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Abstra
tGiven strings A = a1a2 . . . am and B = b1b2 . . . bn over an alphabet Σ ⊆ U,where U is some numeri
al universe 
losed under addition and subtra
tion, anda distan
e fun
tion d(A,B) that gives the s
ore of the best (partial) mat
hingof A and B, the transposition invariant distan
e is mint∈U{d(A + t, B)}, where
A+ t = (a1 + t)(a2 + t) . . . (am + t). We study the problem of 
omputing the transpo-sition invariant distan
e for various distan
e (and similarity) fun
tions d, in
ludingHamming distan
e, longest 
ommon subsequen
e (LCS), Levenshtein distan
e, andtheir versions where the exa
t mat
hing 
ondition is repla
ed by an approximateone. For all these problems we give algorithms whose time 
omplexities are 
lose tothe known upper bounds without transposition invarian
e, and for some we a
hievethese upper bounds. In parti
ular, we show how sparse dynami
 programming 
anbe used to solve transposition invariant problems, and its 
onne
tion with multidi-mensional range-minimum sear
h. As a byprodu
t, we give improved sparse dynami
programming algorithms to 
ompute LCS and Levenshtein distan
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1 Introdu
tionTransposition invariant string mat
hing is the problem of mat
hing two stringswhen all the 
hara
ters of either of them 
an be �shifted� by some amount t.By �shifting� we mean that the strings are sequen
es of numbers and we addor subtra
t t from ea
h 
hara
ter of one string.Interest in transposition invariant string mat
hing problems has re
ently arisenin the �eld of musi
 information retrieval (MIR) [11,28,29℄. In musi
 analysisand retrieval, one often wants to 
ompare two musi
 pie
es to test how simi-lar they are. One way to do this is to de�ne a distan
e measure between the
orresponding note sequen
es. Transposition invarian
e is one of the proper-ties that su
h a distan
e measure should ful�ll to re�e
t a human sense ofsimilarity. There are other appli
ation areas where transposition invarian
e isuseful, like time series 
omparison [5℄, image 
omparison [21℄, and others (seeSe
tion 3).In this paper we study how transposition invarian
e 
an be a
hieved whenevaluating some of the 
lassi
al distan
e measures for strings. We fo
us onmeasures that have been used in pra
ti
e and have appli
ations in MIR. Weare interested in the intrinsi
 di�
ulty of the problem, fo
using on the essentialaspe
ts and in worst 
ase 
omplexities. Our aim is to build a foundation ontop of whi
h one 
an develop pra
ti
al improvements su
h as good average
ases, threshold-sensitive 
omputation, bit-parallel simulation, four-russianste
hniques, �ltering approa
hes, and so on.We show that several transposition invariant string mat
hing problems 
anbe redu
ed to sparse dynami
 programming, and demonstrate the 
onne
tionbetween the latter and multidimensional range-minimum sear
hing. In some
ases our new sparse dynami
 programming te
hniques are inferior 
omparedto the best existing solutions, but in other 
ases we give improved solutionsto well known problems su
h as sparse 
omputation of longest 
ommon subse-quen
es and Levenshtein distan
e. Moreover, our te
hniques are �exible and
an be su

essfully extended to 
ases of interest that 
annot be handled by thebest 
urrent algorithms, for example to distan
es where mat
hing 
hara
ters
annot be too far apart. As a result, we show that all the distan
e measuresstudied allow in
luding transposition invarian
e without a signi�
ant in
reasein the asymptoti
 running times (in most 
ases we pay polylogarithmi
 penaltyfa
tors).The paper is organized as follows. In Se
tion 2 we give the main de�nitionswe use, in
luding the string similarity measures we fo
us on. In Se
tion 3 we
over related work and give at the same time motivations for some of thestring mat
hing problems addressed. In Se
tion 4 we summarize our main2



results. Se
tion 5 is devoted to the so-
alled �edit distan
es� (where 
hara
tersin both strings 
an be ignored) and Se
tion 6 to the simpler distan
es where all
hara
ters must be aligned one by one. Finally, Se
tion 7 gives our 
on
lusionsand future work dire
tions.2 De�nitionsLet Σ be a numeri
al alphabet, whi
h is a subset of some totally ordereduniverse U that is 
losed under addition and subtra
tion. Let A = a1a2 . . . amand B = b1b2 . . . bn be two strings in Σ∗, that is, ai, bj ∈ Σ for all 1 ≤ i ≤
m, 1 ≤ j ≤ n. We will assume w.l.o.g. that m ≤ n, sin
e the distan
e measureswe study are symmetri
 3 . String A′ is a substring of A if A′ = Ai...j = ai . . . ajfor some 1 ≤ i ≤ j ≤ m. String A′′ is a subsequen
e of A, denoted by A′′ ⊑ A,if A′′ = ai1ai2 . . . ai|A′′|

for some indexes 1 ≤ i1 < i2 < · · · < i|A′′| ≤ m.The following measures 
an be de�ned between two strings A and B. Thesemeasures 
an be found in any standard text book of string algorithms, see forexample [17,25℄. The length of the longest 
ommon subsequen
e (LCS) of Aand B is lcs(A, B) = max{|S| | S ⊑ A, S ⊑ B}. The dual problem of 
omput-ing LCS is to 
ompute distan
e dID, whi
h is the minimum number of 
hara
terinsertions and deletions ne
essary to 
onvert A into B (or vi
e versa). The du-ality is 
lear sin
e dID(A, B) = m + n− 2 · lcs(A, B). For 
onvenien
e, we willmainly use the minimization problem dID (not lcs) in the sequel. If we permit
hara
ter substitutions in addition to insertions and deletions, the result isthe unit 
ost Levenshtein distan
e dL [30℄. This is a parti
ular 
ase of more
omplex distan
es that assign a di�erent 
ost to ea
h operation and minimizethe total 
ost of operations [39,35℄. Finally, if only deletions of 
hara
ters of
B are allowed, we get distan
e dD. We 
all dID, dL and dD 
olle
tively �editdistan
es�.When m = n, the following distan
es 
an also be de�ned. The Hamming dis-tan
e dH between strings A and B is dH(A, B) = |{i | ai 6= bi, 1 ≤ i ≤ m}|. Thesum of absolute di�eren
es distan
e dSAD between A and B is dSAD(A, B) =
∑m

i=1 |ai−bi|. The maximum absolute di�eren
e distan
e dMAD between A and
B is dMAD(A, B) = max{|ai − bi| | 1 ≤ i ≤ m}. Note that dSAD is in fa
tthe Manhattan metri
 (l1 norm) and dMAD is the maximum metri
 (l∞ norm)when we interpret A and B as points in m-dimensional Eu
lidean spa
e.String A is a transposed 
opy of B (denoted by A =t B) if B = A + t =
(a1 + t)(a2 + t) · · · (am + t) for some t ∈ U. The transposition invariant versionsof the above distan
e measures d∗ where ∗ ∈ {ID, L, D, H, SAD, MAD} 
an
3 Ex
ept for dD, but in this 
ase it is ne
essary that m ≤ n.3



now be stated as dt
∗(A, B) = mint∈U d∗(A + t, B).So far our de�nitions allow either only exa
t (transposition invariant) mat
hesbetween some 
hara
ters (dt

ID, dt
L, dt

D, dt
H), or approximate mat
hes between all
hara
ters (dt

SAD, dt
MAD). To relax these 
onditions, we introdu
e a 
onstant

δ > 0. We write a =δ b when |a− b| ≤ δ, a, b ∈ Σ. By repla
ing the equalities
a = b with a =δ b, we get more error-tolerant versions of the distan
e measures:
dt,δ

ID, dt,δ
L , dt,δ

D , and dt,δ
H . Similarly, by introdu
ing another 
onstant κ > 0, we
an de�ne distan
es dt,κ

SAD, dt,κ
MAD su
h that the κ largest di�eren
es |ai− bi| aredis
arded.We 
an also de�ne α�limited versions of the edit distan
e measures, wherethe distan
e (gap) between any two 
onse
utive mat
hing 
hara
ters in Aor B is limited by a 
onstant α > 0. That is, if in order to obtain d(A, B)
hara
ters ai1 , ai2 , . . . , air mat
h bj1, bj2 , . . . , bjr , while the others are inserted,deleted or substituted (depending on the distan
e), then iℓ− iℓ−1− 1 ≤ α and

jℓ − jℓ−1 − 1 ≤ α for all 1 < ℓ ≤ r. We get distan
es dt,δ,α
ID , dt,δ,α

L , and dt,δ,α
D .The approximate string mat
hing problem, based on the above distan
e fun
-tions, is to �nd the minimum distan
e between A and any substring of B. Inthis 
ase we 
all A the pattern and denote it P1...m = p1p2 · · · pm, and 
all Bthe text and denote it T1...n = t1t2 · · · tn, and usually assume that m << n. A
losely related problem is the thresholded sear
h problem where, given P , T ,and a threshold value k ≥ 0, one wants to �nd all the text positions jr su
hthat d(P, Tjl...jr) ≤ k for some jl. We will refer 
olle
tively to these two 
loselyrelated problems as the sear
h problem.In parti
ular, if distan
e dD is used in approximate string mat
hing, we obtaina problem known as episode mat
hing [31,18℄, whi
h 
an also be stated asfollows: Find the shortest substring of the text that 
ontains the pattern asa subsequen
e. Another sear
h problem related to dSAD and dMAD is 
alled�(δ, γ)�mat
hing� [7℄, where one wants to �nd all o

urren
es jr su
h that

dMAD(P, Tjr−m+1...jr) ≤ δ and dSAD(P, Tjr−m+1...jr) ≤ γ.Our 
omplexity results will vary depending on the form of the alphabet Σ. Wewill distinguish two 
ases. An integer alphabet is any �nite alphabet Σ ⊂ Z.For integer alphabets, |Σ| will denote max(Σ)−min(Σ)+1. A general alphabetwill be any other Σ, �nite or not, and we will omit any referen
e to |Σ|. Wewill only assume that Σ is totally ordered and 
losed under addition andsubtra
tion (a good example to �x ideas is Σ = R). On the other hand, forany string A = a1 . . . am, we will 
all ΣA = {ai | 1 ≤ i ≤ m} the alphabet of
A. In these 
ases we will use |ΣA| = max(ΣA)−min(ΣA) + 1 ≤ |Σ| when ΣAis taken as an integer alphabet. On general alphabets, |ΣA| ≤ m will denotethe 
ardinality of the set ΣA. 4



3 Related Work and MotivationWe start by noti
ing that the problem of exa
t transposition invariant stringmat
hing is extremely easy to solve. For the 
omparison problem, the onlypossible transposition is t = b1 − a1. For the sear
h problem, one 
an use therelative en
oding of both the pattern (p′1 = p2 − p1, p
′
2 = p3 − p2, . . .) and thetext (t′1 = t2−t1, t

′
2 = t3−t2, . . .), and use the whole arsenal of methods devel-oped for exa
t string mat
hing. Unfortunately, this relative en
oding seems tobe of no use when the exa
t string 
omparison is repla
ed by an approximateone.Transposition invarian
e, as far as we know, was introdu
ed in the stringmat
hing 
ontext in the work of Lemström and Ukkonen [29℄. They pro-posed, among other measures, transposition invariant longest 
ommon sub-sequen
e (LCTS) as a measure of similarity between two musi
 (pit
h) se-quen
es. They gave a des
riptive ni
kname for the measure: �Longest CommonHidden Melody�. As the alphabet of pit
hes is some limited integer alphabet

Σ ⊂ Z, the transpositions that have to be 
onsidered are T = {b−a | a, b ∈ Σ}.This gives a brute for
e algorithm for 
omputing the length of the LCTS [29℄:Compute lcs(A + t, B) using O(mn) dynami
 programming for ea
h t ∈ T.The running time of this algorithm is O(|Σ|mn), where typi
ally |Σ| = 128.In the general 
ase, where Σ 
an be unlimited, one 
ould instead use the setof transpositions T
′ = {b− a | a ∈ ΣA, b ∈ ΣB}. This is be
ause some 
hara
-ters must mat
h in any meaningful transposition. The size of T

′ 
ould be mn,whi
h gives O(m2n2) worst 
ase time for general alphabets. Thus it is of bothpra
ti
al and theoreti
al interest to improve this algorithm.The Levenshtein distan
e allows substituting a note by some other note. Anatural extension would be to make the 
ost of a substitution operation dependon the distan
e between the notes. This is however problemati
 sin
e there isno natural way of de�ning 
osts of insertions and deletions in this setting. Wehave 
hosen an alternative approa
h: A toleran
e δ > 0 is allowed for mat
hingpit
h levels. This 
an be used to allow mat
hes between pit
h levels that arerelatively 
lose. In pra
ti
e, one 
ould use di�erent values δ for ea
h pit
h levelto better re�e
t musi
al 
loseness.While the LCS and the edit distan
e in general are useful tools for 
omparingtwo sequen
es that represent whole musi
al pie
es, simpler measures 
ould beused in the sear
h problem. An espe
ially suitable relaxation of the LCS isepisode mat
hing [31,18℄. Assume that the pattern is (a dis
retized version ofa signal) given by humming. The goal is to sear
h for the mat
hing musi
alpie
es in a large musi
 database. The pattern obtained by humming would usu-ally 
ontain the melody in its simplest form, but the sear
hed o

urren
es inthe musi
 database might additionally 
ontain some �de
orative� notes, whi
h5



were forgotten by the person humming the pie
e. Episode mat
hing would�nd the o

urren
es that 
ontain the fewest de
orative notes. This is a goodobje
tive, sin
e an o

urren
e with a large number of additional notes wouldnot be re
ognized as the same pie
e of musi
. A version of episode mat
hinghas been proposed in the 
ontext of MIR [?,13℄, where the number of theseadditional notes between two mat
hing pit
hes is limited by a 
onstant. Thisvariant, as well as the original problem, 
an be solved using dynami
 pro-gramming in O(mn) time. In
luding transposition invarian
e has not been
onsidered. We will study this problem and �mat
hing with α�limited gaps�in general, where an additional restri
tion to the dID, dL and dD distan
es isthat the gap between two 
onse
utive mat
hing 
hara
ters is limited by aninteger α > 0. This aims at avoiding seriously distorted o

urren
es where, al-though the total number of extra notes is a small fra
tion of the whole string,they are all 
on
entrated in the same pla
e, so that a human would not re
og-nize both strings as variants of the same melody. Moreover, su
h restri
tionsbe
ome ne
essary in other types of edit distan
es, see for example the editdistan
es for point-patterns developed in [33℄. Here we will only 
on
entrateon the α-limitation on well-known distan
e measures, sin
e this is enough todemonstrate the key te
hniques.Even simpler measures have been proposed for the sear
h problem. These in-
lude variants of dδ
H, dSAD and dMAD, su
h as the (δ, γ)�mat
hing problem[7,12,15,16℄, where o

urren
es should have limited dMAD and dSAD distan
esto the pattern, simultaneously. Algorithms for exa
t string mat
hing 
an begeneralized to this spe
ial 
ase, and bit-parallel algorithms 
an be applied[7,16℄. These algorithms are fast in the average 
ase and in pra
ti
e, but theirworst 
ase is still O(mn). In fa
t, for δ = ∞ the problem is known as theweighted k-mismat
hes problem [32℄, for whi
h it has long been an open ques-tion whether the quadrati
 bound 
an be improved. We will not answer thathere, but we will show that within the same bounds one 
an solve the harderproblem where transposition invarian
e is in
luded.So far we have dis
ussed problems for monophoni
 musi
al sequen
es. Poly-phoni
 musi
 is mu
h more 
hallenging. Usually one would be interested in�nding o

urren
es of a monophoni
 pattern in a polyphoni
 musi
. The ba-si
 approa
h would be to separate polyphoni
 musi
 into parallel monophoni
pit
h sequen
es (ea
h instrument separately). This 
ase 
an be handled easilyby applying algorithms for monophoni
 musi
. This would however lose themelodies that �jump� between instruments. To �nd these melodies one shouldrepresent the polyphoni
 musi
 as a sequen
e of subsets of pit
h levels. Theexa
t mat
hing is in this 
ase 
alled subset mat
hing, for whi
h novel (butimpra
ti
al) algorithms have been developed [8�10℄. To allow transpositioninvarian
e, one 
ould simulate these algorithms with ea
h possible transposi-tion. The time 
omplexity would then be O(|Σ|s log2 s) [10℄, where s is thesum of the subset sizes. A pra
ti
al approa
h has been taken by Lemström6



and Tarhio [28℄, who developed a fast �lter for the problem with transposi-tion invarian
e, as well as a simple veri�
ation algorithm that has runningtime O(|Σ|n + sm). We note that the edit distan
e problems 
an easily beadapted to the 
ase in whi
h the text 
onsists of subsets. A more robust ex-tension of episode mat
hing for polyphoni
 musi
, where the number of jumpsis 
ontrolled, was also studied [27℄.Other appli
ations for transposition invarian
e 
an be found, for example, inimage pro
essing and time series 
omparison. In image 
omparison, one 
ouldfor example use the sum of absolute di�eren
es to �nd approximate o

ur-ren
es of a template pattern inside a larger image. This measure is used, forinstan
e, by Fredriksson in his study of rotation invariant template mat
hing[21℄. Transposition invarian
e would mean �lighting invarian
e� in this 
ontext.As images usually 
ontain a lot of noise, the measure where κ largest di�er-en
es 
an be dis
arded 
ould be useful. We study the 
ombination of rotationand lighting invarian
es in a subsequent paper [22℄.In time series 
omparison, many of the measures mentioned 
an be used. Infa
t, episode mat
hing was �rst introdu
ed in this 
ontext [31℄. Re
ently, aproblem 
losely related to transposition invariant LCS was studied by Bol-lobás et al. [5℄. They studied a more di�
ult problem where not only transpo-sition (translation), but also s
aling was allowed. They also allowed a toleran
ebetween mat
hed values, but did not 
onsider transpositions alone. Our algo-rithms 
ould be useful to improve these results, as dynami
 programmingalgorithms are used as a bla
k box in their te
hniques, and we give improved(sparse) dynami
 programming algorithms.4 Summary of ResultsOur results are two-fold. For evaluating the easier distan
e measures(dt,δ
H , dt,κ

SAD, dt,κ
MAD) we a
hieve almost the same bounds that are known withouttransposition invarian
e. These results are a
hieved by noti
ing that the op-timum transposition 
an be found without evaluating the distan
es for ea
hpossible transposition.For the more di�
ult measures (dt,δ,α

ID , dt,δ,α
L , and dt,δ,α

D ) we still need to 
om-pute the distan
es for ea
h possible transposition. This would be 
ostly ifthe standard dynami
 programming algorithms for these problems were used.However, we show that sparse dynami
 programming algorithms 
an be usedto obtain mu
h better worst 
ase bounds. Then we show the 
onne
tion be-tween the resulting sparse dynami
 programming problems and multidimen-sional range-minimum queries. We obtain simple yet e�
ient algorithms forthese distan
es. 7



For LCS (and thus for dID) there already exists Hunt-Szymanski [26℄ type(sparse dynami
 programming) algorithms whose time 
omplexities dependon the number r of mat
hing 
hara
ter pairs between the 
ompared strings.The 
omplexity of the Hunt-Szymanski algorithm is O(r log n) on
e the mat
h-ing pairs are given in 
orre
t order. As the sum of values r over all di�erenttranspositions is mn, we get the bound O(mn log n) for the transposition in-variant 
ase. Later improvements [2,20℄ permit redu
ing this 
omplexity to
O(mn log log n) time (see Se
tion 5.2). We improve this to O(mn log log m) bygiving a new O(r log log min(m, r)) sparse dynami
 programming algorithmfor LCS. This algorithm 
an also be generalized to the 
ase where gaps arelimited by a 
onstant α, giving O(mn log m) time for evaluating dt,α

ID (A, B).Eppstein et al. [20℄ have proposed sparse dynami
 programming algorithmsfor more 
omplex distan
e 
omputations su
h as the Wilbur-Lipman frag-ment alignment problem [40,41℄. The unit 
ost Levenshtein distan
e 
an alsobe solved using these te
hniques [24℄. Using this algorithm, the transposi-tion invariant 
ase 
an be solved in O(mn log log n) time. However, the algo-rithm does not generalize to the 
ase of α-limited gaps, and thus we developan alternative solution that is based on two-dimensional semi-stati
 rangeminimum queries. This gives us O(mn log2 m) time for evaluating dt,α
L (A, B).However, we develop in passing an improved O(r log log m) sparse dynami
programming algorithm for Levenshtein distan
e, whi
h permits 
omputing

dt
L in O(mn log log m) time. Also, we note that our algorithm to 
ompute

dt,α
L (A, B) 
an be applied to the 
ase without transpositions, where it is still

O(mn log2 m), and hen
e better than the existing O(αmn) time algorithm [33℄for α = Ω(log2 m).Finally, we give a new O(r) time sparse dynami
 programming algorithmfor episode mat
hing. This gives us O(mn) time for transposition invariantepisode mat
hing.The sear
h problems on the edit distan
es 
an be solved in general withinthe same time bounds of the distan
e 
omputation problems. For the simplerdistan
es, on the other hand, our only solution is to evaluate them at everytext position.Table 1 gives a simpli�ed list of upper bounds that are known for theseproblems without transposition invarian
e. Table 2 gives the a
hieved upperbounds for the transposition invariant versions of these problems.We start by des
ribing our solutions to the edit distan
es, sin
e they arethe main emphasis of this paper. Then we brie�y give the other results forHamming distan
e and related measures.8



distan
e distan
e evaluation sear
hingexa
t O(m) O(m + n)

dH O(m) O(n
√

m log m) [1℄
dδ
H O(m) O(mn)

dSAD O(m) O(mn)

dMAD O(m) O(mn)

(δ, γ)�mat
hing O(m) O(mn)

dID, dL O(mn/ log m) O(mn/ log m) [14℄
dδ,α
ID O(mn) O(mn) [33℄

dδ,α
L O(αmn) O(αmn) [33℄

dD O(mn/ log m) O(mn/ log m) [18℄
dδ,α
D O(mn) O(mn) [13℄Table 1Upper bounds for string mat
hing without transposition invarian
e. We omit boundsthat depend on the threshold k in the sear
h problems.distan
e distan
e evaluation sear
hingexa
t O(m) O(m + n)

dt,δ
H O(m log m) O(mn log m)

dt,κ
SAD O(m + κ log κ) O((m + κ log κ)n)

dt,κ
MAD O(m + κ log κ) O((m + κ log κ)n)

(δ, γ)�mat
hing O(m) O(mn)

dt,δ
ID O(δmn log log m) O(δmn log log m)

dt,δ,α
ID O(δmn log m) O(δmn log m)

dt,δ
L O(δmn log log m) O(δmn log log m)

dt,δ,α
L O(δmn log2 m) O(δmn log2 m)

dt,δ,α
D O(δmn) O(δmn)Table 2Our upper bounds for transposition invariant string mat
hing. On an integer alpha-bet, term m log m in dt,δ

H 
an be repla
ed by |Σ|+m, and κ log κ by |Σ|+κ. We havenot added, for 
larity, the prepro
essing time of Theorem 2 for the edit distan
emeasures. Finally, δ should be understood as (2δ + 1)/µ, where µ is the minimumdi�eren
e between any two di�erent ai − bj values (µ = 1 on integer alphabets).9



5 Transposition Invariant Edit Distan
esLet us �rst review how the edit distan
es 
an be 
omputed using dynami
programming [30,39,35℄. Let A = a1a2 · · ·am and B = b1b2 · · · bn. For dID,evaluate an (m + 1) × (n + 1) matrix (dij), 0 ≤ i ≤ m, 0 ≤ j ≤ n, using there
urren
e
di,j = min((if ai = bj then di−1,j−1 else∞), di−1,j + 1, di,j−1 + 1), (1)with initialization di,0 = i for 0 ≤ i ≤ m and d0,j = j for 0 ≤ j ≤ n.The matrix (dij) 
an be evaluated (in some suitable order, like row-by-row or
olumn-by-
olumn) in O(mn) time, and the value dmn equals dID(A, B).A similar method 
an be used to 
al
ulate distan
e dL(A, B). Now, the re
ur-ren
e is
di,j = min((di−1,j−1 + if ai = bj then 0 else 1), di−1,j + 1, di,j−1 + 1),(2)with initialization di,0 = i for 0 ≤ i ≤ m and d0,j = j for 0 ≤ j ≤ n.The re
urren
e for distan
e dD(A, B), whi
h is used in episode mat
hing, is
di,j = if ai = bj then di−1,j−1 else di,j−1 + 1, (3)with initialization di,0 =∞ for 0 ≤ i ≤ m and d0,j = j for 1 ≤ j ≤ n.The 
orresponding sear
h problems 
an be solved by assigning zero to thevalues in the �rst row, d0,j = 0 (re
all that we identify pattern P = A andtext T = B). To �nd the best approximate mat
h, we take min0≤j≤n dm,j. Forthresholded sear
hing, we report the end positions of the o

urren
es, that is,those j where dm,j ≤ k.A useful alternative formulation of these distan
e 
omputation problems isto see them as a shortest path problem on a graph. The graph 
ontains onenode for ea
h matrix 
ell. For dID(A, B), there are (horizontal) edges of 
ost1 that 
onne
t every 
ell (i, j − 1) to (i, j), as well as (verti
al) edges of 
ost1 that 
onne
t every 
ell (i − 1, j) to (i, j). Whenever ai = bj , there is also a(diagonal) zero-
ost 
ell that 
onne
ts (i− 1, j − 1) to (i, j). It is not hard tosee that dm,n is the minimum path 
ost that 
onne
ts 
ell (0, 0) to 
ell (m, n).For dL this graph has also diagonal edges of 
ost 1 from every 
ell (i−1, j−1)to (i, j). For dD, the graph 
ontains only the horizontal edges and the zero-
ostdiagonal edges. For sear
hing, we add zero-
ost edges 
onne
ting (0, j − 1) to

(0, j) for every j. 10



To solve our transposition invariant problems, we 
ompute the distan
es inall required transpositions, but we use algorithms that are more e�
ient thanthe above basi
 dynami
 programming solutions, su
h that the overall 
om-plexity does not ex
eed by mu
h the worst 
ase 
omplexities of 
omputing thedistan
es for a single transposition.Let M be the set of mat
hing 
hara
ters (also 
alled mat
h set) between strings
A and B, that is, M = M(A, B) = {(i, j) | ai = bj , 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Themat
h set 
orresponding to a transposition t will be 
alled Mt = M(A+t, B) =
{(i, j) | ai+t = bj}. Let r = r(A, B) = |M(A, B)|. Let us de�ne T to be the setof those transpositions that make some 
hara
ters mat
h between A and B,that is T = {bj−ai | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. One 
ould 
ompute the above editdistan
es and solve the sear
h problems by running the above re
urren
es overall pairs (A + t,B), where t ∈ T. In an integer alphabet this takes O(|Σ|mn)time, and O(|ΣA||ΣB|mn) = O(m2n2) time in a general alphabet. This kindof pro
edure 
an be signi�
antly sped up if the basi
 dynami
 programmingalgorithms are repla
ed by suitable �sparse dynami
 programming� algorithms.Moreover, we are a
tually interested in 
omputing the edit distan
es allowingapproximate mat
hes between the 
hara
ters (re
all the versions with param-eter δ). To take these approximate mat
hes into a

ount, let us rede�ne ourmat
h set Mt as M δ

t = {(i, j) | |bj − (ai + t)| ≤ δ}.We note that, if δ = 0, then the sum of the sizes of all the mat
h sets ismn, thatis,∑t |Mt| = mn. However, if δ > 0 then ea
h 
ell may parti
ipate in more thanone relevant transposition, and the total size of the mat
h sets, ∑t |M δ
t |, mayperfe
tly ex
eed mn. On an integer alphabet, ea
h 
ell 
an parti
ipate at mostin 2δ +1 mat
h sets, so the overall size is ∑t |M δ

t | ≤ (2δ +1)mn. On a generalalphabet, this is not enough. Let us 
all µ the smallest di�eren
e between twodi�erent relevant transpositions, then it holds ∑t |M δ
t | ≤ (2δ + 1)mn/µ. Notethat µ = 1 on an integer alphabet.Lemma 1 If distan
e d(A, B) 
an be 
omputed in O(g(r(A, B))f(m, n)) time,where g() is a 
on
ave in
reasing fun
tion, then the transposition invariantdistan
e dt(A, B) = mint∈T d(A + t, B) 
an be 
omputed in O(g(mn)f(m, n))time. The δ-tolerant distan
e dt,δ(A, B) = mint∈T dδ(A+t, B) 
an be 
omputedin O(g(

∑

t |M δ
t |)f(m, n)) time.

PROOF. For δ = 0, let rt = |Mt| = r(A + t, B) be the number of mat
hing
hara
ter pairs between A + t and B. Then11



∑

t∈T

g(rt)f(m, n) = f(m, n)
∑

t∈T

g

(

m
∑

i=1

|{j | ai + t = bj , 1 ≤ j ≤ n}|
)

≤ f(m, n)g





m
∑

i=1

∑

t∈T

|{j | ai + t = bj , 1 ≤ j ≤ n}|




= f(m, n)g

(

m
∑

i=1

n

)

= g(mn)f(m, n).The 
ase δ > 0 is similar (
hange the order of the summations in the se
ondline above, and ∑t∈T M δ
t shows up). 2The rest of the se
tion is devoted to developing algorithms that depend on r.However, we start by 
onsidering how to obtain the sets Mt = M(A + t, B).5.1 Prepro
essingAs a �rst step, we need a way of 
onstru
ting the mat
h sets Mt sorted insome order that enables sparse evaluation of matrix (dij).We must be 
areful in 
onstru
ting these mat
h sets for all transpositions sothat the overall prepro
essing time does not ex
eed the time needed for thea
tual distan
e 
omputations. For example, one 
ould easily 
onstru
t a mat
hset by 
onsidering all the mn pairs (i, j) in any desired order and adding ea
hpair (i, j) to Mbj−ai

, �rst initializing it if the transposition t = bj − ai didnot previously exist. This method gives us O(|Σ| + mn) time on an integeralphabet and O(mn log(|ΣA||ΣB|)) = O(mn log n) on a general alphabet (byusing a balan
ed tree of existing transpositions).Let us now 
onsider the 
ase δ > 0. Now ea
h pair (ai, bj) de�nes a rangeof relevant transpositions, [bj − ai − δ, bj − ai + δ]. However, only at the ex-tremes of those ranges the sets M δ
t 
an 
hange, so it is enough to 
onsidertwo transpositions, bj − ai − δ and bj − ai + δ, for ea
h pair (ai, bj). More-over, if t′ = t + ǫ su
h that a range �nishes between t and t′ and all the reststays the same, then M δ

t′ ⊆ M δ
t , and be
ause of the de�nitions of edit dis-tan
es, d(A + t, B) ≤ d(A + t′, B) for any edit distan
e. This shows that it isenough to 
onsider only the pla
es where ranges start (or, symmetri
ally, allthe pla
es where ranges �nish, but not both). Hen
e, we will 
ompute M δ

t for
t ∈ {bj − ai − δ}.Theorem 2 The mat
h sets M δ

t = {(i, j) | |bj−(ai+t)| ≤ δ}, ea
h sorted in adesired 
ell order, for all relevant transpositions t ∈ T = {b−a−δ, a ∈ ΣA, b ∈
ΣB}, 
an be 
onstru
ted in time O(|Σ|+(2δ+1)mn) on an integer alphabet, and12



in time O(m log |ΣA|+n log |ΣB|+ |ΣA||ΣB| log(min(|ΣA|, |ΣB|))+
∑

t∈T |M δ
t |)on a general alphabet.PROOF. On an integer alphabet we 
an pro
eed naively to obtain O(|Σ|+

mn) time using array lookup to get the transposition bj − ai where ea
h pair
(i, j) has to be added. For δ > 0 ea
h pair (i, j) is added to entries from
bj − ai − δ to bj − ai + δ, in O(|Σ|+ (2δ + 1)mn) time.The 
ase of general alphabets is solved as follows.
(i) Start by obtaining the sets of di�erent 
hara
ters in A and B. Createa balan
ed binary sear
h tree TA where every 
hara
ter a = ai of A isinserted, maintaining for ea
h su
h a ∈ ΣA a list La of the positions i of A,in in
reasing order, su
h that a = ai. Do the same for B and TB. This 
osts

O(m log |ΣA|+ n log |ΣB|).
(ii) Then, obtain a sorted list of all the relevant transpositions, with dupli-
ates. Let us assume |ΣA| ≤ |ΣB| (otherwise do it the symmetri
 way). Forea
h a ∈ TA, traverse all b in TB in order and generate a list of in
reasingtranspositions and their 
orresponding position lists (b−a−δ,La,Lb). Thenmerge the |ΣA| lists into a unique ordered list of relevant transpositions andpositions, where there are possible dupli
ates in the b − a − δ values (butthese are all 
ontiguous). Sin
e we 
hoose the smaller alphabet to traversethe larger, this part 
osts O(|ΣA||ΣB| log(min(|ΣA|, |ΣB|))) time.
(iii) Now, 
reate list T of relevant transpositions and asso
iate the set ofpositions M δ

t to ea
h t ∈ T. We will need to �ll simultaneously a matrix Cof m rows and n 
olumns, su
h that ea
h 
ell Ci,j points to the proper node
M δ

t in T. Traverse the sorted list of transpositions and remove dupli
atetranspositions, appending a new node t = b− a− δ at the end of T, where
M δ

t is stored, initially empty. At the same time, ea
h time a list entry
(b − a− δ,La,Lb) is pro
essed, assign a pointer to M δ

t at ea
h 
ell Ci,j forevery i ∈ La and j ∈ Lb. This 
osts O(mn) sin
e every 
ell of C will bevisited exa
tly on
e.
(iv) Finally, �ll the M δ

t sets. Traverse matrix C in any desired order, and forea
h pro
essed entry (i, j), add (i, j) to the set pointed to by Ci,j (that is,
M δ

bj−ai−δ). This 
osts O(mn). If δ > 0 add entry (i, j) not only to Ci,j, butalso move forward in the sorted list T, adding entry (i, j) to next transpo-sitions b′ − a′ while (b′ − a′)− (b− a) ≤ 2δ. This 
osts ∑t∈T |M δ
t |. 2In the rest of this se
tion, we will only 
onsider expli
itly the 
ase δ = 0 anddevelop algorithms that 
ompute a distan
e d(A, B) using a mat
h set Mt.However, all algorithms 
an be used for 
omputing the 
orresponding errortolerant distan
e dδ(A + t, B) in a given transposition t by running them on

M δ
t instead of on M . All the 
omplexities for δ = 0 will in
lude a term of the13



form mn, whi
h has to be repla
ed by∑t∈T |M δ
t | ≤ (2δ+1)mn/µ if δ > 0. Notethat a simple upper bound on the prepro
essing time for general alphabets is

O(mn log m + n log n) for δ = 0 and O(mn(log m + (2δ + 1)/µ) + n log n) ingeneral.5.2 Computing the Longest Common Subsequen
eFor LCS (and thus for dID) there exist algorithms that depend on r. The 
las-si
al Hunt-Szymanski [26℄ algorithm has running time O(r log n) if the set ofmat
hes M is already given in the proper order. Using Lemma 1 we 
an 
on-
lude that there is an algorithm for transposition invariant LCS that has time
omplexity O(mn log n). There are even faster algorithms for LCS: Eppsteinet al. [20℄ improved an algorithm of Apostoli
o and Guerra [2℄ a
hieving run-ning time O(D log log min(D, mn
D

)), where D ≤ r is the number of dominantmat
hes (see, for example, [2℄ for a de�nition). Using this algorithm, we havethe bound O(mn log log n) for the transposition invariant 
ase (note that thisis a tight estimate, sin
e it 
an be a
hieved when D = Θ(mn/D) at ea
htransposition).The existing sparse dynami
 programming algorithms for LCS, however, donot extend to the 
ase of α�limited gaps. We will give a simple but e�-
ient algorithm for LCS that generalizes to this 
ase. We will also use thesame te
hnique when developing an e�
ient algorithm for the Levenshteindistan
e with α�limited gaps. Moreover, by repla
ing the data stru
ture usedin the algorithm by a more e�
ient one des
ribed in Lemma 8, we 
an a
hieve
O(r log log m) 
omplexity, whi
h gives O(mn log log m) for the transpositioninvariant LCS (this is better than the previous bound, sin
e m ≤ n).Re
all the set of mat
hing 
hara
ter pairs M = {(i, j) | ai = bj}. Let M̄ =
M ∪ {(0, 0), (m + 1, n + 1)}. We have the following sparsity property for dID.Lemma 3 Distan
e dID(A, B) 
an be 
omputed by evaluating di,j for (i, j) ∈
M̄ using the re
urren
e

di,j = min{di′,j′ + i− i′ + j − j′ − 2 | (i′, j′) ∈ M̄, i′ < i, j′ < j}, (4)with initialization d0,0 = 0. Value dm+1,n+1 equals dID(A, B).PROOF. Let us regard again the 
omputation of matrix d as a shortest path
omputation on a graph. Every path from 
ell (0, 0) to a 
ell (i, j) that is thetarget of a zero-
ost edge 
an be divided into two parts: (i) from 
ell (0, 0)until a 
ell (i′, j′) that is the target of the last zero-
ost edge traversed beforerea
hing (i, j), and from 
ell (i′, j′) until 
ell (i, j). The path from (i′, j′) to (i, j)14



moves �rst to (i−1, j−1) traversing only horizontal and verti
al 
ost-1 edges,and then moves for free from (i−1, j−1) to (i, j). Overall, (i−1)− i′ verti
aland (j−1)−j′ horizontal edges are traversed, for a total 
ost of i−i′+j−j′−2.Hen
e the 
ost of this parti
ular path is di′,j′ + i− i′ + j − j′ − 2. M 
ontainsall the 
ells that are targets of zero-
ost edges, and therefore minimizing overall 
ells (i′, j′) ∈M yields the optimal 
ost, ex
ept for the possibility that theoptimal path does not use any zero-
ost edge before (i, j). This last possibilityis 
overed by adding 
ell (0, 0) to M̄ , with d0,0 = 0 (whi
h is also a way tostate that our paths must start at 
ell (0, 0)). Finally, as we wish to obtainvalue dm,n, we 
ould have added 
ell (m, n) to M̄ , but our reasoning appliesonly to 
ells that are target of zero-
ost edges. Hen
e, we add 
ell (m+1, n+1)as su
h a target, so dm,n = dm+1,n+1 is 
orre
tly 
omputed. 2The obvious strategy to use the above lemma is to keep the already 
omputedvalues di′,j′ in a data stru
ture su
h that their minimum 
an be retrievede�
iently when 
omputing the value of the next di,j. One di�
ulty here isthat the values stored are not 
omparable as su
h sin
e we want the minimumonly after i− i′ + j − j′ − 2 is added. This 
an be solved by storing the path-invariant values di′,j′ − i′ − j′ instead. Then, after retrieving the minimumvalue, one 
an add i + j − 2 to get the 
orre
t value for di,j. To get theminimum value di′,j′− i′− j′ from range (i′, j′) ∈ [−∞, i)× [−∞, j), we need adata stru
ture supporting dynami
 one-dimensional range minimum queries.To see that it is enough to use query range [−∞, i), noti
e that if we 
omputepoints (i, j) 
olumn�by�
olumn (that is, for in
reasing j), ea
h 
olumn frombottom to up (that is, for de
reasing i), then the query points that are inthe range [−∞, i) are also those in the range [−∞, j). We 
all this order thereverse 
olumn�by�
olumn order : (i′, j′) pre
edes (i, j) if j′ < j, or if j′ = jand i′ > i.Hen
e we need an e�
ient data stru
ture where we 
an store the row numbers
i′ as the sort keys, and values v(i′) = d(i′, j′) − i′ − j′ asso
iated to them,and query it by minimum values over a range of keys. Furthermore, we willneed later to remove points from this data stru
ture, so we want it to bedynami
. The following well-known lemma establishes the existen
e of su
h adata stru
ture. La
king any referen
e, we prove it.Lemma 4 There is a data stru
ture T supporting the following operations in
O(log n) time, where n is the amount of elements 
urrently in the stru
ture.
T .Insert(k, v) : Inserts value v into the stru
ture with key k. If key k alreadyexists, the value of the element is updated to v if v is smaller than the 
urrentvalue.
T .Delete(k) : Deletes the element with key k.
v = T .Minimum(I) : Returns the minimum of values whose keys are in the15



one-dimensional range I = [ℓ, r].PROOF. A modi�ed balan
ed binary sear
h tree (AVL, for example) orga-nized by keys k and storing asso
iated values v(k) is a suitable data stru
ture.Let us speak indistin
tly of nodes and keys, and denote left and right 
hil-dren of a node k by k.left and k.right. This tree is augmented with a �eld
minv(k) stored at ea
h node, where the minimum of values in the subtreerooted at k is maintained. The tree is easily updated when a new key k isinserted, as the only additional operation is to update the value minv(k′) ofany traversed internal node k′ to min(minv(k′), v). On
e a node k is deleted,values minv(k′) in the path from the root to the parent of k need to be re
om-puted (if the deleted node is internal and hen
e repla
ed by a leaf, this updateis done from the parent of the removed leaf). This updating is easy sin
e
minv(k) = min(v(k), minv(k.left), minv(k.right)) is re
omputed in 
onstanttime per node. For the same reason, minv(k) values are also easily re
omputedwhen the tree is rebalan
ed by rotations.Minimum over ranges of keys [ℓ, r] are obtained as follows. The tree is sear
hedfor ℓ and r simultaneously until node s∗ is rea
hed where the sear
h path splits.From s∗.left the sear
h is 
ontinued with ℓ and at every node s where thesear
h path of ℓ goes left, value minv(s.right) is 
ompared to the minimumvalue obtained so far. Similarly, the sear
h is 
ontinued with r at s∗.right,and at every node s where the sear
h path of r goes right, value minv(s.left)is 
onsidered for updating the 
omputed minimum. Also, the v(k) values ofnodes k visited are in
luded in the minimization whenever ℓ ≤ k ≤ r. A notso infrequent spe
ial 
ase o

urs when the sear
h path splits before the rootnode, and hen
e node s∗ does not exist. In this 
ase both sear
hes for ℓ and rstart at the root node. 2We are ready to give the algorithm now. Initialize the tree T of Lemma 4 byadding the value of d0,0 − i − j = 0 with key i = 0: T .Insert(0, 0). Pro
eedwith the mat
h set M̄ \ {(0, 0)} that is sorted in reverse 
olumn�by�
olumnorder and make the following operations at ea
h su
h pair (i, j):(1) Take the minimum value from T whose key is smaller than the 
urrentrow number i: d = T .Minimum([−∞, i)). Add i + j − 2 to this value:

d← d + i + j − 2.(2) Add the 
urrent value d minus 
urrent row and 
olumn number, i + j, into
T , with the 
urrent row number as its key: T .Insert(i, d− i− j).Finally, after 
ell (m+1, n+1) has been pro
essed, we have that dID(A, B) = d.The above algorithm works 
orre
tly: The reverse 
olumn�by�
olumn evalu-ation and the range query restri
ted by the row number in T guarantee that16




onditions i′ < i and j′ < j hold. The only point where the work on tree Tdeviates from what Lemma 3 requires is that new keys overwrite equal oldkeys. That is, if a new 
ell (i, j) is inserted, an old 
ell (i, j′) is virtually re-moved if it existed. It is easy to see that the old 
ell is of no use on
e thenew 
ell is inserted. Say that 
ell (i, j′) obtained its value from 
ell (i0, j0), sothat di,j′ = di0,j0 + i − i0 + j′ − j0 − 2. Hen
e 
ell (i0, j0) is also a 
andidateto di,j ≤ di0,j0 + i − i0 + j − j0 − 2, so di,j ≤ di′,j′ + j − j′. Now, assume alater 
ell (i′′, j′′) uses 
ell (i, j′), so that di′′,j′′ = di,j′ + i′′ − i + j′′ − j′ − 2.But then it 
an also use 
ell (i, j) to obtain a smaller or equal value using
di′′,j′′ = di,j + i′′ − i + j′′ − j − 2 ≤ di′,j′ + i′′− i + j′′− j′− 2. Note that this issimply a 
onsequen
e of the fa
t that 
ell (i, j) dominates (i, j′) [2℄.Clearly, the time 
omplexity of the algorithm is O(r log m), where r = |M |,sin
e we 
an only have m+1 di�erent row numbers stored in T at any moment.Figure 1 gives an example.
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Fig. 1. Example of 
omputation of dID on a sparse matrix. Bla
k 
ir
les represent themat
hing pairs (i, j). Ea
h su
h matrix position has an in�uen
e area representedby a gray re
tangle (darker grays represent larger di�eren
es from the standardvalue i + j). Next to ea
h position we represent the matrix value di,j we 
ompute.The value of interest is the lowest rightmost position. In parti
ular, we depi
t the
omputation of the 
ell (24,39), for whi
h we have to 
onsider all the positionsin
luded in the dashed re
tangle. On the right we show our tree data stru
ture.Ea
h node 
orresponds to a 
ell (i, j) and is represented as i [v] {minv}, where iis the tree key, v is the value (meaning that the real 
ell value is (i + j) + v), and
minv is the minimum v value in the subtree. The sear
h for 
ell (24,39) in
ludes allthe nodes below the dashed line, and it takes the minimum d over all the underlinedvalues. Its new value is d24,39 = d + 24 + 39 − 2 = 57, so we will insert a new nodewith key 24 and value 57− 24− 39 = −6 in the tree.The algorithm also generalizes easily to the sear
h problem: The 0 values in the�rst row 
an be added impli
itly by using d← min(i, d+ i+ j − 2) in step (1)above. Also, every value di,j = d 
omputed in step (2) above indu
es a value
dm,j+s ≤ d + (m− i) + s in the last row, whi
h 
an be used either to keep theminimum dm,j value (in whi
h 
ase we 
onsider only 
ase s = 0), or to reportall values dm,j ≤ k in thresholded sear
hing. In order to report o

urren
es17



only on
e and in order, two arrays S(1 . . . n) and E(1 . . . n) of 
ounters aremaintained: The 
ounters are initialized to zero, and at ea
h pair (i, j) ∈ M̄su
h that di,j +(m− i) ≤ k we set S(j) = S(j)+1 and E(j +s) = E(j +s)+1for the maximum s su
h that d + (m − i) + s ≤ k. This marks the start andend points of the o

urren
es. Then it is easy to 
olle
t all the o

urren
es in
O(n) time by using S() and E() to keep tra
k on how many ranges are a
tiveat any position j of the text.The queries [−∞, i) we use are semi-in�nite. We will show in Lemma 8 (Se
-tion 5.3) that the balan
ed binary sear
h tree 
an be repla
ed by a moreadvan
ed data stru
ture in this 
ase. That is, semi-in�nite queries for mini-mum and insertions 
an be supported in amortized O(log log u) time, where
[1, u] is the integer range of keys that are inserted into the stru
ture. In our
ase u = m, whi
h gives us O(log log m) query time. The next theorem followsimmediately.Theorem 5 Given two strings A = a1 . . . am and B = b1 . . . bn, m ≤ n, andthe r 
ells (i, j) su
h that ai = bj in reverse 
olumn�by�
olumn order, thenthe LCS between A and B 
an be 
omputed in time O(r log log min(r, m)).Let us now 
onsider the 
ase with α�limited gaps. The only 
hange we needin our algorithm is to make sure that, in order to 
ompute di,j, we only takeinto a

ount the mat
hes that are in the range (i′, j′) ∈ [i − α − 1, i) × [j −
α − 1, j). What we need to do is to 
hange the sear
h range [−∞, i) into
[i − α − 1, i) in T , as well as to delete any elements in 
olumn j − α − 1after pro
essing elements in 
olumn j. The former is easily a

omplished byusing query T .Minimum([i−α−1, i)) at step (1) of the algorithm. The latterneeds that we delete nodes from T when their 
olumns be
ome too old. Morespe
i�
ally, we maintain a pointer to the oldest (that is, smallest 
olumn)element in M that is still stored in T . When we �nish pro
essing 
olumn j,we 
he
k whether the pointed 
ell is of the form (i′, j − α − 1) for some i′. Ifit is, we remove key i′ using T .Delete(i′) and advan
e the pointer until thepointed 
ell belongs to a later 
olumn. Sin
e the tra
king takes 
onstant timeper 
ell of M , its e�e
t in the 
omplexity is negligible.Note that it might be that key i′ in T a
tually 
orresponds to a later 
olumnthat has overwritten 
ell (i′, j − α − 1). In this 
ase we must advan
e thepointer but not delete the key. In order to 
he
k this, we also store in T nodesthe 
urrent j′ value 
orresponding to ea
h key i′.Noti
e that we 
annot obtain O(log log m) query time anymore, sin
e thequery ranges are no longer semi-in�nite. On the other hand, we 
ould haveused two-dimensional queries instead of deleting points from T but, as shownin Lemma 8, the 
omplexity would be worse. An illustration of the algorithmfor LCS with α�limited gaps is given in Figure 2.18
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Fig. 2. Example of α�gapped 
omputation of dID on a sparse matrix, for α = 10. Thesame 
onventions of Figure 1 apply. The di�eren
e is that now the in�uen
e areasare restri
ted to width and height α, so we delete values whi
h 
orrespond to 
olumnnumbers whi
h are small enough to have be
ome irrelevant and perform a two-sidedrange sear
h over the tree, so only its middle part quali�es. In this example, thetree has only one element when 
omputing 
ell (24,39), and it is outside the sear
hrange. In this 
ase the value of the 
ell is i + j − 2 = 61.By using Lemma 1 and the above algorithms, we get the following result.Theorem 6 The transposition invariant distan
e dt
ID(A, B) (or, equivalently,LCS) 
an be 
omputed in O(mn log log m) time. The 
orresponding sear
hproblem 
an be solved within the same time bound. For the distan
e dt,α

ID (A, B)the time bounds are O(mn log m) for distan
e 
omputation and for sear
hing.The prepro
essing 
ost of Theorem 2 must be added to these bounds.The algorithms use O(mn) spa
e, sin
e the overall size of the sets for di�erenttranspositions is mn (note that the algorithm itself needs only O(m) spa
e).This might be problemati
 espe
ially for the sear
h problem, when the twostrings are of very di�erent size.We 
an a
hieve spa
e 
omplexity O(m2) in the sear
h problem as follows. Di-vide the text into O(n/m) segments of the form T1...2m, Tm+1...3m, T2m+1...4m,and so on. Run the whole algorithm (in
luding generating the sets of trans-positions) separately over those O(n/m) text segments, one after the other.When pro
essing text segment Tmi+1...m(i+2), report the mat
hes found in thearea Tm(i+1)+1...m(i+2). This way, ea
h text position is pro
essed twi
e and hen
ethe 
omplexity remains the same. The spa
e, however, is that to pro
ess onetext segment, O(m2). With respe
t to 
orre
tness, we remark that, given that
ell di,j re
eives value i from 
ell (0, j), no 
olumn before j −m 
an in�uen
eit (indeed, no 
olumn before j − i). Hen
e, in order to report 
orre
tly themat
hes in area Tm(i+1)+1...m(i+2) we only need to start m positions behind,thus pro
essing area Tmi+1...m(i+2). This te
hnique is rather general and 
an beapplied to other edit distan
es as well.In parti
ular, in the 
ase of α�limited gaps we 
an use the same te
hnique19



both for distan
e 
omputation and for sear
hing, sin
e only the last α 
olumnspro
essed 
an a�e
t 
urrent values. Hen
e we 
an 
ompute dt,α
ID (A, B) using

O(αm) spa
e.We re
all that, when δ > 0 and we 
onsider distan
es dt,δ
ID and dt,δ,α

ID , all terms
mn are repla
ed by ∑t∈T |M δ

t | in the time and spa
e 
omplexities.5.3 Computing the Levenshtein Distan
eFor the Levenshtein distan
e, there exists an O(r log log min(r, mn/r)) sparsedynami
 programming algorithm [20,24℄. Using this algorithm, the transposi-tion invariant 
ase 
an be solved in O(mn log log n) time. As with the LCS,this algorithm does not generalize to the 
ase of α�limited gaps. We developan alternative solution for the Levenshtein distan
e by generalizing our LCSrange query approa
h. This new algorithm 
an be further generalized to solvethe problem of α�limited gaps. On the other hand, we show that the sparse
omputation 
an be done in O(r log log m) time.The Levenshtein distan
e dL has a sparsity property similar to the one givenfor dID in Lemma 3. Re
all that M̄ = M ∪ {(0, 0), (m + 1, n + 1)}, where Mis the set of mat
hing 
hara
ter pairs.Lemma 7 Distan
e dL(A, B) 
an be 
omputed by evaluating di,j for (i, j) ∈ M̄using the re
urren
e
di,j = min











{di′,j′ + j − j′ − 1 | (i′, j′) ∈ M̄, i′ < i, j′ − i′ < j − i}
{di′,j′ + i− i′ − 1 | (i′, j′) ∈ M̄, j′ < j, j′ − i′ ≥ j − i}

(5)with initialization d0,0 = 0. Value dm+1,n+1 equals dL(A, B).PROOF. Following the proof of Lemma 3 it is enough to show that theminimum path 
ost to rea
h 
ell (i − 1, j − 1) from mat
h point (i′, j′) is (i)
j − j′ − 1 when j′ − i′ < j − i, and (ii) i − i′ − 1 otherwise. The reason isthat, in both 
ases, we use as many diagonal edges as possible and the restare horizontal or verti
al edges, depending on the 
ase. 2The re
urren
e relation is now more 
omplex than the one for dID. In the 
aseof dID we 
ould store values di′,j′ in a 
omparable format (by storing di′,j′−i′−j′instead) so that the minimum di′,j′− i′−j′ of (i′, j′) ∈ [−∞, i)× [−∞, j) 
ouldbe retrieved e�
iently. For dL there does not seem to be su
h a 
omparableformat, sin
e the path length from (i′, j′) to (i, j) may be either i − i′ − 1 or
j − j′ − 1. 20



Figure 3 illustrates the geometri
 setting impli
it in (5). The lower region(below diagonal j−i) 
ontains mat
h points su
h that their extension by mat
h
(i, j) will add j − j′ − 1 to the s
ore, and the upper region (above diagonal)
ontains mat
h points su
h that their extension by mat
h (i, j) will add i −
i′ − 1 to the s
ore. The s
ore of the new mat
h is 
omputed as the minimumbetween the lowest possible s
ore obtained by extending a mat
h from thelower region and from the upper region. Therefore, ea
h mat
h will have itss
ores maintained in two stru
tures, one stru
ture representing s
ores to beextended as �lower region� s
ores, and other for �upper region� extensions.Let L denote the data stru
ture for the lower region and U the data stru
turefor the upper region. If we store values di′,j′−j′ in L, we 
an take the minimumover those values plus j − 1 to get the value of di,j. However, we want thisminimum over a subset of values stored in L, that is, over those di′,j′ − j′whose 
oordinates satisfy i′ < i, j′ − i′ < j − i. Similarly, if we store values
di′,j′ − i′ in U , we 
an take minimum over those values whose 
oordinatessatisfy j′ < j, j′ − i′ ≥ j − i, plus i − 1 to get the value of di,j. The a
tualminimum is then the minimum of upper region and lower region minima.What is left to be explained is how the minima of subsets of L and U 
an beobtained. For the upper region, we 
an use the same stru
ture as for dID: Ifwe keep values di′,j′ − i′ in a balan
ed binary sear
h tree U with key j′ − i′,we 
an make one-dimensional range sear
h to lo
ate the minimum of values
di′,j′−i′ whose 
oordinates satisfy j′−i′ ≥ j−i. The reverse 
olumn�by�
olumntraversal guarantees that U only 
ontains values di′,j′ − i′ whose 
oordinatessatisfy j′ < j. Thus, the upper region 
an be handled e�
iently.The problem is the lower region. We 
ould use row�by�row traversal to handlethis 
ase e�
iently, but then we would have the symmetri
 problem with theupper region. No traversal order seems to allow us to limit to one-dimensionalrange sear
hes in both regions simultaneously; we will need two-dimensionalrange sear
hing in one of them. Let us 
onsider the two-dimensional rangesear
h for the lower region. We would need a query that retrieves the minimumof values di′,j′ − j′ whose 
oordinates satisfy i′ < i, j′ − i′ < j − i. We makea 
oordinate transformation to turn this triangle region into a re
tangle: Wemap ea
h value di′,j′− j′ into an xy-plane at 
oordinate i′, j′− i′. In this planewe perform a re
tangle query [−∞, i) × [−∞, j − i). The following lemma,adapted from Gabow, Bentley and Tarjan [23℄, provides the required datastru
ture for the lower region. We summarize some other related results in thesame lemma that we will soon use in the α�limited 
ase (we already referredto the one-dimensional result in the algorithm for dID).Lemma 8 (Gabow, Bentley, Tarjan [23℄) There is a data stru
ture Rthat stores a two-dimensional point-set S with a value asso
iated to ea
h point,and supports the following operations in amortized O(log n log log n) time after21



O(n log n) time prepro
essing on S, where n = |S|:
• R.Update(x, y, v): Update value of point s = (x, y) ∈ S to v, under the
ondition (*) that the 
urrent value of s is larger than v.
• v = R.Minimum(I): Retrieve the minimum value from a range I of S,where I is semi-in�nite at least in one �xed 
oordinate.There is another stru
ture P that supports the same operations in O(log2 n)time, where 
ondition (*) does not need to hold, and sear
h range I needs notbe semi-in�nite in either 
oordinateSemi-in�nite queries 
an be supported in O(log log n) time in the one-dimensional 
ase, if the point 
oordinates s ∈ S are integers in the range
[1, n]. In this 
ase 
ondition (*) must hold.PROOF. We will review the proof of the O(log n log log n) bound [23℄ inorder to 
over the one-dimensional 
ase and the 
losed range 
ase.The basi
 stru
ture supporting operations in time O(log2 n) is a range tree(see, for example, [3, Se
tion 5℄), where the se
ondary stru
tures are repla
edby the ones given in Lemma 4. The stru
ture is a balan
ed (primary) sear
htree for the x-
oordinate range sear
hes, where ea
h node w stores another(se
ondary) balan
ed tree for y-
oordinate sear
hes among the points thatare stored in the subtree of w in the primary tree. As shown in Lemma 4,the se
ondary trees support minimum queries and unrestri
ted updates ofvalues. To update a value, its node in the primary tree is found and then itis ne
essary to update the 
orresponding nodes in all the O(log n) se
ondarytrees stored at the an
estors of the primary tree node. For range sear
hing, we�nd in O(log n) time the O(log n) nodes of the primary tree whose subtrees
over the x-
oordinate range, and then pay O(log n) time in ea
h su
h nodeto �nd the minimum of points in the y-
oordinate range. Hen
e, updating andsear
hing 
an be done in O(log2 n) time. Note that it is 
ostly to maintain theinvariants of the se
ondary trees 
ontents upon rebalan
ing the primary tree,so insertions and deletions of points are not supported. Rather, the trees arebuilt in a prepro
essing stage in perfe
tly balan
ed form and stay with thatshape. Prepro
essing 
ost is proportional to the spa
e needed by the datastru
ture, whi
h is O(n log n).Let us then review how O(log log n) time 
an be a
hieved in the one-dimensional 
ase for integer point sets. As our query is w.l.o.g. min{v(s) |
s ∈ [−∞, r)}, where v(s) gives the value of s, it is enough to 
hoose the min-imum among those points s whose value v(s) is the minimum in the range
[−∞, s]; these are 
alled left�to�right minima. It is easy to see that othervalues v(s) 
an never be the minimum in any range [−∞, r). Note that left�to�right minima form a de
reasing sequen
e. The data stru
ture of van Emde22



Boas [37,38℄, whi
h we will denote Q, supports operations Q.insert(s) (in-serts s into Q), Q.delete(s) (deletes s from Q), Q.successor(s) (returns thelargest point stored in Q smaller than s), and Q.predecessor(s) (returns thesmallest point stored in Q larger than s) in O(log log n) time, where s is aninteger in the range [1, n]. We will store only left�to�right minima from S inQ.When inserting a new point s with value v = v(s) into Q, we �rst 
he
k that
v(Q.predecessor(s)) > v(s), otherwise we do not insert s. If s is inserted, werepeat operation Q.delete(Q.successor(s)) until v(Q.successor(s)) < v(s).These operations guarantee that v(Q.predecessor(r)) is the answer to ourquery [−∞, r). Note that it is possible to repla
e the value v of an alreadyinserted point by a smaller value, by a pro
ess similar to insertion, but we
annot 
hange v to a larger value.The O(log n log log n) bound for the semi-in�nite two-dimensional queries thenfollows easily by repla
ing the se
ondary trees of the range tree with datastru
tures Q: Consider a query [l, r] × [−∞, t]. We build the primary treeon the x-
oordinates and the se
ondary trees on the y-
oordinates. Insteadof adding the y-
oordinates as su
h, we use the rank of ea
h point in thesorted order of the points where y-
oordinate is used as the primary key and
x-
oordinate as the se
ondary key. To answer the query, we �nd the rank ρ of
(t,∞) (pla
e where it would be inserted) in the sorted set of points by binarysear
h in time O(log n), then query ea
h of the O(log n) se
ondary stru
tures
Q found by the x-
oordinate range sear
h with s = Q.predecessor(ρ), andsele
t the minimum v(s). 2We are now ready to give a sparse dynami
 programming algorithm for theLevenshtein distan
e. Initialize a balan
ed binary tree U for the upper regionby adding the value of d0,0 − i = 0 with key i = 0: U .Insert(0, 0). Initializea data stru
ture L for the lower region (R of Lemma 8) with the triples
(i, j− i,∞) su
h that (i, j) ∈ M̄ . Update value of d0,0− j = 0 with keys i = 0and j−i = 0: L.Update(0, 0, 0). Pro
eed with the mat
h set M̄ \{(0, 0)} that issorted in reverse 
olumn�by�
olumn order and make the following operationsat ea
h pair (i, j):(1) Take the minimum value from U whose key is larger than or equal to the
urrent diagonal j− i: d′ = U .Minimum([j− i,∞]). Add i−1 to this value:

d′ ← d′ + i− 1.(2) Take the minimum value from L inside the re
tangle [−∞, i)× [−∞, j− i):
d′′ = L.Minimum([−∞, i) × [−∞, j − i)). Add j − 1 to this value: d′′ ←
d′′ + j − 1.(3) Choose the minimum of d′ and d′′ as the 
urrent value d = di,j.(4) Add the 
urrent value d minus i into U with key j− i: U .Insert(j− i, d− i).(5) Add the 
urrent value d minus j into L with keys i and j−i: L.Update(i, j−
i, d− j). 23



Finally, after 
ell (m+1, n+1) has been pro
essed, we have that dL(A, B) = d.The 
orre
tness of the algorithm should be 
lear from the above dis
ussion.The time 
omplexity is O(r log r log log r) (r = |M | elements are inserted andupdated in the lower region stru
ture, and r times it is queried). The spa
eusage is O(r log r). Figure 3 gives an example.
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Fig. 3. Example of 
omputation of dL on a sparse matrix. The same 
onventions ofFigure 1 apply. We distinguish in the matrix the lower and upper regions 
onsideredto solve 
ell (24,39). Sin
e the upper region is handled just like for dID, we show onthe right only the data stru
ture of the lower region. It supports minimum operationsover two dimensional ranges. Ea
h relevant matrix position (i, j) is represented inthe range sear
h stru
ture at position (i, j−i). The value in bra
kets is [y−j], where
y is the value of 
ell (i, j). To solve 
ell (24,39) we take the minimum in the range
[−∞, 24) × [−∞, 39− 24) (inside the dashed re
tangle on the right), whi
h returns
−2, and add j − 1 to it to obtain 36. After this, point (24,15) will be updated tovalue 36− 39 = −3.A
tually, we 
an swit
h the roles of x and y in L, so that the se
ondarystru
tures are sear
hed for i values. As explained in Se
tion 5.2 we do notneed to store di�erent points with the same i 
oordinate in the se
ondarystru
tures; it is enough to retain the last point inserted with 
oordinate i,sin
e it dominates previous ones (that is, the new value we are inserting isnever larger than the existing points with 
oordinate i). As we have shownin the proof of Lemma 8, the stru
ture permits us repla
ing the value ofa point with a new, smaller, one. Hen
e we 
an in fa
t store only unique
oordinates in the range 0 . . .m, ea
h asso
iated to the last (that is, smallest)value v(i) inserted so far. The advantage is that the time 
omplexity be
omes
O(r log r log log min(r, m)). Moreover, we do not need to rank the points, but
an dire
tly sear
h the i values.The algorithm 
an be modi�ed for the sear
h problem similarly as dID, byimpli
itly adding values 0 in the �rst row of the 
urrent 
olumn and 
onsideringthe e�e
t of ea
h 
omputed di,j value in the last row of the matrix. Now 
ell
(i, j) indu
es values dm,j+s ≤ di,j + max(m − i, s). Applying the same textsegmenting te
hnique used for distan
e dID yields O(r log m log log m) time,24



slightly better for our purposes than distan
e 
omputation.We show now a general te
hnique to make distan
e 
omputation
O(r log m log log m) time as well. Segment the text into O(r/m) regions, su
hthat ea
h text region 
ontains between m and 2m 
ells in M̄ (we must be�exible be
ause there may be several 
ells in a 
olumn). Run the algorithmfor ea
h region separately, one after the other. At the end of ea
h region, insert
ells in M̄ so that M̄ 
overs all the 
ells of the last 
olumn of the region. Usethose last values to initialize the data stru
ture for the next region (via 
ellupdates). This ensures 
ontinuity in the 
omputation a
ross regions. Overallwe pro
ess at most 3r 
ells, and ea
h region 
ontains O(m) 
ells, so the sear
htime is O(r log m log log m). We observe that the same time 
omplexity wouldbe obtained if we used regions of O(mc) entries, for any 
onstant c.Using this algorithm, the transposition invariant Levenshtein distan
e 
ompu-tation, as well as the sear
h problem, 
an be solved in O(mn log m log log m)time and O(mn log n) spa
e. Note that in this 
ase the spa
e 
omplexity isdominated by the data stru
ture L. Removing unne
essary elements (thosethat 
annot give minima for the 
urrent 
olumn) is no longer possible, sin
ethe stru
ture for the lower region is semi-stati
.With the te
hniques used for splitting the text into regions, however, the datastru
ture L needs only O(m2 log m) spa
e. Distan
e 
omputation still needs
O(mn) additional spa
e to store the transpositions. We 
annot, as in the textsegmenting approa
h used for sear
hing, pro
ess the transpositions region byregion to obtain O(m2) spa
e, be
ause this time region limits are di�erent forea
h transposition and we need to remember the state of the 
omputation forevery di�erent transposition.We re
all that the sparse dynami
 programming algorithm by Eppstein etal. [20℄ is better than ours, O(r log log r). Our text regions approa
h, however,permits improving Eppstein's algorithm. We 
an use the latter as a bla
k boxand apply it over text regions as with our algorithm. The result is given in thenext theorem.Theorem 9 Given two strings A = a1 . . . am and B = b1 . . . bn, m ≤ n, andthe r 
ells (i, j) su
h that ai = bj in reverse 
olumn�by�
olumn order, then theLevenshtein distan
e between A and B 
an be 
omputed in time O(r log log m).Using this theorem, the time 
omplexity for transposition invariant Leven-shtein distan
e 
omputation de
reases to O(mn log log m).Our range query approa
h, although slower, has the advantage of letting useasily solve the 
ase of α�limited gaps. First 
onsider the easier upper region.We need the minimum over the values whose 
oordinates (i′, j′) satisfy i′ ∈
[i − α − 1, i), j′ ∈ [j − α − 1, j), and j′ − i′ ≥ j − i. These 
an be simpli�ed25



to j′ < j (whi
h 
omes for free with the reverse 
olumn�by�
olumn order),
i′ ≥ i − α − 1 and j′ − i′ ≥ j − i. We 
an use stru
ture R of Lemma 8to support minimum queries in the range [i − α − 1,∞] × [j − i,∞]. Thelower region is more 
ompli
ated. Its limiting 
onditions, i′ ∈ [i − α − 1, i),
j′ ∈ [j−α−1, j), and j′−i′ < j−i, 
an be simpli�ed to i′ < i, j′ ≥ j−α−1 and
j′−i′ < j−i. Instead of resorting to three-dimensional sear
hing, whi
h would
ost O(log2 n log log n) [23℄, we use stru
ture P of Lemma 8, whi
h supportsunlimited updates of values. On
e moving from 
olumn j to j + 1, we updateea
h value in the se
ondary stru
tures at 
olumn j − α − 1 to ∞. As in the
α�limited 
ase of dID, we keep a pointer to the last a
tive 
olumn in the mat
hset M to determine whi
h 
ells (i′, j−α−1) have to be virtually deleted using
P.Update(i′, j − α− 1− i,′∞). If we do this, 
ondition j′ ≥ j − α− 1 
an beignored, and P is built over the other two 
onditions and queried with range
[−∞, i)× [−∞, j − i).Again, text segmenting te
hniques 
an be used to maintain time 
omplexitiesin O(r log2 m). An illustration of the algorithm for Levenshtein distan
e with
α�limited gaps is given in Figure 4.
0

8

13

22
24
26

32

3 0

0 9 20 23 26 39 4836

21

19

25

24

35

38

47

(3,33) [−1]

(0,0) [0]

(22,−13) [−1]

(26,−3) [−1]

(8,12) [11]

(13,13) [11]

(3,33) [32]

query: min([13,inf] x [15,inf]), empty

(22,−13) [inf]

(26,−3) [inf]

(8,12) [inf]

(13,13) [inf]

query: min([−inf,24) x [−inf,15)) = inf (empty)

(0,0) [inf]L

U

i

j−i

i

j−i

Fig. 4. Example of 
omputation of α�gapped dL on a sparse matrix. The same
onventions of Figure 3 apply. On the right we show now both two-dimensionalrange sear
h stru
tures, U and L. To solve 
ell (24,39) we take the minimum in therange [24,∞]× [15,∞] on U and [−∞, 24)× [−∞, 15) on L. The area in U is empty,and that in L is virtually empty be
ause we have set old 
olumn 
ell values to ∞.Combining Lemma 1 with the above results, we obtain the following boundsfor the transposition invariant 
ase.Theorem 10 Transposition invariant Levenshtein distan
e dt
L(A, B) 
an be
omputed in O(mn log log m) time. The 
orresponding sear
h problem 
an besolved within the same time bounds. For the 
ase of α�limited gaps, dt,α

L (A, B),26



the time requirements are O(mn log2 m), both for distan
e 
omputation and forsear
hing. The prepro
essing 
ost of Theorem 2 must be added to these bounds.As before, the spa
e 
omplexity is O(m2 log m) plus that of storing the sets
Mt, that is, O(mn) for distan
e 
omputation and O(m2) for sear
hing. Also,the α�limited version 
an be solved using O(αm) spa
e. In 
ase δ > 0, the mnin the 
omplexities be
omes ∑t∈T |M δ

t |.5.4 Episode Mat
hingTo 
on
lude the edit distan
e se
tion we look at the episode mat
hing problemand dt
D distan
e, whi
h have a simple sparse dynami
 programming solution.Re
all that M̄ = M ∪ {(0, 0), (m + 1, n + 1)}, where M is the set of mat
hing
hara
ter pairs. The following lemma for dD is easy to prove using similararguments as in Lemma 3, sin
e the last zero-
ost edge in a path to (i, j) mustbe in row i− 1.Lemma 11 Distan
e dD(A, B) 
an be 
omputed by evaluating di,j for (i, j) ∈

M̄ using the re
urren
e
di,j = min{di−1,j′ + j − j′ − 1 | j′ < j, (i− 1, j′) ∈ M̄}, (6)with initialization d0,0 = 0. Value dm+1,n+1 equals dD(A, B).Consider an algorithm that traverses the mat
h set M̄ in reverse 
olumn�by�
olumn order. We maintain for ea
h row i′ a value d(i′) that gives the minimum

di′,j′− j′ value seen so far in that row among pairs (i′, j′) ∈ M̄ . First, initialize
d(0) = 0 and d(i) = ∞ for 1 ≤ i ≤ m. Let (i, j) ∈ M̄ be the 
urrent pairwhose value we need to evaluate. Then d = di,j 
an simply be 
omputed as
d = j − 1 + d(i − 1), sin
e j − 1 + d(i − 1) = j − 1 + min{di−1,j′ − j′ | j′ <
j, (i − 1, j′) ∈ M̄} (
ondition j′ < j holds be
ause (i, j) pre
edes (i− 1, j) inreverse 
olumn�by�
olumn order). After d = di,j is 
omputed, we 
an safelyupdate the row minimum d(i) = min(d(i), d− j). The algorithm takes overall
O(|M̄ |) = O(r) time.The above algorithm generalizes to the sear
h problem (that is, to episodemat
hing) by impli
itly 
onsidering all values d0,j as zero for all j. That is,
d(0) is assumed to be j − 1 if a 
ell d1,j is being pro
essed. The problem of
α�limited gaps 
an also be handled easily. Let c(i− 1) give the last 
olumn j′where d(i−1) has been updated (even if its value stayed the same). One easilynoti
es that c(i−1) is always the last mat
h (i−1, j′) seen so far in that row.Therefore, we simply avoid updating d(i) as de�ned when j−c(i−1)−1 > α.In this 
ase we set d(i) =∞. Using Lemma 1 we get the following result.27



Theorem 12 The transposition invariant 
omputation of distan
e dt
D(A, B),as well as transposition invariant episode mat
hing, 
an be solved in O(mn)time. The same bound applies in the 
ase of α�limited gaps. The prepro
essing
ost of Theorem 2 must be added to these bounds.Note again that the algorithm needs only O(m) spa
e, but the overall spa
e is

O(mn), be
ause of the need to store the transpositions. It is interesting thatin this 
ase we 
annot redu
e the spa
e to O(m2) for the sear
h problem, as itis not true anymore that the previous m 
olumns de�ne the matrix 
ontents.On the other hand, in the 
ase of α�limited gaps we still 
an use O(αm) spa
e.6 Transposition Invariant Hamming Distan
e and VariantsSo far we have seen that sparse dynami
 programming is the key in solvingtransposition invariant distan
e 
omputation problems. It 
ould be used tosolve other simpler distan
es su
h as Hamming distan
e. However, for su
hsimpler distan
e measures, it is possible to �nd the optimal transposition di-re
tly, and do the distan
e 
omputation only for that transposition. To demon-strate this, we 
onsider in this se
tion the 
omputation of some error tolerantversions of Hamming, SAD and MAD distan
es, where the strings are alignedposition-wise (ai with bi) and hen
e have the same length.For this se
tion, let us rede�ne T = {ti = bi − ai | 1 ≤ i ≤ m} as the setof transpositions that make some 
hara
ters ai and bi mat
h. Note that theoptimal transposition does not need, in prin
iple, to be in
luded in T, but wewill show that this is the 
ase for dt
H and dt,κ

SAD. Note also that |T| = O(|Σ|)on an integer alphabet and |T| = O(m) in any 
ase.6.1 Hamming Distan
eLet A = a1 . . . am and B = b1 . . . bm, where ai, bi ∈ Σ for 1 ≤ i ≤ m.We 
onsider the 
omputation of transposition invariant Hamming distan
e
dt,δ

H (A, B). That is, we sear
h for a transposition t maximizing the size of set
{i | |bi − (ai + t)| ≤ δ, 1 ≤ i ≤ m}.Theorem 13 Given two numeri
 strings A and B, both of length m, thereis an algorithm for 
omputing distan
e dt,δ

H (A, B) in O(|Σ| + m) time on aninteger alphabet, or in O(m logm) time on a general alphabet.PROOF. It is 
lear that the Hamming distan
e is minimized for the trans-position in T that makes the maximum number of 
hara
ters mat
h. What28



follows is a simple voting s
heme, where the most voted transposition wins.Sin
e we allow a toleran
e δ in the mat
hed values, ti votes for range
[ti − δ, ti + δ]. Constru
t sets S = {(ti − δ, �open�) | 1 ≤ i ≤ m} and
E = {(ti + δ, �
lose�) | 1 ≤ i ≤ m}. Sort S ∪E into a list I using order

(x′, y′) <H (x, y) if x′ < x or (x′ = x and y′ < y),where �open�<�
lose�. Initialize variable count = 0. Do for i = 1 to |I| if I(i) =
(x, �open�) then count = count+1 else count = count−1. Let maxcount be thelargest value of count in the above algorithm. Then 
learly dt,δ

H (A, B) = m−
maxcount, and the optimal transposition is any value in the range [xi, xi+1],where I(i) = (xi, ∗), for any i where maxcount is rea
hed. The 
omplexity ofthe algorithm is O(m log m). Sorting 
an be repla
ed by array lookup when Σis an integer alphabet, whi
h gives the bound O(|Σ|+ m) for that 
ase. 26.2 Sum of Absolute Di�eren
es Distan
eWe shall �rst look at the basi
 
ase where κ = 0. That is, we sear
h for atransposition t minimizing dSAD(A + t, B) =

∑m
i=1 |bi − (ai + t)|.Theorem 14 Given two numeri
 strings A and B, both of length m, there isan algorithm for 
omputing distan
e dt

SAD(A, B) in O(m) time on both integerand general alphabets.PROOF. Let us 
onsider T as a multiset, where the same element 
an repeatmultiple times. Then |T| = m, sin
e there is one element in T for ea
h bi− ai,where 1 ≤ i ≤ m. Sorting T in as
ending order gives a sequen
e ti1 ≤ ti2 ≤
. . . ≤ tim . Let topt be the optimal transposition. We will prove by indu
tion that
topt = ti⌊m/2⌋+1

, that is, the optimal transposition is the median transpositionin T.To start the indu
tion we 
laim that ti1 ≤ topt ≤ tim . To see this, noti
e that
dSAD(A + (ti1 − ǫ), B) = dSAD(A + ti1 , B) + mǫ, and dSAD(A + (tim + ǫ), B) =
dSAD(A + tim , B) + mǫ, for any ǫ ≥ 0.Our indu
tion assumption is that tik ≤ topt ≤ tim−k+1

for some k. We mayassume that tik+1
≤ tim−k

, sin
e otherwise the result follows anyway. Firstnoti
e that, independently of the value of topt in the above interval, the 
ost
∑k

l=1 |bil − (ail + topt)| +
∑m

l=m−k+1 |bil − (ail + topt)| will be the same. Thennoti
e that∑m−k
l=k+1 |bil−(ail +tik+1

−ǫ)| = ∑m−k
l=k+1 |bil−(ail +tik+1

)|+(m−2k)ǫ,and ∑m−k
l=k+1 |bil − (ail + tim−k

+ ǫ)| = ∑m−k
l=k+1 |bil − (ail + tim−k

)| + (m − 2k)ǫ.This 
ompletes the indu
tion, sin
e we showed that tik+1
≤ topt ≤ tim−k

.29



The 
onsequen
e is that tik ≤ topt ≤ tim−k+1
for maximal k su
h that tik ≤

tim−k+1
, that is, k = ⌈m/2⌉. When m is odd, it holds m− k + 1 = k and thereis only one optimal transposition, ti⌈m/2⌉

. When m is even, one easily noti
esthat all transpositions topt, tim/2
≤ topt ≤ tim/2+1

, are equally good. Finally, themedian 
an be found in linear time [4℄. 2To get a fast algorithm for dt,κ
SAD when κ > 0 largest di�eren
es 
an be dis-
arded, we need a lemma that shows that the distan
e 
omputation 
an bein
rementalized from one transposition to another. Let ti1 , ti2 , . . . , tim be thesorted sequen
e of T.Lemma 15 On
e values Sj and Lj su
h that dSAD(A + tij , B) = Sj + Lj,

Sj =
∑j−1

j′=1 tij − tij′ , and Lj =
∑m

j′=j+1 tij′ − tij , are 
omputed, the values of
Sj+1 and Lj+1 
an be 
omputed in O(1) time.PROOF. Value Sj+1 
an be written as

Sj+1 =
j
∑

j′=1

tij+1
− tij′ =

j
∑

j′=1

tij+1
− tij + tij − tij′ = j(tij+1

− tij ) + Sj.Similar rearranging gives
Lj+1 =

m
∑

j′=j+2

tij′ − tij+1
= (m− j)(tij − tij+1

) + Lj .Thus both values 
an be 
omputed in 
onstant time given the values of Sjand Lj (and tij+1
). 2Theorem 16 Given two numeri
 strings A and B both of length m, there isan algorithm for 
omputing distan
e dt,κ

SAD(A, B) in O(m + κ log κ) time onboth integer and general alphabets. On integer alphabets, time O(|Σ|+ m + κ)
an also be obtained.PROOF. Consider the sorted sequen
e ti1 , ti2, . . . , tim as in the proof of The-orem 14. Clearly the 
andidates for the κ outliers (largest di�eren
es) are
M(k′, k′′) = {ti1, . . . , tik′ , tim−k′′+1

, . . . tim} for some k′ + k′′ = κ. The naive al-gorithm is then to 
ompute the distan
e in all these κ + 1 
ases: Computethe median of T \M(k′, k′′) for ea
h k′ + k′′ = κ and 
hoose the minimumdistan
e indu
ed by these medians. These κ + 1 medians 
an be found asfollows: First sele
t values tκ+1 and tm−κ using the linear time sele
tion al-gorithm [4℄. Then 
olle
t and sort all values smaller than tκ+1 or larger than30



tm−κ. After sele
ting the median m0,κ of T \M(0, κ) and mκ,0 of T \M(κ, 0),one 
an 
olle
t all medians mk′,k′′ of T \M(k′, k′′) for k′ + k′′ = κ, sin
e the
mk′,k′′ values are those between m0,κ and mκ,0. The κ + 1 medians 
an thusbe 
olle
ted and sorted in O(m + κ log κ) time, and the additional time to
ompute the distan
es for all of these κ + 1 medians is O(κm). However, the
omputation of distan
es given by 
onse
utive transpositions 
an be in
re-mentalized using Lemma 15. First one has to 
ompute the distan
e for themedian of T \M(0, κ), dSAD(A + m0,κ, B), and then 
ontinue in
rementallyfrom dSAD(A+mk′,k′′, B) to dSAD(A+mk′+1,k′′−1, B), until we rea
h the medianof T \M(κ, 0), dSAD(A + mκ,0, B) (this is where we need the medians sorted).Sin
e the set of outliers 
hanges when moving from one median to another,one has to add value tik′ − tim to Sm and value tim − tik′′ to Lm, where Smand Lm are the values given by Lemma 15 (here we need the outliers sorted).The time 
omplexity of the whole algorithm is O(m + κ log κ). On an integeralphabet, sorting 
an be repla
ed by array lookup to yield O(|Σ|+m+κ). 26.3 Maximum Absolute Di�eren
e Distan
eWe 
onsider now how dt,κ

MAD 
an be 
omputed. In 
ase κ = 0, we sear
h fora transposition t minimizing dMAD(A + t, B) = maxm
i=1 |bi − (ai + t)|. In 
ase

κ > 0, we are allowed to dis
ard the k largest di�eren
es |bi − (ai + t)|.Theorem 17 Given two numeri
 strings A and B both of length m, there isan algorithm for 
omputing distan
e dt,κ
MAD(A, B) in O(m + κ log κ) time onboth integer and general alphabets. On integer alphabets, time O(|Σ|+ m + κ)
an also be obtained.PROOF. When κ = 0 the distan
e is 
learly dt

MAD(A, B) = (maxi{ti} −
mini{ti})/2, and the transposition giving this distan
e is (maxi{ti} +
mini{ti})/2. When κ > 0, 
onsider again the sorted sequen
e ti1 , ti2 , . . . , timas in the proof of Theorem 14. Again the κ outliers are M(k′, k′′) for some
k′+k′′ = κ in the optimal transposition. The optimal transposition is then thevalue (tim−k′′

+ tik′+1
)/2 that minimizes (tim−k′′

− tik′+1
)/2, where k′ + k′′ = κ.The minimum value 
an be 
omputed in O(κ) time, on
e the κ + 1 smallestand largest ti values are sorted. These values 
an be sele
ted in O(m) timeand then sorted in O(κ logκ) time, or O(|Σ|+ κ) on integer alphabets. 26.4 Sear
hingUp to now we have 
onsidered distan
e 
omputation. Any algorithm to 
om-pute the distan
e between A and B 
an be trivially 
onverted into a sear
h31



algorithm for P in T by 
omparing P against every text window of the form
Tj−m+1...j. A
tually, we do not have any sear
h algorithm better than this.Lemma 18 For distan
es dt,δ

H , dt,κ
SAD, and dt,κ

MAD, if the distan
e 
an be evalu-ated in O(f(m)) time, then the 
orresponding sear
h problem 
an be solved in
O(f(m)n) time.On the other hand, it is not immediate how to perform transposition invariant
(δ, γ)�mat
hing. We show how the above results 
an be applied to this 
ase.Note that one 
an �nd in O(mn) time all the o

urren
es {j} su
hthat dt

MAD(P, Tj−m+1...j) ≤ δ, and all the o

urren
es {j′} where
dt

SAD(P, Tj′−m+1...j′) ≤ γ. The (δ, γ)�mat
hes are a subset of {j} ∩ {j′}, butidentity does not ne
essarily hold. This is be
ause the optimal transposition
an be di�erent for dt
MAD and dt

SAD.What we need to do is to verify this set of possible o

urren
es {j} ∩ {j′}.This 
an be done as follows. For ea
h possible mat
h j′′ ∈ {j} ∩ {j′} one 
an
ompute limits s and l su
h that dMAD(P +t, Tj′′−m+1...j′′) ≤ δ for all s ≤ t ≤ l:If the distan
e d = dMAD(P + topt, Tj′′−m+1...j′′) is given, then s = topt− (δ− d)and l = topt+(δ−d). On the other hand, note that dSAD(P +t, Tj′′...j′′+m−1), asa fun
tion of t, is de
reasing until t rea
hes the median of the transpositions,and then in
reasing. Thus, depending on the relative order of the median ofthe transpositions with respe
t to s and l, we only need to 
ompute distan
e
dSAD(P + t, Tj′′−m+1...j′′) in one of them (t = s, t = l, or t = t⌈m/2⌉). This givesthe minimum value for dSAD in the range [s, l]. If this value is ≤ γ, we havefound a mat
h.One 
an see that using the results of Theorems 14 and 17 with κ = 0, theabove pro
edures 
an be implemented so that only O(m) time at ea
h possibleo

urren
e is needed. There are at most n o

urren
es to test.Theorem 19 Given two numeri
 strings P (pattern) and T (text) of lengths
m and n, there is an algorithm for �nding all the transposition invariant (δ, γ)�o

urren
es of P in T in O(mn) time on both integer and general alphabets.7 Con
lusions and Future WorkWe have studied two te
hniques for solving transposition invariant stringmat
hing problems. The �rst te
hnique, appli
able to several �edit distan
e�measures, 
onsidered all the possible transpositions. However, sin
e mosttranspositions produ
e sparse instan
es of the edit distan
e matrix, spe
ializedalgorithms 
ould be used to solve these sparse instan
es e�
iently. These kind32



of algorithms already existed in the literature. We devised improved sparsedynami
 programming algorithms in those 
ases (for example LCS and Lev-enshtein distan
e), as well as new ones when they did not exist (for exampleepisode mat
hing and α�limited gaps in all the distan
es). The problem ofmat
hing with α�limited gaps most 
learly demonstrated the 
onne
tion be-tween sparse dynami
 programming and range-minimum sear
hing.The se
ond te
hnique was to dire
tly identify the optimal transposition and
ompute the distan
e in that transposition. This identi�
ation was shown to bee�
iently 
omputable for several distan
e measures where the i-th 
hara
terof one string is 
ompared only against the i-th 
hara
ter of the other.In general, we found that in
luding transposition invarian
e in the studieddistan
es in
reases the time 
omplexity only slightly, usually by a polyloga-rithmi
 fa
tor.To demonstrate the pra
ti
ality of the developed methods, we implemented thetransposition invariant LCS algorithm. This implementation is now in
ludedin the C-Brahms musi
 retrieval engine [6℄.An interesting remaining question is whether the log fa
tors 
ould be avoidedto a
hieve O(mn) for transposition invariant edit distan
es. For episode mat
h-ing we a
hieved the O(mn) bound, ex
ept that the prepro
essing 
an (in veryun
ommon situations on general alphabets) take O(mn log m + n log n) time.Independently, it would be ni
e to redu
e prepro
essing time to O(mn), so thatit 
an never a�e
t the real dynami
 programming 
omplexities. The bottlene
kis in sorting mn values of the form bj−ai, on
e the {ai} and the {bj} sequen
es,of length n and m, have been sorted. We 
ould do it in O(mn log min(m, n))time, but maybe it 
an be done better. Also, the spa
e needed to arrangethe transpositions for distan
e 
omputation is O(mn). We have been able toredu
e all the other spa
e 
omplexities to small polynomials in m, so it wouldbe interesting to do the same with the transpositions. We tried, with no result,to mix generation and pro
essing of the 
ells. The problem is that there maybe too many a
tive transpositions at any time.Also, we are 
on�dent that the sear
h times for the easier measures that westudied 
an be improved at least in the average 
ase. For the edit distan
e mea-sures, algorithms that depend on the minimum (transposition invariant) dis-tan
e 
an be derived. For example, an algorithm that pro
esses only diagonalareas of the dynami
 programming matrix [36℄ 
an be generalized to give timebounds like O(|T|dn), where T is the set of transpositions and d = dt
∗(A, B).This 
an be 
ombined with the sparse evaluation to get an algorithm that isfast both in pra
ti
e and in the worst 
ase, O(dn log log m). The 
hallenge isto derive a similar bound for the sear
h problem.Finally, a more ambitious goal is to handle more general distan
e fun
tions,33



su
h as edit distan
es with substitution 
osts of the form |bj−ai|. Other relatedmodels are dis
ussed in [33℄.A
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