the lower region. We would need a query that retrieves the minimum
of values d; y — j' whose coordinates satisfy ¢/ < 7,7 —i' < j —i. We make
a coordinate transformation to turn this triangle region into a rectangle: We
map each value d; j — j’ into an zy-plane at coordinate ', 5/ —4’. In this plane
we perform a rectangle query [—o00,i) X [—00,j — 7). The following lemma,
adapted from Gabow, Bentley and Tarjan [23|, provides the required data
structure for the lower region. We summarize some other related results in the
same lemma that we will soon use in the a-limited case (we already referred
to the one-dimensional result in the algorithm for dip).

Lemma 8 (Gabow, Bentley, Tarjan [23|) There is a data structure R

that stores a two-dimensional point-set S with a value associated to each point,
and supports the following operations in amortized O(lognloglogn) time after

21



O(nlogn) time preprocessing on S, where n = |S]:

e R.Update(x,y,v): Update value of point s = (z,y) € S to v, under the
condition (*) that the current value of s is larger than v.

o v = R.Minimum(I): Retrieve the minimum value from a range I of S,
where I is semi-infinite at least in one fixed coordinate.

There 1s another structure P that supports the same operations in O(log2 n)
time, where condition (*) does not need to hold, and search range I needs not
be semi-infinite in either coordinate

Semi-infinite queries can be supported in O(loglogn) time in the one-
dimensional case, if the point coordinates s € S are integers in the range
[1,n]. In this case condition (*) must hold.

PROOF. We will review the proof of the O(lognloglogn) bound [23] in
order to cover the one-dimensional case and the closed range case.

The basic structure supporting operations in time O(log2 n) is a range tree
(see, for example, [3, Section 5]), where the secondary structures are replaced
by the ones given in Lemma 4. The structure is a balanced (primary) search
tree for the x-coordinate range searches, where each node w stores another
(secondary) balanced tree for y-coordinate searches among the points that
are stored in the subtree of w in the primary tree. As shown in Lemma 4,
the secondary trees support minimum queries and unrestricted updates of
values. To update a value, its node in the primary tree is found and then it
is necessary to update the corresponding nodes in all the O(logn) secondary
trees stored at the ancestors of the primary tree node. For range searching, we
find in O(logn) time the O(logn) nodes of the primary tree whose subtrees
cover the x-coordinate range, and then pay O(logn) time in each such node
to find the minimum of points in the y-coordinate range. Hence, updating and
searching can be done in O(log” n) time. Note that it is costly to maintain the
invariants of the secondary trees contents upon rebalancing the primary tree,
so insertions and deletions of points are not supported. Rather, the trees are
built in a preprocessing stage in perfectly balanced form and stay with that
shape. Preprocessing cost is proportional to the space needed by the data
structure, which is O(nlogn).

Let us then review how O(loglogn) time can be achieved in the one-
dimensional case for integer point sets. As our query is w.l.o.g. min{v(s) |
s € [—oo, 1)}, where v(s) gives the value of s, it is enough to choose the min-
imum among those points s whose value v(s) is the minimum in the range
[—o00, s]; these are called left to right minima. Tt is easy to see that other
values v(s) can never be the minimum in any range [—oo, ). Note that left

to—right minima form a decreasing sequence. The data structure of van Emde

22



Boas [37,38|, which we will denote Q, supports operations Q.insert(s) (in-
serts s into Q), Q.delete(s) (deletes s from Q), Q.successor(s) (returns the
largest point stored in Q smaller than s), and Q.predecessor(s) (returns the
smallest point stored in Q larger than s) in O(loglogn) time, where s is an
integer in the range [1, n]. We will store only left to right minima from S in Q.
When inserting a new point s with value v = v(s) into Q, we first check that
v(Q.predecessor(s)) > v(s), otherwise we do not insert s. If s is inserted, we
repeat operation Q.delete(Q.successor(s)) until v(Q.successor(s)) < wv(s).
These operations guarantee that v(Q.predecessor(r)) is the answer to our
query [—oo,r). Note that it is possible to replace the value v of an already
inserted point by a smaller value, by a process similar to insertion, but we
cannot change v to a larger value.

The O(log nloglogn) bound for the semi-infinite two-dimensional queries then
follows easily by replacing the secondary trees of the range tree with data
structures Q: Consider a query [[,7] X [—o00,t]. We build the primary tree
on the z-coordinates and the secondary trees on the y-coordinates. Instead
of adding the y-coordinates as such, we use the rank of each point in the
sorted order of the points where y-coordinate is used as the primary key and
z-coordinate as the secondary key. To answer the query, we find the rank p of
(t,00) (place where it would be inserted) in the sorted set of points by binary
search in time O(logn), then query each of the O(logn) secondary structures
@ found by the z-coordinate range search with s = Q.predecessor(p), and
select the minimum v(s). O

We are now ready to give a sparse dynamic programming algorithm for the
Levenshtein distance. Initialize a balanced binary tree U for the upper region
by adding the value of dyy — ¢ = 0 with key i = 0: U.Insert(0,0). Initialize
a data structure £ for the lower region (R of Lemma 8) with the triples
(4,7 —i,00) such that (i,7) € M. Update value of dyo — j = 0 with keys i = 0
and j—i = 0: £.Update(0,0,0). Proceed with the match set M\ {(0,0)} that is
sorted in reverse column—by—column order and make the following operations
at each pair (7, j):

(1) Take the minimum value from & whose key is larger than or equal to the
current diagonal j —i: d’' = U.Minimum([j —i,00]). Add i —1 to this value:
d—d+i—-1.

(2) Take the minimum value from £ inside the rectangle [—o0, i) X [—00,j —1):
d" = L.Minimum([—o00,i) X [-00,j —1i)). Add j — 1 to this value: d” «
d"+j—1.

(3) Choose the minimum of d’ and d” as the current value d = d, ;.

(4) Add the current value d minus i into Y with key j —i: U.Insert(j —i,d—1).

(5) Add the current value d minus j into £ with keys i and j—i: £.Update(i, j—
i,d— 7).

23



Finally, after cell (m+1,n41) has been processed, we have that di,(A, B) = d.

The correctness of the algorithm should be clear from the above discussion.
The time complexity is O(rlogrloglogr) (r = |M| elements are inserted and
updated in the lower region structure, and r times it is queried). The space
usage is O(rlogr). Figure 3 gives an example.

0 9 2023 26 36 39 48

N

| 0.0) [0]
| (8,12) [-1]
| (13,13) [-2]
' (22,-13) [12]

(26,-3) [1]

query: min([-inf,24) x [-inf,15))+39-1 = —2+39-1 = 36

45

Fig. 3. Example of computation of di, on a sparse matrix. The same conventions of
Figure 1 apply. We distinguish in the matrix the lower and upper regions considered
to solve cell (24,39). Since the upper region is handled just like for dip, we show on
the right only the data structure of the lower region. It supports minimum operations
over two dimensional ranges. Each relevant matrix position (i,75) is represented in
the range search structure at position (¢, j—¢). The value in brackets is [y — j]|, where
y is the value of cell (4, 7). To solve cell (24,39) we take the minimum in the range
[—00,24) X [—00,39 — 24) (inside the dashed rectangle on the right), which returns
—2, and add j — 1 to it to obtain 36. After this, point (24,15) will be updated to
value 36 — 39 = —3.

Actually, we can switch the roles of x and y in L, so that the secondary
structures are searched for ¢ values. As explained in Section 5.2 we do not
need to store different points with the same i coordinate in the secondary
structures; it is enough to retain the last point inserted with coordinate ¢,
since it dominates previous ones (that is, the new value we are inserting is
never larger than the existing points with coordinate 7). As we have shown
in the proof of Lemma 8, the structure permits us replacing the value of
a point with a new, smaller, one. Hence we can in fact store only unique
coordinates in the range 0...m, each associated to the last (that is, smallest)
value v(7) inserted so far. The advantage is that the time complexity becomes
O(rlogrloglog min(r, m)). Moreover, we do not need to rank the points, but
can directly search the ¢ values.

The algorithm can be modified for the search problem similarly as dip, by
implicitly adding values 0 in the first row of the current column and considering
the effect of each computed d; ; value in the last row of the matrix. Now cell
(4,7) induces values d,, j+s < d; ; + max(m — i,s). Applying the same text
segmenting technique used for distance dip yields O(rlogmloglogm) time,

24



slightly better for our purposes than distance computation.

We show mnow a general technique to make distance computation
O(rlogmloglogm) time as well. Segment the text into O(r/m) regions, such
that each text region contains between m and 2m cells in M (we must be
flexible because there may be several cells in a column). Run the algorithm
for each region separately, one after the other. At the end of each region, insert
cells in M so that M covers all the cells of the last column of the region. Use
those last values to initialize the data structure for the next region (via cell
updates). This ensures continuity in the computation across regions. Overall
we process at most 3r cells, and each region contains O(m) cells, so the search
time is O(rlogmloglogm). We observe that the same time complexity would
be obtained if we used regions of O(m¢) entries, for any constant c.

Using this algorithm, the transposition invariant Levenshtein distance compu-
tation, as well as the search problem, can be solved in O(mn logm loglogm)
time and O(mnlogn) space. Note that in this case the space complexity is
dominated by the data structure £. Removing unnecessary elements (those
that cannot give minima for the current column) is no longer possible, since
the structure for the lower region is semi-static.

With the techniques used for splitting the text into regions, however, the data
structure £ needs only O(m?logm) space. Distance computation still needs
O(mn) additional space to store the transpositions. We cannot, as in the text
segmenting approach used for searching, process the transpositions region by
region to obtain O(m?) space, because this time region limits are different for
each transposition and we need to remember the state of the computation for
every different transposition.

We recall that the sparse dynamic programming algorithm by Eppstein et
al. [20] is better than ours, O(rloglogr). Our text regions approach, however,
permits improving Eppstein’s algorithm. We can use the latter as a black box
and apply it over text regions as with our algorithm. The result is given in the
next theorem.

Theorem 9 Given two strings A =ay...a,, and B ="5by...b,, m <n, and
the r cells (i, ) such that a; = b; in reverse column by column order, then the
Levenshtein distance between A and B can be computed in time O(rloglog m).

Using this theorem, the time complexity for transposition invariant Leven-
shtein distance computation decreases to O(mnloglogm).

Our range query approach, although slower, has the advantage of letting us
easily solve the case of o limited gaps. First consider the easier upper region.
We need the minimum over the values whose coordinates (', j') satisfy ¢ €
i—a—1,9), 7 €lj—a—1,j),and j' — i > j —i. These can be simplified

25



to 7/ < j (which comes for free with the reverse column by column order),
! >i—a—1and 5 —4 > j —i. We can use structure R of Lemma 8
to support minimum queries in the range [i — o — 1,00] X [j — ¢, 00]. The
lower region is more complicated. Its limiting conditions, i € [i — a — 1,1),
j € lj—a—1,j), and j—i' < j—i, can be simplified to i’ < i, 7/ > j—a—1 and
j'—1i" < j—i. Instead of resorting to three-dimensional searching, which would
cost O(log® nloglogn) [23], we use structure P of Lemma 8, which supports
unlimited updates of values. Once moving from column j to 5 4+ 1, we update
each value in the secondary structures at column j — a — 1 to co. As in the
a—limited case of dip, we keep a pointer to the last active column in the match
set M to determine which cells (i, j —a— 1) have to be virtually deleted using
P.Update(i',j —a— 1 — 1,/ 00). If we do this, condition j' > j — a — 1 can be
ignored, and P is built over the other two conditions and queried with range
[—00,1) X [—00,j — ).

Again, text segmenting techniques can be used to maintain time complexities
in O(rlog? m). An illustration of the algorithm for Levenshtein distance with
a~limited gaps is given in Figure 4.

ji

U
0yl (3,33) [32]
(8,12) [11]
0 9 202326 36 39 48 _
0 e [ @131y
3|0 (22,-13) [-1]
o (26,-3) [-1] | |
13 query: min([13,inf] x [15,inf]), empty
|
|
22 ‘ \777777777777J_J7777777777
%é . L (0,0) [inf] |
| ' _ 1(3,33) 1]
32 - 1 @12) [
[ 4 i i . (13,13) [inf] !
(2219 finf) 1
(26,-3) [inf]

guery: min([-inf,24) x [-inf,15)) = inf (empty)

Fig. 4. Example of computation of o gapped di, on a sparse matrix. The same
conventions of Figure 3 apply. On the right we show now both two-dimensional
range search structures, & and L. To solve cell (24,39) we take the minimum in the
range [24, 00| x [15,00] on U and [—o0,24) X [—00,15) on L. The area in U is empty,
and that in £ is virtually empty because we have set old column cell values to oc.

Combining Lemma 1 with the above results, we obtain the following bounds
for the transposition invariant case.

Theorem 10 Transposition invariant Levenshtein distance di (A, B) can be
computed in O(mnloglogm) time. The corresponding search problem can be
solved within the same time bounds. For the case of a—limited gaps, di’a(A, B),

26



the time requirements are O(mnlog®m), both for distance computation and for
searching. The preprocessing cost of Theorem 2 must be added to these bounds.

As before, the space complexity is O(m?logm) plus that of storing the sets
M, that is, O(mn) for distance computation and O(m?) for searching. Also,
the a~limited version can be solved using O(am) space. In case § > 0, the mn
in the complexities becomes >",cp | M?].

5.4  Episode Matching

To conclude the edit distance section we look at the episode matching problem
and d}, distance, which have a simple sparse dynamic programming solution.
Recall that M = M U{(0,0), (m +1,n+ 1)}, where M is the set of matching
character pairs. The following lemma for dp is easy to prove using similar
arguments as in Lemma 3, since the last zero-cost edge in a path to (7, j) must
be in row ¢ — 1.

Lemma 11 Distance dp(A, B) can be computed by evaluating d; ; for (i, ) €
M wusing the recurrence

dimj = min{di—l,j/ +.7 - j, —1 | j/ < j? (2 - 17j/) € M}> (6)
with initialization dyo = 0. Value dpi10+1 equals dp(A, B).

Consider an algorithm that traverses the match set M in reverse column by

column order. We maintain for each row i’ a value d(i') that gives the minimum
dys j — 7' value seen so far in that row among pairs (7', j') € M. First, initialize
d(0) = 0 and d(i) = oo for 1 < i < m. Let (i,5) € M be the current pair
whose value we need to evaluate. Then d = d;; can simply be computed as
d:j—l—i—d(’b—l), sincej—1+d(i—1) :j—l—f-min{di_l,j/—j’ |j/ <
4, (i —1,5') € M} (condition j' < j holds because (i,7) precedes (i — 1,7) in
reverse column-by-column order). After d = d; ; is computed, we can safely
update the row minimum d(¢) = min(d(¢),d — j). The algorithm takes overall

O(|M|]) = O(r) time.

The above algorithm generalizes to the search problem (that is, to episode
matching) by implicitly considering all values dy; as zero for all j. That is,
d(0) is assumed to be j — 1 if a cell dy; is being processed. The problem of
« limited gaps can also be handled easily. Let ¢(i — 1) give the last column j’
where d(i—1) has been updated (even if its value stayed the same). One easily
notices that c¢(i — 1) is always the last match (¢ — 1, j) seen so far in that row.
Therefore, we simply avoid updating d(i) as defined when j—c(i—1)—1 > a.
In this case we set d(i) = co. Using Lemma 1 we get the following result.

27



Theorem 12 The transposition invariant computation of distance di (A, B),
as well as transposition invariant episode matching, can be solved in O(mn)
time. The same bound applies in the case of a—limited gaps. The preprocessing
cost of Theorem 2 must be added to these bounds.

Note again that the algorithm needs only O(m) space, but the overall space is
O(mn), because of the need to store the transpositions. It is interesting that
in this case we cannot reduce the space to O(m?) for the search problem, as it
is not true anymore that the previous m columns define the matrix contents.
On the other hand, in the case of a-limited gaps we still can use O(am) space.

6 Transposition Invariant Hamming Distance and Variants

So far we have seen that sparse dynamic programming is the key in solving
transposition invariant distance computation problems. It could be used to
solve other simpler distances such as Hamming distance. However, for such
simpler distance measures, it is possible to find the optimal transposition di-
rectly, and do the distance computation only for that transposition. To demon-
strate this, we consider in this section the computation of some error tolerant
versions of Hamming, SAD and MAD distances, where the strings are aligned
position-wise (a; with b;) and hence have the same length.

For this section, let us redefine T = {t; = b; —a; | 1 < i < m} as the set
of transpositions that make some characters a; and b; match. Note that the
optimal transposition does not need, in principle, to be included in T, but we
will show that this is the case for di; and dgip. Note also that |T| = O(|%|)
on an integer alphabet and |T| = O(m) in any case.

6.1 Hamming Distance

Let A = ay...a,, and B = by...b,,, where q;,b; € X for 1 < i < m.
We consider the computation of transposition invariant Hamming distance
d*(A, B). That is, we search for a transposition ¢ maximizing the size of set
{i|]bi —(a; +1t)] <0,1 <i<m}.

Theorem 13 Given two numeric strings A and B, both of length m, there
is an algorithm for computing distance d’(A, B) in O(|S| + m) time on an
integer alphabet, or in O(mlogm) time on a general alphabet.

PROAQOF. 1t is clear that the Hamming distance is minimized for the trans-
position in T that makes the maximum number of characters match. What

28



follows is a simple voting scheme, where the most voted transposition wins.
Since we allow a tolerance 0 in the matched values, t; votes for range
[t; — &,t; + d]. Construct sets S = {(t; — 0,“open”) | 1 < i < m} and
E ={(t; + §,“close”) | 1 <i <m}. Sort SUFE into a list I using order

(') <M (z,y) if 2’ <zor(zd=2andy <y),

where “open”<“close”. Initialize variable count = 0. Do for ¢ = 1 to || if I(i) =
(x,“open”) then count = count+1 else count = count—1. Let maxzcount be the
largest value of count in the above algorithm. Then clearly dt}’I‘S(A, B)=m —
maxcount, and the optimal transposition is any value in the range [x;, z;41],
where (i) = (x;,*), for any ¢ where mazcount is reached. The complexity of
the algorithm is O(mlogm). Sorting can be replaced by array lookup when %
is an integer alphabet, which gives the bound O(|X| + m) for that case. O

6.2 Sum of Absolute Differences Distance

We shall first look at the basic case where x = 0. That is, we search for a
transposition ¢ minimizing dsap(A + ¢, B) = >0, |b; — (a; + )]

Theorem 14 Given two numeric strings A and B, both of length m, there is
an algorithm for computing distance di (A, B) in O(m) time on both integer
and general alphabets.

PROOF. Let us consider T as a multiset, where the same element can repeat
multiple times. Then |T| = m, since there is one element in T for each b; — a;,
where 1 < ¢ < m. Sorting T in ascending order gives a sequence t;, < t;, <

. < ;,,- Let t,,; be the optimal transposition. We will prove by induction that

topt = i, /.- that is, the optimal transposition is the median transposition
in T

To start the induction we claim that ¢;, <1, <t;, . To see this, notice that
dSAD(A + (til — 6), B) = dSAD(A + ti,, B) + me, and dSAD(A + (tim + E), B) =
dsap(A +t;, , B) + me, for any € > 0.

tm>)

Our induction assumption is that t;, < t,,; < ¢; ., for some k. We may
assume that ¢; , < t; ,, since otherwise the result follows anyway. First
notice that, independently of the value of ¢,, in the above interval, the cost
SF b — (ay, —|— topt)| + i i |0 — (% + topt)| Will be the same. Then
notice that Zl k:+1 ‘blz (aiz +tik+1 _E)‘ l k+1 |bu (ail +tik+1)‘ +(m_2k)€a
and Zﬁ;ﬁ-l |b21 - (all + tim_k + 6)‘ = Zl k+1 |b21 - (all + tim_k)| + (m - 2/{3)6

This completes the induction, since we showed that ¢;, , <t,, <t,

Te41 —k-

29



The consequence is that ¢;, < t,,; < t; ., for maximal k such that ¢; <
tin w1, that is, k& = [m/2]. When m is odd, it holds m — k + 1 = k and there
is only one optimal transposition, bty When m is even, one easily notices
that all transpositions ?,, bivjo < topt < iy jnyy s AL€ equally good. Finally, the
median can be found in linear time [4]. O

To get a fast algorithm for dtS’ZD when x > 0 largest differences can be dis-
carded, we need a lemma that shows that the distance computation can be
incrementalized from one transposition to another. Let ¢;,,¢ ., 1;, be the

sorted sequence of T.

i27"

Lemma 15 Once values S; and L; such that dsap(A +t;;, B) = S; + L,
S; = Z;,_:ll ti; — i, and Lj = 370 ti, —ti;, are computed, the values of
Sjt1 and Ly can be computed in O(1) time.

PROOF. Value S;; can be written as

J J
Sjp1=Y_ ti, — ti, = D otig, =i, — ti, = j(tiy; — ti;) + 55
ir—=1 j'=1

Similar rearranging gives

Lj—i—l = Z tz‘j/ - tij+1 - (m - j)(tZ] - ti]’+1> + Lj'
J'=j+2

Thus both values can be computed in constant time given the values of S;
and L; (and t;, ). O
Theorem 16 Given two numeric strings A and B both of length m, there is
an algorithm for computing distance dgnp (A, B) in O(m + klogk) time on
both integer and general alphabets. On integer alphabets, time O(|3] +m + k)
can also be obtained.

PROOF. Consider the sorted sequence t;,,t ,t;. as in the proof of The-
orem 14. Clearly the candidates for the s outliers (largest differences) are
MK K"y = {ti, ... sligistin, nirs - .t;,, } for some k' + k" = k. The naive al-
gorithm is then to compute the distance in all these x + 1 cases: Compute
the median of T \ M(k’, k") for each k¥’ + k” = k and choose the minimum
distance induced by these medians. These x + 1 medians can be found as
follows: First select values ¢, and t,,_, using the linear time selection al-
gorithm [4]. Then collect and sort all values smaller than ¢, or larger than

gy -

30



tm—r- After selecting the median my, of T\ M (0, ) and m, o of T\ M(k,0),
one can collect all medians my v of T\ M(K', k") for k' + k" = &, since the
my p» values are those between mg, and m,o. The x + 1 medians can thus
be collected and sorted in O(m + klogk) time, and the additional time to
compute the distances for all of these x + 1 medians is O(km). However, the
computation of distances given by consecutive transpositions can be incre-
mentalized using Lemma 15. First one has to compute the distance for the
median of T \ M(0, k), dsap(A + mg ., B), and then continue incrementally
from dsap(A+my g, B) to dsap(A+mys 41 471, B), until we reach the median
of T\ M(k,0), dsap(A+ my 0, B) (this is where we need the medians sorted).
Since the set of outliers changes when moving from one median to another,
one has to add value t;, —t;,, to Sn and value t; — ti,, to Ly, where Sm
and L, are the values given by Lemma 15 (here we need the outliers sorted).
The time complexity of the whole algorithm is O(m + klog k). On an integer
alphabet, sorting can be replaced by array lookup to yield O(|X|+m+x). O

6.3 Mazximum Absolute Difference Distance

We consider now how dyfyp can be computed. In case x = 0, we search for
a transposition ¢ minimizing dyap(A + ¢, B) = max(, |b; — (a; + t)|. In case
k > 0, we are allowed to discard the k largest differences |b; — (a; + t)].

Theorem 17 Given two numeric strings A and B both of length m, there is
an algorithm for computing distance dyfsp(A, B) in O(m + rlogk) time on
both integer and general alphabets. On integer alphabets, time O(|3] +m + k)
can also be obtained.

PROOF. When x = 0 the distance is clearly dj;zp(A, B) = (max;{t;} —
min,;{¢;})/2, and the transposition giving this distance is (max;{t;} +
min;{t;})/2. When > 0, consider again the sorted sequence t; ,t;,...,t;
as in the proof of Theorem 14. Again the k outliers are M(k’, k") for some
k' + k" = k in the optimal transposition. The optimal transposition is then the
value (¢; ., +ti,,,)/2 that minimizes (¢; ,, —t;,,,,)/2, where k' + k" = x.
The minimum value can be computed in O(k) time, once the x 4+ 1 smallest
and largest t; values are sorted. These values can be selected in O(m) time

and then sorted in O(klogk) time, or O(|X| + k) on integer alphabets. O
6.4 Searching

Up to now we have considered distance computation. Any algorithm to com-
pute the distance between A and B can be trivially converted into a search

31



algorithm for P in T by comparing P against every text window of the form
Tj_y41..j- Actually, we do not have any search algorithm better than this.

Lemma 18 For distances d‘ﬁ‘;, dshp, and dyfyp, if the distance can be evalu-
ated in O(f(m)) time, then the corresponding search problem can be solved in

O(f(m)n) time.

On the other hand, it is not immediate how to perform transposition invariant
(0,7)-matching. We show how the above results can be applied to this case.

Note that one can find in O(mn) time all the occurrences {j} such
that dyap(P,Tj—m+1.;) < 0, and all the occurrences {j'} where
diap (P, Tj—mi1..;7) < 7. The (0,v) matches are a subset of {j} N {5}, but
identity does not necessarily hold. This is because the optimal transposition
can be different for di;,p and d§,p.

What we need to do is to verify this set of possible occurrences {j} N {;j'}.
This can be done as follows. For each possible match 57 € {j} N {j'} one can
compute limits s and [ such that dyap(P+t, Tjr_pmy1.j») < 0 forall s <t <I:
If the distance d = dyap(P + topts Tjr—m—1..57) is given, then s =ty — (6 — d)
and [ = topt + (0 —d). On the other hand, note that dsap(P+t, Tjr_jrim—1), as
a function of ¢, is decreasing until ¢ reaches the median of the transpositions,
and then increasing. Thus, depending on the relative order of the median of
the transpositions with respect to s and [, we only need to compute distance
dsap(P +t, Tjr_pt1..j7) in one of them (¢t = s, ¢ =1, or t = t[,,/57). This gives
the minimum value for dsap in the range [s,!]. If this value is < v, we have
found a match.

One can see that using the results of Theorems 14 and 17 with k = 0, the
above procedures can be implemented so that only O(m) time at each possible
occurrence is needed. There are at most n occurrences to test.

Theorem 19 Given two numeric strings P (pattern) and T (text) of lengths
m and n, there is an algorithm for finding all the transposition invariant (9,7)—-
occurrences of P in T in O(mn) time on both integer and general alphabets.

7 Conclusions and Future Work

We have studied two techniques for solving transposition invariant string
matching problems. The first technique, applicable to several “edit distance”
measures, considered all the possible transpositions. However, since most
transpositions produce sparse instances of the edit distance matrix, specialized
algorithms could be used to solve these sparse instances efficiently. These kind

32



of algorithms already existed in the literature. We devised improved sparse
dynamic programming algorithms in those cases (for example LCS and Lev-
enshtein distance), as well as new ones when they did not exist (for example
episode matching and a-limited gaps in all the distances). The problem of
matching with o limited gaps most clearly demonstrated the connection be-
tween sparse dynamic programming and range-minimum searching.

The second technique was to directly identify the optimal transposition and
compute the distance in that transposition. This identification was shown to be
efficiently computable for several distance measures where the i-th character
of one string is compared only against the ¢-th character of the other.

In general, we found that including transposition invariance in the studied
distances increases the time complexity only slightly, usually by a polyloga-
rithmic factor.

To demonstrate the practicality of the developed methods, we implemented the
transposition invariant LCS algorithm. This implementation is now included
in the C-BRAHMS music retrieval engine [6].

An interesting remaining question is whether the log factors could be avoided
to achieve O(mn) for transposition invariant edit distances. For episode match-
ing we achieved the O(mn) bound, except that the preprocessing can (in very
uncommon situations on general alphabets) take O(mnlogm + nlogn) time.
Independently, it would be nice to reduce preprocessing time to O(mn), so that
it can never affect the real dynamic programming complexities. The bottleneck
is in sorting mn values of the form b; —a;, once the {a;} and the {b;} sequences,
of length n and m, have been sorted. We could do it in O(mn log min(m,n))
time, but maybe it can be done better. Also, the space needed to arrange
the transpositions for distance computation is O(mn). We have been able to
reduce all the other space complexities to small polynomials in m, so it would
be interesting to do the same with the transpositions. We tried, with no result,
to mix generation and processing of the cells. The problem is that there may
be too many active transpositions at any time.

Also, we are confident that the search times for the easier measures that we
studied can be improved at least in the average case. For the edit distance mea-
sures, algorithms that depend on the minimum (transposition invariant) dis-
tance can be derived. For example, an algorithm that processes only diagonal
areas of the dynamic programming matrix 36| can be generalized to give time
bounds like O(|T|dn), where T is the set of transpositions and d = d%(A, B).
This can be combined with the sparse evaluation to get an algorithm that is
fast both in practice and in the worst case, O(dnloglogm). The challenge is
to derive a similar bound for the search problem.

Finally, a more ambitious goal is to handle more general distance functions,

33



such as edit distances with substitution costs of the form |b;—a;|. Other related
models are discussed in [33].

Acknowledgments

We thank the anonymous referees for their useful suggestions to improve this
work.

References

1]

2]

3]

[4]

1]

[6]
7]

18]

9]

K. Abrahamson. Generalized string matching. STAM J. Computing, 16(6):1039—
1051, 1987.

A. Apostolico and C. Guerra. The longest common subsequence problems
revisited. Algorithmica 2:315-336, 1987.

M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer-Verlag, 2nd rev. ed. 2000.

M. Blum, R. Floyd, V. Pratt, R. Rivest, and R. Tarjan. Time bounds for
selection. J. Computer and System Sciences, 7:448-461, 1972.

B. Bollobas, G. Das, D. Gunopulos, and H. Mannila. Time-series similarity
problems and well-separated geometric sets. Nordic Journal of Computing,
8(4):409-423, 2001.

C-BRAHMS. http://www.cs.helsinki.fi/group/cbrahms/demoengine/.

E. Cambouropoulos, M. Crochemore, C.S. Iliopoulos, L. Mouchard, and Yoan J.
Pinzon. Algorithms for computing approximate repetitions in musical sequences.
In Proc. 10th Australian Workshop on Combinatorial Algorithms, AWOCA’99,
R. Raman and J. Simpson, eds., Curtin University of Technology, Perth, Western
Australia, pp. 129-144, 1999.

R. Cole and R. Hariharan. Tree pattern matching and subset matching in
randomized O(nlog®m) time. In Proc. 29th Annual Symposium on the Theory
of Computing (STOC’97), pp. 66 75, 1997.

R. Cole, R. Hariharan, and P. Indyk. Tree pattern matching and subset matching
in deterministic O(n log® m) time. In Proc. 10th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA’99), pp. 245 254, 1999.

[10] R. Cole and R. Hariharan. Verifying candidate matches in sparse and wildcard

matching. In Proc. 34th Annual Symposium on the Theory of Computing
(STOC’02), pp. 596 601, 2002.

34



[11] T. Crawford, C.S. Iliopoulos, and R. Raman. String matching techniques for
musical similarity and melodic recognition. Computing in Musicology 11:71 100,
1998.

[12] M. Crochemore, C.S. Iliopoulos, T. Lecroq, and Y.J. Pinzon. Approximate
string matching in musical sequences. In Proc. Prague Stringology Club (PSC
2001), M. Baliik and M. Simanek, eds, Czech Technical University of Prague,
pp. 26 36, DC-2001-06, 2001.

[13] M. Crochemore, C. Iliopoulos, C. Makris, W. Rytter, A. Tsakalidis, and K.
Tsichlas. Approximate string matching with gaps. Nordic Journal of Computing
9(1):54 65, 2002.

[14] M. Crochemore, G. Landau, and M. Ziv-Ukelson. A sub-quadratic sequence
alignment algorithm for unrestricted cost matrices. In Proc. 13th Symposium
on Discrete Algorithms (SODA’02), pp. 679 688. ACM-SIAM, 2002.

[15] M. Crochemore, C.S. Iliopoulos, T. Lecroq, W. Plandowski, and W. Rytter.
Three Heuristics for 6—Matching: 6—BM Algorithms. In Proc. 13th Annual

Symposium on Combinatorial Pattern Matching (CPM’02), Springer-Verlag
LNCS 2373, pp. 178-189, 2002.

[16] M. Crochemore, C. Iliopoulos, G. Navarro, and Y. Pinzon. A bit-parallel
suffix automaton approach for (d,7) matching in music retrieval. In Proc.
10th International Symposium on String Processing and Information Retrieval

(SPIRE’03), LNCS, 2003. To appear.
[17] M. Crochemore and W. Rytter. Text algorithms. Oxford University Press, 1984.

[18] G. Das, R. Fleischer, L. Gasieniec, D. Gunopulos, and J. Kérkkdinen. Episode
matching. In Proc. 8th Symposium on Combinatorial Pattern Matching
(CPM’97), LNCS 1264, Springer, pp. 12-27, 1997.

[19] M. J. Dovey. A technique for “regular expression” style searching in polyphonic
music. In Proc. 2nd Annual International Symposium on Music Information
Retrieval (ISMIR 2001), pp. 179-185, 2001.

[20] D. Eppstein, Z. Galil, R. Giancarlo, and G. F. Italiano. Sparse dynamic
programming I: linear cost functions. J. of the ACM 39(3):519 545, 1992.

[21] K. Fredriksson. Rotation Invariant Template Matching. PhD Thesis, A-2001-3,
Department of Computer Science, University of Helsinki, 139 pages, 2001.

[22] K. Fredriksson, V. Mékinen, and G. Navarro. Rotation and Lighting Invariant
Template Matching. Manuscript, June, 2003.

[23] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques
for geometry problems. Proc. 16th ACM Symposium on Theory of Computing
(STOC’84), pp. 135-143, 1984.

[24] Z. Galil and K. Park. Dynamic programming with convexity, concavity and
sparsity. Theoretical Computer Science 92:49 76, 1992.

35



[25] D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

[26] J. W. Hunt and T. G. Szymanski. A fast algorithm for computing longest
common subsequences. Commun. ACM, 20(5):350 353, May 1977.

[27] K. Lemstrom and V. Mékinen. On Minimizing Pattern Splitting in Multi-track
String Matching. In Proc. 14th Annual Symposium on Combinatorial Pattern
Matching (CPM’03), Springer-Verlag LNCS 2676, pp. 237-253, 2003.

[28] K. Lemstrom and J. Tarhio. Searching monophonic patterns within polyphonic
sources. In Proc. Content-Based Multimedia Information Access (RIAO 2000),
pp. 1261-1279 (vol 2), Paris, France, 2000.

[29] K. Lemstrom and E. Ukkonen. Including interval encoding into edit distance
based music comparison and retrieval. In Proc. Symposium on Creative &
Cultural Aspects and Applications of AI & Cognitive Science (AISB 2000), pp.
53-60, Birmingham, United Kingdom, 2000.

[30] V. Levenshtein. Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics Doklady 6:707-710, 1966.

[31] H. Mannila and H. Toivonen, and A. I. Verkamo. Discovering frequent episodes

in sequences. In Proc. 1st International Conference on Knowledge Discovery
and Data Mining (KDD’95), AAAI Press, pp. 210 215, 1995.

[32] S. Muthukrishnan. New results and open problems related to non-standard
stringology. In Proc. 6th Annual Symposium on Combinatorial Pattern Matching
(CPM’95), LNCS 937, pp. 298-317, 1995.

[33] V. Mikinen. Parameterized Approzimate String Matching and Local-Similarity-
Based Point-Pattern Matching. PhD thesis manuscript, Report A-2003-6,
Department of Computer Science, University of Helsinki, August 2003. To
appear.

[34] V. Mé&kinen, G. Navarro and E. Ukkonen. Algorithms for Transposition Invariant
String Matching (Extended Abstract). In Proc. 20th International Symposium
on Theoretical Aspects of Computer Science (STACS 2003), Springer-Verlag
LNCS 2607, pp. 191 202, 2003.

[35] P. Sellers. The theory and computation of evolutionary distances: Pattern
recognition. J. of Algorithms, 1(4):359 373, 1980.

[36] E. Ukkonen. Algorithms for approximate string matching. Information and
Control 64(1 3):100 118, 1985.

[37] P. van Emde Boas, R. Kaas, E. Zijlstra. Design and implementation of an
efficient priority queue. Math. Systems Theory, 10:99 127, 1977.

[38] P. van Emde Boas. Preserving order in a forest in less than logarithmic time
and linear space. Inf. Proc. Letters 6(3):80 82, 1977.

36



[39] R. Wagner and M. Fisher. The string-to-string correction problem. .J. of the
ACM 21(1):168 173, 1974.

[40] W. J. Wilbur and D. J. Lipman. Rapid similarity searches of nucleic acid and
protein data banks. In Proc. Nat. Acad. Sci., USA, 80:726-730, 1983.

[41] W. J. Wilbur and D. J. Lipman. The context-dependent comparison of biological
sequence. SIAM J. Appl. Math. 44(3):557-567, 1984.

37



