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We introduce a compression technique for suffix arrays. It is sensitive to the compressibility of the

text and local, meaning that random portions of the suffix array can be decompressed by accessing
mostly contiguous memory areas. This makes decompression very fast, especially when various

contiguous cells must be accessed.

Our main technical contributions are the following. First, we show that runs of consecutive
values that are known to appear in function Ψ(i) = A−1[A[i]+1] of suffix arrays A of compressible

texts also show up as repetitions in the differential suffix array A′[i] = A[i] − A[i − 1]. Second,

we use Re-Pair, a grammar-based compressor, to compress the differential suffix array, and upper
bounds its compression ratio in terms of the number of runs. Third, we show how to compact the

space used by the grammar rules by up to 50%, while still permitting direct access to the rules.

Fourth, we develop specific variants of Re-Pair that work using knowledge of Ψ, and use much less
space than the general Re-Pair compressor while achieving almost the same compression ratios.

Fifth, we implement the scheme and compare it exhaustively with previous work, including the

first implementations of previous theoretical proposals.

Categories and Subject Descriptors: F.2.2 [Analysis of algorithms and problem complexity]:
Nonnumerical algorithms and problems—Pattern matching, Computations on discrete structures,

Sorting and searching; H.2.1 [Database management]: Physical design—Access methods; H.3.2

[Information storage and retrieval]: Information storage—File organization; H.3.3 [Infor-
mation storage and retrieval]: Information search and retrieval—Search process

General Terms: Algorithms

Additional Key Words and Phrases: Compressed suffix arrays, Re-Pair, Text databases

1. INTRODUCTION

Suffix trees [Weiner 1973; McCreight 1976] and suffix arrays [Gonnet et al. 1992;
Manber and Myers 1993] are probably the most important data structures in
stringology, with myriad widely recognized virtues and applications [Apostolico
1985; Gusfield 1997; Crochemore and Rytter 2002]. Their most serious drawback is
their space usage. Over a text T [1, n] = t1t2 . . . tn on alphabet [1, σ], which can be
represented within ndlg σe bits, these structures require Θ(n lg n) bits. In practice,
suffix trees are 10 to 20 times larger than the text [Kurtz 1998], whereas suffix
arrays are at least 4 times larger.

A suffix array is essentially a permutation A[1, n] listing all the suffixes T [i, n] =
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titi+1 . . . tn in lexicographic order. A suffix tree is a trie (or digital tree) storing all
those suffixes, and its leaves correspond to the suffix array. Suffix trees are more
powerful than suffix arrays, but it has been shown that suffix trees can be repre-
sented using little extra space on top of the corresponding suffix array [Kärkkäinen
1995; Abouelhoda et al. 2004; Sadakane 2007; Fischer et al. 2009; Fischer 2010;
Russo et al. 2011]. Representing the suffix array is thus the main memory bot-
tleneck, and the focus of this paper. We seek to compress the suffix array in a
way that it can still be accessed at random positions in compressed form (a plain
compression per se is meaningless, as the suffix array can in principle be derived
from the compressed text).

Two of the most basic functionalities offered by suffix arrays are counting and
locating. Counting refers to computing the number of times a pattern P [1,m]
appears in T . This is done by identifying the area A[sp, ep] where the suffixes
start with P ; then P appears ep − sp + 1 times in T . This can be done in time
O(m lg n) over a plain representation of A, via two binary searches (this decreases
to O(m + lg n) if using more space than the bare permutation, and O(m) if using
a suffix tree). Locating refers to giving the positions where P appears in T . This
is done by listing the values A[i], sp ≤ i ≤ ep, and can be done in O(1) time per
occurrence on a plain representation of A.

Current compressed suffix arrays achieve a counting performance that is com-
parable, in theory and in practice, with that of plain suffix arrays [Navarro and
Mäkinen 2007; Ferragina et al. 2009; Belazzougui and Navarro 2011]. Locating, on
the other hand, is far behind, hundreds to thousands of times slower than the plain
structure. While the plain suffix array requires O(1) time (just a memory access) to
compute the value of a cell A[i], most compressed representations require O(lgε n)
time, where ε is in practice larger than 1. Worse than that, the memory access
patterns of the compressed solutions are highly non-local.

In this paper we propose a new suffix array compression technique we dub lo-
cally compressed suffix array (LCSA), based on grammar compression. The LCSA
requires O(ρ(1 + lg n

ρ ) lg n + n lg1−ε n) bits, where ρ ≤ n is the number of runs

in A. This measure [Mäkinen and Navarro 2005; Navarro and Mäkinen 2007] is
smaller as T is more compressible. The LCSA can extract any c consecutive cells
A[i, i+ c− 1] in time O(c+ lgε n lg lg n). Being faster to extract consecutive cells is
relevant, in particular, when displaying the c = ep−sp+ 1 occurrences of a pattern
P in A[sp, ep].

In practice, the LCSA is shown to reduce the suffix array to as little as 25%
of its original size, depending on the compressibility of the text type. Using the
same space, the LCSA is much faster than alternative compressed suffix arrays for
accessing more than a few consecutive cells (c > 2–6). Compared to a plain suffix
array, accessing the LCSA is about 10 times slower. Its local decompression makes
the LCSA a good candidate to be deployed on disk as well.

In technical terms, our contributions are the following:

(1) We design a suffix array compression scheme that builds on well-known reg-
ularity properties that show up in suffix arrays when the text they index is
compressible (more precisely, the so-called runs [Mäkinen and Navarro 2005] of
the suffix array). These regularities have been exploited in several ways in the

ACM Journal Name, Vol. V, No. N, Month 20YY.



· 3

past [Mäkinen 2003; Grossi and Vitter 2005; Grossi et al. 2003; Sadakane 2003;
Mäkinen and Navarro 2005; Mäkinen et al. 2010], but we present a completely
novel technique to take advantage of it. We represent the suffix array using dif-
ferential encoding, which converts the regularities into true repetitions. Those
repetitions are then factored out using Re-Pair [Larsson and Moffat 2000], a
grammar-based compression technique that offers fast local decompression.

(2) By studying the connection between the repetitions in the differential suffix
array and the runs in A, we prove that the application of Re-Pair to the dif-
ferential suffix array leads to O(ρ lg n

ρ ) elements in the compressed sequence,
which is the key to the space analysis of the LCSA.

(3) We introduce a representation of the Re-Pair rules that reduces their space to
up to 50%, while retaining direct access to rules.

(4) We use specific suffix array properties to use less space than Re-Pair to com-
press. Our technique deviates from Re-Pair by using Ψ to guide the formation
of rules. We prove that this method obtains the same asymptotic performance
of Re-Pair and that, in practice, it loses at most 5% of compression ratio.

(5) We implement the LCSA and exhaustively study its practical behavior. We also
compare it with various alternative compressed suffix arrays, some of which are
already implemented, while for others we provide their first implementation.

Obtaining compressed indexes able to count in competitive time was the first
important breakthrough in this area. We believe our work is a first important step
towards compressed indexes with practical locating times. This is up to date the
major concern for adopting compressed indexes in practical applications.

This paper is organized as follows. In Section 2 we review the related work on
compressed suffix arrays and put our contribution in context. In Section 3 we
describe our LCSA. In Section 4 we carry out several experimental tunings and
comparisons with alternative plain and compressed suffix arrays. In Section 5
we give our conclusions and future work directions. A theoretical analysis of the
compression achieved by the LCSA is given in Appendix A.

2. RELATED WORK

One of the earliest attempts to compress suffix arrays was to sample some of their
entries. A regular text sampling [Kärkkäinen and Ukkonen 1996b] only stores the
suffixes that start at a position multiple of q. This reduces the suffix array space
to O((n/q) lg n) and still can count and locate the occurrences of any pattern of
length q or more. By choosing a more sophisticated text sampling [Kärkkäinen and
Ukkonen 1996a], patterns of any length can be handled, and the suffix array space
is O(n lg σ) bits, that is, of the same order required for the plain storage of T . Other
samplings have been proposed, see for example Claude et al. [2012]. While adequate
for the basic counting and locating tasks, these sampling approaches are unable to
retrieve a random cell A[i] of the suffix array, and thus cannot be used in more
complex scenarios where suffix arrays are useful (for example, regular expression
search [Baeza-Yates and Gonnet 1996] or approximate search [Ukkonen 1993] on
suffix trees, which can be run on suffix arrays).

The first complete representation of suffix arrays (i.e., able to return any cell A[i])
achieving reduced space was proposed by Grossi and Vitter [2000; 2005]. They
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achieve ( 1
ε + O(1))n lg σ bits of space and can access any suffix array cell in time

O(lgεσ n). In addition, they support counting in time O( m
lgσ n

+lgεσ n). Shortly after,

Rao [2002] used a similar scheme to obtain a range of space/time tradeoffs, using

O((t lg1/t
σ n)n lg σ) bits and accessing any cell in time O(t), for any 1 ≤ t ≤ lg lgσ n

(see Appendix D for this analysis on a general alphabet).
Mäkinen [2000; 2003] pioneered the opportunistic compression of suffix arrays,

that is, compression schemes that use less space on compressible texts. Here it is
useful to define function Ψ(i) = A−1[(A[i] mod n)+1], which is another permutation
that we will use later. A run is a maximal contiguous subsequence of A with
consecutive Ψ values. On a random text, A is covered by ρ = Θ(n) runs, but on a
compressible text, ρ can be much lower [Mäkinen and Navarro 2005; Mäkinen et al.
2010]. It was shown [Navarro and Mäkinen 2007] that the technique of Mäkinen
[2000; 2003] uses 2ρ lg n+O(n lg1−ε n) bits and can access any cell in time O(lg2ε n)
(by setting its parameters to C = D = lgε n). It can count in time O(m lg n). Value
ρ can be upper bounded with ρ ≤ min(n, nHk+σk) for any k [Mäkinen and Navarro
2005], but it can be much smaller. Here Hk is the k-th order empirical entropy of
T , a measure of its statistical compressibility [Manzini 2001]: for any k > 0 it holds
Hk ≤ H0 ≤ lg σ.

Almost simultaneously, Ferragina and Manzini [2000; 2005] proposed the first
compressed self-index, which is a compressed suffix array that can also reproduce
any substring of T . On constant-size alphabets, the structure uses O(nHk) +
O(n/ lgε n) bits for any k ≤ α lgσ n and constant 0 < α < 1. The structure can
retrieve any entry of A in time O(lgε n). It uses a novel technique for determining
the range [sp, ep] that allows it to count in time O(m). A later generalization for
general alphabets [Ferragina et al. 2007; Belazzougui and Navarro 2011] reached
nHk + O(n lg σ/ lgε n) bits of space, O(m) counting time, and O(lg1+ε n) time to
access any cell.

The structure of Grossi and Vitter [2000] also evolved into a compressed self-
index. Sadakane [2000; 2003] obtained 1

εnH0 + O(n lgH0) bits and O(lgε n) time
to access a cell, and O(m lg n) counting time. Grossi et al. [2003] improved the
representation and achieved various tradeoffs. One requires (1+ 1

ε )nHk+O(n) bits
andO(lgεσ n+lg σ) time to access a cell. A faster one requires nHk lg lgσ n+O(n) bits
and O(lg lgσ n+ lg σ) access time, and a smaller one requires nHk +O(n lg σ/ lgε n)
bits and O(lg1+ε n) access time. Counting times are O(m/ lgσ n+ polylog(n)).

Our LCSA uses O(ρ lg n
ρ lg n) bits, plus a sampling using O(n lg1−ε n) bits, for

any ε > 0. It retrieves any cell in time O(lgε n lg lg n), and c consecutive cells
in time O(c + lgε n lg lg n). Table I summarizes all the complexities and puts our
contribution in (theoretical) context.

3. THE LOCALLY COMPRESSED SUFFIX ARRAY (LCSA)

In this section we describe our LCSA data structure. The theoretical analysis of
its space usage is given in Appendix A.

3.1 Technical Preliminaries

Given a text T = t1 . . . tn over alphabet Σ of size σ, where for technical reasons we
assume tn = $ is smaller than any other character in Σ and appears nowhere else
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Source Space in bits Access time

[Manber and Myers 1993] n lgn O(1)

[Grossi and Vitter 2000; 2005] ( 1
ε

+O(1))n lg σ O(c · 1
ε

lgεσ n)

[Rao 2002] O(t lg
1/t
σ n)n lg σ O(c · t)

[Mäkinen 2000; 2003] 2ρ lgn+O(n lg1−ε n) O(c · lg2ε n)

[Ferragina and Manzini 2000; 2005] O(nHk) +O(n/ lgε n) O(c · lgε n)

[Ferragina et al. 2007] nHk +O(n lg σ/ lgε n) O(c · lg1+ε n)

[Sadakane 2003] 1
ε
nH0 +O(n lgH0) O(c · lgε n)

[Grossi et al. 2003] (1 + 1
ε
)nHk +O(n) O(c(lgεσ n+ lg σ))

nHk lg lgσ n+O(n) O(c(lg lgσ n+ lg σ))
nHk +O(n lg σ/ lgε n) O(c · lg1+ε n)

LCSA O(ρ lg n
ρ

lgn+ n lg1−ε n) O(c+ lgε n lg lgn)

Table I. Plain and compressed suffix arrays, with their space in bits and time to access c consecutive

cells. Here ρ ≤ n is the number of runs in A, and ε > 0 and 1 ≤ t ≤ lg lgn are parameters. The

complexities for Ferragina and Manzini [2000; 2005] hold only for fixed alphabets, σ = O(1).

in T , a suffix array A[1, n] is a permutation of [1, n] such that TA[i],n ≺ TA[i+1],n for
all 1 ≤ i < n, being “≺” the lexicographical order. By Tj,n we denote the suffix of
T that starts at position j. Since all the occurrences of a pattern P = p1 . . . pm in
T are prefixes of some suffix, a couple of binary searches in A suffice to identify the
segment in A of all the suffixes that start with P , that is, the segment pointing to all
the occurrences of P . Thus the suffix array permits counting the occurrences of P
in O(m lg n) time and reporting the c occurrences in O(c) time. With an additional
array of integers, the counting time can be reduced to O(m + lg n) [Manber and
Myers 1993].

Suffix arrays turn out to be compressible whenever T is. The compressibility of
T shows up in A, in particular, in the form of long segments A[i, i+ `] that appear
elsewhere in A[j, j+`] with all the values shifted by one position. One can partition
A into ρ runs of maximal segments that appear repeated (shifted by 1) elsewhere.

Definition 1. A run in the suffix array A of T is a maximal segment A[i, i+ `]
such that there exists another segment A[j, j + `], j 6= i, such that A[j + s] =
A[i + s] + 1 for all 0 ≤ s ≤ `. We define ρ ≤ n as the minimum number of runs
into which A can be partitioned.

Our definition of run is closely related to the definition of “runs in Ψ”, for function
Ψ(i) = A−1[(A[i] mod n) + 1] [Grossi and Vitter 2005], which is widely used in
compressed text indices [Navarro and Mäkinen 2007]. A run in Ψ is a maximal
area Ψ(i, i+ `) where Ψ contains consecutive values.

Definition 2. A run in function Ψ of A is a maximal segment Ψ(i, i+ `) such
that Ψ(i+ s) = Ψ(i+ s− 1) + 1 for all 1 ≤ s ≤ `.

Lemma 1. Runs in A are runs in Ψ and vice versa.

Proof. Let A[i, i+`] be a run in A. Then there exists another segment A[j, j+`],
j 6= i, such that A[j + s] = A[i + s] + 1 for all 0 ≤ s ≤ `. Thus Ψ(i + s) = j + s
for all 0 ≤ s ≤ `. Then Ψ(i + s) − Ψ(i + s − 1) = (j + s) + (j + s − 1) = 1 for all
1 ≤ s ≤ ` and thus Ψ(i, i+`) is a run in Ψ. Conversely, if Ψ(i+s) = Ψ(i+s−1)+1
for all 1 ≤ s ≤ `, then A[j+ s] = A[i+ s] + 1 for j = Ψ(i) for all 0 ≤ s ≤ ` and thus
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A[i, i+ `] is a run in A. Note that the value i such that Ψ(i) = 1 can only appear
at the beginning of a run in Ψ.

The k-th order empirical entropy of T , Hk [Manzini 2001], is the minimum num-
ber of bits per symbol emitted by a statistical compressor that encodes each symbol
of T with a code that depends only on the symbol and the k symbols that precede
it. It is used to measure the performance of various text compressors and com-
pressed text indexes. Interestingly, it has been shown that this measure is related
to the number of runs in Ψ by the upper bound ρ ≤ nHk + σk for any k [Mäkinen
and Navarro 2005; Navarro and Mäkinen 2007]. Yet, especially on repetitive texts,
ρ can be much smaller [Mäkinen et al. 2010].

The runs in Ψ have been used several times in the past to compress A. Mäkinen’s
Compact Suffix Array (CSA) [Mäkinen 2003] replaces runs with pointers to their
definition (copy) elsewhere in A, so that the run can be recovered by (recursively)
expanding its definition and shifting the values. Mäkinen and Navarro [2005] use
the connection with FM-indexes (runs in A are related to equal-letter runs in the
Burrows-Wheeler transform of T , a basic building block of FM-indexes) and run-
length compression. Various other authors have run-length compressed Ψ directly
[Grossi et al. 2003; Sadakane 2003; Mäkinen et al. 2010].

3.2 Basic LCSA Idea

We present a completely different method to compress A based on its runs. We
first represent A in differential form A′:

Definition 3. Let A[1, n] be an array of integers. Then we define A′[1, n] as
follows: A′[1] = A[1] and A′[i] = A[i]−A[i− 1] for all 1 < i ≤ n.

The next simple lemma shows that runs of A become true repetitions in A′.

Lemma 2. Consider a run of A of the form A[j+s] = A[i+s]+1 for 0 ≤ s ≤ `.
Then A′[j + s] = A′[i+ s] for 1 ≤ s ≤ `.

Proof. A′[j + s] = A[j + s]−A[j + s− 1] = (A[i+ s] + 1)− (A[i+ s− 1] + 1) =
A[i+ s]−A[i+ s− 1] = A′[i+ s].

We can now exploit those repetitions using any classical compression method. In
particular, we seek a method that allows fast local decompression of A′.

We resort to Re-Pair [Larsson and Moffat 2000], a grammar-based compression
method based on the following algorithm:

(1) Identify the most frequent pair A′[i]A′[i+ 1] in A′, let ab be such pair.

(2) Create a new integer symbol s, larger than all existing symbols in A′, and add
rule s→ ab to a dictionary R.

(3) Replace every occurrence of ab in A by s.1

(4) Iterate until every pair has frequency 1.

The result of the compression algorithm is the dictionary of rules R plus the
sequence C of (original and new) symbols into which A′ has been compressed.

1If a = b it might be impossible to replace all occurrences, e.g. aa in aaa. But, in such case, one

can at least replace each other occurrence in a row.
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Note that R can be easily stored as a vector of pairs: the numbers s assigned start
at n+ 1, which is larger than any possible value in A′ (note A′[1] = A[1] = n is the
largest value in A′), and rule s→ ab can be stored at R[s− n] = a : b.

Any portion of C can be easily decompressed in optimal time and fast in practice.
To decompress C[i], we first check if C[i] ≤ n. If it is, then it is an original symbol
of A′ and we are done. Otherwise, we obtain both symbols from R[C[i] − n], and
expand them recursively (they can in turn be original or created symbols, and so
on). We reproduce u cells of A′ in O(u) time.

As R grows by 2 integers a : b for every new pair, we may stop creating pairs when
the most frequent one appears only twice. R can be further reduced by preempting
the compression process, which trades the size of R for overall compression ratio.

We need a few more structures on top of R and C in order to provide direct
access to the values of A:

—An array S such that S[i] = A[i· l], that is, a sampling of absolute values of A at
regular intervals l.

—A bitmap L[1, n], marking the positions where each symbol of C (which could
represent several symbols of A′) starts in A′.

—o(n) further bits to answer rank queries on L in constant time [Munro 1996;
Clark 1996], where rank(L, i) is the number of 1’s in L[1, i].

With this structure, the algorithm to retrieve A[i, i+ c−1] = A[i, j] is as follows:

(1) If necessary, extend the interval [i, j] to [i′, j′] the minimum necessary so that
a multiple of l is included in [i′, j′]. Note that only i or j must be extended, by
at most bl/2c positions.

(2) Use the mechanism to decompress one symbol in C (described above) to obtain
A′[i′, j′], by expanding C[rank(L, i′), rank(L, j′)]. In practice, if we expand
rules left to right, the last symbol of C needs not be fully expanded.

(3) Use any absolute sample of A included in S[di′/le, bj′/lc] to obtain, using the
differences in A′[i′, j′], the values A[i′, j′].

(4) Return the values in the original requested interval A[i, j].

The overall time complexity of this decompression is the output size plus the
amount we have expanded the interval to include a multiple of l and to expand an
integral number of symbols in C. The former is at most l/2. The latter can be
controlled by limiting the length of any nonterminal to a maximum of d original
symbols. Then the cost to access c contiguous cells is O(l + d+ c).

Operationally, to limit the length of nonterminals, it is sufficient to insert distinct
special symbols at positions multiple of d in T , since Re-Pair will not pair them.

3.3 Compression using Ψ: Algorithm RPΨ0

A weak point of using Re-Pair is its space usage. While it can be implemented
in O(n) time, it requires to store, at the very least, 3 integers per original text
symbol (and at most many more, as it stores several integers per distinct pair in
A′) [Larsson and Moffat 2000]. In this section we introduce a fast approximate
technique specialized in compressing differential suffix arrays A′. We show that Ψ
(which is easily built in O(n) time from A) can be used to obtain a fast compression
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algorithm that requires two integers per original symbol and in practice compresses
almost as well as the original Re-Pair.

Recall that Ψ(i) tells where in A is the value A[i]+1. The idea is that, if A[i, i+`]
is a run such that A[j+s] = A[i+s]+1 for 0 ≤ s ≤ ` (and thus A′[j+s] = A′[i+s]
for 1 ≤ s ≤ `), then Ψ(i+ s) = j+ s for 0 ≤ s ≤ `. Thus, by following permutation
Ψ we have a good chance of finding repeated pairs in A′. The basic idea is to
choose the pairs while following permutation Ψ, cycling several times over A′, until
no further replacements can be done. This does not guarantee to choose the same
pairs of the original Re-Pair, but we expect them to be sufficiently good (we will
later confirm this expectation, both analytically and experimentally).

Data Structures. To compress using Ψ we need two arrays and one bitmap. One
of the arrays is the very same input array A′, which is reused and converted into
the output array C. The other array is Ψ, which is also overwritten. The bitmap
is the output bitmap L. More precisely, we use:

—An array D[1, n], which initially stores the suffix array of text T in differential
form, D[i] = A′[i] for all i. At the end, we compact the valid values of D to
obtain C.

—An array P [1, n], which initially stores the values of function Ψ of text T , P [i] =
Ψ(i), for all i.

—The bitmap L[1, n], where L[i] = 1 indicates that D[i] is a valid value. In the
beginning L[i] = 1 for all i. At the end, L can be preprocessed for rank queries
and is ready for querying.

Note that the dictionary R is produced via appends and never read, thus it does
not need to be maintained in main memory but just output to disk as we compress.

When we replace a pair with a new symbol, array D becomes sparse. A way to
find the next valid symbol in constant time is to maintain the following invariant:
If a valid symbol D[i] is followed by an invalid symbol D[i + 1] (that is, L[i] = 1
and L[i+ 1] = 0), then D[i+ 1] stores the position i′ of the next valid symbol D[i′]
(we use i′ with this meaning, for any i, in the next algorithm description).

In practice, it turns out that, faster than maintaining D[i+1] = i′, is to calculate
i′ = selectnext(L, i), which returns the position of the first 1 in L[i + 1, n] by
scanning the bitmap word-wise.

Algorithm. We make a number of passes over D. Each pass starts at i = 1 (where
value A′[1] = A[1] = n will not be replaced by Re-Pair, as it is unique). For each i
visited along the pass, we set a : b = D[i] : D[i′] and see if a : b = D[P [i]] : D[P [i]′].
If this does not hold, we move on to i← P [i] and read a new pair a : b. If, instead,
equality holds, we start a chain of replacements: We add a new pair s → a : b to
R, make the replacements at i and P [i] (invalidating i′ and P [i]′), and move on to
i← P [i], continuing the replacements until we reach a pair D[P [i]] : D[P [i]′] 6= a : b.
Then we restart the process with i← P [i], looking again for a new pair a : b.

To invalidate position i′ we set L[i′]← 0. Then, if L[i′+1] = 1, we set D[i+1]←
i′ + 1, else we set D[i + 1] ← D[i′ + 1]. This maintains the invariant (if we use
selectnext, setting L[i′] to zero is sufficient). Moreover, let i′ = P [k], then we
set P [k] ← P [P [k]], so that position i′ is skipped in the next pass. We proceed
analogously to invalidate P [i]′.
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Algorithm RPΨ0(D, P , α)

s← n, R← ∅
for i← 1 . . . n do L[i]← 1
n′ ← n

do rep← 0
j ← 1, j′ ← next(j)

do

do i← j, i′ ← j′

while L[P [i]] = 0 do P [i]← P [P [i]]

j ← P [i], j′ ← next(j)

while j 6= 1 and D[i] : D[i′] 6= D[j] : D[j′]
if j 6= 1 then

a : b← D[i] : D[i′], s← s+ 1, R← R ∪ {s→ ab}
D[i]← s, L[i′]← 0, rep← rep+ 1
if L[i′ + 1] = 1 then D[i+ 1]← i′ + 1 else D[i+ 1]← D[i′ + 1] //invalidate

do D[j]← s, L[j′]← 0, rep← rep+ 1

if L[j′+1] = 1 then D[j+1]← j′+1 else D[j+1]← D[j′+1] //invalidate
i← j, i′ ← j′

while L[P [i]] = 0 do P [i]← P [P [i]]

j ← P [i], j′ ← next(j)
while j 6= 1 and a : b = D[j] : D[j′]

while j 6= 1

n′ ← n′ − rep
while (rep > α(n′ + rep))

j ← 1
for i← 1 . . . n do

if L[i] = 1 then D[j]← D[i], j ← j + 1

return (C[1, n′] = D, R, L)

Fig. 1. Algorithm to compress D = A′ using P = Ψ in O(n) time. We use next(j) as a

shorthand for “if L[j+ 1] = 1 then j+ 1 else D[j+ 1]”. Alternatively, we can replace next(j) by
selectnext(L, j) and remove the lines marked “//invalidate”.

We keep running passes over D (using P ) as long as we replace at least αn′ pairs
in a pass, where 0 < α < 1 is a parameter and n′ is the number of valid elements
in D in the previous pass.

Figure 1 shows a more detailed pseudocode. Its main difference with our descrip-
tion is that, instead of keeping track of which is the k such that i′ = P [k] in order
to set P [k]← P [P [k]] when invalidating i′, we defer this action to the next time we
visit i′. Only then we alter P to skip i′, and the amortized complexity is the same.

Cost. Let ni be the number of valid elements of D in the i-th pass, then ni+1 ≤
(1 − α)ni. Since n0 = n, it holds ni ≤ (1 − α)in. The i-th pass costs O(ni) time.
Let k be the number of passes doing more than αn′ replacements (i.e., all but the
last one). The total cost is at most

k∑
i=0

(1− α)in+ (1− α)kn ≤ n
∑
i≥0

(1− α)i + (1− α)kn ≤ 1

α
n = O(n).

Thus our algorithm achieves linear time while requiring only the space for D
(overwritten on A′ and finally leaving there C), for P (overwritten on Ψ), and for
L (which is also needed in the final structure). It is also simple and fast in practice.
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3.4 Stronger Compression based on Ψ: Algorithm RPΨ

The only advantage of using the original Re-Pair is that it yields better compression
and enforces the property that each new rule in the dictionary removes no more
pairs than the previous rule. The latter comes from the fact that the pairs in Re-
Pair are replaced in decreasing order of frequency. This prevents less frequent pairs
to break longer chains of replacements. We now modify the algorithm that uses Ψ to
obtain compression ratios as close to Re-Pair’s as desired, at the expense of O(n lg n)
time complexity (multiplied by a constant that increases as the compression ratio
improves). The key idea is to replace longer chains first.

Algorithm. The algorithm is as follows:

—We make one pass searching for the longest chain of equal pairs obtained by
following Ψ, let f be its length.

—We apply algorithm RPΨ0, yet we only replace the chains of length at least
t0 = δ · f , where 0 < δ < 1 is a parameter.

—We apply algorithm RPΨ0 successively, using t1 = δ · t0, then t2 = δ · t1, and so
on, until ti ≤ γ, which is another parameter. At this point we decrement ti one
by one until we reach ti = 1.

Cost. We already know that the total cost of all passes that replace more than
(1 − α)n′ elements adds up to O(n). The number of passes where we replace less
than (1− α)n′ pairs, on the other hand, is at most lgδ f + γ. This is, lgδ f for the
part where t(·) decreases by a δ fraction, plus γ for the part where t(·) decreases
one by one. Thus the total cost is at most

1

α
n+ (lgδ f + γ) n.

Now, if we choose a constant s, α = 1/(s· lg n), and γ = lg n, the total time is
O(n lg n). Choosing other values of s, δ and γ we obtain better complexities, but
worsen the compression quality. Within O(n lg n) complexity, we can improve the
compression ratio by tuning constants δ and s.

3.5 Compressing the Dictionary

We now develop a technique to reduce the size of the representation of the dictio-
nary of rules R. This can be of independent interest for Re-Pair in general. Good
compression techniques for R do exist [Larsson and Moffat 2000] and perform much
better than ours. However, they are not comparable. Ours is not just a compressed
representation of R, but a compressed data structure, that is, it gives direct access to
any rule of R without “decompressing” the representation. A compressed represen-
tation of rules is useful for decompressing the whole sequence, while a compressed
data structure fits our purpose of accessing C at random positions.

We start with the observation that, if we have a rule s → ab and s is only
mentioned in another rule s′ → sc, then we could perfectly remove rule s→ ab and
rewrite s′ → abc. This gives a net gain of one integer, but now we have rules of
varying length. This is easy to manage, but we prefer to go further. We develop a
technique that permits eliminating every rule definition that is used within R, once
or more, and gain one integer for each such rule eliminated.
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The key idea is to write down explicitly the topology of the binary tree formed by
expanding the definitions (by doing a preorder traversal and writing 1 for internal
nodes and 0 for leaves), so that not only the largest symbol (tree root) can be
referenced later, but also any subtree.

Representation. Initially, each rule s → ab is seen as a small forest with one
internal node (s) and two leaves (a and b). The described preorder traversal of
such a small tree yields the binary representation 100, and the sequence of leaves
ab. The binary representations are concatenated in a bitmap RB and the leaves in
a sequence RS . Nonterminals will be identified with the position of their 1 in RB ,
and their representation finishes when, starting at their first 1 and scanning to the
right, we see one more 0 than 1s. The 0s in RB are in one-to-one correspondence
with the positions in RS .

For example, consider the rules R = {s→ ab, t→ sc, u→ ts}, and C = tub. We
first represent the rules by the bitmap RB = 100100100 (where s corresponds to
position 1, t to 4, and u to 7) and the sequence RS = ab1c41 (we are using letters
for the original symbols of A′, to distinguish them from the bitmap positions that
describe the nonterminals). We express C as 47b. To expand, say, 4, we go to
position 4 in RB and compute rank0(RB , 4) = 2 (i.e., the number of zeros up to
position 4, rank0(RB , i) = i − rank(RB , i)). Thus the corresponding symbols in
RS start at position 2 + 1 = 3. We extract one new symbol from RS for each new
zero we traverse in RB , and stop when the number of zeros traversed exceeds the
number of ones (this means we have completed the subtree traversal, as explained).
This way we obtain the definition 1c for symbol 4.

More formally, let R = {s1 → a1b1, s2 → a2b2, . . . , sk → akbk}, where indeed
sk = n+k (as n = A′[1] = A[1] is the maximum value in A′). Thus, we write down
RB , RS , and the new C as follows (note that positions in RB are written in RS
shifted by n to distinguish them from the original symbols):

—RB = (100)k.

—RS = a1b1a2b2 . . . akbk = r1r2r3 . . . r2k, except that if ri > n we set it to ri =
n+ 1 + 3(ri − n− 1), so that they point to the 1’s in RB .

—C = c1c2 . . . cn′ undergoes the same transformation: if ci > n, we set it to
ci = n+ 1 + 3(ci − n− 1).

Reduction. Let us now reduce the dictionary, in our example, by expanding the
definition of s within t (even if s is used elsewhere). The new bitmap is RB =
11000100 (where t = 1, s = 2, and u = 6), the sequence is RS = abc12, and
C = 16b. Note that the subtree of t corresponds to topology 11000 and leaves abc,
whereas the subtree of s is within t, with topology 100 and leaves ab. Although
they share part of their representation, they can be referenced independently.

We can now remove the definition of t by expanding it within u. This produces
the new bitmap RB = 1110000 (where u = 1, t = 2, s = 3), the sequence RS = abc3
and C = 21b. Further reduction is not possible because u’s definition is only used
from C.2 At the cost of storing at most 2|R| bits (for RB), we can reduce R by one

2It is tempting to replace u in C, as it appears only once, but our example is artificial: A symbol

that is not mentioned in R must appear at least twice in C.
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Algorithm Compress Dictionary(R = {s1 → a1b1, . . . , sk → akbk}, C = c1 . . . cn′ )

for i← 1 . . . k do U [i]← 0
for i← 1 . . . k do

if ai > n then U [ai − n]← 1

if bi > n then U [bi − n]← 1
for i← 1 . . . k do NV [i]← 0

j ← 1, RB ← 〈〉, RS ← 〈〉
LRB ← 0 // length in bits of bitmap RB
for j ← 1 . . . k do

if U [j] = 0 then Expand Rule(j)

for i← 1 . . . n′ do
if ci > n then ci ← NV [ci − n] + n

return (RB , RS , C)

Algorithm Expand Rule(j)

RB ← RB : 1, LRB ← LRB + 1
NV [j]← LRB
if aj ≤ n then

RS ← RS : aj , RB ← RB : 0, LRB ← LRB + 1
else if NV [aj − n] > 0 then

RS ← RS : NV [aj − n] + n, RB ← RB : 0, LRB ← LRB + 1

else Expand Rule(aj − n)
if bj ≤ n then

RS ← RS : bj , RB ← RB : 0, LRB ← LRB + 1

else if NV [bj − n] > 0 then
RS ← RS : NV [bj − n] + n, RB ← RB : 0, LRB ← LRB + 1

else Expand Rule(bj − n)

Fig. 2. Algorithm to compress the dictionary R and to update C in O(n) time. RB , RS , NV ,

and LRB act as global variables, “〈〉” is the empty sequence and “:” the concatenation operator.

integer for each definition that is used at least once within R.

The reduction can be easily implemented in linear time, avoiding the successive
renamings of our example, as follows: We first check for each rule if it is used
within R, marking this in a bitmap U . Then we traverse R and only write down
(the bits of RB and the sequence RS for) the entries that are not used within R.
We recursively expand those entries, appending the resulting tree structure to RB
and leaf identifiers to RS . Whenever we find a created symbol that does not yet
have an identifier, we give it as identifier the current position in RB and recursively
expand it. We store these new identifiers in an array NV . Otherwise the expansion
finishes and we write down a leaf (a "0") in RB and the identifier in RS . Then we
rewrite C using the renamed identifiers. Figure 2 shows detailed pseudocode.

We can further compress the dictionary if we take into account that a rule only
uses previous rules or original symbols. That is, the i-th rule can only point to
elements with representation of length dlg2 ie bits. With a simple arithmetic com-
putation we can directly access any rule.

Another way to further compress the dictionary, yet with a time penalty, is
as follows: Instead of using the position i of a rule inside bitmap RB , use j =
rank1(RB , i). Given that j, we find the position in RB where the rule starts with
i = select1(RB , j) (this is the inverse operation of rank1, i.e., the position of the
j-th 1 in RB , and can also be computed in constant time using o(|RB |) bits [Munro
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Text n σ H0 H1 H2 H3 H4 H5

dna 100MB 16 1.977 1.932 1.922 1.918 1.911 1.902

english 100MB 239 4.556 3.630 2.949 2.417 2.047 1.807

proteins 100MB 27 4.190 4.168 4.150 4.073 3.835 3.042
sources 100MB 230 5.540 4.017 3.005 2.257 1.785 1.457

xml 100MB 97 5.228 3.336 2.070 1.374 0.996 0.770

Table II. Some characteristics of the text files we use.

1996; Clark 1996]). We gain at least 1 bit per rule in the dictionary and in the text.

4. EXPERIMENTAL RESULTS

In this section we first study the performance of our LCSA technique, and then
compare it to other alternatives in the literature.

We use text collections obtained from the PizzaChili site.3 This site offers a
collection of texts of various types and sizes. We use the five types (dna, english,
proteins, sources, and xml) for which 100MB files are available. Using larger
datasets gives no additional clues on the performance.4 Table II summarizes some
of their properties. Some indexes will use more space when the alphabet size is
large, while others will use less space when the k-th order entropy Hk decreases
fast with k. Our dataset is interesting in this sense because english, sources

and xml have large alphabet sizes (and relatively large H0 entropies) and low high-
order entropies. The low entropy of dna, instead, is only a consequence of its small
alphabet size, and it barely decreases with the order considered.

The experiments were run on an Intel Core2 Duo, running at 3.0 GHz, with 6MB
cache and 8GB RAM. The operating system was Linux 64-bit with kernel 2.6.24-
31-server, and the compiler was g++ version 4.2.4 with -O3 optimization and -m32

flag (as required by several packages tested).
Our data points are averages over 100,000 to 1,000,000 repetitions, sufficient in

each case to ensure at most 5% of error with 95% confidence.

4.1 Compression Performance

Lacking freely available implementations of Re-Pair that worked properly on our
datasets, we implemented ourselves such a compressor.5. It runs in linear time and
requires 12n+O(p) bytes of main memory, where p is the number of distinct pairs
generated at any time. We call RP this implementation in the sequel. Further,
we call RPΨ the Ψ-based approximation that runs in O(n lg n) time (Section 3.4).
We do not experiment directly with the simplified method of Section 3.3 because
in practice it is a particular case of RPΨ. We also include the methods RPSP and
RPΨSP, which correspond to the variants that limit the size of a nonterminal to
d = 256 terminal symbols. In all cases, we take absolute A′ samples each l = 64

3http://pizzachili.dcc.uchile.cl
4The LCSA can handle longer texts, but some indexes we compare with are older and they would

not run on more than 100MB without significant reimplementation.
5Freely available at http://www.dcc.uchile.cl/gnavarro/software We used the “normal” ver-
sion. There is a “balanced” version that performed almost exactly the same in all aspects, so it

is omitted from the experiments we present here.
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s Bytes per cell Bytes per cell Compr. time Compr. time

xml english (sec) xml (sec) english

1 1.0412 2.2188 96 306
2 1.0380 2.2140 113 328
4 1.0364 2.2128 135 360
8 1.0356 2.2120 155 408

16 1.0352 2.2116 168 450
32 1.0348 2.2112 190 538
64 1.0348 2.2212 206 622

128 1.0348 2.2112 215 714

Table III. Compression ratio obtained using different values of s for the approximation RPΨSP.
In this case we use δ = 1/2.

δ Bits per cell Bits per cell Compr. time Compr. time
xml english (sec) xml (sec) english

1/2 1.0356 2.2120 155 408
3/4 1.0324 2.2116 197 480
7/8 1.0296 2.2116 261 620

15/16 1.0272 2.2116 354 930
31/32 1.0240 2.2116 523 1,588

Table IV. Compression obtained using different values of δ using approximation RPΨSP. In this
case we use s = 8.

positions. As we will see, the choice of d affects compression very little (at most
6%), whereas the chosen l value adds only 0.5 bits per cell, which adds 2%–7%. In
exchange, they sharply speed up extraction, whereas using smaller values does not
give further significant reductions.

To tune the parameters of the approximate variant RPΨSP, we test different
values on two small files (english and xml, truncated to 50MB). We show, among
several we carried out, the following experiments, as they best reflect the choice
of parameters. Table III shows that the compression gain for increasing s loses
importance for s > 8. Table IV, on the other hand, shows that increasing δ does
not give any gain on english, yet it slightly improves compression ratio on xml. A
fair choice of parameters for RPΨSP, which we use for the rest of the experiments,
is s = 8, δ = 3/4 and γ = lg n.

Now that we have fixed a convenient parameterization for our compression algo-
rithms, we compare them to each other on all the collections. Table V shows that
the compression ratio varies widely. On xml data we achieve less than one byte
per cell, whereas compression is extremely poor on dna (close to the 3.375 bytes
per cell needed by a plain representation using dlg ne bits). In other text types of
interest (english, sources) we slash the suffix array size to around a half.

Below the name of each text we write Hk/H0 · (dlg ne/8), for k = 2 or 3, which
translates to bytes per cell the high-order statistical compressibility of the collection
independently of its alphabet size. The measure turns out to be a good (slightly
optimistic) predictor of the compression we attain, except for proteins, where even
for k = 4 it is pessimistic (it becomes too optimistic for k = 5).

Note, on the other hand, that the Ψ-based method achieves compression only very
slightly worse than that of Re-Pair. In addition, it is an order of magnitude slower
to build. It requires, however, 1.5 to 4 times less construction space, which can
make it more practical depending on the available main memory. The construction
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Coll. Method Bytes Compr. Compr. Expected Dict. Dict.
Hk/H0 / cell time (s) space decompr. compr. vs |A|
dna RP 3.36 114 40.14 5.18 79.86% 14.34%
3.28 RPSP 3.37 115 40.27 4.36 79.09% 14.28%
(H2) RPΨ 3.36 1,029 11.80 4.94 79.22% 14.39%

RPΨSP 3.37 1,061 12.13 4.28 79.41% 14.34%
english RP 2.27 132 32.73 242.67 58.98% 22.31%
2.18 RPSP 2.29 134 32.49 32.12 59.38% 22.29%
(H2) RPΨ 2.28 1,010 12.52 80.10 59.22% 22.42%

RPΨSP 2.30 982 12.21 29.99 59.60% 22.41%
proteins RP 2.85 105 37.57 59.72 79.47% 4.72%
3.09 RPSP 2.86 105 37.76 13.91 79.82% 4.74%
(H4) RPΨ 2.86 1,030 11.75 38.03 78.93% 5.03%

RPΨSP 2.88 1,014 12.79 11.92 78.80% 5.12%
sources RP 1.55 115 23.81 2,031.77 57.45% 15.60%
1.37 RPSP 1.59 119 24.04 62.38 58.09% 15.56%
(H3) RPΨ 1.57 700 13.01 260.04 57.56% 15.87%

RPΨSP 1.61 1,016 13.00 56.89 58.13% 16.01%
xml RP 0.93 80 18.61 6,796.00 57.10% 8.08%
0.89 RPSP 0.99 85 18.86 136.21 58.11% 8.44%
(H3) RPΨ 0.96 476 11.95 675.88 57.31% 8.31%

RPΨSP 1.03 488 12.97 95.83 58.23% 8.87%

Table V. Structure size and build time using Re-Pair and its Ψ-based approximation. We also

include versions with rules up to length d = 256 (SP extension). Compression space is measured
in number of times the text size.

time does not include that to build the suffix array, which is the same (around 100
seconds) in all the methods and texts.

Table V also gives other statistics. Column 6 measures the average length of
a cell of C if we choose uniformly in A (longer cells are in addition more likely
to be chosen for decompression). Those values are proportional to the cost of
decompressing a random cell, and illustrate the relevance of limiting the size of
the rules to d, especially when compression is better (sources, english). Note
that the values are related to compressibility, but not as much as one could expect.
Rather, they owe to a more detailed structure of the suffix array: they are higher
when the compression is not uniform across the array. In every case, we can limit
the maximum length of a C cell. The SP variants, where we force d = 256, show
how such a limitation drastically reduces the access time while it impacts very little
in compression ratio: at most by 5%, and generally much less. Note also that the
Ψ-based variant, even if not restricted in length, produces shorter nonterminals
than the Re-Pair based variant.

Column 7 shows the compression ratio achieved on the dictionary part using the
technique of Section 3.5, charging it the bitmap introduced as well. It can be seen
that the technique is rather effective, approaching a compression ratio below 60%
on compressible texts and below 80% on incompressible ones. We remind that 50%
is the best possible ratio our dictionary compression technique can reach. (The
compression ratios of previous columns do account for the dictionary space and all
the necessary structures to operate.)

The last column shows the fraction of the original suffix array size (measured as
ndlg ne bits) required by the dictionary. This is the part of the data where random
accesses are carried out at decompression time, whereas the other accesses are local,
in the compressed sequence. The rather low percentages show that the structure is
cache-friendly, so high extraction speeds can be expected.
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4.2 Comparison with the State of the Art

In this section we compare our LCSA against various alternative suffix array rep-
resentations. Various of the compressed suffix arrays we wish to compare with
[Mäkinen 2003; Sadakane 2003; Ferragina and Manzini 2005; Mäkinen et al. 2010]
already have competitive implementations, and we have just slightly adapted them.
There are two important data structures, however, that existed only as theoretical
proposals [Grossi and Vitter 2005; Rao 2002]. In the Appendixes we detail how we
have implemented and optimized them, and study their best parameterization.

LCSA. Our LCSA, considering variants LCSA = RPSP and LCSAΨ = RPΨSP,
with the parameters set as above, and using samplings l = 64 and d = 256.

MakCSA. The Compact Suffix Array of Mäkinen [2003], implemented by him-
self.6 In Appendix B we study its best parameterization for this problem. The code
can only search for patterns and list their positions. In order to extract arbitrary
ranges of A we added a compressed bitmap [Raman et al. 2007] of length n, mark-
ing the starting positions of the blocks, so that we could convert positions in A to
positions in the compacted array.

GVCSA. The Compressed Suffix Array of Grossi and Vitter [2005], implemented
by ourselves. See the details in Appendix C.

RaoCSA. The structure of Rao [2002], implemented by ourselves. See the details
in Appendix D.

SadCSA. The Compressed Suffix Array of Sadakane [2003], implemented by
himself (the implementation is available at PizzaChili).7 This has two parame-
ters: sΨ, the sampling step to access the compressed Ψ array, which is left at
sΨ = 128, where it performs best, and sA, the sampling step to store samples
of A, which is used as the space/time tradeoff parameter. We consider values
sA = {4, 8, 16, 32, 64, 128, 256}. We used routines tailored to extract various con-
secutive cells, taking advantage of runs of consecutive Ψ values, that were already
in Sadakane’s code.

RLCSA. The Run-Length Compressed Suffix Array of Mäkinen et al. [2010], im-
plemented by Jouni Sirén (the implementation is available at PizzaChili).8 The
RLCSA is a variant of SadCSA specialized on handling repetitive texts. It has the
same parameters sΨ (which we use at its default value 32) and sA, which we use as
the space/time tradeoff parameter, considering values sA = {4, 8, 16, 32, 64, 128, 256}.
RLCSA also has routines tailored to extract various consecutive cells.

FMindex. The FM-index [Ferragina and Manzini 2005], in its most recent and
efficient variant [Kärkkäinen and Puglisi 2011], implemented by themselves.9 We
used the suffix array sampling parameters sA = {4, 8, 16, 32, 64, 128, 256}, and the
text sampling parameter set to infinity. We only show the variant using plain
bitmaps, as the time/space obtained with compressed bitmaps were almost identical
in this scenario.

6Downloaded from http://www.cs.helsinki.fi/u/vmakinen/software/csa.zip
7At http://pizzachili.dcc.uchile.cl/indexes/Compressed Suffix Array
8At http://pizzachili.dcc.uchile.cl/indexes/RLCSA/
9Thanks to Simon Puglisi for handing us the code.
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Fig. 3. Construction time and space for the different indexes on each text.

We remind that SadCSA, RLCSA and FMindex are self-indexes, but we are not
interested in this feature for this experiment. We only evaluate their ability to
reproduce a range of suffix array cells.

Figure 3 compares construction space and time for all the indexes. We have not
considered the space and time to build the suffix array, as this is orthogonal to the
index construction problem and must be done for all the indexes. It can be seen
that all construction spaces are relatively close, except that of LCSA, which in bad
cases can require as much as 40 bytes per entry. Those requiring the least space,
around 7–9 bytes per entry, are GVCSA, SadCSA, and FMindex. The others are
usually within 12 bytes per entry, except RaoCSA and RLCSA, which may require
up to 16–17 bytes per entry.

With respect to construction time, SadCSA again excells, requiring less than
0.2 seconds per million cells, whereas the next faster indexes (FMindex, RLCSA,
MakCSA, and LCSA, more or less in that order) build at a rate of around 1 second
per million cells. The other indexes build ten times slower.

LCSA builds fast (at about 1 second per million cells) but it may require too
much extra space (up to 40 times the text size). Variant LCSAΨ, although slower
to build (about 10 seconds per million cells, which is still affordable even for large
texts), requires reasonable space (near 12 times the text size, not far from the state
of the art). We will show both variants in the experiments that follow.

Figure 4 shows the space/time tradeoffs, for all the indexes on all the texts, to
access a random cell. The space is shown as the index size in bytes divided by n,
that is, in bytes per cell.

It can be seen that SadCSA and FMindex are the clear winners in all cases, being
faster and smaller than all the others. The size of these indexes is sensitive to the
high-order entropy of the texts, whereas GVCSA and RaoCSA are more dependent
on the alphabet size. Among the two, GVCSA is always better than RaoCSA.
RLCSA, instead, is sensitive to the repetitiveness of the text, performing worst on
dna and best on xml. Finally, in both MakCSA and the variants of our LCSA the
space depends more on the relation between the high and the zero order entropies
of the texts, Hk/H0. Thus, they perform particularly bad on dna and proteins,
much better on english and sources, and particularly well on xml. Yet, they are
still slower than SadCSA and FMindex.
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Fig. 4. Time/space tradeoffs to access one random cell.

The relation between MakCSA and LCSA variants is mixed. In cases like dna

and english, the former performs better in time and space. On proteins and
sources, LCSA competes in space, but the time is either equal or dominated by
that of MakCSA. Finally, on xml, where both perform best in space, the LCSA
variants use less space than MakCSA, and dominate it in time too.

The situation changes when we consider the performance to access a number of
consecutive cells, which is the case, for example, when reporting all the occurrences
of a pattern in the text. Figures 5 and 6 show the space/time tradeoffs when retriev-
ing 10 and 100 consecutive cells, respectively. RLCSA becomes relatively faster,
matching SadCSA on sources and outperforming it on xml. However, LCSA and
MakCSA improve much faster. Already for extracting as few as 10 consecutive cells,
the LCSA variants and MakCSA become competitive with the fastest alternatives,

ACM Journal Name, Vol. V, No. N, Month 20YY.



· 19

 0

 50

 100

 150

 200

 0  0.5  1  1.5  2  2.5  3  3.5

T
im

e 
(m

ic
ro

se
cs

 p
er

 q
ue

ry
)

Index size / Text size

DNA - extracting 10 cells

 0

 4

 8

 12

 16

 2.6  3  3.4

 0

 50

 100

 150

 200

 0  0.5  1  1.5  2  2.5  3

T
im

e 
(m

ic
ro

se
cs

 p
er

 q
ue

ry
)

Index size / Text size

English - extracting 10 cells

 0

 4

 8

 12

 16

 2.1  2.3  2.5  2.7

 0

 50

 100

 150

 200

 0  0.5  1  1.5  2  2.5  3

T
im

e 
(m

ic
ro

se
cs

 p
er

 q
ue

ry
)

Index size / Text size

Proteins - extracting 10 cells

 0

 4

 8

 12

 16

 2.5  2.7  2.9

 0

 50

 100

 150

 200

 0  0.5  1  1.5  2  2.5  3

T
im

e 
(m

ic
ro

se
cs

 p
er

 q
ue

ry
)

Index size / Text size

Sources - extracting 10 cells

 0

 4

 8

 12

 16

 1.4  1.6  1.8

 0

 50

 100

 150

 200

 0  0.5  1  1.5  2  2.5

T
im

e 
(m

ic
ro

se
cs

 p
er

 q
ue

ry
)

Index size / Text size

XML - extracting 10 cells

 0

 4

 8

 12

 16

 1  1.2  1.4

LCSA
LCSA-Psi
MakCSA
GVCSA

RaoCSA
SadCSA
RLCSA

FMindex

Fig. 5. Time/space tradeoffs to access 10 random cells.

and when extracting 100 consecutive cells they become an order of magnitude faster.
This is the scenario where LCSA and MakCSA excell. The (zoomed) plots also show
that LCSA becomes faster than MakCSA in all cases (for the same space) as soon
as we access various consecutive cells. We study this aspect in more detail next.

Figure 7 shows, for SadCSA, FMindex, MakCSA, and LCSA variants, the time
to extract 1 to 20 consecutive cells starting at a random position. We chose the
parameterizations that gave the others the best time without using significantly
more space than that of LCSA. We left aside dna, since LCSA does not obtain
any significant compression on it, and thus the “fair comparison in space” should
be with a plain suffix array. In some cases the self-indexes look better than in
others because they compress better and thus can use a denser sampling for the
same space. It can be seen that, as soon as we extract a few consecutive cells,
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Fig. 6. Time/space tradeoffs to access 100 random cells.

SadCSA and FMindex become the slowest alternatives (having been the fastest for
extracting one isolated cell), due to their direct linear increase in time. On the
other hand, the LCSA variants are always faster than MakCSA, and in the most
compressible texts (sources and xml) it is clear that the growth rate of the time
is also lower on LCSA.10

Finally, we tested a plain suffix array implementation, where each cell uses dlg ne
bits (i.e., 3.375 bytes per cell in our texts). The access time for one cell is around

10It can be noted that the time to extract an individual cell in MakCSA is closer to that of LCSA
in Figure 4 than in this plot. This is because some optimizations are possible when extracting

just one cell. Those could laboriously be extended to extract more (with specific code for each
number of cells), but this would have impact only to extract very few cells. The times would
rapidly converge to those of the general algorithm.
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Fig. 7. Time to access 1 to 20 consecutive cells, using about the same space. SadCSA and FMindex
use sampling values 4, 2, 4, and 8 for the plots in reading order. For MakCSA we used best C

for each text, as before, and then, to obtain about the same space, D = 3 on english, D = 5 on

proteins, D = 10 on sources, and D = 30 on xml.

250 nanoseconds (note it might be necessary to access two consecutive memory
words to extract one value), and then increases at a rate of around 6 nanoseconds
per consecutive cell accessed. This is about 10 times faster than LCSA.

Our LCSA improves its compression effectiveness on repetitive collections, as is
the case of sources and, more clearly, xml. It is tempting to test it in the scenario of
highly repetitive collections [Mäkinen et al. 2010]. However, RLCSA exploits much
better those collections, while the improvement of LCSA is not much better than
that of SadCSA. For example, on the S. pardoxus collection [Mäkinen et al. 2010],
the RLCSA obtains acceptable performance (near 15 microseconds to compute a
single cell value) using 0.15 times the text size, whereas SadCSA uses 0.27 times
the text size. LCSA uses at least 0.24 times the text size, which is much better
than its performance on the general collections considered in this paper, but not
significantly better than SadCSA, and clearly worse than RLCSA.

5. CONCLUSIONS AND FUTURE WORK

We have presented a suffix array compression method, Locally Compressed Suf-
fix Arrays (LCSA) that retains fast access to suffix array cells, especially when a
number of contiguous cells must be read. We have proved analytically and experi-
mentally that the size of the LCSA is related to the k-th order entropy of the text,
performing particularly well on texts where their k-th order entropy is significantly
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smaller than the zero-order entropy (structured XML collection and source code
repositories are good examples, although the space performance is also decent on
plain English text collections). On the other hand, compression is not good on
DNA or Protein sequences. Extracting c consecutive cells is proven to take the
almost-optimal time O(c) + o(lg n), and to be very fast in practice: the LCSA is
the fastest to extract c = 7 contiguous cells or more, thanks to its local decom-
pression properties. The LCSA is a viable alternative to classical suffix arrays, as
well as to current self-indexes, which use less space but are much slower to ex-
tract suffix array intervals. An implementation has been left publicly available at
http://pizzachili.dcc.uchile.cl/additionalSuffixArrays.html.

As a byproduct, we have presented Re-Pair algorithms tailored to suffix array
differences, which exploit the structure of Ψ to run using much less memory than
the general algorithm. Those new algorithms are approximations, yet we show that
their compression loss is negligible.

Another byproduct, which might be of general interest, is a compact data struc-
ture to represent the Re-Pair dictionary. This structure can reduce the dictionary
space by up to 50%, and operates in compressed form, that is, it permits decom-
pressing parts of the text without uncompressing the dictionary. In practice the
dictionary compression achieved is closer to 60%.

Since its conference publication [González and Navarro 2007], the key ideas of
this work have been shown to apply in other scenarios. In document retrieval,
where the goal is to list the documents where the pattern appears (as opposed
to all of its exact positions) a successful approach is to use a “document array”
D[1, n], which records in D[i] the document to which A[i] belongs. As the (shifted)
repetitions in A translate into exact repetitions in D (except at d positions, where
d is the number of distinct documents in a collection), Gagie et al. [2013] used our
results to give the first scheme to compress D, and Navarro et al. [2011] showed
its practicality, achieving the only technique so far to compress D. Another appli-
cation is compressed suffix trees, where in addition to A[1, n] one needs to encode
LCP [1, n], which gives the length of the longest common prefix between consecutive
suffixes. While there is a technique to compress LCP [1, n] into just 2n+ o(n) bits
[Sadakane 2007], Fischer et al. [2009] showed that it could be compressed into o(n)
bits on sufficiently compressible collections. For this sake, they used and extended
the results we proved in this work, showing that shifted repetitions also appear on
the LCP array. Abeliuk et al. [2013] implemented this idea on highly repetitive
collections, and also applied our ideas more directly by representing the LCP in
differential form and applying Re-Pair on it. Finally, the technique to compress
the Re-Pair dictionary has been used a number of times in other practical scenarios
where Re-Pair compression was used [Claude and Navarro 2010b; 2010a; Claude
et al. 2010; 2011; Navarro et al. 2011].

Our work leaves several future development lines. An important one is to take
advantage of the locality of the LCSA in order to deploy it on disk. If the dictionary
of rules can be maintained in main memory (in our examples it took 5–22% of
the suffix array size, and we can limit its size if desired), then the access to the
compressed sequence is local, and disk I/Os will furthermore be reduced thanks to
compression. We are focusing on merging the compressed suffix tree presented by
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Clark and Munro [1996] with our structure. We believe the result would be quite
competitive in practice.

In the longer term, we believe this is a relevant step towards compressed text
indexes with competitive locating times, in particular via locality of access. The
key was to build on the runs in Ψ, which have been used in the past to achieve
compression, yet not access locality. We showed that the regularities that Re-Pair
exploits on the differential suffix array are closely related to those runs in Ψ. Thus
we could take advantage of the locality properties of Re-Pair, and also used the
close relation with Ψ to analyze the compression achieved and design faster Re-
Pair variants for this case. Our resulting index is still far from achieving the space
used by the smallest self-indexes, which are however extremely slow to locate. Is
there a fundamental lower bound to the tradeoff one can achieve between space and
time for locating? Is there a limit to what can be achieved via local compression?
Pursuing this challenge is probably one of the most exciting research directions
nowadays in compressed text indexing.
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A. ANALYSIS OF LCSA SPACE AND TIME

We now analyze the compression ratio of our data structure, first when using Re-
Pair compression and then when using our approximate methods based on Ψ. We
start with a lemma that limits the number of distinct pairs in A′.

Lemma 3. There are at most 2ρ different pairs in A′.

Proof. Note that, except for the first cell of each run, it holds A′[i] = A′[Ψ(i)]
within the run. Thus, if we cut off the first cell of each run, obtaining up to 2ρ
runs in A′, it holds that every pair A′[i]A′[i + 1] contained in such runs must be
equal to A′[Ψ(i)]A′[Ψ(i) + 1]. Therefore, the only pairs of cells A′[i]A′[i + 1] that
are not equal to A′[Ψ(i)]A′[Ψ(i) + 1] are those where i is the last cell of its run.
This shows that there are at most 2ρ different pairs in A′, as a traversal following
Ψ permutation will change pairs at most 2ρ times.

Re-Pair Compression. Since there are at most 2ρ different pairs, the most fre-
quent pair appears at least n

2ρ times. Because of overlaps, it could be that only each
other occurrence can be replaced. Therefore, the total number of replacements in
the first iteration is at least βn, for β = 1

4ρ .
After we choose and replace the most frequent pair, we end up with at most

n(1−β) integers in A′. The number of runs has not increased, because a replacement
cannot split a run. Thus, the same argument shows that the second time we end
up with at most n(1− β)2 symbols, and so on.
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After M iterations, the length of C is at most n(1−β)M and R contains M rules.
Assume for a while ρ/n ≤ 1/4, thus βn ≥ 1. Our upper bound to the total size,

|C|+ 2|R| ≤ n(1− β)M + 2M , is optimized for M∗ =
lnn+ln ln 1

1−β−ln 2

ln 1
1−β

, where it is

2(lnn+ln ln 1
1−β−ln 2+1)

ln 1
1−β

. This is an upper bound to the final size of Re-Pair because

it upper bounds the size after M∗ iterations and, since Re-Pair shortens the total
file size at each new iteration, the final size cannot be worse than that after M∗

iterations. Since ln 1
1−β = ln 4ρ

4ρ−1 = 1
4ρ (1+O( 1

ρ )), we have thatM∗ = 4ρ ln n
ρ+O(ρ)

and that the total size is at most 8ρ ln n
ρ + O(ρ) integers. Even if M grows up to

n, the nonterminals can be represented using O(lg n) bits, thus the total space
achieved is O(ρ(1 + lg n

ρ ) lg n) bits.

Lemma 4. Re-Pair compression reduces the size of the differential suffix array
A′ to O(ρ(1 + lg n

ρ ) lg n) bits, where ρ is the number of runs in A.

As a comparison, the Compact Suffix Array of Mäkinen [2003] needs O(ρ lg n)
bits of space [Navarro and Mäkinen 2007], which is asymptotically better. Our
experiments confirm that this structure can be slightly smaller, yet at the price of
being significantly slower.

RPΨ0 Compression. We now show that the simplified replacement method of
Section 3.3 reaches the same asymptotic space complexity.

Just as for Re-Pair, the traversal using Ψ will create up to 2ρ pairs per pass.
Assume for simplicity that, as we find each new pair in the traversal using Ψ, we
always replace the pair, even if this involves creating it in R for just one occurrence
in C (this is never better than the real algorithm). Thus we try to make all the
|A′| replacements, but we may fail because replacements overlap. That is, assume
we have abcd and first replace s→ bc. In the new sequence asd we cannot make a
replacement s′ → ab nor s′ → cd. Indeed, in the best case we can carry out b|A′|/2c
replacements, whereas in the worst case this is only b|A′|/3c (when we first choose
all multiples of 3 as initial pair positions).

This shows that, in the first pass over Ψ, we add up to 4ρ integers (i.e., 2ρ
rules) to R and remove at least n/3 integers from A′. For the next passes, since
the number of runs is always limited by 2ρ, we can analyze the process using
recurrence S(n) = 4ρ + S(2n/3). If we stop the process after i iterations, we get
|C| + 2|R| = S(n) = 4ρi + (2/3)in, which is optimized for i∗ = lg3/2(n/ρ) + O(1)
iterations, where we get S(n) = 4ρ lg3/2 lg n

ρ +O(ρ) ≤ 9.87ρ lg n
ρ +O(ρ) integers.

RPΨ Compression. This analysis is similar to that of Re-Pair. The relevant
invariant, which is easy to check from the description in Section 3.4, is as follows:
The approximate algorithm always replaces a pair that appears at least δ · f times,
being f the frequency of the currently most frequent pair. In this sense, the algorithm
acts as a δ-approximation to Re-Pair.

In Re-Pair, we replace first the most frequent pair, which appears at least n
2ρ

times. In RPΨ, we replace first a pair that appears at least δn
2ρ times. This gives

us a total number of replacements in the first iteration of at least β′n, where
β′ = δβ = δ

4ρ . The same occurs at each stage of the algorithm. Applying the same

arguments of the analysis of Re-Pair with this new β′, and the fact that 0 < δ < 1
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is a constant, we obtain the same result as in Lemma 4.

Lemma 5. RPΨ0 and RPΨ compression reduce the size of the differential suffix
array A′ to O(ρ(1 + lg n

ρ ) lg n) bits, where ρ is the number of runs in A.

The Final Space. We complete now the missing pieces to have a functional LCSA.
First, recall that in Section 3.2 we introduced n/d unique symbols in A′ to ensure
that no nonterminal expands to more than d symbols, so that the extraction time
could be bounded. This has the concrete effect, in the analysis, of increasing the
number of runs by n/d, as each spurious symbol may cut one of the 2ρ runs.
Then the total number of integers becomes O(ρ lg n

ρ+n/d + n
d lg n

ρ+n/d + ρ + n
d ) =

O(ρ lg n
ρ + n lg d

d + ρ). By choosing d = lgε n lg lg n, for any ε > 0 (and l = lgε n,

recall Section 3.2), we obtain the final result.

Theorem 1. The LCSA of a suffix array A[1, n] with ρ runs occupies O(ρ(1 +
lg n

ρ ) lg n+n lg1−ε n) bits of space, for any ε > 0. It extracts any c consecutive cells

of A in time O(c+ lgε n lg lg n).

Time Performance. We describe how to use the LCSA for the typical suffix array
tasks of counting and locating. This can be made more cleverly than plugging the
structure blindly into the classic suffix array algorithms.

The absolute samples that are stored every l positions of A (i.e., array S) can
be used to start the binary search. After O(m lg n) time, we can locate the area
(of length l) where the binary search will terminate. This area can then be decom-
pressed in time O(l + lgε n lg lg n) according to Theorem 1, and then the binary
search can terminate still within O(m lg n) time. Therefore counting time is not
slowed down, asymptotically, due to our compression for any ε < 1 and l = O(lg n).
Once we have identified the area A[sp, ep] where the occ = ep− sp+ 1 occurrences
lie, we can extract them all using Theorem 1, in time O(occ + lgε n lg lg n). The
two activities take time O(m lg n+ occ), just as with a plain suffix array.

The time can be further improved by noting that the O(m + lg n) technique of
Manber and Myers [1993] works equally well on an arbitrary set of strings, and
thus we could use O(n lg1−ε n) additional bits of space to store longest common
prefix information between the sampled suffixes of S, over which the binary search
is carried out. The search within the decompressed block between two samples still
needs to be done in the conventional way, in time O(m lg l). This yields an improved
counting time of O(m+ lg n+ l+ lgε n lg lg n+m lg l). By choosing l = lgε n we get
the improved result.

Theorem 2. The LCSA of a suffix array A of a text T [1, n] with ρ runs occupies
O(ρ(1 + lg n

ρ ) lg n+n lg1−ε n) bits of space, for any 0 < ε ≤ 1. It counts the number

of occurrences of any pattern P [1,m] in time O(m lg lg n+ lg n+ lgε n lg lg n+ occ).
Two interesting particular cases are O(ρ(1+lg n

ρ ) lg n+n) bits of space and O((m+

lg n) lg lg n+ occ) time (ε = 1), and O(ρ(1 + lg n
ρ ) lg n+ n lg lg n) bits of space and

O(m lg lg n+ lg n+ occ) time (ε = lg lgn−lg lg lgn
lgn ).

B. TUNING THE SUFFIX ARRAY OF MÄKINEN

The suffix array of Mäkinen [2000; 2003] builds on the idea of detecting pairs of
areas in A where the values differ by one unit, and encode one area by a pointer to
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Fig. 8. Space/time tradeoffs to extract one cell using various options of parameters (C,D) for
MakCSA, on four texts. We show one line per C value in {5, 10, 15, 20}, and one point in that

line for each D value in {5, 10, 15, 20} (smaller D uses more space and less time).

the other (note our LCSA exploits, in a different way, those same pairs of areas).
The implementation of MakCSA (by its author) has two parameters, C and D, that
control the maximum length of the areas and the maximum length of a referencing
chain (since the pointed area may in turn be encoded as a pointer to a third area,
slowing down extraction).

Figure 8 shows, for four texts, the space/time tradeoffs for accessing a random
cell of A. It can be seen that the best values for C and D vary depending on the
text. It turns out that C = 5 is the best for dna, C = 20 is the best for xml, and
C = 15 for the rest, with some slight exceptions.

Figure 9 shows the performance over all the texts, using the best configuration. It
can be seen that the space varies widely depending on the high-order compressibility
of the texts, unlike other schemes that are blind to this aspect. On the right, where
we show the time for extracting 100 consecutive cells, it can be seen that this
structure performs much better in this scenario. That is, the times grow by a
factor of around 6 instead of 100. Those configurations will be used for the main
experiments to represent MakCSA.

C. IMPLEMENTING THE SUFFIX ARRAY OF GROSSI AND VITTER

This structure [Grossi and Vitter 2000; 2005] builds a hierarchy of samplings over
A. At the first level 0, it treats differently the even and odd values of A0 = A. If
A0[i] is even, then it stores its value divided by 2 in the next suffix array A1. If A0[i]
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Fig. 9. Performance of MakCSA over the different texts, using in each case the C value that
optimizes the extraction of one cell. On the left, extraction of one cell, on the right, of 100 cells.

is odd, then it stores in an array Ψ0 the position where A0[i] + 1 occurs in A0. The
lowest bits of A0[1, n] (i.e., those that determine whether A0[i] is even or odd) are
concatenated into a bitmap B0[1, n]. Therefore, if B0[i] = 0, we know that A[i] =
A0[i] = 2 ·A1[rank0(B0, i)]. Else, we have A[i] = A0[i] = A0[Ψ0[rank1(B0, i)]]− 1,
and this second A0 cell must be even.

This second array, A1[1, n1], n1 = n/2, is recursively represented in the same
way, and this continues up to level t, where At[1, nt] is explicitly represented.

The main issue is how to represent the arrays Ψk[1, nk/2], where nk = n/2k.

They show that any Ψk can be seen as the concatenation of σ2k lists of increasing
values. As these values are in the range [1, nk], they make the whole list increasing
by adding j · nk to the elements of the j-th list. The result is an increasing list of

nk/2 increasing numbers in the range [1, σ2kn/2k].
They resort to a bitmap representation for increasing sequences [Fano 1971; Elias

1974; Okanohara and Sadakane 2007]. To represent m increasing numbers X[1,m]
on [1, n], their b = dlg(n/m)e lowest bits are represented explicitly in an array
L[1,m], whereas the higher bits are represented differentially and using unary en-
coding in a bitmap H[1, 2n]. That is, let hi and hi−1 be the dlg ne − b highest bits
of X[i] and X[i − 1], respectively, then we append 1hi−hi−10 to H. Then it holds
X[i] = L[i] + 2b(select0(H, i)− i).

As a result, Ψk is represented using (nk/2) lg((σ2knk)/(nk/2))+O(nk) = (n/2) lg σ
+O(n/2k) bits. Added over t levels, we have space t(n/2) lg σ+O(n) +nt lg nt, the
latter term being for the explicit representation of At. One can choose t = lg lgσ n
to obtain (n/2) lg σ lg lgσ n+O(n lg σ) bits of space and O(t) time to access A[i].

The idea can be generalized as follows. Choose the values of Ak that are multiple
of a parameter `, to be copied (divided by `) to level k+ 1. Mark Bk[i] = 0 iff Ak[i]
is a multiple of `. Store in Ψk[1, (1 − 1/`)nk] all the values where Bk[i] = 1. Now
we have to access Ψk up to ` − 1 times before proceeding to the next level. The
analysis is very similar, except that 2k is replaced by `k. Thus the total space is
(1 − 1/`)n lg σ lg` lgσ n + O(n lg σ) bits, with t = lg` lgσ n. The time is O(`t). In
particular, choosing ` = lgεσ n for a constant 0 < ε < 1, we have t = 1/ε, the space
is (1/ε+O(1))n lg σ bits and the time is O((1/ε) lgε n).

We implemented a verbatim variant of this data structure, where we used sparse
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bitmap implementations from the libcds library.11 Note that one can access any
position of any list of Ψk in constant time by knowing the list number and offset.
However, to know the list number we need to know the positions in A where the
suffix beginning with any tuple of Σk starts. This requires σk lg n additional bits.

We implemented a second variant of this structure. Instead of using the Σk

contexts (many of which may actually be empty), we detect maximal runs of in-
creasing numbers in Ψk and take those as the lists. The beginning of the lists are
marked in a sparse bitmap Sk[1, nk]. Then, in order to retrieve Ψk[i] we compute
j = rank1(Sk, i), to find that i belongs to the j-th list, and use the same numbering
scheme as before: since Ψk[i] is represented as X[i] = j · nk + Ψk[i], we compute
X[i] from the representation using H and L, and then subtract j · nk. The space
for Sk is just O(nk) bits, and thus the space and time analysis stays the same.

Figure 10 compares various (t, `) combinations for both variants of the structure
(the basic one and the one using runs), on a couple of texts; the results are similar
for the rest. It is clear that the best tradeoffs are obtained when using t = 1, that
is, not using a recursive structure but just one level of sampling, and then storing
the samples in plain form. Space can be reduced by using a larger t (i.e., more
levels of recursions), but it is always faster to reduce the same space by using a
larger ` value (i.e., a sparser sampling at the first level). Only on dna there are
some dominating points using t = 2. It is also clear that our variant using runs
is much better when using t > 1 levels (indeed, the basic variant is almost never
affordable for t > 2), but there is almost no difference between variants on t = 1.

Figure 11 (left) compares the two variants, for all the texts, using the dominating
points of each scheme (mostly corresponding to t = 1, as mentioned). It can be
seen that, when using only one level, the differences are minimal. We will use the
version with runs as the representative of GVCSA in the main experiments.

D. IMPLEMENTING THE SUFFIX ARRAY OF RAO

The compressed suffix array of Rao [2002] looks in principle similar to the general-
ized structure of Grossi and Vitter, yet there are key subtle differences. The main
idea is that, instead of iterating up to `−1 times in a level k before moving to level
k+ 1, he stores vectors dk[1, nk] with the value dk[i] = (`−1)− ((Ak[i]−1) mod `),
that is, at which distance is the value Ak[i] from the next multiple of `. The idea is
then that Ψk[i] stores the position in Ak where the value Ak[i]+dk[i] is stored, and
therefore we jump directly to the cell with an answer in one step, not dk[i] steps.
The final answer is thus Ak[Ψk[i]]− dk[i].

Unfortunately, this new Ψk array does not enjoy the monotonicity properties seen
before; these hold only within the subsequence associated to a single value of dk.
Thus the array is split into `− 1 arrays Ψδ

k, 1 ≤ δ < `, containing the values Ψk[i]
such that dk[i] = δ. At level k, we store `− 1 bitmaps V δk [1, nk] where V δk [i] = 1 iff
dk[i] = δ. Then the value Ψk[i] is found at Ψδ

k[rank1(V δk , i)] if dk[i] = δ.

Note that Ψδ
k is formed by σδ`

k

increasing lists on [1, nk]. The renumbering

scheme of the previous section12 yields a single list of nk/` values in [1, σδ`
k

nk], with

11https://github.com/fclaude/libcds
12In fact they use a slightly different mechanism, but the complexity does not change.
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Fig. 10. Space/time tradeoffs for accessing one cell using various options for (t, `) for GVCSA. On
top the basic scheme and on the bottom our improvement using runs. On the left, on english

text; on the right, on proteins. On the bottom we show one curve per t value; the results with `

value from 2 onwards are shown right to left in the curve.
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Fig. 11. Time-space tradeoffs to access one cell. On the left, basic GVCSA versus the version
with runs, for all the texts. On the right, the best variants of RaoCSA.

nk = n/`k. The representation using L andH then yields (δ/`)n lg σ+O((nk/`) lg `)
bits. Summing for 1 ≤ δ < `, at level k we have O(`n lg σ + nk lg `) bits for the
lists. Vector d adds O(nk lg `) bits and vectors V add O(`nk) bits, for a total of
O(`n lg σ+`nk) bits at level k. Added over t levels and considering the final explicit

array At we have O(t`n lg σ) +O(`n) +O((n/`t) lg n) bits. Choosing ` = lg1/t
σ n we

get space O(t lg1/t
σ n) n lg σ bits, and O(t) time to compute any A[i]. This gives a
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number of space/time tradeoffs, consider for example t = 1/ε or t = lg lgσ n.
In practice the V δk bitmaps may occupy too much space. We implement a sec-

ond variant where we completely remove them, and instead represent vector d as
a wavelet tree [Grossi et al. 2003], implemented in library libcds. This occupies
O(nk lg `) bits of space instead of O(`nk), and supports rankδ(dk, i) = rank1(V δk , i)
within O(lg `) time instead of O(1). In theory, the asymptotic space does not change
and the access time grows to O(t lg `) = O(lg lgσ n), which is a mild growth. In
practice, this is advantageous, as we see soon.

We also consider a variant replacing the strict numbering by runs, as for GVCSA.
Figure 12 shows the space/time tradeoffs obtained to access a random cell using

various (t, `) combinations for this index. We show the results on english and
proteins; the results are similar for the rest. On top we show the basic scheme,
where it always holds that the combination (t = 1, ` = 2) dominates all the others
(note this combination corresponds to GVCSA). On the middle we show the scheme
where the bitmaps are replaced with wavelet trees. In this case the combination
(t = 2, ` = 2) offers better space sometimes. On the bottom we show the improve-
ment including runs and wavelet trees. This time many more (t, `) combinations
are feasible, and various alternatives with ` = 2 (and even ` = 3) offer relevant
space/time tradeoffs.

It is also clear that the variant with wavelet trees and runs is always the best.
Figure 11 (right) shows the results obtained choosing the dominating (t, `) combi-
nations of this variant, for all the texts. Those will be used to represent RaoCSA
in the main experiments.
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Fig. 12. Various options for (t, `) for RaoCSA. On top the basic scheme, on the middle our
improvement using wavelet trees, and on the bottom our improvement using runs and wavelet
trees. On the left, on english text; on the right, on proteins. On the bottom we show one curve
per t value; the ` values are marked in the curves.
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