
Implementing the LZ-index: Theory versus Practice

GONZALO NAVARRO

University of Chile

The LZ-index is a theoretical proposal of a lightweight data structure for text indexing, based
on the Ziv-Lempel trie. If a text of u characters over an alphabet of size σ is compressible to n
symbols using the LZ78 algorithm, then the LZ-index takes 4n log2 n(1 + o(1)) bits of space (that
is, 4 times the entropy of the text) and reports the R occurrences of a pattern of length m in
worst case time O(m3 log σ + (m + R) log n). In this paper we face the challenge of obtaining a
practical implementation of the LZ-index, which is not at all straightforward from the theoretical
proposal. We end up with a prototype that takes the promised space and has average search time
O(σm log u+

√
uR). This prototype is shown to be faster than other competing approaches when

we take into account the time to report the positions or text contexts of the occurrences found.
We show in detail the process of implementing the index, which involves interesting lessons of
theory versus practice.

Categories and Subject Descriptors: F.2.2 [Analysis of algorithms and problem complexity]:
Nonnumerical algorithms and problems—Pattern matching, Computations on discrete structures,

Sorting and searching; H.2.1 [Database management]: Physical design—Access methods; H.3.2
[Information storage and retrieval]: Information storage—File organization; H.3.3 [Infor-

mation storage and retrieval]: Information search and retrieval—Search process

General Terms: Algorithms

Additional Key Words and Phrases: Data Structures, Data Storage Representations, Coding and
Information Theory, Indexing Methods, Textual Databases.

1. INTRODUCTION AND RELATED WORK

A text database is a system providing fast access to a large mass of textual data.
By far its most challenging requirement is that of performing fast text searching
for user-entered patterns. The simplest (yet realistic and rather common) scenario
is as follows. The text T1...u is regarded as a unique sequence of characters over
an alphabet Σ of size σ, and the search pattern P1...m as another (short) sequence
over Σ. The text search problem is that of finding all the R occurrences of P in T .

Modern text databases have to face two opposed goals. On the one hand, they
have to provide fast access to the text. On the other, they have to use as little
space as possible. The goals are opposed because, in order to provide fast access,
an index has to be built on the text. This index is a data structure stored in the
database, hence increasing the space requirement. In recent years there has been

Supported in part by Fondecyt Grant 1-080019, Chile.
Authors’ address: Gonzalo Navarro, Department of Computer Science, University of Chile, Blanco
Encalada 2120, Santiago, Chile. Email: gnavarro@dcc.uchile.cl.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–47.

2 · G. Navarro

much research on compressed text databases, focusing on techniques to represent
the text and the index in succinct form, yet permitting efficient text searching.

Despite that there has been some work on succinct inverted indexes for natural
language [Witten et al. 1999; Navarro et al. 2000] (able of finding whole words and
phrases), until a short time ago it was believed that any general index for string
matching would need much more space. In practice, the smallest indexes available
were the suffix arrays [Manber and Myers 1993], requiring u log2 u bits to index a
text of u characters. Since the text requires u log2 σ bits to be represented, this
index is usually much larger than the text (typically 4 times the text size).

Since the last decade, several attempts to reduce the space of the suffix trees
[Apostolico 1985] or arrays have been made by Kärkkäinen [1995], Kurtz [1998],
Mäkinen [2003], and Abouelhoda et al. [2002]. These approaches have been mainly
practical, in the sense that it was easy to obtain an implementation from the algo-
rithmic formulation. The results have been remarkable, but not spectacular.

A parallel, much more theoretical track, started at about the same time, thanks
to Kärkkäinen and Ukkonen [1996a; 1996b], Kärkkäinen [1999], Grossi and Vitter
[2000], Sadakane [2000; 2002], and Ferragina and Manzini [2000; 2001; 2002]. These
results came together with encouraging analytical results on the performance of
the indexes. Especially, in the works of Sadakane and Ferragina and Manzini, the
indexes replace the text and, using little space (sometimes even less than the original
text), provide indexed access. This is an unprecedented breakthrough. On the other
hand, many of the proposals in this track have never been implemented. Those that
were implemented, e.g. that of Ferragina and Manzini [2001], needed important
changes in their formulation in order to become practical. In these changes, several
of the theoretical guarantees were traded for a workable approach. The result have
been practical prototypes that mostly matched the theoretical promises.

Hence, we have a class of algorithms and data structures that promise a drastic
reduction in the space overhead of text indexes. On the other hand, they provide
an excellent example of the challenges faced to implement a theoretical proposal.

We proposed a new index on these lines [Navarro 2002; 2004], called the LZ-
index. It is based on the Ziv-Lempel parsing of the text. The theoretical proposal
shows that, if the Ziv-Lempel parsing cuts the text into n phrases, then the index
takes 4n log2 n(1 + o(1)) bits of space, which is 4 times the size of the compressed
text and also 4 times the text entropy [Kosaraju and Manzini 1999; Ferragina and
Manzini 2002]. The LZ-index answers queries in O(m3 log σ + (m + R) log n) worst
case time. The index also replaces the text: It can reproduce a text context of
length L (formed by whole phrases) in O(L log σ) time, or obtain the whole text in
time O(u log σ). The index is built in O(u log σ) time.

The main goal of this paper is to show how a practical implementation of the
LZ-index is obtained. The implementation involves several considerations on the
practicality of the theoretical decisions, which offer worst-case big-O guarantees but
do not care for the constants, the memory hieararchy, the simplicity of the solutions,
and several other important practical aspects. These decisions are considered in
detail, and several lessons of theory versus practice come out in the way.

The final prototype was tested on large natural language and DNA texts. It
takes about 5 times the space needed by the compressed text (which is close to

ACM Journal Name, Vol. V, No. N, Month 20YY.

Implementing the LZ-index · 3

our prediction). On a 2 GHz Pentium IV machine, the index is built at a rate of
1–2 megabytes/second (which is competitive with current technology) and uses a
temporary extra space similar to a suffix array construction (5 times the text size,
which is large but usual, and can be reduced in 50% by standard means). On a
50 megabytes text, a normal query takes 2 to 4 milliseconds (msecs), depending
linearly on its length, plus the time to report the R occurrences, at a rate of 600–800
per msec. Text lines can be displayed at a rate of 14 lines per msec.

We have compared our index against existing alternatives [Sadakane 2000; Fer-
ragina and Manzini 2000]. Although our index is much slower to count how many
occurrences are there, it is much faster to report their position or their text con-
text. Indeed, we show that if there are more than 300–1,400 occurrence positions
to report (this depends on the text type), then our index is faster than the others.
This number goes down to 13–65 if the text lines of the occurrences have to be
shown. Being able of reproducing the text is an essential feature, since all these
indexes replace the text and hence our only way to see the text is asking the index
to reproduce it.

A prototype of our index is available at http://www.dcc.uchile.cl/gnavarro/
software.

This paper is organized as follows. In Section 2 we explain the Ziv-Lempel
compression. In Section 3, to make the paper self-contained, we recall the basic
ideas behind the LZ-index. Similarly, Section 4 reviews the theoretical proposal
to represent the data structures in succinct space and the corresponding analysis.
From then on we switch to the practical part of the paper. Sections 5 to 10 describe
the actual implementation of the different components of the index. Section 11
considers index construction and space and Section 12 shows how to execute queries.
Section 13 compares the implementation against the most prominent alternatives.
Finally, Section 14 gives our conclusions and future work directions.

Experimental setup. To demonstrate the results in practice, we have chosen two
different text collections. The first, ziff, contains 83.37 megabytes (MB) obtained
from the “ZIFF-2” disk of the TREC-3 collection [Harman 1995]. The second,
dna, contains 51.48 MB from GenBank (Homo Sapiens DNA, http://www.ncbi.
nlm.nih.gov), with lines cut every 60 characters. We use the whole collections as
well as incremental subsets of them.

Our tests have been run on a Pentium IV processor at 2 GHz, 512 MB of RAM
and 512 kilobytes (KB) of cache, running Linux SuSE 7.3. We compiled the code
with gcc 2.95.3 using optimization option -O9. Times were obtained using 10
repetitions for indexing and 10,000 for searching, obtaining percentual errors below
1% with 95% confidence. As we work in main memory, we measure CPU times.

The search patterns were obtained by pruning text lines to their first m charac-
ters. In the case of dna we avoided patterns with 5 or more ’N’ characters, which
represents an unknown character and is not searchable. For ziff we avoided lines
containing tags and invisible characters like ’&’.

Historical note. This paper was accepted in 2003. For clerical reasons its pub-
lication has been long delayed. In between, much progress has been made in the
theory and practice on compressed text indexes. A recent article [Navarro and

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · G. Navarro

Mäkinen 2007] surveys most of the theoretical advances, and in particular serves
as an update of the account of existing indexes given here. As for the practical ad-
vances, we point to the Pizza&Chili site, at http://pizzachili.dcc.uchile.cl

and http://pizzachili.di.unipi.it, where most of the relevant theoretical pro-
posals have been implemented under a standardized interface that simplifies com-
parisons, as well as standard texts of different types. The implementation described
in this paper is now in the site1, as well as several more recent versions of it.

Despite being somewhat outdated, this paper is still worthy. First, it illustrates
the theory/practice tradeoffs made and lessons learned when implementing a highly
theoretical proposal. Second, it is the only place where a detailed description of
the implementation of the LZ-index is available, and this is today among the most
practical compressed text indexes. Third, its conclusions about the suitability
of the LZ-index versus alternative compressed indexes are still valid, as can be
witnessed by comparisons carried out on the Pizza&Chili site and informed on a
paper available in there.

2. ZIV-LEMPEL COMPRESSION

The general idea of Ziv-Lempel compression is to replace substrings in the text by
a pointer to a previous occurrence of them. If the pointer takes less space than the
string it is replacing, compression is obtained. Different variants over this type of
compression exist, see for example Bell et al. [1990]. We are particularly interested
in the LZ78 format, which we describe in depth.

The Ziv-Lempel compression algorithm of 1978 (usually named LZ78 [Ziv and
Lempel 1978]) is based on a dictionary of blocks (or “phrases”), in which we add
every new block computed. At the beginning of the compression, the dictionary
contains a single block b0 of length 0. The current step of the compression is as
follows: if we assume that a prefix T1...j of T has been already compressed into
a sequence of blocks Z = b1 . . . br, all them in the dictionary, then we look for
the longest prefix of the rest of the text Tj+1...u which is a block of the dictionary.
Once we have found this block, say bs of length ℓs, we construct a new block br+1 =
(s, Tj+ℓs+1), write the pair at the end of the compressed file Z, i.e Z = b1 . . . brbr+1,
and add the block to the dictionary. It is easy to see that this dictionary is prefix-
closed (that is, any prefix of an element is also an element of the dictionary) and a
natural way to represent it is a trie.

We will call Bi the string represented by block bi, thus Br+1 = BsTj+ℓs+1 and
T = B0 . . . Bn. Also, let br = (r1, c1), br1

= (r2, c2), br2
= (r3, c3) and so on until

rk = 0. The sequence r, r1, r2, . . . is called the referencing chain starting at block
r. It reproduces the way block br is formed from previous blocks and it is obtained
by successively moving to the parent in the dictionary trie.

An interesting property of this compression format is that every block represents
a different text substring. The only possible exception is the last block. We use
this property in our algorithm, and deal with the exception by adding a special
character “$” (not in the alphabet and considered to be smaller than any other

1To comply with the standard interface, the capability of reporting exact text positions was added
to the Pizza&Chili version, whereas http://www.dcc.uchile.cl/gnavarro/software contains the
original one described in this paper.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Implementing the LZ-index · 5

character) at the end of the text. The last block will contain this character and
thus will be unique too.

The compression algorithm is O(u) time in the worst case and efficient in practice
if the dictionary is stored as a trie, which allows rapid searching of the new text
prefix (for each character of T we move once in the trie). The decompression needs
to build the same dictionary (the pair that defines the block r is read at the r-th
step of the algorithm).

Many variations on LZ78 exist, which deal basically with the best way to code
the pairs in the compressed file. A coding variant called LZW [Welch 1984] is
implemented in Unix’s Compress program.

Another concept that is worth reminding is that a set of strings can be lexico-
graphically sorted, and we call the rank of a string its position in the lexicograph-
ically sorted set. Moreover, if the set is arranged in a trie data structure, then all
the strings represented in a subtree form a lexicographical interval of the universe.
We remind that, in lexicographic order, ε ≤ x, ax ≤ by if a < b, and ax ≤ ay if
x ≤ y, for any strings x, y and characters a, b.

3. THE BASICS OF THE LZ-INDEX

We now review [Navarro 2004] the basic idea to search for a pattern P1...m a text
T1...u that has been compressed using the LZ78 algorithm into n + 1 blocks T =
B0 . . . Bn, such that B0 = ε; ∀k 6= ℓ, Bk 6= Bℓ (that is, no two blocks are equal);
and ∀k ≥ 1, ∃ℓ < k, c ∈ Σ, Bk = Bℓ · c (that is, every block except B0 is formed
by a previous block plus a letter at the end).

3.1 Data Structures

We start by defining the data structures used, without caring for the exact way they
are represented. The problem of their succinct representation, and consequently the
space occupancy and time complexity, is considered in subsequent sections.

(1) LZTrie : is the trie formed by all the blocks B0 . . . Bn. Given the properties
of LZ78 compression, this trie has exactly n + 1 nodes, each one corresponding
to a string. LZTrie stores enough information so as to permit the following
operations on every node x:
(a) idt(x) gives the node identifier, i.e., the number k such that x represents

Bk;
(b) leftrankt(x) and rightrankt(x) give the minimum and maximum lexico-

graphical position of the blocks represented by the nodes in the subtree
rooted at x, among the set B0 . . . Bn;

(c) parentt(x) gives the tree position of the parent node of x; and
(d) childt(x, c) gives the tree position of the child of node x by character c, or

null if no such child exists.
Additionally, the trie must implement the operation rtht(rank), which given a
rank r yields the block identifier representing the lexicographically r-th string
of {B0 . . . Bn}.

(2) RevTrie : is the trie formed by all the reverse strings Br
0 . . . Br

n. For this
structure we do not have the nice properties that the LZ78 algorithm gives to
LZTrie: there could be internal nodes not representing any block. We need the

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · G. Navarro

same operations for RevTrie than for LZTrie, which are called idr, leftrankr,
rightrankr, parentr, childr and rthr.

(3) Node : is a mapping from block identifiers to their node in LZTrie.

(4) Range : is a data structure for two-dimensional searching in the
space [0 . . . n] × [0 . . . n]. The points stored in this structure are
{(revrank(Br

k), rank(Bk+1)), k ∈ 0 . . . n − 1}, where revrank is the lex-
icographical rank in {Br

0 . . . Br
n} and rank is the lexicographical rank in

{B0 . . . Bn}. For each such point, the corresponding k value is stored.

3.2 Search Algorithm

Let us consider the search process now. We distinguish three types of occurrences
of P in T , depending on the block layout (see Fig. 1):

1 2 3 4 5 6 7

LZ78 block numbers

P inside a
block

P spans 2
blocks

P spans 4
blocks

Fig. 1. Different situations in which P can match inside T .

(a). the occurrence lies inside a single block;

(b). the occurrence spans two blocks, Bk and Bk+1, such that a prefix P1...i

matches a suffix of Bk and the suffix Pi+1...m matches a prefix of Bk+1; and

(c). the occurrence spans three or more blocks, Bk . . . Bℓ, such that Pi...j =
Bk+1 . . . Bℓ−1, P1...i−1 matches a suffix of Bk and Pj+1...m matches a prefix of Bℓ.

Note that each possible occurrence of P lies exactly in one of the three cases
above. We explain now how each type of occurrence is found.

3.2.1 Occurrences Lying Inside a Single Block. Given the properties of LZ78,
every block Bk containing P is formed by a shorter block Bℓ concatenated to a
letter c. If P does not occur at the end of Bk, then Bℓ contains P as well. We want
to find the shortest possible block B in the referencing chain for Bk that contains
the occurrence of P . This block B finishes with the string P , hence it can be easily
found by searching for P r in RevTrie.

Therefore, in order to detect all the occurrences that lie inside a single block we
do as follows:

(1) Search for P r in RevTrie. We arrive at a node x such that every string stored
in the subtree rooted at x represents a block ending with P .

(2) Evaluate leftrankr(x) and rightrankr(x), obtaining the lexicographical inter-
val (in the reversed blocks) of blocks finishing with P .

ACM Journal Name, Vol. V, No. N, Month 20YY.

Implementing the LZ-index · 7

(3) For every rank r ∈ leftrankr(x) . . . rightrankr(x), obtain the corresponding
node in LZTrie, y = Node(rthr(r)). Now we have identified the nodes in the
normal trie that finish with P and have to report all their extensions, i.e., all
their subtrees.

(4) For every such y, traverse all the subtree rooted at y and report every node
found. In this process we can know the exact distance between the end of P and
the end of the block. Note that a single block containing several occurrences
will report each of them, since we will report subtrees that are contained in
other subtrees reported.

3.2.2 Occurrences Spanning Two Blocks. P can be split at any position, so we
have to try them all. The idea is that, for every possible split, we search for the
reverse pattern prefix in RevTrie and the pattern suffix in LZTrie. Now we have
two ranges, one in the space of reversed strings (i.e., blocks finishing with the first
part of P) and one in that of the normal strings (i.e. blocks starting with the
second part of P), and need to find the pairs of blocks (k, k + 1) such that k is in
the first range and k + 1 is in the second range. This is what the range searching
data structure is for. Hence the steps are:

(1) For every i ∈ 1 . . .m − 1, split P into pref = P1...i and suff = Pi+1...m and do
the next steps.

(2) Search for pref r in RevTrie, obtaining x. Search for suff in LZTrie, obtaining
y.

(3) Search for the range [leftrankr(x) . . . rightrankr(x)] ×
[leftrankt(y) . . . rightrankt(y)] using the Range data structure.

(4) For every pair (k, k + 1) found, report k. We know that Pi is aligned at the
end of Bk.

3.2.3 Occurrences Spanning Three Blocks or More. We need one more obser-
vation for this part. Recall that the LZ78 algorithm guarantees that every block
represents a different string. Hence, there is at most one block matching Pi...j for
each choice of i and j. This fact severely limits the number of occurrences of this
class that may exist.

The idea is, first, to identify the only possible block that matches every substring
Pi...j . We store the block numbers in m arrays Ai, where Ai stores the blocks
corresponding to Pi...j for all j. Then, we try to find concatenations of successive
blocks Bk, Bk+1, etc. that match contiguous pattern substrings. Again, there is
only one candidate (namely Bk+1) to follow an occurrence of Bk in the pattern.
Finally, for each maximal concatenation of blocks Pi...j = Bk . . . Bℓ contained in
the pattern, we determine whether Bk−1 finishes with P1...i−1 and Bℓ+1 starts with
Pj+1...m. If this is the case we can report an occurrence. Note that there cannot
be more than O(m2) occurrences of this type. So the algorithm is as follows:

(1) For every 1 ≤ i ≤ j ≤ m, search for Pi...j in LZTrie and record the node x
found in Ci,j = x, as well as add (idt(x), j) to array Ai. The search is made for
increasing i and for each i value we increase j. This way we perform a single
search in the trie for each i. If there is no node corresponding to Pi...j we stop
searching and adding entries to Ai, and store null values in Ci,j′ for j′ ≥ j. At

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · G. Navarro

the end of every i-turn, Ai is already sorted by block number. Mark every Ci,j

as unused.

(2) For every 1 ≤ i ≤ j < m, for increasing j, try to extend the match of Pi...j to
the right. We do not extend to the left because this, if useful, has been done
already (we mark used ranges to avoid working on a sequence that has been
tried already from the left). Let S and S0 denote idt(Ci,j), and find (S + 1, r)
in Aj+1. If r exists, mark Cj+1,r as used, increment S and repeat the process
from j = r. Stop when the occurrence cannot be extended further (no such r
is found).

(a) For each maximal occurrence Pi...r found ending at block S such that
r < m, check whether block S + 1 starts with Pr+1...m, i.e., whether
leftrankt(Node(S+1)) ∈ leftrankt(Cr+1,m) . . . rightrankt(Cr+1,m). Note
that leftrankt(Node(S + 1)) is the exact rank of node S + 1, since every
internal node is the first among the ranks of its subtree. Note also that
there cannot be an occurrence if Cr+1,m is null. If r < m and block S + 1
does not start with Pr+1...m, then stop here and move to the next maximal
occurrence.

(b) If i > 1, then check whether block S0 − 1 finishes with P1...i−1. For this
sake, find Node(S0 − 1) and use the parentt operation to check whether
the last i−1 nodes, read backward, equal P r

1...i−1. If i > 1 and block S0−1
does not finish with P1...i−1, then stop here and move to the next maximal
occurrence.

(c) Report node S0 − 1 as the one containing the beginning of the match. We
know that Pi−1 is aligned at the end of this block.

Note that we must make sure that the occurrences reported span at least 3 blocks.

Fig. 2 depicts the whole algorithm. Occurrences are reported in the format
(k, offset), where k is the identifier of the block where the occurrence starts and
offset is the distance from the beginning of the occurrence to the end of the block.

If we want to show the text surrounding an occurrence (k, offset), we just go to
LZTrie using Node(k) and use the parentt pointers to obtain the characters of
the block in reverse order. If the occurrence spans more than one block, we do the
same for blocks k + 1, k + 2 and so on until the whole pattern is shown. We also
can show larger block numbers as well as blocks k − 1, k − 2, etc. in order to show
a larger text context around the occurrence. Indeed, we can recover the whole text
by repeating this process for k ∈ 0 . . . n.

4. A THEORETICAL IMPLEMENTATION PROPOSAL

To make the paper self-contained and to permit contrasting the practical imple-
mentation decisions against the theoretical proposal [Navarro 2004] to implement
this index obtaining worst case guarantees, we now review this theoretical proposal.

4.1 A Succinct Index Representation

Let us first consider the tries. Munro and Raman [1997] show how to store a
binary tree of N nodes using 2N + o(N) bits such that the operations parent(x),
leftchild(x), rightchild(x) and subtreesize(x) can be answered in constant time.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Implementing the LZ-index · 9

Search (P1...m, LZTrie, RevTrie, Node, Range)
1. /* Lying inside a single block */
2. x← search for P r in RevTrie

3. For r ∈ leftrankr(x) . . . rightrankr(x) Do

4. y ← Node(rthr(r))
5. For z in the subtree rooted at y Do

6. Report (idt(z), m + depth(y)− depth(z))
7. /* Spanning two blocks */
8. For i ∈ 1 . . . m− 1 Do

9. x← search for P r
1...i in RevTrie

10. y ← search for Pi+1...m in LZTrie

11. Search for [leftrankr(x) . . . rightrankr(x)]
×[leftrankt(y) . . . rightrankt(y)] in Range

12. For (k, k + 1) in the result of this search Do Report (k, i)
13. /* Spanning three or more blocks */
14. For i ∈ 1 . . . m Do

15. x← root node of LZTrie

16. Ai ← ∅
17. For j ∈ i . . . m Do

18. If x 6= null Then x← childt(x, Pj)
19. Ci,j ← x

20. usedi,j ← false

21. If x 6= null Then Ai ← Ai ∪ (idt(x), j)
22. For j ∈ 1 . . . m Do

23. For i ∈ 1 . . . j Do

24. If Ci,j 6= null and usedi,j = false Then

25. S0 ← idt(Ci,j)
26. S ← S0 − 1, r ← j − 1
27. While (S + 1, r′) ∈ Ar+1 Do /* always exists the 1st time */
28. usedr+1,r′ ← true

29. r ← r′, S ← S + 1
30. span← S − S0 + 1
31. If i > 1 Then span← span + 1
32. If r < m Then span← span + 1
33. If span ≥ 3 Then

34. If Cr+1,m = null or (leftrankt(Cr+1,m) ≤
≤ leftrankt(Node(S + 1)) ≤ rightrankt(Cr+1,m)) Then

35. x← Node(S0 − 1), i′ ← i− 1
36. While i′ > 0 and parentt(x) 6= null

and x = child(parentt(x), Pi′) Do

37. x← parentt(x), i′ ← i′ − 1
38. If i′ = 0 Then Report (S0 − 1, i− 1)

Fig. 2. The search algorithm. The value depth(y) − depth(z) is determined on the fly since we
traverse the whole subtree of z.

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · G. Navarro

Munro et al. [2001] show that, using the same space, the following operations can
also be answered in constant time: leafrank(x) (number of leaves to the left of
node x), leafsize(x) (number of leaves in the subtree rooted at x), leftmost(x)
and rightmost(x) (leftmost and rightmost leaves in the subtree rooted at x).

In the same paper, Munro et al. [2001] show that a trie can be represented using
this same structure by expressing the alphabet Σ in binary. This trie is able to
point to an array of identifiers, so that the identity of each leaf can be known.
Moreover, path compressed tries (where unary paths are compressed and a skip
value is kept to indicate how many nodes have been compressed) can be represented
without any extra space cost, as long as there exists a separate representation of
the strings stored readily available to compare the portions of the pattern skipped
at the compressed paths.

We use the above representation for LZTrie as follows. We do not use path
compression, but rather convert the alphabet to binary and store the n + 1 strings
corresponding to each block, in binary form, into LZTrie. For reasons that are
made clear soon, we prefix every binary representation of a character with the bit
“1”. So every node in the binary LZTrie will have a path of length 1 + log2 σ to
its real parent in the original LZTrie, creating at most 1 + log2 σ internal nodes.
We make sure that all the binary trie nodes that correspond to true nodes in the
original LZTrie are leaves in the binary trie. For this sake, we use the extra bit
allocated: at every true node that happens to be internal, we add a leaf by the bit
0, while all the other children necessarily descend by the bit 1.

Hence we end up with a binary tree of n(1 + log2 σ) nodes, which can be repre-
sented using 2n(1 + log2 σ) + o(n log σ) bits. The identity associated to each leaf x
will be idt(x). This array of node identifiers is stored in order of increasing rank,
which requires n log2 n bits, and permits implementing rtht in constant time.

The operations parentt and childt can therefore be implemented in O(log σ)
time. The remaining operations, leftrankt(x) and rightrankt(x), are computed
in constant time using leafrank(leftmost(x)) and leafrank(rightmost(x)), since
the number of leaves to the left corresponds to the rank in the original trie.

For RevTrie we have up to n leaves, but there may be up to u internal nodes.
We use also the binary string representation and the trick of the extra bit to ensure
that every node that represents a block is a leaf. In this trie we do use path
compression to ensure that, even after converting the alphabet to binary, there are
only n nodes to be represented. Hence, all the operations can be implemented using
only 2n + o(n) bits, plus n log2 n bits for the identifiers.

It remains to explain how we store the representation of the strings in the re-
verse trie, since in order to compress paths one needs the strings readily available
elsewhere. Instead of an explicit representation, we use the same LZTrie. Assume
that we are at a reverse trie node y representing string a, and we have to consider
going down to the child node x. To find out which is the string b joining y to x, we
obtain, using Node(rthr(leftrankr(x)) and Node(rthr(rightrankr(x)), two nodes
in LZTrie. We have to go up from both nodes until we read ar (string a reversed),
and then we continue going up to the parent in LZTrie. What we read after ar

is br. The process finishes when the characters read from both nodes differ or one
reaches the root of LZTrie. Note that advancing to a child may require O(m log σ)

ACM Journal Name, Vol. V, No. N, Month 20YY.

Implementing the LZ-index · 11

time in RevTrie.
For the Node mapping we simply have a full array of n log2 n bits.
Finally, we need to represent the data structure for range searching, Range,

where we store n block identifiers k (representing the pair (k, k + 1)). Among the
plethora of data structures offering different space-time tradeoffs for range searching
[Agarwal and Erickson 1999; Kärkkäinen 1999], we prefer one of minimal space
requirement by Chazelle [1988]. This structure is a perfect binary tree dividing
the points along one coordinate plus a bitmap for every tree node indicating which
points (ranked by the other coordinate) belong to the left child. There are in total
n log2 n bits in the bitmaps plus an array of the point identifiers ranked by the first
coordinate which represents the leaves of the tree.

This structure permits two dimensional range searching in a grid of n pairs of
integers in the range [0, n]× [0, n], answering queries in O((R+1) log n) time, where
R is the number of occurrences reported. A newer technique for bitmaps [Jacobson
1989; Munro 1996] needs N + o(N) bits to represent a bitmap of length N , and
executes the rank operation (here meaning number of 1’s up to a given position)
and its inverse in constant time. Using this technique, the structure of Chazelle
requires just n log2 n(1 + o(1)) bits to store all the bitmaps. Moreover, we do not
need the information at the leaves, which maps rank (in a coordinate) to block
identifiers: as long as we know that the r-th block qualifies in normal (or reverse)
lexicographical order, we can use rtht (or rthr) to obtain the identifier k +1 (or k).

4.2 Space and Time Complexity

From the previous section it becomes clear that the total space requirement of our
index is n⌈log2 n⌉(4 + o(1)) bits. The tries and Node can be built in O(u log σ)
time, while Range needs O(n log n) construction time. Since n logn = O(u log σ)
[Bell et al. 1990], the overall construction time is O(u log σ). Let us now consider
the search time of the algorithm.

Finding the blocks that totally contain P requires a search in RevTrie of cost
O(m2 log σ). Later, we collect occurrences: for each unit of work done, we report a
distinct occurrence, so we cannot work more than R, the size of the result.

Finding the occurrences that span two blocks requires m searches in LZTrie and
m searches in RevTrie, for a total cost of O(m3 log σ), as well as m range searches
requiring O(m log n + R log n) (since every occurrence is reported only once).

Finally, searching for occurrences that span three blocks or more requires m
searches in LZTrie (all the Ci,j for the same i are obtained with a single search),
at a cost of O(m2 log σ). Extending the occurrences costs O(m2 log m). To see this,
consider that, for each unit of work done in the loop of lines 27–29 in Fig. 2, we
mark one C cell as used and never work again on that cell. There are O(m2) such
cells. This means that we make O(m2) binary searches in the Ai arrays. The final
verifications to the right and to the left cost O(1) and O(m log σ), respectively, and
there may be O(m2) independent verifications.

Hence the total search cost to report the R occurrences of pattern P1...m is
O(m3 log σ + (m + R) log n). If we consider the alphabet size as constant then
the algorithm is O(m3 + (m + R) log n). The existence problem can be solved in
O(m3 log σ + m log n) time (note that we can disregard in this case blocks totally
containing P , since these occurrences extend others of the other two types). Finally,

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · G. Navarro

we can uncompress and show a text of length L surrounding any occurrence reported
in O(L log σ) time, and uncompress the whole text T1...u in O(u log σ) time.

Chazelle [1988] permits several space-time tradeoffs in his data structure. In par-
ticular, by paying O

(

1
εn log n

)

space, reporting time can be reduced to O(logε n).
If we pay for this space complexity, then our search time becomes O(m3 log σ +
m log n + R logε n).

5. IMPLEMENTING BITMAPS

One of the lowest level data structures is the bitmap able to answer the query
rank(i), which is the number of 1’s before position i. Jacobson [1989], and later
Munro [1996], showed how to use ℓ + o(ℓ) bits to represent a bitmap of length ℓ,
implementing rank in constant time.

In their solution, one should divide the bitstream into superblocks of size s =
log2

2 ℓ, each of which should be divided into blocks of size b = (log2 ℓ)/2. For each
superblock one stores the number of 1’s present before the superblock. The same
is done for the blocks, but counting only from the beginning of its superblock.
Hence we need ℓ/ log2 ℓ bits for the superblocks and 4ℓ log2 log2 ℓ/ log2 ℓ bits for
the blocks. Finally, a table is built with precomputed answers for all the possible
block contents and i values, which takes 2bb log2 b = 1

2

√
ℓ log2 ℓ(log2 log2 ℓ − 1).

For example, if ℓ = 226 (64 megabits), the extra space turns out to be 81.40%
over that of the bitstream itself. Note that, since we use bit streams to represent
parentheses, ℓ = 64 megabits will mean n = 32 mega-Ziv-Lempel-blocks, which
roughly corresponds to 320 MB of text. This shows that the “sublinear” part
decreases rather slowly2.

Note that the table of precomputed answers does no more than “popcounting”,
that is, counting the number of 1’s in a bit mask. There are well known folklore
solutions to do this without a precomputed table. Probably the best is

bx = x - ((x>>1) & 0x77777777) - ((x>>2) & 0x33333333) - ((x>>3) & 0x11111111)

popcount = ((bx + (bx>>4)) & 0x0F0F0F0F) % 0xFF

where a computer word of 32 bits is assumed, but it can be trivially extended
to 64 bits at almost the same cost. This solution requires 13 operations, all on a
single register. This is usually faster than a single access to RAM memory3.

A reasonable principle in our balance between theory and practice is to consider
O(log log ℓ) as good as a constant. Indeed, log2 log2 ℓ ≤ 5 for ℓ ≤ 232, which
is usually much larger than any size we will handle in main memory. Moreover,
log2 log2 ℓ ≤ 6 for ℓ ≤ 264, which is 16 million terabits.

Since we replace the precomputed table by popcounting, we can set b = w, the
number of bits in a computer word. Using superblocks of size s gives a space
requirement of (ℓ/s) log2 ℓ + (ℓ/b) log2 s bits. Optimizing we get s = b log2 ℓ =

2We have taken all the constants literally, without considering that those can be changed to reduce
the space while maintaining the same theoretical time complexity. Yet, our aim is to illustrate
that lower-order terms should be considered seriously.
3In 2005 we carried out a more thorough study and found other combinations that gave us slightly
better performance [González et al. 2005]. We also found variants that performed decently while
using just 5% of extra space. However, as bitmaps are not a large part in the space consumption
of our LZ-index, we stick to the larger and faster variant.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Implementing the LZ-index · 13

w log2 ℓ. Once we obtain the number of bits to represent a value in [0, s − 1] (that
is, ⌈log2 s⌉), we redefine s as 2⌈log2

s⌉ to make the best use of the bits in the blocks.
Our above example with 64 megabits, using w = 32, would be as follows: s =

32 × 26 = 832, hence we need ⌈log2 s⌉ = 10 bits per block counter, and redefine
s = 1024. We need only 33.79% of extra space. Fig. 3 (right) shows, among other
things, the experimental space overhead of the bitmaps in our examples. It ranges
between 33.30% and 33.60% as expected.

Superblock and block counters are stored in separate arrays of bits, so that each
number uses the fixed number of bits we assigned to superblocks and blocks. The
bitstream, on the other hand, is stored as a sequence of computer words.

In order to obtain rank(i), we add (1) the value of the superblock counter number
i >> ⌈log2 s⌉; (2) the value of the block counter number i >> log2 w; (3) the
popcount of the word number i >> log2 w of the bitstream, after removing all but
the first x bits of it, where x is given by the log2 w lowest bits of i. Since we use
powers of 2, we can use bit shifting instead of the slower multiplication and division.

6. IMPLEMENTING BALANCED PARENTHESES

The proposals [Munro and Raman 1997; Munro et al. 2001] to handle trees and
tries in succinct space build on top of a succinct representation of a sequence of
balanced parentheses. As we follow the same path, we study now in depth a prac-
tical implementation, keeping in mind that our goal is to represent a general tree
in preorder (ancestors enclose their descendants).

The solution [Munro and Raman 1997] to store a sequence of p parentheses uses
o(p) extra space and permits executing the following operations in constant time:
findopen(i) and findclose(i) find the position of the opening(closing) parenthesis
that matches closing(opening) parenthesis at position i; excess(i) gives the excess
of opening parentheses over closing parentheses up to position i; and enclose(i)
gives the opening position of the closest parentheses pair that encloses opening
parenthesis i.

In practice, the solution [Munro and Raman 1997] is overwhelmingly complicated,
involving a complex structure that is replicated at three levels (big, small, and tiny
blocks). Which is worse, the extra “sublinear” space is extremely large in practice.
The authors mention that the sequence should have more than 20 million bits before
the excess becomes less than 100%. We made ourselves the exercise of adding up
all the sublinear-size data structures for our 64 megabit example, and it turned out
that the extra space is 15 times p. Moreover, we did not count a precomputed table
whose size is 24(log

2
log

2
p)28(log2 log2 p)2(2 + 2 log2 log2 log2 p) ≈ 2111 bits4.

As it is clear that we cannot go ahead with this approach in practice, we design a
simpler scheme that guarantees O(log log p) average time and (almost) guarantees
bounded extra space. We do reuse some of the ideas of Munro and Raman [1997],
but we combine them with practical considerations5.

4Again, this could be alleviated somehow by choosing other constants for the terms given in the
theoretical paper, yet the general conclusion would be the same. In particular, as the space is
reduced via manipulation of constants, the “constant time” achieved in theory worsens in practice
due to the same manipulations.
5In 2004, a practical implementation appeared [Geary et al. 2004] offering decent practical per-

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · G. Navarro

6.1 General Scheme

We represent the balanced sequence of parentheses as a bitmap, where 0 represents
an opening parenthesis and 1 a closing parenthesis. The rank(i) operation (Sec-
tion 5) makes our excess(i) query extremely simple, as it is the number of 0’s minus
1’s. This is a simple function of rank(i), namely excess(i) = i − 2 × rank(i). We
use the excess(i) function several times in which follows.

Let us for now focus on findopen(i) and findclose(i), as enclose(i) will then
come easily. Given an opening (for findclose()) or closing (for findopen()) paren-
thesis, what we need is to know the position of its matching parenthesis.

Our aim is to explicitly store the position of the matching parenthesis only for
large subtrees (recall that our parentheses represent general trees). That is, if a
subtree has less than b/2 nodes (b parentheses) we will find its matching parenthesis
by brute force, that is, looking at the bits that follow or precede it until we find
the first with the same excess. We will not work more than O(b) at this. For larger
subtrees, we will store the answer directly in a hash table. If there are no unary
nodes, then there cannot be more than p/b large subtrees.

This is not enough if we attempt to work O(log log p), since we would have to
store p/b numbers of log2 p bits, for a total space requirement of O(p log p/ log log p).
We instead define three types of parentheses: “close” parentheses are those whose
matching parentheses are at distance at most b; “near”, between b + 1 and s; and
“far”, farther than s bits away. The hash table for far parentheses uses log p bits
to store the values, while that for near parentheses uses just log s bits (we do not
store the absolute position of the matching parenthesis but its distance from the
argument). Close parentheses are solved by brute force.

6.2 Hashing

Implementing the hashing scheme is not as trivial as it might seem. We exclude
perfect hashing, whose implementation is not practical for our very large data sets6.
We opt for a closed hashing scheme with table size at least 1.8 times the number
of elements, which is a good tradeoff between space and search time (expected
number of accesses per search is 2.25)7. Hashing is done by multiplying the key by
a large constant prime, and rehashing by adding another such prime (so we suffer
from secondary clustering, but address computation is cheaper). The table size is
a power of 2 to avoid computing modulus. This turned out to be much faster at a
small price in space.

The interesting problem we have to face is how to handle collisions without storing

the keys (as the keys are absolute positions requiring log2 p bits). In general there
would be no solution to this problem: there is no way to distinguish to which of

formance and the original theoretical guarantees. We have been unable of obtaining their code,
so we recently implemented it and found that their solution is slightly smaller and slower. Our
implementation is still a better choice for our application.
6We found good implementations, by the authors, of the best current schemes, and they
could not handle more than a few thousand keys. See http://www.amk.ca/python/code/

perfect-hash.html.
7We are considering the cost of an unsuccessful search, 1/(1−α), α = 1/1.8, because, as it should
be clear from the next paragraphs, we have to consider all the elements that collide before deciding
which is ours.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Implementing the LZ-index · 15

two colliding keys does a given value correspond. However, in our particular case,
an elegant solution exists.

Imagine that we search for a given parenthesis position in our hash table and
recover a set of possible answers (corresponding to other keys that have collided with
our key). Each such answer gives a candidate distance to our matching parenthesis.
We first discard those candidates whose excess is different from that of our key.
However, there could be still several candidates with the correct excess. If our key
is in the table, then our solution is in the candidate set and it can only be the

closest matching position with correct excess, since candidates that appear before
the correct answer must have higher excess on a balanced sequence.

This property gives us a simple solution. We first try to find the matching
parenthesis by brute force up to distance b. If we fail, then the parenthesis is either
near or far. We search the hash table of near parentheses. If we find candidates
with the same excess, then the closest one is the answer. If we do not, then we
search the far table, where the answer surely is.

We remark that, although in general we speak of “sets” of colliding answers, in
practice we expect typically at most two colliding answers.

In principle, we need indeed two near and two far tables: one for opening and one
for closing parenthesis, to implement findopen(i) and findclose(i), respectively.
Soon we will show a slight modification to this idea.

6.3 Brute Force Search

Finally, let us consider the solution for small subtrees (not in the hash tables). We
do not really search for their matching parenthesis bitwise. We rather process the
following or preceding bits by chunks of k bits. This is done as follows. For every
different k-bit stream, we precompute its excess, and also, for every j ∈ 1 . . . k, the
first position of the k-bit stream where the excess becomes −j, if any.

To solve findclose(i), we isolate the b bits following position i and traverse them
by chunks: We ask if the excess −1 is reached in the first chunk. If it is, the
position where this happens is that of the closing parenthesis. Otherwise, let e1 be
the excess of the first chunk. We then consider the second chunk, looking for excess
−1− e1. If it is reached inside the second chunk, we have the answer, otherwise, if
e2 is the excess of the second chunk, we continue looking for excess −1 − e1 − e2,
and so on. If we exhaust the b bits without a solution, then the answer is not close.

Solving findopen(i) is almost identical, precomputing tables that look for posi-
tive instead of negative excesses, and considering the sequences right to left.

6.4 Solving enclose(i)

The operation enclose(i) can be solved using findopen() as follows. If we are the
first child of our parent, we can detect that because the parenthesis at position i−1
is an opening parenthesis, and in this case this is the opening position of the parent
(enclosing pair). Otherwise, we can find the previous sibling as findopen(i − 1).
We traverse the sequence of siblings backward until we find the parent.

There is no complexity guarantee for this operation except the arity of the parent.
In our application this will be σ in the worst case. In practice, this turned out to
be rather slow and the operation turned out to be needed in many places of the
overall scheme, ruining the overall performance.

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · G. Navarro

Hence we preferred to directly store the enclosing parenthesis of each opening
parenthesis. This is the last parenthesis before i whose excess is one less than the
excess of i. It turns out that the hashing scheme described above fits perfectly
well, and collisions can be handled the same way. The brute force search for close
parentheses is also very similar to that of findopen(). Moreover, findopen() itself
is not used elsewehere in our application, so we do not need to store information
on closing parentheses.

The only drawback of this approach is that there will be many more near and far
parentheses, as enclosing parentheses are farther away than matching parentheses.
The resulting overhead is not negligible but the whole search process becomes much
faster. A way to limit the number of near and far parentheses is to see that a subtree
of size at most b (s) will have all close answers inside, but its root can have a near
(far) answer. In practice we are including one extra level of the tree in the hash
tables, which can give us at most σ − 2 times more extra space than for matching
parentheses (the first child has always a close answer, as well as, almost always, the
next sibling of a small subtree).

6.5 Evaluation

With the above approach we solve any of the operations working at most O(b/k)
plus two searches on hash tables, which are O(1) on average. Assuming there are no
unary nodes, the space is at most 1.8×((σ−1)p/s) log2 p+1.8×((σ−1)p/b) log2 s+
2k(2k + 1) log2 k bits, where the first term is for the far parentheses, the second for
the near parentheses, and the third for the precomputed tables. The value σ − 1
comes from 1 (for findclose()) plus σ − 2 (for enclose()), the factor 2 from the
guarantee of 2p/s or 2p/b large trees, and the 1.8 from the hashing load factor.

The optimum is s = b log2 p. If b = log2 p and k = log2 p/ log2 log2 p, then
s = log2

2 p. Our search cost remains O(log log p) and the space requirement is
sublinear and reasonable. In our example of 64 megabits, and assuming σ = 4, we
have an overhead of 2.28 times the stream size, plus a constant number of 1248
bits (recall that this is an upper bound, it is much better on average). Using hash
tables that are powers of 2 may drive this extra space up to 4.56 in the worst case.

In practice k can be made larger. For practical reasons we have chosen to fix
k = 8, so we advance by bytes. Our constant size tables take 4.25 KB, which admits
good caching. We fix b = w, in our case b = 32. This means that we first process
the first 4 bytes, one by one, and then go to the hash tables if necessary. We keep
s = b log2 p. Reconsidering our example, we need at most 1.86 times the bitstream
size plus 4.25 KB (these tables are the same no matter how many bitstreams we
handle, so they can be considered as part of the program size).

These figures are much better than 15 times the bitstream size. Yet, they come
from a simplified analysis and that they assume there are no unary nodes.

Fig. 3 shows the space overheads incurred in our example tests. On the left
we have plotted the percentage of “near” and “far” parentheses both in LZTrie

and RevTrie (parent(i) is not used on RevTrie). On the right we have plotted the
overall space overhead to represent balanced parentheses, including those attributed
to the bitmaps. As we can see, only 2% to 7% of the parentheses have to be stored
in the “near” hash table, and 0.04% to 0.6% are stored in the “far” tables. The
percentages seem to stabilize for large texts. The overhead due to these hash tables

ACM Journal Name, Vol. V, No. N, Month 20YY.

Implementing the LZ-index · 17

is, for LZTrie 1.5 to 3.6 times the space of the parentheses themselves, and 0.5 to 0.8
for RevTrie. The reason for the difference among the tries is the lack of enclose()
information on RevTrie. The reason for the fluctuations in the figures is that we
require the hash table size to be a power of two to avoid computing modulus. We
could change this decision, but we would pay much more in terms of search time,
and these fluctuations hardly influence the overall index size (see later).

0

1

2

3

4

5

6

7

8

10 20 30 40 50 60 70 80 90

%
 o

ve
r

al
l p

ar
en

th
es

es

Megabytes of text

ZIFF: Number of stored parentheses

Near, LZTrie
Far, LZTrie

Near Parent, LZTrie
Far Parent, LZTrie

Near, RevTrie
Far, RevTrie

0

50

100

150

200

250

300

350

400

10 20 30 40 50 60 70 80 90
%

 o
f e

xt
ra

 s
pa

ce
Megabytes of text

ZIFF: Space overhead of parentheses

Bitmap, LZTrie
Hashing, LZTrie

Total, LZTrie
Bitmap, RevTrie

Hashing, RevTrie
Total, RevTrie

0

0.5

1

1.5

2

2.5

3

3.5

4

10 15 20 25 30 35 40 45 50 55

%
 o

ve
r

al
l p

ar
en

th
es

es

Megabytes of text

DNA: Number of stored parentheses

Near, LZTrie
Far, LZTrie

Near Parent, LZTrie
Far Parent, LZTrie

Near, RevTrie
Far, RevTrie

50

100

150

200

250

300

10 15 20 25 30 35 40 45 50 55

%
 o

f e
xt

ra
 s

pa
ce

Megabytes of text

DNA: Space overhead of parentheses

Bitmap, LZTrie
Hashing, LZTrie

Total, LZTrie
Bitmap, RevTrie

Hashing, RevTrie
Total, RevTrie

Fig. 3. Different aspects of the space overhead to store balanced parentheses.

7. IMPLEMENTING THE LZTRIE

We again choose to change the theoretical approach of Munro and Raman [1997],
although we again reuse some of their ideas8.

7.1 Structure

Instead of converting our alphabet to binary and representing the trie as a binary
tree and this in turn as a sequence of parentheses of maximum arity 2, we choose
to directly represent the trie in its general tree form, as a sequence of parentheses.
The main consequence is that, by converting the alphabet to binary, we would pay
O(log σ) for any child(i, a) operation, while with a representation as a general tree
we could pay O(σ), assuming we search linearly for the proper child a. In practice,
however, only the highest nodes of the trie have a significant arity, while most of

8A beautiful representation for general trees permitting fast branching appeared later [Benoit
et al. 2005], and it has been used to implement newer versions of the LZ-index.

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · G. Navarro

them will have much less than log2 σ. On the other hand, the direct implementation
as a general tree is much simpler and requires less space. To alleviate the arity
problem, the answers for the (at most σ) children of the root are precomputed.

The LZTrie structure contains a sequence of parentheses representing the trie
structure, a sequence lets of characters that label each edge of the trie, in preorder,
and a sequence ids of block identifiers, also in preorder. Given a node (repre-
sented as the position i of its opening parenthesis), its position in the sequence
of letters/identifiers is easily obtained: it corresponds to the number of opening
parentheses (0’s) before position i, that is, i − rank(i). Hence the letter by which
node i descends from its parent and its identifier are easily obtained.

7.2 Operations

To compute child(i, a), the child of node i by letter a, we examine the children
of i until we find (or not) one that descends by a (we can stop if we find a letter
larger than a). The first child is j = i + 1 and the others are obtained as j =
findclose(j) + 1. The children finish when j is a closing parenthesis. To go to the
parent node we simply use parent(i) = enclose(i).

Fig. 4 shows the number of invocations to findclose() per call to child(i, a). It
shows that in practice the cost of this operation in the case of dna is around 2.
For ziff, on the other hand, it is around 10–12. It is much higher, however, for
short patterns (because for them most of the searches occur in the top of the trie,
where arities are larger). For short patterns the cost of the trie search is negligible
compared to the overall search cost, as will be clear later.

Note that for very short dna patterns (m = 5), having the first level of the trie
preprocessed has a great influence on the overall time. Note also that there is a
slight increase as the text grows, as expected.

The other functions we have to provide are easily implementable. First,
subtreesize(i), the number of nodes of the subtree rooted at i, is simply half the
number of parentheses enclosed by node i, subtreesize(i) = (findclose(i)−i+1)/2.
Second, depth(i), the depth in the tree of node i, is exactly excess(i). Third,
leftrank(i) and rightrank(i), the first and last lexicographical positions of strings
below node i, are simply leftrank(i) = i−rank(i) (as node i represents the smallest
string in the subtree) and rightrank(i) = j − rank(j)− 1, where j = findclose(i).
Fourth, rth(pos), the block identifier of the pos-th string in the trie, is just
ids(pos). Fifth, ancestor(i, j)9 tells whether node i is an ancestor of j, and is just
ancestor(i, j) = i ≤ j ≤ findclose(i). Finally, the letter and identifier of node i can
be easily rewritten as letter(i) = lets(leftrank(i)) and id(i) = ids(leftrank(i)).
We also implement simple functions that permit traversing the trie in depth first
search order (not caring about the letters), which is useful to report whole subtrees
(occurrences of type 1).

7.3 Construction

LZTrie is built as follows. We traverse the text and at the same time build a
normal trie of the strings represented by Ziv-Lempel blocks. At step k, we read the
text that follows and step down this trie until we cannot continue. At this point

9A new operation we have included for convenience, as seen later.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Implementing the LZ-index · 19

8

10

12

14

16

18

20

22

20 40 60 80 100 120

N
um

be
r

of
 n

od
es

 a
cc

es
se

d

Text size (Mb)

ZIFF: Children traversed per call to child(i,a)

m = 5
m = 10
m = 15
m = 20
m = 25
m = 30
m = 35
m = 40
m = 45
m = 50
m = 55
m = 60

8

10

12

14

16

18

20

22

0 10 20 30 40 50 60

N
um

be
r

of
 n

od
es

 a
cc

es
se

d

Pattern length (m)

ZIFF: Children traversed per call to child(i,a)

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
u = 60 Mb
u = 70 Mb
u = 80 Mb
Whole file

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

10 20 30 40 50 60 70

N
um

be
r

of
 n

od
es

 a
cc

es
se

d

Text size (Mb)

DNA: Children traversed per call to child(i,a)

m = 5
m = 10
m = 15
m = 20
m = 25
m = 30
m = 35
m = 40
m = 45
m = 50
m = 55
m = 60

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

0 10 20 30 40 50 60

N
um

be
r

of
 n

od
es

 a
cc

es
se

d

Pattern length (m)

DNA: Children traversed per call to child(i,a)

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
Whole file

Fig. 4. Number of findclose() invocations to find the proper child in the child(i, a) operation.

we create a new block (assigning it next block number k), go to the root again, and
go on with step k + 1 reading the rest of the text. The process finishes when the
last block finishes with the text terminator “$”.

Fig. 5 (left) shows the construction times for LZTrie. We have identified four
steps: (i) creation of normal trie, where the text is read and the normal trie (with
pointers) is built; (ii) representation of this trie using parentheses, which involves
simply traversing it and writing down bits when a new tree is started/finished; (iii)
freeing the normal trie, which is essential to limit the overall construction RAM
space; and (iv) creation of the compressed trie representation, which means creating
a balanced parentheses data structure using the bit stream that represents the trie,
and creating the arrays of letters and identifiers.

As expected, the most time-consuming process is by far the creation of the trie.
This shows that any improvement on this aspect will result in a significant decrease
of the overall construction time. It is also clear that the times are slightly superlin-
ear, although the algorithms are clearly linear, both in the average and worst case.
The reason is most probably the reduced locality of reference as larger tries are
built. At their maximum sizes, the overall construction speed is about 3 MB/sec
for dna and 2 MB/sec for ziff.

In fact, freeing the trie was initially time consuming too, as we had to free all
the individual nodes. As there were few different sizes to work with, we decided
to create our own memory manager handling objects of fixed size, using a different
manager for each different object size. This manager allocates nodes in blocks, and
freeing them is much faster than the naive approach. Some programming languages

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · G. Navarro

(like Modula-2) or runtime support systems provide independent “heaps”, that is,
memory areas that are allocated and freed once and that support allocation of
memory inside them. This kind of heap is what we are simulating.

7.4 Extra Space

Fig. 5 (right) shows the extra space needed by LZTrie. The larger value is the
space (as a fraction of the text size) needed by the normal trie. The smaller value
is the space after we have it in compressed form. It can be seen that the space
requirement drops as the text grows, which is a consequence of having a number
of nodes equal to the number of blocks, which grows as n = O(u/ log u). For large
texts, the extra space needed to build the normal trie becomes 1.7 to 2.0 times the
text size. This space is freed as soon as we have enough information to build the
compressed representation.

0

5

10

15

20

25

30

35

40

45

10 20 30 40 50 60 70 80 90

S
ec

on
ds

 o
f u

se
r

tim
e

Megabytes of text

ZIFF: LZTrie construction time

Create normal trie
Represent as parentheses

Free normal trie
Create compressed trie

Total

0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6

10 20 30 40 50 60 70 80 90

S
pa

ce
 a

s
a

fr
ac

tio
n

of
 te

xt
 s

iz
e

Megabytes of text

ZIFF: LZTrie sizes

Normal trie
Compressed trie

0

2

4

6

8

10

12

14

16

18

10 15 20 25 30 35 40 45 50 55

S
ec

on
ds

 o
f u

se
r

tim
e

Megabytes of text

DNA: LZTrie construction time

Create normal trie
Represent as parentheses

Free normal trie
Create compressed trie

Total

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

10 15 20 25 30 35 40 45 50 55

S
pa

ce
 a

s
a

fr
ac

tio
n

of
 te

xt
 s

iz
e

Megabytes of text

DNA: LZTrie sizes

Normal trie
Compressed trie

Fig. 5. Different aspects of the construction of the LZTrie data structure.

8. IMPLEMENTING REVTRIE

8.1 Structure

The reverse trie has several similarities with LZTrie, but also some important
differences. The trie is also represented by a sequence of balanced parentheses and
a sequence of block identifiers (rids), but this time (1) the edge between two nodes
can be labeled by a string, which is not represented; (2) we remove unary nodes that
have no block identifier, but still non-unary nodes without block identifiers remain

ACM Journal Name, Vol. V, No. N, Month 20YY.

Implementing the LZ-index · 21

and are represented (these will be called empty nodes); (3) we do not implement
the parent operation.

A first question is which is the number of nodes of RevTrie, since we have the
same n nodes of LZTrie plus some empty nodes. As can be seen in Fig. 6 (left), the
extra RevTrie nodes stabilize around 3.4% over LZTrie nodes on ziff and around
2.2% on dna. So the price for these empty nodes, which are extremely convenient
for search purposes, is minimal. On the right we can see that the number of trie
nodes per text character decreases, as expected from a Ziv-Lempel parsing. What
may be not so clearly expected is that RevTrie nodes decrease at the same rate,
posing a constant overhead over LZTrie nodes.

3

3.2

3.4

3.6

3.8

4

10 20 30 40 50 60 70 80 90

%
 o

ve
r

LZ
T

rie
 n

od
es

Megabytes of text

ZIFF: Extra RevTrie nodes

RevTrie nodes

0.095

0.1

0.105

0.11

0.115

0.12

0.125

10 20 30 40 50 60 70 80 90

N
um

be
r

pe
r

te
xt

 c
ha

ra
ct

er

Megabytes of text

ZIFF: Number of trie nodes

LZTrie nodes
RevTrie nodes

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5

10 15 20 25 30 35 40 45 50 55

%
 o

ve
r

LZ
T

rie
 n

od
es

Megabytes of text

DNA: Extra RevTrie nodes

RevTrie nodes

0.082

0.084

0.086

0.088

0.09

0.092

0.094

0.096

10 15 20 25 30 35 40 45 50 55

N
um

be
r

pe
r

te
xt

 c
ha

ra
ct

er

Megabytes of text

DNA: Number of trie nodes

LZTrie nodes
RevTrie nodes

Fig. 6. Number of trie nodes in LZTrie and RevTrie data structures.

As we have to leave the space of empty nodes in the sequence of identifiers, it
is convenient to give them the same identifier of their lexicographically smallest
non-empty descendant (leaves are never empty).

8.2 Operations

The only complex problem is how to implement child(i, a), because (1) edges are
labeled by full strings, and (2) we do not have any representation of these strings.
The problem is solved thanks to the connections to LZTrie. Let us say that
node i represents string x. For each child j of i, we map j to LZTrie using
jt = Node(rthr(rank(j)). From jt we go via parent() operations until we traverse
upwards string x. One step further in this path tells us which is the character c by
which j descends from i. If c = a, then j is the correct child.

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · G. Navarro

If and when we determine that j is the correct child of i by letter a, we have
to determine which is the string that joins i to j. This string can be obtained by
going up more steps in LZTrie, but we need to know where to stop. Since, by
construction of RevTrie, the identifier of j is that of the lexicographically small-
est string in the subtree (be j an empty node or not), we only have to compute
rightrank(j) to have the smallest and largest strings in the subtree. We map also
j′t = Node(rtht(rightrank(j))) to LZTrie, and go up string xa. At this point we
go up from both nodes in LZTrie. As soon as their characters differ, we have
read the string that joins i to j. This process is done interactively with the calling
method in order to solve the next calls to child(child(i, a), b) fast. Only when we
finally arrive at j we have to rescan the set of children, go up their paths in LZTrie,
and so on. Nevertheless, the process is tedious and slow, so we seek to limit it as
much as possible.

8.3 Construction

The construction of RevTrie is done as follows. We traverse LZTrie in a depth-
first-search manner, generating each string stored in LZTrie in constant time, and
then inserting it into a normal trie of reversed strings. For simplicity, we have not
compressed unary paths in the normal trie. When we finish, we traverse the trie
and represent it using a sequence of parentheses and block identifiers, and at the
same time remove empty unary nodes.

Fig. 7 (left) shows the construction times for RevTrie. We have identified the
same four steps as for LZTrie. Again, the most time-consuming process is by
far the creation of the trie. Although a bit better than the construction costs for
LZTrie, these times dominate the overall construction cost. Again we can see a
slightly superlinear increase due to caching.

8.4 Extra Space

What has worsened a lot is the extra space needed to hold the normal trie. Fig. 7
(right) shows that we need around 4 times the text size for ziff, and 2.5 times for
dna. This shows that the extra space to represent unary empty nodes is around
77%–85% for ziff and 35%–50% for dna. After we compress unary paths, the
compressed representation becomes even smaller than that of LZTrie, as we do
not store the lets array. The space of the normal trie is freed as soon as we have
enough information to build its compressed representation, but it influences the
maximum amount of main memory we need across all the indexing process. In
particular, using path compression at the time of the construction of the normal
trie would greatly reduce the overall space requirement.

9. IMPLEMENTING NODE AND RNODE INSTEAD OF RANGE

Node is just a bit stream with as many bits as necessary to represent n nodes of
LZTrie (that is, positions 0 to 2n − 1). It is built as the inverse of the array ids
of LZTrie. What is more interesting is the implementation of Range, or more
appropriately, its replacement by a Node-like data structure.

In the beginning, we implemented the Range data structure pretty much as de-
scribed by Chazelle [1988] (Section 4.1). The only interesting improvement was that

ACM Journal Name, Vol. V, No. N, Month 20YY.

Implementing the LZ-index · 23

0

5

10

15

20

25

30

35

40

45

10 20 30 40 50 60 70 80 90

S
ec

on
ds

 o
f u

se
r

tim
e

Megabytes of text

ZIFF: RevTrie construction time

Create normal trie
Represent as parentheses

Free normal trie
Create compressed trie

Total

0

1

2

3

4

5

10 20 30 40 50 60 70 80 90

S
pa

ce
 a

s
a

fr
ac

tio
n

of
 te

xt
 s

iz
e

Megabytes of text

ZIFF: RevTrie sizes

Normal trie
Compressed trie

0

2

4

6

8

10

12

14

16

10 15 20 25 30 35 40 45 50 55

S
ec

on
ds

 o
f u

se
r

tim
e

Megabytes of text

DNA: RevTrie construction time

Create normal trie
Represent as parentheses

Free normal trie
Create compressed trie

Total

0

0.5

1

1.5

2

2.5

3

3.5

4

10 15 20 25 30 35 40 45 50 55

S
pa

ce
 a

s
a

fr
ac

tio
n

of
 te

xt
 s

iz
e

Megabytes of text

DNA: RevTrie sizes

Normal trie
Compressed trie

Fig. 7. Different aspects of the construction of the RevTrie data structure.

we noticed that, if the points (x, y) represented a bijection, then it would be pos-
sible to know the initial position of the right subtree (in the first level there would
be exactly 2⌈log2

n⌉/2 zeros, and so on). This would save us some rank() computa-
tions and would permit an easy construction algorithm. Hence we completed the
mapping with fake values so as to make it a bijection (originally it mapped LZTrie
node labeled k + 1 to RevTrie node labeled k, so it was not a bijection because
there are extra empty RevTrie nodes). The price in space was rather moderate
and the structure was faster.

When we tested it for searching, however, it turned out that, by far, the most
time-consuming part of the search was step 2, which is the one related to Range.
All our attempts to speed up the execution failed. We then realized that Range
occupied n′ log n′ bits, where n′ ≈ 1.03n was the number of RevTrie nodes (indeed
more, since we needed about 35% extra space for the bitmaps in order to implement
rank()), and that with this space we could instead store a reverse Node data
structure, RNode. RNode maps block identifiers to their (nonempty) nodes in
RevTrie.

With RNode we could solve quite decently the same problem addressed by
Range, as follows. Say that the search for P r

1...i in RevTrie leads us to node
ir and the search for Pi+1...m in LZTrie leads us to node it (if any of the two
nodes does not exist we know immediately that this partition of P produces no
matches10). Both for it and ir, we can use rank and rightrank to determine the

10If, in RevTrie, we are in the middle of an edge, we can safely traverse the edge and consider

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · G. Navarro

ranges in the ids arrays where the relevant blocks lie. Then we have two choices:

(a). For each block k + 1 in the portion of ids corresponding to LZTrie, ask
whether ancestor(ir, RNode(k)). If so, report block k.

(b). For each block k in the portion of ids corresponding to RevTrie, ask whether
ancestor(it, Node(k + 1)). If so, report block k.

Since it is easy to determine which will require less work, we choose the best
among both choices. Without RNode we would have been forced to use always
option (b), which is very bad when i is small because the area is too large. On
average, we expect the area of RevTrie to be of size n/σi and that of LZTrie

of size n/σm−i. So without RNode we would have to work n
∑m−1

i=1 1/σi ≈ n/σ

time, which is unacceptable. With RNode we work on average n(
∑m/2

i=1 1/σm−i +
∑m−1

i=m/2+1 1/σi) ≈ n/σm/2, which is much better unless m is too small.
An immediate concern is that, under the new scheme, in order to intersect two

sets, we are able to work in time proportional to the smallest size, and this is worse
than the Range complexity, which works O((R + 1) log n) independently of the set
sizes. It could happen that we intersect large sets whose final result is small, and
hence Range behaves much better. What happens in practice is that R has a lot
to do with the sizes of the sets. Large pairs of sets produce a large R and hence
Range is slow too (note that the worst cases occur for small m values). On average,
if the candidate sizes are A and B, we expect the result to be of size R = AB/n.
This means that on average Range works n log n

∑m
i=2 1/σm = O(mn log n/σm).

Comparing against the cost of the RNode based approach we have that our new
approach is worse for m > 2 logσ(m log n). For example, if n = 32 mega-blocks of
DNA, Range is better for m > 8.

However, as we will see later, the cost of this part of the search becomes much
less important for that length, as other parts dominate. In practice, we found that
the version based on RNode took half the time of Range on short patterns (for
example searching for all the English words of a dictionary on ziff) and 2/3 the
time on long patterns, no matter the length of the text.

Finally, having RNode at hand simplifies and speeds up the search at other
points, as we will describe soon. As an additional benefit, the index is about 8%
smaller when we replace Range by RNode.

10. INDEXING AND ITS PERFORMANCE

Construction of the overall index proceeds as follows.

(1) We build the normal Ziv-Lempel trie.

(2) We represent it with parentheses, letters and identifiers. The array of identifiers
is not yet bit-packed but represented as computer integers.

(3) We free the normal trie.

(4) We build LZTrie using the array of parentheses, letters and identifiers. The
unpacked array of identifiers is still maintained.

(5) We free the text, as it is not anymore necessary.

the child as the correct solution.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Implementing the LZ-index · 25

(6) We build the mapping array as the inverse of the identifiers array, not yet
bit-packed.

(7) We free the array of unpacked identifiers (we kept it until building the mapping
array because accessing it is faster in unpacked form).

(8) We create the bit-packed Node data structure and free the unpacked map.

(9) We build the normal reverse trie.

(10) We represent it with parentheses and identifiers. Again the array of identifiers
is unpacked.

(11) We free the reverse trie.

(12) We build RevTrie using the array of parentheses and identifiers. The un-
packed array of identifiers is still maintained.

(13) We create the unpacked reverse mapping array as the inverse of the array of
identifiers, in unpacked form.

(14) We free the unpacked array of identifiers.

(15) We create the bit-packed RNode data structure and free the unpacked map.

This sequence is designed to minimize the maximum amount of main memory
required to index. The maximum is usually reached after step 10. Note that we
soon free the text and never need it again. Fig. 8 (left) shows the maximum amount
of main memory required at indexing time. As it can be seen, the percentage of
extra space required drops as the text grows, influenced by the smaller amount of
trie nodes. For ziff we need from 4.8 to 5.8 times the text size, while for dna this
drops to 3.4 to 3.7. As a comparison, the construction of a plain suffix array without
any extra data structure requires 5 times the text size. The difference, of course,
is that, after we build the index, we are left with a very succinct representation,
while a normal suffix array needs those 5 times the text size forever.

Fig. 8 (right) shows construction costs. It becomes clear that the construction of
the tries dominates the overall construction cost, and that this is slightly superlin-
ear. In the case of ziff, for 10 MB we build the index at 0.82 sec/MB, while for
the whole 83.37 MB text this has grown to 0.97 sec/MB. For dna the figures are
0.53 sec/MB on 10 MB and 0.61 sec/MB on 51.48 MB. In general we can speak of
a construction speed of 1–2 MB/sec, which is much better than the construction
costs of, for example, suffix arrays.

Finally, Fig. 9 (left) shows the space requirement of the finished indexes. The
oscillations of the parentheses representation are hardly noticeably. The space
requirement drops as the text sizes grow. For ziff, we require from 1.6 to 1.4 times
the text size (and this includes what we need to reproduce the text), while for dna

the figure stays around 1.2.
The compression ratios obtained are related to the compressibility of the text. To

show this more clearly and to test our predictions of using 4 times the space needed
by the compressed text, we show the space of the final index as a fraction of the
file size after we compress it with Unix’s Compress program (an LZW compressor),
as well as as a fraction of n log n, being n the number of LZ78 blocks. The latter
accounts for a pure LZ78 compression scheme, and should give a better estimate of
the Ziv-Lempel compressibility of the text. Compress, on the other hand, gives a
real-life estimate of the achievable compression and is a useful control value.

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · G. Navarro

4.8

5

5.2

5.4

5.6

5.8

6

10 20 30 40 50 60 70 80 90

S
pa

ce
 a

s
a

fr
ac

tio
n

of
 te

xt
 s

iz
e

Megabytes of text

ZIFF: Memory to build the index

Total memory

0

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70 80 90

S
ec

on
ds

 o
f C

P
U

 ti
m

e

Megabytes of text

ZIFF: Time to build the index

LZTrie
Node

RevTrie
RNode

Total

3.44

3.46

3.48

3.5

3.52

3.54

3.56

3.58

3.6

3.62

3.64

10 15 20 25 30 35 40 45 50 55

S
pa

ce
 a

s
a

fr
ac

tio
n

of
 te

xt
 s

iz
e

Megabytes of text

DNA: Memory to build the index

Total memory

0

5

10

15

20

25

30

35

10 15 20 25 30 35 40 45 50 55

S
ec

on
ds

 o
f C

P
U

 ti
m

e

Megabytes of text

DNA: Time to build the index

LZTrie
Node

RevTrie
RNode

Total

Fig. 8. Different aspects of the construction of the whole index.

As can be seen in Fig. 9 (right), Compress obtains compression ratios which
are about 20% over the theoretical LZ78 optimum (LZW needs just ⌈log n⌉ bits
per phrase). Our indexes take 3.6 to 4.7 the space achieved by Compress. If we
compare against the theoretical optimum, we have that our index takes about 5
times the size of the Ziv-Lempel compressed text. Our prediction was 4 times that
size; the rest accounts for terms considered sublinear: the arrays of letters and of
parentheses, hash tables, etc.

11. SEARCHING WITH THE INDEX

The search process is divided into five steps. These are not exactly as described
before. We first search for all the pattern substrings, then for all their reverses, and
then report each type of occurrences, 1 to 3.

To analyze the empirical behavior of the search process, let us call ℓ the average
length of a LZ78 phrase (that is, ℓ = u/n if u is measured in bytes and n in blocks).
It holds ℓ = Ω(log u). The larger ℓ, the more compressible the text is, as it can be
represented in (u/ℓ)⌈log2 u/ℓ⌉ bytes. Except for very special texts, most phrases
have length ℓ, and also ℓ = Θ(log u). In our experiments (Fig. 6) we obtain very
good approximations of the form ℓ = 6.16+0.22 lnu on ziff and ℓ = 8.74+0.18 lnu
on dna.

11.1 Building Matrix Ci,j

We search for every pattern substring Pi...j using LZTrie, and obtain the matrix
Ci,j of the nodes corresponding to each substring, if any. We also obtain a matrix

ACM Journal Name, Vol. V, No. N, Month 20YY.

Implementing the LZ-index · 27

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

10 20 30 40 50 60 70 80 90

S
iz

e
as

 a
 fr

ac
tio

n
of

 th
e

te
xt

 s
iz

e

Megabytes of text

ZIFF: Space of the compressed index

LZTrie
Node

RevTrie
RNode

Total

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

10 20 30 40 50 60 70 80 90

S
iz

e
as

 a
 fr

ac
tio

n
of

 c
om

pr
es

se
d

te
xt

Megabytes of text

ZIFF: Space of the compressed index

Compress
Theoretical

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

10 15 20 25 30 35 40 45 50 55

S
iz

e
as

 a
 fr

ac
tio

n
of

 th
e

te
xt

 s
iz

e

Megabytes of text

DNA: Space of the compressed index

LZTrie
Node

RevTrie
RNode

Total

4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

10 15 20 25 30 35 40 45 50 55

S
iz

e
as

 a
 fr

ac
tio

n
of

 c
om

pr
es

se
d

te
xt

Megabytes of text

DNA: Space of the compressed index

Compress
Theoretical

Fig. 9. Sizes of our compressed indexes.

of the block identifier Cidi,j of each node Ci,j . Matrix Cidi,j is necessary at several
points, most evidently to report occurrences of type 3. As explained, to search for
the O(m2) strings we traverse O(m2) edges in LZTrie, since the node for Pi,j+1

must be a child of the node for Pi,j . However, we may work less because once Pi...j

is not present in LZTrie we know that Pi...j+k is not present either for any k.

On average, we do not expect to fill all the m2/2 cells. Only strings up to length ℓ
appear in LZTrie, and hence we expect to fill O(mℓ) cells of Ci,j . This is confirmed
in Fig. 10, where we have drawn the number of cells really filled and an O(m log u)
pattern is rather clear.

Filling each cell involves a child(i, a) operation, whose cost is proportional to the
average arity of the trie. Most of these operations are done close to the root, where
the arity is close to its maximum σ. Hence on average we work O(σm min(m, log u))
time to fill Ci,j . This is obviously a simplification if we regard Fig. 4. However, it
works well because, for large m, the average arity traversed stabilizes (around 11
for ziff and 2 for dna). For small m, on the other hand, the times are negligible.
The difference in arity (11 to 2) is explained if we define σ as the inverse of the
probability of two random characters being equal for each text. This gives σ = 4.8
on dna (recall that there are newlines and N’s) and σ = 20.0 on ziff.

Let us now focus on real experimental times. Fig. 11 shows the time to fill matrix
Ci,j (and Cidi,j). The expected O(m log u) pattern is still visible, although a bit
hidden by variance. We have used least squares with the model t = a + bσm lnu

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · G. Navarro

0

100

200

300

400

500

600

10 20 30 40 50 60 70 80 90

N
um

be
r

of
 c

el
ls

Text size (Mb)

ZIFF: Cells filled in matrix C

0

100

200

300

400

500

600

0 10 20 30 40 50 60

N
um

be
r

of
 c

el
ls

Pattern length (m)

ZIFF: Cells filled in matrix C

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
u = 60 Mb
u = 70 Mb
u = 80 Mb
Whole file

0

100

200

300

400

500

600

700

10 15 20 25 30 35 40 45 50 55

N
um

be
r

of
 c

el
ls

Text size (Mb)

DNA: Cells filled in matrix C

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60

N
um

be
r

of
 c

el
ls

Pattern length (m)

DNA: Cells filled in matrix C

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
Whole file

Fig. 10. Number of cells actually filled in matrix Ci,j . On the left, the lines represent, from lower
to upper, m = 5, m = 10, and so on until m = 60.

and obtained

ziff = −165.336 + 0.244σm lnu µsecs

dna = −60.640 + 0.342σm lnu µsecs

with a percentual error11 below 7% in both cases. (By µsecs we mean microseconds.)

11.2 Building Vector Bj

The second step searches for every reversed pattern prefix, P r
1...j , in RevTrie, and

stores it in an array Bj . This is necessary to report occurrences of type 1 and 2.
Since searching in RevTrie is much slower than on LZTrie, we seek to reduce this
work as much as possible. The results already obtained in Cid are useful. If we look
for P r

1...j and P1...j exists in LZTrie (that is, C1,j is not null), then RNode(Cid1,j)
directly gives us the corresponding node in RevTrie. Otherwise, P r

1...j corresponds
to an empty node or to a position in a string between two nodes, and cannot be
directly found with LZTrie. Still, we can reduce the search cost as follows. Let i
be the minimum value such that Ci,j is defined. Then RNode(Cidi,j) is the lowest
nonempty ancestor of the node we are looking for. We reduce the work to that of
searching for P r

1...i−1 starting from node RNode(Cidi,j). This final partial search
must be done using repeatedly operation childr(node, a) (once per node arrived at).

11We denote by this the measure 100 ×
“

PN
i=1 |yi − xi|/yi

”

/N .

ACM Journal Name, Vol. V, No. N, Month 20YY.

Implementing the LZ-index · 29

0

1

2

3

4

5

6

7

10 20 30 40 50 60 70 80 90

U
se

r
tim

e
(m

se
cs

)

Text size (Mb)

ZIFF: Time to build matrix C

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

ZIFF: Time to build matrix C

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
u = 60 Mb
u = 70 Mb
u = 80 Mb
Whole file

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

10 15 20 25 30 35 40 45 50 55

U
se

r
tim

e
(m

se
cs

)

Text size (Mb)

DNA: Time to build matrix C

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

DNA: Time to build matrix C

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
Whole file

Fig. 11. Time to build matrix Ci,j . On the left, the lines represent, from lower to upper, m = 5,
m = 10, and so on until m = 60.

On average, we expect that strings present in RevTrie whose reverse is not in
LZTrie be of length close to ℓ. The probability of remaining in RevTrie after this
length decreases exponentially with m, so we expect the range of lengths of these
strings to be O(1). Thus we expect to compute just O(m) cells to fill vector Bj .

Fig. 12 shows that, to build vector Bj , we are working over O(m) cells. Indeed,
we work over a 10% of the cells filled to build matrix Ci,j .

0

10

20

30

40

50

60

0 10 20 30 40 50 60

N
um

be
r

of
 c

el
ls

Pattern length (m)

ZIFF: Cells worked on to build vector B

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
u = 60 Mb
u = 70 Mb
u = 80 Mb
Whole file

0

10

20

30

40

50

60

0 10 20 30 40 50 60

N
um

be
r

of
 c

el
ls

Pattern length (m)

DNA: Cells worked on to build vector B

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
Whole file

Fig. 12. Cells worked on to build vector Bj .

Most of these cells, however, are built via a new mapping to LZTrie, and hence
several parent() operations are necessary, one sequence per trial until we find the

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 · G. Navarro

correct child in RevTrie. The number of parent() operations to perform per each
trial is proportional to the length of the string searched for, O(log u). On the other
hand, we perform a sequence of parent() operations and then may discover that
the RevTrie edge was not the good one, and must keep trying until finding the
right child. However, at depth O(log u), we expect O(1) children, so we expect to
find the correct child (or not) in O(1) trials. Overall, we expect O(m log u) work
to fill vector Bj .

Fig. 13 shows the number of parent() operations performed per child() trial. The
case m = 5 is excluded from the figures because no cells of Bj were worked on in
that case, as all could be predicted using Ci,j (case m < log u). The logarithmic
pattern is clear.

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

10 20 30 40 50 60 70 80 90

N
um

be
r

of
 s

te
ps

Text size (Mb)

ZIFF: Number of parent() steps per trial

8

8.5

9

9.5

10

10.5

11

11.5

10 15 20 25 30 35 40 45 50 55

N
um

be
r

of
 s

te
ps

Text size (Mb)

DNA: Number of parent() steps per trial

Fig. 13. Number of parent() operations per child() trial. The lines represent, from lower to upper,
m = 10, m = 15, and so on until m = 60.

We also confirmed experimentally the hypothesis that we usually find our child
in the first trial. This occurs almost always on dna and after 1.3–1.5 trials on
ziff. The figures are higher for m = 10 on dna (1.8) and for m = 5 on ziff

(3.8). However, since the overall cost is negligible for small m values, we can safely
disregard these cases.

Fig. 14 shows the time to fill vector Bj . As it can be seen, it is much smaller
than the time to fill Ci,j (at least 3 times smaller on dna and 10 on ziff), despite
that in principle filling Bj is much more complex. This is an achievement of our
techniques to reduce the amount of computation as much as possible. It can also
be seen that the times are essentially linear in m and depend slightly on u.

Using least squares with the model t = a + bm + cm lnu (as the logarithmic
pattern of Fig. 13 is of the form x + y lnu) we obtain

ziff = −62.442 + 4.920m + 0.299m lnu µsecs

dna = −100.433 + 6.752m + 0.271m lnu µsecs

with a percentual below 10% in both cases. In this estimation we excluded the
values for m = 5 for the reasons explained.

11.3 Reporting Occurrences of Type 1

We simply consider Bm and, if it exists, leftrank(Bm) to rightrank(Bm). For each
block identifier k in this range, we obtain with Node(k) the corresponding LZTrie

ACM Journal Name, Vol. V, No. N, Month 20YY.

Implementing the LZ-index · 31

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

ZIFF: Time to build vector B

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
u = 60 Mb
u = 70 Mb
u = 80 Mb
Whole file

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

DNA: Time to build vector B

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
Whole file

Fig. 14. Time to build vector Bj .

node. Then the full subtree of LZTrie is traversed, reporting all its nodes (if we
just want to count the occurrences, subtreesize is enough).

Fig. 15 shows the number of occurrences of type 1. As can be seen, these are
significant only for short patterns. The probability of an occurrence being of type
1 is that of a block beginning not falling at positions 2 to m, i.e. (ℓ − m + 1)/ℓ.
This is confirmed in Fig. 23, where the ratios for m = 5 are 0.66 on dna (predicted
0.66) and 0.58 on ziff (predicted 0.60).

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 10 20 30 40 50 60

N
um

be
r

of
 o

cc
ur

re
nc

es

Pattern length (m)

ZIFF: Occurrences of type 1

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
u = 60 Mb
u = 70 Mb
u = 80 Mb
Whole file

0

5000

10000

15000

20000

25000

30000

35000

40000

0 10 20 30 40 50 60

N
um

be
r

of
 o

cc
ur

re
nc

es

Pattern length (m)

DNA: Occurrences of type 1

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
Whole file

Fig. 15. Number of occurrences of type 1.

Fig. 16 shows the times. As it can be seen, these are significant only for very
frequent patterns (m = 5), as the other ones almost have no occurrences of this
type. It is also clear that the time to report the occurrences is almost 15 times that
of just counting them (in part because we can count whole subtries in one shot).
We count about 15,000 occurrences per msec, and report about 1,200 per msec.

Subtracting the time of counting from that of reporting, we can write

count1 = 0.067 (ℓ − m + 1)/ℓ R µsecs

report1 = 0.83 (ℓ − m + 1)/ℓ R µsecs

ACM Journal Name, Vol. V, No. N, Month 20YY.

32 · G. Navarro

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

ZIFF: Time to count occurrences of type 1

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
u = 60 Mb
u = 70 Mb
u = 80 Mb
Whole file

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

ZIFF: Time to report occurrences of type 1

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
u = 60 Mb
u = 70 Mb
u = 80 Mb
Whole file

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

DNA: Time to count occurrences of type 1

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
Whole file

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

DNA: Time to report occurrences of type 1

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
Whole file

Fig. 16. Time to count (left) and to report (right) occurrences of type 1.

11.4 Reporting Occurrences of Type 2

As explained when we introduced RNode, we have to consider every possible split-
ting position i (whose nodes are Ci+1,m and Bi) and obtain leftrank and rightrank
of both nodes. Then we choose to iterate over the smaller range, and for each block
identifier, we map the adjacent block number to the other tree using Node or
RNode. Each time the mapped node descends from Ci+1,m (in LZTrie) or Bi (in
RevTrie), depending on our choice, the block is reported.

Fig. 17 (left) shows the number of occurrences of type 2. On the right we show
the amount of verification work, that is, number of candidate nodes tested. On
ziff, 1 out of 3.5 becomes a real occurrence, while on dna only 1 out of 9.5.

Fig. 18 shows the times. Again, they are significant only for frequent patterns
(m ≤ 15), as the other ones almost have no occurrences of this type in the text.
This time, however, longer patterns have significant times.

The real time for this step depends both on the number of candidates and of real
occurrences. We test about 3,500 candidates per msec, considering counting time.
Reporting these real occurrences is done at a rate of 1,400 per msec. There is an
extra work to test all the splitting positions, but this turns out to be absolutely
negligible. Occurrences are reported a bit faster than those of type 1 because in
this case we have direct access to the nodes, without the need of traversing the trie.
However, the difference is not too significant.

The main issue is to predict how much verification work will we perform. The
most important length we have to care about is m/2, as the number of verifications
triggered by the longer ones is much smaller. We can expect to find R = u/σm

ACM Journal Name, Vol. V, No. N, Month 20YY.

Implementing the LZ-index · 33

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50 60

N
um

be
r

of
 o

cc
ur

re
nc

es

Pattern length (m)

ZIFF: Occurrences of type 2

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
u = 60 Mb
u = 70 Mb
u = 80 Mb
Whole file

0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60

N
um

be
r

of
 c

he
ck

s

Pattern length (m)

ZIFF: Amount of work for occurrences of type 2

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
u = 60 Mb
u = 70 Mb
u = 80 Mb
Whole file

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 10 20 30 40 50 60

N
um

be
r

of
 o

cc
ur

re
nc

es

Pattern length (m)

DNA: Occurrences of type 2

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
Whole file

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 10 20 30 40 50 60

N
um

be
r

of
 c

he
ck

s

Pattern length (m)

DNA: Amount of work for occurrences of type 2

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
Whole file

Fig. 17. On the left, number of occurrences of type 2. On the right, amount of verification.

Order ziff dna

0 20.00 4.82
1 7.31 3.07
2 3.53 3.05
3 2.31 2.98
4 < 1.94 2.96

Table I. Inverse of the probability of two characters matching, given contexts of different orders.

occurrences, while the number of candidates is on average u/σm/2. From these,
however, only 1 out of ℓ is placed at a text position such that there is a block
boundary at position m/2. Hence we expect only u/(ℓσm/2) candidates, which is√

uR/ℓ. This estimation turns out to work more or less well for dna, where it
predicts 80% of the real amount of verifications, but very bad on ziff, where it
predicts 700% of the actual number.

This has mostly to do with the fact that the text is not random. For example, the
previous figures show that if we know the first or last 3 letters of a text passage, we
could guess the next 2 with probability 1/3.5 on ziff and 1/9.5 on dna. This shows
that ziff has indeed smaller entropy than dna when we consider longer strings.
Table I shows the inverse probability of two characters matching as we consider
higher order models, as far as we could go with our computer. While dna stabilizes
around 3, ziff reaches 1.94 without signs of stabilization.

Let us call σk the inverse probability of matching if we consider k previous char-
acters (hence σ = σ0). We expect that 1 out of σ3σ4 candidate occurrences become

ACM Journal Name, Vol. V, No. N, Month 20YY.

34 · G. Navarro

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

ZIFF: Time to count occurrences of type 2

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
u = 60 Mb
u = 70 Mb
u = 80 Mb
Whole file

0

1

2

3

4

5

6

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

ZIFF: Time to report occurrences of type 2

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
u = 60 Mb
u = 70 Mb
u = 80 Mb
Whole file

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

DNA: Time to count occurrences of type 2

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
Whole file

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

DNA: Time to report occurrences of type 2

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
Whole file

Fig. 18. Time to count (left) and to report (right) occurrences of type 2.

real occurrences for m = 5. That is, the 4th character has to match given the
first 3, and then the 5th has to match given the first 4. This gives us 1/4.48 on
ziff and 1/8.82 on dna. This is a much better estimation, especially because for
memory limitations we could not compute exactly the value σ4 on ziff. We expect
therefore, at counting time, a verification effort over R2W = R2σ⌈m/2⌉ . . . σm−1

candidates, where R2 is the number of occurrences of type 2. On a random text
σk = σ and hence RW = Rσm/2 = u/(ℓσm/2) =

√
uR/ℓ as explained. We can thus

predict

count2 = 0.29 (m − 1)/ℓ RW µsecs

report2 = 0.71 (m − 1)/ℓ R µsecs

11.5 Reporting Occurrences of Type 3

Instead of the arrays A proposed in the theoretical part, we opt for a closed hash
table (load factor at most 1/2) where all the triples (i, j, Cidi,j) are stored with
key (i, Cidi,j) (of course only when Cid is not null). Then we try to extend
each match Ci,j by looking for (j + 1, j′, Cidi,j + 1) in the hash table, mark-
ing entries (i, j) already used by a sequence that starts before, until we can-
not extend the current entry. At this point, if the pattern spans 3 blocks or
more, the sequence of involved blocks is k . . . k′, and the pattern area is i . . . j′,
then we check that ancestor(Cj′+1,m, Node(k′ + 1)) holds in LZTrie and that
ancestor(Bi−1, RNode(k − 1)) holds in RevTrie. If all these tests pass, we report

ACM Journal Name, Vol. V, No. N, Month 20YY.

Implementing the LZ-index · 35

block k − 1.
As there are O(mℓ) filled cells in Ci,j , we expect to work O(m log u) overall in

this step. The reason is that the probability of being able of extending a given cell
is rather low, hence we can on average extend a cell O(1) times (usually zero).

Fig. 19 shows the amount of probes to extend maximal occurrences (left) and
number of maximal occurrences found and checked (right). As expected, both are
very similar, and they increase linearly with m and slightly with u.

0

100

200

300

400

500

600

0 10 20 30 40 50 60

N
um

be
r

of
 p

ro
be

s

Pattern length (m)

ZIFF: Amount of work to extend occurrences of type 3

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
u = 60 Mb
u = 70 Mb
u = 80 Mb
Whole file

0

50

100

150

200

250

300

350

400

450

500

0 10 20 30 40 50 60

N
um

be
r

of
 c

he
ck

s

Pattern length (m)

ZIFF: Amount of work to check occurrences of type 3

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
u = 60 Mb
u = 70 Mb
u = 80 Mb
Whole file

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60

N
um

be
r

of
 p

ro
be

s

Pattern length (m)

DNA: Amount of work to extend occurrences of type 3

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
Whole file

0

100

200

300

400

500

600

0 10 20 30 40 50 60

N
um

be
r

of
 c

he
ck

s

Pattern length (m)

DNA: Amount of work to check occurrences of type 3

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
Whole file

Fig. 19. On the left, number of probes to extend maximal occurrences of type 3. On the right,
number of checks of maximal occurrences.

Fig. 20 shows the times. They are rather negligible overall, although they increase
linearly with m and slightly with u. The number of occurrences found is very low,
so the time is basically that to extend occurrences and check maximal ones. Our
estimation is:

ziff = −15.000 + 0.429m + 0.109m lnu µsecs

dna = −17.342 + 0.729m + 0.095m lnu µsecs

with percentual errors below 20%–25%.
It is somewhat interesting to see the number of occurrences of type 3, shown in

Fig. 21. It first increases (because short occurrences cannot span 3 blocks) and then
decreases as occurrences are less probable. At the end it converges to 1 because
patterns are taken from the text. In all cases they are very few.

ACM Journal Name, Vol. V, No. N, Month 20YY.

36 · G. Navarro

0

0.05

0.1

0.15

0.2

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

ZIFF: Time to count occurrences of type 3

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
u = 60 Mb
u = 70 Mb
u = 80 Mb
Whole file

0

0.05

0.1

0.15

0.2

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

ZIFF: Time to report occurrences of type 3

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
u = 60 Mb
u = 70 Mb
u = 80 Mb
Whole file

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

DNA: Time to count occurrences of type 3

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
Whole file

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

DNA: Time to report occurrences of type 3

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
Whole file

Fig. 20. Time to count (left) and to report (right) occurrences of type 3.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30 40 50 60

N
um

be
r

of
 o

cc
ur

re
nc

es

Pattern length (m)

ZIFF: Occurrences of type 3

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
u = 60 Mb
u = 70 Mb
u = 80 Mb
Whole file

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60

N
um

be
r

of
 o

cc
ur

re
nc

es

Pattern length (m)

DNA: Occurrences of type 3

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
Whole file

Fig. 21. Number of occurrences of type 3.

11.6 Reporting Levels

Reporting is done at three levels. The lowest level is counting: We just tell how
many times P occurs in T . The next level (which we have called just “reporting”)
gives all the text positions of P in T . These are given in the form (block number,
offset). Converting them to usual text positions would require another array that
maps block identifiers to text positions. This can be done12, but we consider that
it is usually not necessary. The representation we use can be used to compare two

12As mentioned, it was actually done when integrating this index into Pizza&Chili in order to
comply with its interface specification. This raised the space and reporting time only slightly.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Implementing the LZ-index · 37

positions so as to determine which is smaller, and to obtain the surrounding text
given a position in that format. This is enough for most applications, although not
sufficient for those that need to, for example, determine the text distance between
two occurrences. Finally, the highest reporting level prints the text around each
occurrence found. Currently the context is limited by newlines, but this is not hard
to change. This text is obtained backwards by moving from the block of interest
towards the root of LZTrie and printing the letters found at the edges. More and
more blocks to the left or to the right are easily obtained using Node(k − 1) or
Node(k + 1).

Fig. 22 shows the overall query times under the different reporting levels. Note
that we use a logarithmic scale on y. The nonmonotonic behavior comes from
the fact that, for short patterns, reporting time largely dominates, while for long
patterns the most relevant time is that of searching for the pattern substrings.

Fig. 23 shows the overall number of occurrences. This shows that we report
600–800 occurrences per msec, and output about 14 matching lines per msec.

12. COMPARISON AGAINST OTHERS

We have compared our prototype against two of the most prominent alternative
proposals13. We have used the whole ziff and dna texts. We have considered
construction time and space, but our highest interest is in query times, both for
counting and for reporting.

An important fact is that the different indexes take different space. Although
our index does not permit important space-time tradeoffs14, the others do. Hence,
we tune the other indexes so they take the same space as ours.

All these indexes need to operate the data structure in main memory, as their
access pattern to the structures is random. Hence, it should be made clear what we
mean by “the space of the index”, as we can usually store them taking less space
than the one needed to operate in main memory. In one extreme, we could just
map all our main memory data structures to disk and use the same disk space as
the main memory space, and “booting” the index would consist of directly loading
all the disk space into main memory. On the other extreme, we could simply
store the plain text compressed in the best way, totally independent of our index,
and “booting” would consist of actually constructing the index. As the server
probably will load the index once and then answer many queries, both choices may
be acceptable. In particular, depending on the index construction time versus disk
speed, one or the other extreme may be the best choice. This shows that speaking
of the space needed by the index on disk may have little sense, as all could just store
the compressed text and build the index on the fly. Rather, we will be interested
in how much main memory space does the index need in order to operate properly.

We will first explain the implementations of the indexes chosen, and then show
the results of the comparison.

13As of 2003. As explained, the conclusions roughly stay the same nowadays.
14Some could be achieved by enlarging hash tables, for example, but the result is not much
significant.

ACM Journal Name, Vol. V, No. N, Month 20YY.

38 · G. Navarro

0.5

1

2

4

8

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

ZIFF: Time to count occurrences

0.25

0.5

1

2

4

8

16

32

64

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

DNA: Time to count occurrences

0.5

1

2

4

8

16

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

ZIFF: Time to report occurrence positions

0.25

0.5

1

2

4

8

16

32

64

128

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

DNA: Time to report occurrence positions

1

2

4

8

16

32

64

128

256

512

1024

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

ZIFF: Time to output matching lines

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
u = 60 Mb
u = 70 Mb
u = 80 Mb
Whole file

0.25

1

4

16

64

256

1024

4096

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

DNA: Time to output matching lines

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
Whole file

Fig. 22. Overall query times when counting occurrences (top), reporting positions (middle), and
to output matching lines (bottom). The legends are on the lowest figures of each column.

12.1 A Prototype of our LZ-index

A prototype of our index is available at http://www.dcc.uchile.cl/gnavarro/

software. We give some extra details not mentioned in our earlier description.
It indexes the text and writes down two files, storing LZTrie and RevTrie. We

store only the plain sequence of parentheses, not the extra data structures to permit
navigating them. We do not store Node and RNode, as these are just the inverse
functions of the sequence of block identifiers ids and rids, which are saved as such.
The indexes on disk take 75% of the text size for ziff and 60% on dna (recall that
we could delete the text after the index is built).

At search time, the index is read from disk and the missing structures are com-
puted on the fly. Node and RNode are built using no extra space apart from that
of the final index in main memory. The load time is around 55–70 msec/MB.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Implementing the LZ-index · 39

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10 20 30 40 50 60

N
um

be
r

of
 o

cc
ur

re
nc

es

Pattern length (m)

ZIFF: Total occurrences

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
u = 60 Mb
u = 70 Mb
u = 80 Mb
Whole file

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60

N
um

be
r

of
 o

cc
ur

re
nc

es

Pattern length (m)

DNA: Total occurrences

u = 10 Mb
u = 20 Mb
u = 30 Mb
u = 40 Mb
u = 50 Mb
Whole file

Fig. 23. Overall number of occurrences.

12.2 Ferragina and Manzini’s FM-index

This index [Ferragina and Manzini 2000; 2001] consists of (i) the permuted text,
whose characters are reordered according to the Burrows-Wheeler transform and
then compressed using run-length and move-to-front, (ii) a two-level directory C
that permits knowing count(c, i), the number of times character c appears before
position i in the permuted text, and (iii) a sampling of pointers S that tells, for 1
out of D permuted text positions, which is their position in the original text.

There is an executable of this index at the Web page of the authors,
http://roquefort.di.unipi.it/~ferrax/Libraries/fmindex, but the interface
does not permit running massive and trustable tests, as it can search for one pat-
tern per run15. On the other hand, the original design of this index aims at a data
structure smaller than the LZ-index, and we could not force the executables to use
all the space taken by the LZ-index (see later). Hence, we implemented the index
ourselves so as to take full advantage of the available space. We explain now the de-
cisions taken. These follow rather closely the descriptions of Ferragina and Manzini
[2001]. We did our best to implement this index as efficiently as possible. Later
we will give some control measures to show that our implementation is competitive
against the executables given by the authors16.

Directory C works as follows. The permuted text is divided into blocks of 28

characters and superblocks of 216 characters. For each superblock and character
c we store a cumulative count of the occurrences of c up to the beginning of the
superblock. Inside each superblock, for each character c, we store a byte sequence
(of length at most 28) of how many times does c appear inside each block of that
superblock. Runs of zeros are frequent and these are run-length compressed. Hence,
in order to compute count(c, i) we have to (a) get the superblock counter value;
(b) run through the byte sequence of c inside the superblock, adding per-block
occurrences until reaching the relevant block (runs of zeros are traversed fast); and

15It is possible to search for many patterns in one run, but in this case only counting queries can
be posed, that is, they do not report the occurrence positions.
16In 2005, the authors launched a second version of their FM-index, which is even more compact
(and slower) than the first. This does not affect our experiments, where we aim at a larger and
faster implementation instead. Both versions of the FM-index (version 2 with sources) are now
available on the Pizza&Chili site.

ACM Journal Name, Vol. V, No. N, Month 20YY.

40 · G. Navarro

(c) traverse the permuted text inside the block to add up the final intra-block
value. This structure permits computing count(c, i) by doing simple operations
over at most 28 + 28 bytes (considering byte sequences and permuted text). Its
extra space requirement is rather modest, as seen soon.

The sampling of pointers S is used only when reporting occurrence positions.
It is implemented as a plain array of integers, which is appropriate for the text
sizes we are considering (we would have needed 26–27 bits out of 32 anyway, and
access is much faster this way). The value of D (sampling step for S) directly
affects reporting times, because we need to perform, on average, D/2 count(i, c)
operations in order to discover the text position of each occurrence.

The idea is that, starting at some permuted text position, we move backwards
position-wise in the original text positions, which leads us to another (basically
random) permuted text position. We keep doing that until we find a position that
is sampled in S, and then we know where we are in the original text and where
we were when we started the process. S regularly samples the original text, so we
need, in addition to the array of pointers, a hash table that answers whether a given
permuted text position is sampled or not. This was implemented as a closed hash
table with load factor 0.5. The idea suggested by Ferragina and Manzini [2001], of
marking characters and sample their positions, was discarded because it does not
permit obtaning the desired extra space on dna.

A first space-time tradeoff in this index refers to the amount of information on
blocks and superblocks, as smaller ones reduce the cost of count(c, i) operations. A
second one is the value D, which is only meaningful for reporting queries.

For counting queries, we should drop the array of pointers S and use more space
for C. However, this index turned out to be so fast for these queries that there was
not a point in optimizing it for this case. As we see shortly, our LZ-index is not
competitive at all for these queries.

For reporting queries, spending more space on S reduces the search time faster
than spending it on C. Hence we used C as explained, using fixed space, and
reduced D as much as possible until using the permitted amount of space. In
order to give the FM-index the same main memory of our index, we let it use an
additional 8.1% of the text space to store S on ziff and 3.4% on dna. This means
a sampling of 1 out of 50 entries for ziff and 1 out of 120 for dna. With these
parameters, directory C took 4.82% of the total index space on ziff and 1.89% on
dna, and the sampling of S took 27.59% of the index space on ziff and 14.32% on
dna. The rest is used for the permuted text.

The percentages given to D are so low because we decided to store the permuted
text in uncompressed form. The other choice would have been keeping it compressed
and using the extra space for S. The compressed texts take 23.24% of the original
text on ziff and 25.27% on dna (we use Huffman to compress the move-to-front
values, as this gave better results than δ-coding [Bell et al. 1990]). This would have
permitted us to use, for S, 2.87 times more space on ziff and 5.40 on dna. This
means that D would decrease 2.87 or 5.40 times. Multiplying this by the number of
characters processed per block, we have that we would have processed 12.35 times
fewer bytes on ziff and 21.37 on dna.

The drawback, of course, is that those bytes we have to traverse now are much

ACM Journal Name, Vol. V, No. N, Month 20YY.

Implementing the LZ-index · 41

more expensive to process than uncompressed text characters: They are bit-codings
of move-to-front values. Instead of just one comparison and an optional increment
over registers, we have to (i) extract the bits, (ii) obtain their numerical value from
the Huffman tree, (iii) search the move-to-front linked list (usually a few positions,
say 3 or 4), (iv) move the element found to front, and (v) do the comparison
and optional increment as well. Decoding move-to-front is the slowest part of
this picture, which can perfectly exceed the 12- or 20-fold gain. Indeed, in our
experiments processing each compressed MB took 387 microseconds on ziff and
338 on dna. Comparing and adding took 4.12 microseconds on ziff and 2.06 on
dna. This shows that decompression poses a 100- to 150-fold slowdown, much
larger than the 12- to 20-fold speedup.

Hence, we decided to keep the permuted text in uncompressed form. Of course
this is not an option if one wants the FM-index to take less space than the text,
but this is the best choice in order to compete against our index. It should also be
clear that the decision strongly depends on the type of compression used, for the
compression ratio and decompression speed. Other schemes would yield a different
result. A study on this is interesting as well, but out of the scope of this paper. A
different choice, however, is explored in the next section.

Building the index implies a suffix array construction. We have used a simple
quicksort, although there are faster methods. We are not focusing much on index
construction times anyway.

Our implementation of the FM-index can be obtained freely from
http://www.dcc.uchile.cl/gnavarro/software.

12.3 Sadakane’s CSArray

We obtained from K. Sadakane his implementation of the Compressed Suffix Array
index [Sadakane 2000]17. This implements a suffix array search over a compressed
representation of it. The main data structures are Ψ, which permits moving from
the suffix array position that points to i to that pointing to i + 1, and a sampling
of the suffix array. The array Ψ can be stored with a technique similar to that used
by the FM-index to store the text, as values Ψ(i) − Ψ(i − 1) tend to be small. It
also needs some directory structures to compute cumulative frequencies, just as the
FM-index. The sampling of the suffix array plays a similar role as well. As can be
seen, the ideas are not so radically different after some analysis. This index permits
moving “forward” in the text, while the FM-index moves “backward”.

One important difference, however, is that the CSArray does not need move-to-
front as an intermediate compression step. This permits much faster decompression.
Moreover, this implementation uses just δ-encoding, which is decompressed fast.
This permits keeping the text in compressed form and using more space for the
suffix array sampling, with a much smaller decompression penalty.

Two parameters permit different space-time tradeoffs. The first, D, is the sam-
pling interval of the suffix array: 1 out of D suffix array values are stored explicitly.
The second, L, is the sampling step for Ψ (apart from the cumulative differences,
we need explicit values from time to time). A counting query takes O(m(L+log u))
time, while a reporting query takes O(RDL) time. We tested a thorough range of

17Nowadays available in the Pizza&Chili site.

ACM Journal Name, Vol. V, No. N, Month 20YY.

42 · G. Navarro

Index Construction time Main memory space
ziff dna ziff dna

FM-index 4.990 5.260 5.00 5.00
CSArray 19.28 6.890 11.18 10.20
LZ-index 0.968 0.605 4.95 3.46

Table II. Index construction requirements. Times are in seconds per MB and space in number of
times the text size.

combinations of D and L giving the same space of our index. The best in practice
turned out to be D = 7, L = 16 for ziff and D = 8, L = 32 for dna.

In the construction, Sadakane uses a faster suffix array construction method,
which needs 8 times the text size at construction time. However, compressing the
resulting suffix array takes even more space. Probably this has not been optimized
for this prototype. We only rewrote small parts of the code in order to improve the
way text contexts around occurrences are shown.

12.4 Comparison

Recall that we compare the three indexes such that they take the same amount of
main memory to operate. Table II shows the time and memory requirements to
build the different indexes (although the final index space is the same, they need
different space to build). As it can be seen, our index (LZ-index) builds much
faster than the others (whose construction time involve at least the construction
of a suffix array). It also needs less memory to build. We note that the original
implementation of the FM-index (by its authors) builds faster than ours (2.257
seconds for ziff and 1.704 for dna, using 9.00 times the text size to build), but
still significantly slower than the LZ-index.

Let us now consider search times. Fig. 24 shows the overall query times under
the different reporting levels. Note that we use a logarithmic scale on y.

For counting queries, the FM-index is unparalleled, taking around 1.7m µsecs.
The CSArray, although slower, is still much faster than our LZ-index, taking around
5m µsecs. It is clear that we do not have a case for counting queries: the LZ-index
took 112m µsecs on ziff and 38m µsecs on dna, 10–20 times slower than the
CSArray and 20–60 times slower than the FM-index.

The FM-index, however, becomes much slower to report the positions of the
occurrences found, achieving a rate of 10–20 occurrences per msec (recall that our
rate is closer to 900–1,400 per msec, depending on the hit ratio on candidates of
type 2). The CSArray is faster than the FM-index at this step, reporting 100–160
occurrences per msec, by taking advantage of the denser sampling. This is, in turn,
a consequence of the different compression methods used. In any case, it is clear
that finding the actual positions of the occurrences is costly under their schemes,
70–90 times slower for the FM-index and 9 times slower for the CSArray.

The differences favor the LZ-index even more if we ask to reproduce the lines
where the occurrences were found. Remind that this is an essential feature, since
all these indexes replace the text and hence our only way to see the text is asking
them to reproduce it. While our LZ-index is able to show around 14 lines per msec,
the FM-index and the CSArray can show only 4–6 lines per msec. This time the

ACM Journal Name, Vol. V, No. N, Month 20YY.

Implementing the LZ-index · 43

0.001

0.01

0.1

1

10

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

ZIFF: Time to count occurrences

LZ-index
FM-index
CSArray

0.01

0.1

1

10

100

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

DNA: Time to count occurrences

LZ-index
FM-index
CSArray

0.1

1

10

100

1000

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

ZIFF: Time to report occurrence positions

LZ-index
FM-index
CSArray

0.1

1

10

100

1000

10000

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

DNA: Time to report occurrence positions

LZ-index
FM-index
CSArray

0.1

1

10

100

1000

10000

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

ZIFF: Time to output matching lines

LZ-index
FM-index
CSArray

0.1

1

10

100

1000

10000

100000

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

DNA: Time to output matching lines

LZ-index
FM-index
CSArray

Fig. 24. Overall query times when counting occurrences (top), reporting positions (middle), and to
output matching lines (bottom). We compare our LZ-index against the most relevant alternatives.

sampling of the suffix array plays a less important role (and hence the FM-index and
CSArray implementations have little differences). The reason is that the sampled
suffix array is used just to find the occurrence position, and from then on one letter
is output per step (forward or backward move in the original text).

Summarizing, we have that our index is rather slow to count the number of
occurrences, but much faster to show their positions or their text contexts. This is
rather intrinsic, because in our index the occurrences of P are scattered all around
the index, while these are all together in a suffix array. Giving the occurrence
positions and text contexts, however, is rather fast because we did most of the
work in the counting phase. We require only a fast tree traversal step per character
output. Compressed suffix arrays, instead, rely on a sampled suffix array and must
perform expensive traversals until they determine the actual suffix array values.

ACM Journal Name, Vol. V, No. N, Month 20YY.

44 · G. Navarro

We argue that, for most text retrieval needs, knowing just the amount of oc-
currences is not enough. Although it may be useful at the internal machinery of
other more complex tasks, the bottom line is that the user wants to know where
the occurrences are and most probably to see their text context (not to speak of
retrieving the whole document, not the line, containing the occurrence). For those
tasks the LZ-index is quite competitive.

Let us take the best from both competing indexes. Assume one can build an
alternative as fast as the FM-index to search for the pattern and as fast as the
CSArray to show the occurrences. It turns out that, to report the occurrences, the
LZ-index would become faster after we report 1,400 occurrences on ziff or 300 on
dna. If we would like to see the lines containing the occurrences, these numbers
drop to 65 on ziff and 13 on dna. This shows that our index becomes superior as
soon as we have to show a few occurrences.

To conclude, we give some data on our tests over the executables of the FM-index
provided by the authors. These permit a coarse control over the index space by
specifying the frequency of a character whose positions will be sampled. Although
we tried the highest possible frequencies, we could not obtain indexes larger than
75.02% of the ziff file and 109.81% of the dna file. The former is half the space
we permit, while the latter is rather close to the correct value. The main memory
required to build the index is 9 times the text size, and the construction speed is 1.7
to 2.3 sec/MB. The time to count occurrences is negligible, as expected. Occurrence
positions were reported at a rate that varied a lot, but was always between 0.5 and
10 occurrences per msec. When we asked the index to show a text context of
length equivalent to an average line (43 characters on ziff and 61 on dna), it
showed them at a rate of 10 to 20 per second. Even if we assume that the index on
ziff could double its performance by using twice the space, the figures still show
that our implementation of the FM-index is competitive against that of the original
authors, when not superior by far18. The results did not vary by trying different
memory policies offered by the index (on disk, mmaped, or in main memory).

13. CONCLUSIONS

We have presented the process of obtaining a real implementation for the LZ-
index, a succinct data structure for text searching which existed as a theoretical
proposal. We have considered the tradeoffs between theoretically appealing ideas
and practically efficient implementations. We have empirically studied the behavior
of the many aspects of our index, and shown that the average search cost of our
implementation is of the form O(σm log u +

√
uR), where u is the text size, m the

pattern length, σ the alphabet size, and R the number of occurrences. A prototype
of our index is available at http://www.dcc.uchile.cl/gnavarro/software.

We have compared our prototype against existing alternatives and have shown
that our index is competitive in practice. Although it is much slower to count how
many occurrences are there, it is much faster to report their position or their text
context. Indeed, we show that if there are more than 1,400 (ziff) or 300 (dna)
occurrence positions to report, or more than 65 (ziff) or 13 (dna) text lines to

18The authors have optimized their implementation for a space consumption much inferior than
that of our comparison. For example, they keep the permuted text in compressed form.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Implementing the LZ-index · 45

show, the LZ-index becomes superior. In our experiments this happened up to
m ≤ 10 (ziff) or m ≤ 5 (dna) to report occurrence positions and up to m ≤ 20
(ziff and dna) to report matching lines. This includes most of the interesting
cases on natural language and several ones on genetic sequences.

In our way, we have learned several lessons of theory versus practice, for example:
(1) the traps of asymptotic analyses that do not become realistic for the text sizes we
expect to handle in this decade, with asymptotically vanishing terms that are huge
in practice (e.g. balanced parentheses); (2) the traps of extremely complicated
proposals that are much easier to write in paper than to implement (e.g. the
LZTrie implementation); (3) the importance of cache- and CPU register-awareness
when comparing the cost of alternatives of similar complexities (e.g. the lowest
level of bitmaps with rank); (4) the unpracticality of schemes that give worst case
guarantees but are much slower on average or in practice than others that do not
(e.g. the Range data structure); (5) the risk of theoretically perfect techniques that
in practice work only for toy examples (e.g. perfect hashing); (6) the importance of
being realistic in the analysis of small complexities (e.g. our O(log log n) solutions,
that in practice are as good as constant time ones); and (7) the large influence of
factors that are completely outside of the algorithmic design, such as the cost of
freeing a scattered data structure (e.g. freeing the pointer-based tries).

The previous paragraph does not mean that theoretical developments should be
disregarded. Much to the contrary, they are the essential core of the progress in
algorithmics. For example, the success of our index owes to its theoretical devel-
opment and to other brilliant theoretical solutions to handle bitmaps and general
trees [Munro and Raman 1997; Munro et al. 2001]. What we mean is that, in many
cases, one cannot hope to implement theoretical solutions “as-is”, but rather be
prepared to take their high-level concepts (which are usually the most valuable)
and redesign the algortihmic details to match practical cost criteria. Of course,
there are theoretical developments that are directly applicable, as well as others
that cannot be applied at all.

We have also seen the importance of coupling the empirical and theoretical anal-
yses in order to fully understand the behavior of the structures we design and to
make the right design decisions. Furthermore, the design and the analysis must be
parallel processes influencing each other.

Finally, we have observed that much of the efficiency in a real implementation of
the competing indexes may have to do with aspects that are usually disregarded at
the algorithmic level, such as the exact way the compression is performed.

As a final followup note, we mention further developments on the LZ-index. New
variants have been designed that are able of running in up to half the space while
improving the search complexity [Arroyuelo et al. 2006; Arroyuelo and Navarro
2007b], of building the LZ-index within basically the same space needed by the
final index [Arroyuelo and Navarro 2005], and working efficiently on secondary
memory [Arroyuelo and Navarro 2007a]. A range of space/time tradeoff variants
have been implemented and are available at the Pizza&Chili site, where a technical
report compares one of those versions against the most recent alternatives. The
conclusions we draw in this paper about the suitability of the LZ-index against
other compressed text indexes stay roughly the same. Other variants have also

ACM Journal Name, Vol. V, No. N, Month 20YY.

46 · G. Navarro

appeared, such as the ILZI [Russo and Oliveira 2006], where the ability of car-
rying out complex searches has been explored [Russo et al. 2007]. Nowadays, as
the theoretical versus practical gap in compressed text indexing research has been
considerably reduced, the active areas of research are shifting to construction in
little space, handling secondary memory, handling changes in the text collection,
and supporting complex searches. We expect the research in the next years to go
in those directions, hopefully combining theory and practice.

REFERENCES

Abouelhoda, M., Ohlebusch, E., and Kurtz, S. 2002. Optimal exact string matching based on
suffix arrays. In Proc. 9th Intl. Symp. String Processing and Information Retrieval (SPIRE).
LNCS 2476. 31–43.

Agarwal, P. and Erickson, J. 1999. Geometric range searching and its relatives. Contemporary
Mathematics 23: Advances in Discrete and Computational Geometry, 1–56.

Apostolico, A. 1985. The myriad virtues of subword trees. In Combinatorial Algorithms on
Words. NATO ISI Series. Springer-Verlag, 85–96.

Arroyuelo, D. and Navarro, G. 2005. Space-efficient construction of LZ-index. In Proc. 16th
Annual Intl. Symp. on Algorithms and Computation (ISAAC). LNCS 3827. 1143–1152.

Arroyuelo, D. and Navarro, G. 2007a. A lempel-ziv text index on secondary storage. In Proc.
18th Annual Symp. on Combinatorial Pattern Matching (CPM). LNCS 4580. 83–94.

Arroyuelo, D. and Navarro, G. 2007b. Smaller and faster lempel-ziv indices. In Proc. 18th
Intl. Workshop on Combinatorial Algorithms (IWOCA). College Publications, UK, 11–20.

Arroyuelo, D., Navarro, G., and Sadakane, K. 2006. Reducing the space requirement of
LZ-index. In Proc. 17th Annual Symp. on Combinatorial Pattern Matching (CPM). LNCS
4009. 319–330.

Bell, T., Cleary, J., and Witten, I. 1990. Text compression. Prentice Hall.

Benoit, D., Demaine, E., Munro, I., Raman, R., Raman, V., and Rao, S. 2005. Representing
trees of higher degree. Algorithmica 43, 4, 275–292.

Chazelle, B. 1988. A functional approach to data structures and its use in multidimensional
searching. SIAM Journal on Computing 17, 3, 427–462.

Ferragina, P. and Manzini, G. 2000. Opportunistic data structures with applications. In Proc.
41st IEEE Symp. Foundations of Computer Science (FOCS). 390–398.

Ferragina, P. and Manzini, G. 2001. An experimental study of an opportunistic index. In

Proc. 12th ACM Symp. on Discrete Algorithms (SODA). 269–278.

Ferragina, P. and Manzini, G. 2002. On compressing and indexing data. Tech. Rep. TR-02-01,
Dipartamento di Informatica, Univ. of Pisa.

Geary, R., Rahman, N., Raman, R., and Raman, V. 2004. A simple optimal representation
for balanced parentheses. In Proc. 15th Annual Symp. on Combinatorial Pattern Matching
(CPM). LNCS v. 3109. 159–172.

González, R., Grabowski, S., Mäkinen, V., and Navarro, G. 2005. Practical implementation
of rank and select queries. In Poster Proceedings Volume of 4th Workshop on Efficient and
Experimental Algorithms (WEA). CTI Press and Ellinika Grammata, Greece, 27–38.

Grossi, R. and Vitter, J. 2000. Compressed suffix arrays and suffix trees with applications to
text indexing and string matching. In Proc. 32nd ACM Symp. Theory of Computing (STOC).
397–406.

Harman, D. 1995. Overview of the Third Text REtrieval Conference. In Proc. Third Text
REtrieval Conf. (TREC-3). 1–19. NIST Special Publication 500-207.

Jacobson, G. 1989. Space-efficient static trees and graphs. In Proc. 30th IEEE Symp. Founda-
tions of Computer Science (FOCS). 549–554.

Kärkkäinen, J. 1995. Suffix cactus: a cross between suffix tree and suffix array. In Proc. 6th
Ann. Symp. Combinatorial Pattern Matching (CPM). LNCS 937. 191–204.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Implementing the LZ-index · 47

Kärkkäinen, J. 1999. Repetition-based text indexes. Ph.D. thesis, Dept. of Computer Science,

University of Helsinki, Finland. Also available as Report A-1999-4, Series A.

Kärkkäinen, J. and Ukkonen, E. 1996a. Lempel-Ziv parsing and sublinear-size index structures
for string matching. In Proc. 3rd South American Workshop on String Processing (WSP).
Carleton University Press, 141–155.

Kärkkäinen, J. and Ukkonen, E. 1996b. Sparse suffix trees. In Proc. 2nd Ann. Intl. Conf. on
Computing and Combinatorics (COCOON). LNCS 1090.

Kosaraju, R. and Manzini, G. 1999. Compression of low entropy strings with Lempel-Ziv
algorithms. SIAM Journal on Computing 29, 3, 893–911.

Kurtz, S. 1998. Reducing the space requirements of suffix trees. Report 98-03, Technische
Kakultät, Universität Bielefeld.

Mäkinen, V. 2003. Compact suffix array - a space-efficient full-text index. Fundamenta Infor-
maticae 56, 1–2, 191–210.

Manber, U. and Myers, G. 1993. Suffix arrays: a new method for on-line string searches. SIAM
Journal on Computing , 935–948.

Munro, I. 1996. Tables. In Proc. 16th Foundations of Software Technology and Theoretical
Computer Science (FSTTCS). LNCS 1180. 37–42.

Munro, I. and Raman, V. 1997. Succint representation of balanced parentheses, static trees and
planar graphs. In Proc. 38th IEEE Symp. Foundations of Computer Science (FOCS). 118–126.

Munro, I., Raman, V., and Rao, S. 2001. Space efficient suffix trees. Journal of Algorithms,
205–222.

Navarro, G. 2002. Indexing text using the Ziv-Lempel trie. In Proc. 9th Intl. Symp. String
Processing and Information Retrieval (SPIRE). LNCS 2476. 325–336.

Navarro, G. 2004. Indexing text using the ziv-lempel trie. Journal of Discrete Algorithms
(JDA) 2, 1, 87–114.

Navarro, G. and Mäkinen, V. 2007. Compressed full-text indexes. ACM Computing Sur-
veys 39, 1, article 2.

Navarro, G., Moura, E., Neubert, M., Ziviani, N., and Baeza-Yates, R. 2000. Adding
compression to block addressing inverted indexes. Information Retrieval 3, 1, 49–77.

Russo, L., Navarro, G., and Oliveira, A. 2007. Approximate string matching with Lempel-Ziv
compressed indexes. In Proc. 14th Intl. Symp. on String Processing and Information Retrieval
(SPIRE). LNCS 4726. 265–275.

Russo, L. and Oliveira, A. 2006. A compressed self-index using a ziv-lempel dictionary. In Proc.
13th Symp. on String Processing and Information Retrieval (SPIRE). LNCS 4209. 163–180.

Sadakane, K. 2000. Compressed text databases with efficient query algorithms based on the
compressed suffix array. In Proc. 11th Intl. Symp. Algorithms and Computation (ISAAC).
LNCS 1969. 410–421.

Sadakane, K. 2002. Succint representations of lcp information and improvements in the com-
pressed suffix arrays. In Proc. 13th ACM Symp. on Discrete Algorithms (SODA). 225–232.

Welch, T. 1984. A technique for high performance data compression. IEEE Computer Maga-
zine 17, 6 (June), 8–19.

Witten, I., Moffat, A., and Bell, T. 1999. Managing Gigabytes, second ed. Morgan Kaufmann
Publishers, New York.

Ziv, J. and Lempel, A. 1978. Compression of individual sequences via variable length coding.
IEEE Trans. on Information Theory 24, 530–536.

Received Month Year; revised Month Year; accepted Month Year.

ACM Journal Name, Vol. V, No. N, Month 20YY.

