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Abstract

Metric space searching is an emerging technique to address the problem of efficient similarity
searching in many applications, including multimedia databases and other repositories handling
complex objects. Although promising, the metric space approach is still immature in several
aspects that are well established in traditional databases. In particular, most indexing schemes
are static, that is, few of them tolerate insertion or deletion of elements at reasonable cost over
an existing index.

The Spatial Approximation Tree (sa–tree) [VLDBJ 2002] has been experimentally shown to
provide a good tradeoff between construction cost, search cost, and space requirement. However,
the sa–tree is static, which renders it unsuitable for many database applications.

In this paper we study different methods to handle insertions and deletions on the sa–tree
at low cost. In many cases, the dynamic construction (by successive insertions) is even faster
than the previous static construction, and both are similar elsewhere. In addition, the dynamic
version significantly improves the search performance of sa–trees in virtually all cases. The
result is a much more practical data structure that can be useful in a wide range of database
applications.

1 Introduction

Similarity searching has applications in a vast number of fields [Sam05, ZADB06]. Some examples
are non-traditional databases (for example, storing images, fingerprints or audio clips, where the
concept of exact search is of no use and we search instead for similar objects) [ABH97, YI99]; text
searching (to find words and phrases in a text database allowing a small number of typographical
or spelling errors) [SK83, Kuk92]; information retrieval (to look for documents that are similar to
a given query or document) [SM83, BYRN99]; machine learning and classification (to classify a
new element according to its closest representative) [DH73]; image quantization and compression
(where only some vectors can be represented and we code the others as their closest representable
point, as in the MPEG standard); computational biology (to find homologous regions in a DNA or
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protein sequence database) [Gus97, Wat95, SK83]; and function prediction (to search for the most
similar behavior of a function in the past so as to predict its probable future behavior).

All those applications share some common characteristics. There is a finite dataset of objects
belonging to a metric space, where a distance function is used to assess similarity. Similarity queries
are posed to this dataset. These consist basically in, given a new element of the space called the
query, looking for elements of the dataset that are similar enough to the query. The dataset
is preprocessed so as to build an index that reduces query time. This metric space approach to
handle similarity search problems is becoming widely popular [Sam05, ZADB06] and a large number
of indexing methods have flourished [CNBYM01, HS03b, Sam05], although mature solutions from
the database point of view are a long way off.

Most of the existing indexes are static. This means that, once they are built for a given
dataset, adding more elements to the dataset, or removing an element from it, requires an expensive
updating of the index (in many cases equivalent to rebuilding it from scratch). Some indexes tolerate
insertions in principle, but their quality degrades and require periodic rebuildings. Others tolerate
deletions with the same quality problem. In several of them, some elements of the dataset can be
deleted but others cannot, which is usually unacceptable as we are potentially dealing with very
large objects (images, for example). Thus there are very few dynamic indexes.

We note that there are some applications where a static scheme may be acceptable, yet many
of them require dynamic capabilities. Actually, in some cases it is sufficient to support insertions,
as in digital libraries and archives where documents are never updated or deleted. Yet, there are
many cases where deletions must be supported, for example Web engines that must avoid links to
pages that do not exist anymore, and in general any multimedia or document database where up-to-
date information must be kept (individuals in an organization, current projects in a manufacturer
company, and a long so on).

From those few dynamic indexes, even fewer work well in secondary memory. That is, most of
them need the data structure in main memory in order to operate properly. Although this issue
is important, we are not focusing on it in this paper. There are many interesting databases for
similarity searching where either (i) the similarity computation is so expensive (e.g., taking several
CPU seconds) that one can disregard other costs, (ii) the objects are so large that they must stay
on disk, but there are not that many of them, so the index itself fits perfectly well in main memory.
For example, databases with terabytes of images usually mean that there are a few million images
of a few megabytes each, so the index needs just a few megabytes of main memory.

In this paper we focus on obtaining a dynamic index that performs well in main memory. We
base our work on the Spatial Approximation Tree (sa–tree) [Nav99, Nav02, HS03a]. It has been
shown that the sa–tree gives an attractive tradeoff between memory usage, construction time, and
search performance.

The sa–tree, however, has some important weaknesses. The first is that, in some spaces, it is
relatively costly to build and not very efficient to search compared to other simple indexes. The
second is that it is a markedly static data structure: Modifying it is extremely difficult. These
weaknesses make the sa–tree unsuitable for important applications such as multimedia databases.

We study several insertion and deletion techniques to make the sa–tree dynamic. We show that
the resulting dynamic sa–tree (dsa–tree for short) can be built incrementally (that is, by successive
insertions) at least at the same cost of its static version in all cases, and much faster on some
spaces. In addition, the search performance largely improves in virtually all cases. We also show
that one can remove any element from the structure at about the same cost of an insertion, with
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a very small penalty in the search performance.
Our contributions are two-fold. From an algorithmic point of view, we give new insights on

the sa–tree, which is by itself an intriguing data structure. We show that its invariants can be
relaxed in non-obvious ways while preserving its search capabilities, and this can be used to make
the sa–tree fully dynamic at low cost. As a consequence, the dynamic version turns out to be
even more efficient than the static version in most cases. From a more practical point of view,
our contribution is a relevant data structure for metric space searching, which performs well in
construction and search time, and which is fully dynamic. This result makes the dsa–tree useful in
a much wider range of applications, as it not only supersedes the static sa–tree in functionality and
efficiency, but we also show that it compares favorably against state-of-the-art alternatives.

2 Basic Concepts

Let U be a universe of objects, with a nonnegative distance function d : U × U −→ R
+ defined

among them. This distance satisfies the three axioms that make (U, d) a metric space: strict
positiveness (d(x, y) = 0 ⇔ x = y), symmetry (d(x, y) = d(y, x)) and triangle inequality (d(x, z) ≤
d(x, y) + d(y, z)). The smaller the distance between two objects, the more “similar” they are. We
handle a finite dataset S ⊆ U, which is a subset of the universe of objects and can be preprocessed
(to build an index). Later, given a new object from the universe (a query q ∈ U), we must retrieve
all similar elements found in the dataset. There are two typical queries of this kind:

Range query: Retrieve all elements within distance r to q in S. That is, {x ∈ S , d(x, q) ≤ r}.

Nearest neighbor query (k-NN): Retrieve the k closest elements to q in S. That is, a set A ⊆ S
such that |A| = k and ∀x ∈ A, y ∈ S −A, d(x, q) ≤ d(y, q).

The distance is assumed to be expensive to compute (as in most of the examples we gave in
the Introduction). Hence, it is customary to define the complexity of the search as the number of
distance evaluations performed, disregarding other components such as CPU time for side compu-
tations, and even I/O time. Given a dataset of |S| = n objects, queries can be trivially answered
by performing n distance evaluations. The goal is to preprocess the dataset such that queries can
be answered with as few distance evaluations as possible.

A particular case of this problem arises when the space is a set of D-dimensional points and
the distance belongs to the Minkowski Lp family: Lp = (

∑
1≤i≤D |xi − yi|

p)1/p. For example p = 2
yields Euclidean distance. There are effective methods to search in those spaces [GG98, BBK01].
However, for roughly 20 dimensions or more those structures cease to work well. We focus in this
paper on general metric spaces, although the solutions are well suited also for D-dimensional spaces.
Moreover, regarding a D-dimensional space as a metric space reveals the true dimensionality of the
dataset, which may be much lower than D, without the need of applying expensive dimensionality
reduction techniques.

Measuring the difficulty of searching in a metric space is a difficult task. The search performance
depends in a non-obvious way on the shape of the histogram of distances, and even on the histogram
of subsets of the space. Although the concept of “dimensionality” has been extended to metric
spaces (e.g. [Bri95, CNBYM01]), the existing estimates are still not adequate to replace thorough
experimentation. In this paper we use four real-life metric spaces with widely different histograms of
distances, so as to derive sufficiently general conclusions on performance. Still, we ignore extremely
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difficult metric spaces (where the histograms are very concentrated) as those are intractable with
exact algorithms [CNBYM01, CN01, BBK01, BN02].

Experimental setup. Experiments are spread throughout this paper, thus we describe here the
experimental setup. We have selected four widely different metric spaces.

NASA images: a set of 40,700 20-dimensional feature vectors, generated from images downloaded
from NASA (http://www.dimacs.rutgers.edu/Challenges/Sixth/software.html). The Eu-
clidean distance is used.

Strings: a dictionary of 69,069 English words. The distance is the edit distance, that is, the mini-
mum number of character insertions, deletions and substitutions needed to make two strings
equal. This distance is useful in text retrieval to cope with spelling, typing and optical
character recognition (OCR) errors.

Color histograms: a set of 112,682 8-D color histograms (112-dimensional vectors) from an image
database (http://www.dbs.informatik.uni-muenchen.de/~seidl/DATA/histo112.112682.gz).
Any quadratic form can be used as a distance, so we chose Euclidean distance as the simplest
meaningful alternative.

Documents: a set of 1,265 documents under the Cosine similarity, heavily used in Information
Retrieval [BYRN99]. In this model the space has one coordinate per term and documents
are seen as vectors in this high dimensional space. The distance we use is the angle (arccos
of inner product) among the vectors. The documents are the files of the trec-3 collection
(http://trec.nist.gov).

Figure 1 shows the distance histograms for each metric space considered. These make up
an interesting sample of real-life metric spaces, with widely different histograms (Gaussian-like,
discrete, heavy-tail, arbitrary).

In all cases, we built the indexes with 90% of the points and used the other 10% (randomly
chosen) as queries. All our results are averaged over 10 index constructions using different permu-
tations of the datasets.

We have considered range queries retrieving on average 0.01%, 0.1% and 1% of the dataset. This
corresponds to radii 0.605740, 0.780000 and 1.009000 for the NASA images, 0.051768, 0.082514
and 0.131163 for the color histograms, and 0.140000, 0.150000 and 0.195000 for the documents.
Strings have a discrete distance, so we used radii 1 to 4, which retrieved on average 0.00003%,
0.00037%, 0.00326% and 0.01757% of the dataset, respectively. The same queries were used for
all the experiments on the same datasets. Given the existence of range-optimal algorithms for
k-nearest neighbor searching (see Section 3.5), we have not considered these search experiments
separately, as their search cost is exactly that of range searching with a radius that captures the k
neighbors.

For the experiments of searching with deletions in an index of n elements, we select at random a
given fraction of the elements and delete them from the index, so that after the deletions the index
contains n elements. For example, if we search half the space of strings after 30% of deletions, it
means that we inserted 49,335 elements and then removed 14,800, so as to leave 34,534 elements
(half of the set).
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Figure 1: Distance histograms for each metric space considered in the experiments.

3 Previous Work

Algorithms to search in general metric spaces can be divided into two large areas: pivot-based and
clustering algorithms. However, there are algorithms that combine ideas from both areas. (See
[Sam05, ZADB06, CNBYM01, HS03b] for more complete surveys.)

3.1 Pivot-Based Algorithms

The idea is to use a set of k distinguished elements (“pivots”) p1 . . . pk ∈ S and storing, for
each dataset element x, its distance to the k pivots (d(x, p1) . . . d(x, pk)). Given the query q, its
distance to the k pivots is computed (d(q, p1) . . . d(q, pk)). Now, if for some pivot pi it holds that
|d(q, pi) − d(x, pi)| > r, then we know by the triangle inequality that d(q, x) > r and therefore do
not need to explicitly evaluate d(x, p). All the other elements that cannot be discarded using this
rule are directly compared against the query.

Several algorithms [Vid86, MOV94, CMBY99, NN97, BYCMW94, CMN01] are almost direct
implementations of this idea, and differ basically in their extra structure used to reduce the CPU
cost of finding the candidate points, but not in their number of distance evaluations.

These indexes permit easy insertion/deletion of elements, by simply adding or removing rows
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to/from the table of kn distances. An element can be added with k distance computations and
removed without any distance evaluation. Removing a pivot, however, is rather problematic, as it
must be replaced by another pivot (at the cost of n distance computations) to avoid degrading the
quality of the index. This may also require a large amount of extra CPU work. Finally, the optimal
number of pivots k is related to the number of elements n, so after many insertions/deletions one
should add/remove pivots anyway.

There are a number of tree-like data structures that use this idea in a more indirect way:
they select a pivot as the root of the tree and divide the space according to the distances to the
root. One slice corresponds to each subtree (the number and width of the slices differs across
the strategies). At each subtree, a new pivot is selected and so on. The search backtracks on
the tree using the triangle inequality to prune subtrees, that is, if a is the tree root and b is a
child corresponding to d(a, b) ∈ [x1, x2], then we can avoid entering the subtree of b whenever
[d(q, a) − r, d(q, a) + r] has no intersection with [x1, x2]. Several data structures use this idea
[BK73, Uhl91b, MOC96, Yia93, BO97, Yia00].

In some of these trees, elements can be easily added at the leaves, although in others some global
information (such as percentiles) is used to shape the tree from the root and therefore insertions
either are too expensive or progressively degrade the quality of the structure. Deletions are always
problematic because they require rebuilding all the subtree of the removed element.

3.2 Clustering Algorithms

The second trend consists of dividing the space into zones as compact as possible, usually in a
recursive fashion, and storing a representative point (“center”) for each zone plus a few extra data
that permit quickly discarding the zone at query time. Two criteria can be used to delimit a zone.

The first one is the Voronoi region, where we select a set of centers and put every other point
inside the zone of its closest center. The regions are bounded by hyperplanes and the zones are
analogous to Voronoi regions in vector spaces. Let {c1 . . . cm} be the set of centers. At query time
we evaluate (d(q, c1), . . . , d(q, cm)), choose the closest center c and discard every zone whose center
ci satisfies d(q, ci) > d(q, c) + 2r, as its Voronoi area cannot intersect the query ball.

The second criterion is the covering radius cr(ci), which is the maximum distance between ci

and an element in its zone. If d(q, ci)− r > cr(ci), then there is no need to consider zone i.
The techniques can be combined. Some techniques use only hyperplanes [Uhl91b, NVZ92, DN87,

Ver95], some use only covering radii [CPZ97, CN05], and some use both criteria [Bri95, Nav02].
In most of these structures, elements can be gracefully inserted at the leaves of the tree. There

are some exceptions, such as [CN05, Nav02], where this progressively degrades the quality of the
structure or is directly unaffordable.

Others that have been specifically designed to maintain their quality through insertions are
[CPZ97, Ver95]. Deleting elements, on the other hand, is too expensive in all these structures
(where a full subtree reconstruction is necessary), especially in Voronoi-based trees. A structure
where a deletion algorithm seems feasible is the M–tree [CPZ97], but no such an algorithm has
been yet proposed.

3.3 Combining Clustering with Pivots

There are some data structures that combine both ideas by dividing the space into compact zones,
and at the same time storing distances to some distinguished elements (pivots).
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The D–index [DGSZ03, Doh04] divides the space into separable partitions of data blocks and
combines this with pivot-based strategies to decrease I/O costs and distance evaluations performed
during searches. It supports disk storage, as well as insertions and deletions of elements but, as
before, removing a pivot is problematic. Besides, adapting the D–index to particular applications
requires a non-trivial parameterization process.

Another example is presented in [CFP+05]. Although the authors claim that this structure
supports insertions and deletions, it is not clear how to carry them out efficiently. Another com-
plication is that the structure is not easy to parameterize, not to mention maintaining a good
parameterization under a dynamic setting.

Another example in this group is obtained by adding pivots to some clustering-based data
structure, as the PM–tree [SPS04] does on top of the M–tree [CPZ97].

3.4 Inexact Algorithms

In many applications it is acceptable to carry out an inexact similarity search, where accuracy or
determinism is traded for improved performance [ZADB06, Sam05, CNBYM01]. This alternative to
exact similarity searching is called approximate similarity searching, and encompasses approximate
[KL04] and probabilistic algorithms [Cla99, KR02]. The general idea of approximation algorithms
is to allow a relaxation on the query precision in order to obtain a speedup in the query time
complexity. Additionally to the query one specifies a precision parameter ǫ to control how far away
(in some sense) we want the outcome of the query from the correct result. A reasonable behavior
for this type of algorithm is to asymptotically approach the correct answer as ǫ goes to zero, and
complementarily to speed up the algorithm, losing precision, as ǫ moves in the opposite direction.

3.5 Nearest Neighbor Queries

Although we have considered only range searching up to now, all the indexes are capable of nearest
neighbor searching. The technique was adapted from vector space data structures to metric trees in
[Uhl91a], and later it was extended to work on most data structures and proved to be range-optimal
[HS00]. Range optimality means that, if a k-NN query (q, k) retrieves elements {u1 . . . uk}, then
the cost of the search is exactly that of a range query (q, r), with r = max(d(q, u1) . . . d(q, uk)).
That is, in a range-optimal k-NN algorithm, there is no cost for not knowing in advance which is
the distance to the k-th nearest neighbor. This idea was also adapted to the sa–tree in [Nav02].

The technique is described for any tree data structure that divides the space into zones and
that can prove lower bounds on distances from each zone to q. This encompasses most existing
data structures, and it is not hard to extend the technique to others, such as pivot-based tables
[BN02]. The idea is to maintain a priority queue Q of subtrees, ordered by provable lower bound
distance to q, as well as a priority queue A of at most k elements closest to q found so far. Initially,
Q contains the whole tree and A is empty. At each step, the first subtree T (that is, the one
with smallest lower bound distance to q) is extracted from Q, its root elements are inserted into A
(which discards the farthest elements so as to maintain at most k of them), and the subtrees of T
are inserted into Q. As soon as we have k elements in A and the farthest element in A is closer to q
than the lower bound given by the first element in Q, we can safely stop because it is not possible
that a tree contained in Q has an element closer to q than those k elements already in A.
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4 The Spatial Approximation Tree

In this section we present the static data structure we build on, the sa–tree [Nav99, Nav02]. Unlike
most other structures, based on dividing the search space, the sa–tree is based on the idea of
approaching the query spatially, that is, starting at some point in the space and getting closer and
closer to the query. The sa–tree is experimentally shown to offer better space-time tradeoffs than
other data structures in several spaces.

4.1 Construction

We select a random element a ∈ S to be the root of the tree. We then select a suitable set of
neighbors N(a) satisfying

Condition 1: (given a, S) ∀x ∈ S, x ∈ N(a) ⇔ ∀y ∈ N(a)− {x}, d(x, y) > d(x, a).

That is, the neighbors of a form a set such that any neighbor is closer to a than to any other
neighbor. The “if” (⇐) part of the definition guarantees that, if from a we can get closer to any
b ∈ S, then an element in N(a) is closer to b than a, because we put as direct neighbors all those
elements that are not closer to another neighbor. The “only if” part (⇒) aims at putting as few
neighbors as possible. Choosing nearest neighbors owes to the concept of getting spatially closer
to the query, so that if we cannot get closer (with tolerance r) from a tree node then we can stop
the search there.

Notice that the set N(a) is defined in terms of itself in a non-trivial way and that multiple
solutions fit the definition. For example, if a is far from b and c and these are close to each other,
then both N(a) = {b} and N(a) = {c} satisfy the definition.

Finding the smallest possible set N(a) seems to be a nontrivial combinatorial optimization
problem, since by including an element we need to take out others (this happens between b and
c in the example of the previous paragraph). A simple heuristic that adds more neighbors than
necessary is used, and it works well. We begin with the initial node a and its “bag” holding all the
rest of S. We first sort the bag by distance to a. Then, we start adding nodes to N(a) (which is
initially empty). Each time we consider a new node b, we check whether it is closer to some element
of N(a) than to a itself. If that is not the case, we add b to N(a).

At this point we have a suitable set of neighbors. Note that Condition 1 is satisfied thanks to
the fact that we have considered the elements in order of increasing distance to a. The “only if”
part of Condition 1 is clearly satisfied because any element not satisfying it is inserted into N(a).
The “if” part is more delicate. Let x 6= y ∈ N(a). If y is closer to a than x then y was considered
first. Our construction algorithm guarantees that if we inserted x into N(a) then d(x, a) < d(x, y).
If, on the other hand, x is closer to a than y, then d(y, x) > d(y, a) ≥ d(x, a) (that is, a neighbor
cannot be removed by a new neighbor inserted later).

We now must decide in which neighbor’s bag we put the rest of the nodes. We put each node not
in {a}∪N(a) in the bag of its closest element of N(a) (best-fit strategy). Observe that this requires
a second pass once N(a) is fully determined. We are done now with a, and process recursively all
its neighbors, each one with the elements of its bag.

Figure 2 illustrates the construction process, showing (a) a set of points in a two-dimensional
Euclidean space; (b) the first step of the construction process starting with a as the tree root (and
thus N(a) = {b, c, d, e}), including the corresponding hyperplanes; and (c) the final tree obtained.
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Figure 2: An example of the sa–tree construction process.
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Together with each node a we also store its covering radius, that is, the maximum distance
R(a) between a and any element in the subtree rooted at a.

Algorithm 1 depicts the construction process. It is first invoked as BuildTree(a,S−{a}) where
a is a random element of S. Note that, except for the first level of the recursion, we already know
all the distances d(v, a) for every v ∈ S and hence do not need to recompute them. Similarly, some
of the d(v, b) distances at line 8 are already known from line 5. The information stored by the data
structure is the root a and the N() and R() values of all the nodes.

BuildTree(Node a, Set of nodes S)

1. N(a)← ∅ /* neighbors of a */

2. R(a)← 0 /* covering radius */

3. For v ∈ S in increasing distance to a Do

4. R(a)← max(R(a), d(v, a))
5. If ∀b ∈ N(a), d(v, a) < d(v, b) Then N(a)← N(a) ∪ {v}
6. For b ∈ N(a) Do S(b)← ∅
7. For v ∈ S −N(a) Do

8. c← argminb∈N(a)d(v, b)

9. S(c)← S(c) ∪ {v}
10. For b ∈ N(a) Do BuildTree(b,S(b))

Algorithm 1: Algorithm to build a sa–tree for S ∪ {a} with root a.

Note that the construction process does not guarantee that the structure is balanced. However,
it is not clear at all that this is a desirable property for metric space searching, see [CN05].

4.2 Range Searching

Note that the structure that results from the above construction is a tree that can be searched for
any q ∈ S by spatial approximation using nearest neighbor queries. The reason why this works is
that, at search time, we repeat exactly what happened to q during the construction process (that
is, we enter the subtree of the neighbor closest to q), until we reach q. This is because q is present
in the tree, that is, we are doing an exact search after all.

Of course it is of little interest to search only for elements q ∈ S. The tree we have described
can, however, be used as a device to solve queries of any type for any q ∈ U. We consider first
range queries with radius r.

The key observation is that, even if q 6∈ S, the answers to the query are elements q′ ∈ S. So
we use the tree to pretend that we are searching for an element q′ ∈ S. We do not know q′, but
since d(q, q′) ≤ r, we can obtain from q some distance information regarding q′: by the triangle
inequality it holds that for any x ∈ U, d(x, q)− r ≤ d(x, q′) ≤ d(x, q) + r.

Hence, instead of simply going to the closest neighbor, we first determine the closest neighbor c
of q among {a} ∪N(a). We then enter all neighbors b ∈ N(a) such that d(q, b) ≤ d(q, c) + 2r. This
is because the virtual element q′ sought can differ from q by at most r at any distance evaluation,
so it could have been inserted into any of those b nodes. In the process, we report all the nodes q′

we found close enough to q.
Therefore, we are pruning all subtrees rooted at those b such that d(q, b) > d(q, c) + 2r. A

more sophisticated pruning criterion is obtained by noticing that all elements inserted into child c
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of a are not only closer to c than to a and N(a), but also closer to a than to the parent of a and any
neighbor of the parent of a. Extending the argument transitively, we see that c is closer to a than
to any ancestor of a and to any neighbor of any ancestor of a. Let us call A(a) the set of ancestors
of a in the sa–tree (we include a itself in A(a)), and N(A(a)) the set of neighbors of ancestors of
a. Therefore, we can take c as the closest element to q among N(A(a)).

Finally, the covering radius R(a) is used to further prune the search, by not entering subtrees
such that d(q, a) > R(a) + r, since they cannot contain useful elements.

Figure 3 illustrates the search process on the left, starting from the tree root p11. Only p9

is in the result, but all the bold edges are traversed. Algorithm 2 we give the search algorithm,
initially invoked as RangeSearch(a,q,r,d(a, q)), where a is the tree root. Note that in the recursive
invocations d(a, q) is already computed.

p13

p4

p2

p12
p3

p7

p15

p6
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Figure 3: An example of the search process.

RangeSearch(Node a, Query q, Radius r, Distance dmin)

1. If d(a, q) ≤ R(a) + r Then

2. If d(a, q) ≤ r Then Report a
3. dmin ← min {d(c, q), c ∈ N(a)} ∪ {dmin}
4. For b ∈ N(a) Do

5. If d(b, q) ≤ dmin + 2r Then RangeSearch(b,q,r,dmin)

Algorithm 2: The algorithm to search for q with radius r in a sa–tree with root a.

4.3 Nearest Neighbor Searching

As explained in Section 3.5, nearest neighbor searching can be done using a sa–tree by adapting the
range search algorithm. The main issue is how to compute a lower bound to the distance between q
and a subtree. Two lower bounds are given by the tree, and also the lower bounds of the ancestors
are inherited.
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1. Since we compute dmin and then enter any neighbor b such that d(q, b) − dmin ≤ 2r, a lower
bound distance from the subtree rooted at b to q is (d(q, b) − dmin)/2.

2. Another lower bound to the distance between q and an element in the subtree is d(q, b)−R(b).

3. Children nodes inherit the lower bound of their parents, if their own lower bounds are not
better.

Note that the dmin value for each subtree inserted into Q must also be remembered. Algorithm 3
depicts the algorithm1 NNsearch(a,q,k), which performs a k-NN query for q on the tree rooted
at a.

NNsearch(Tree a, Query q, Neighbors wanted k)

1. create(Q), create(A)
2. insert(Q, (a, max{0, d(q, a)−R(a)}, d(a, q)))
3. r ←∞
4. While size(Q) > 0 Do

5. (a, lbound, dmin)← extractMin(Q)
6. If lbound > r Then Break

7. insert(A, (a, d(q, a)))
8. If size(A) > k Then extractMax(A)
9. If size(A) = k Then r ← max(A)

10. dmin ← min {dmin} ∪ {d(b, q), b ∈ N(a)}
11. For b ∈ N(a) Do

12. insert(Q, (b, max{(d(q, b)− dmin)/2, d(q, b)−R(b), t}, dmin)
13. Return A

Algorithm 3: Algorithm to search for the k nearest neighbors of q in a sa–tree rooted at a. A
is a priority queue of pairs (node,distance) sorted by decreasing distance. Q is a priority queue of
triples (node,lbound,dmin) sorted by increasing lbound.

5 Incremental Construction

The construction of the sa–tree needs to know all the elements of S in advance. In particular, it is
difficult to add new elements under the best-fit strategy once the tree is already built.

In this section we discuss and empirically evaluate different alternatives to permit insertion
of new elements into an already built sa–tree. We start with naive and/or folklore alternatives
(rebuilding the subtree and using overflow buckets).2 Then we move to more sophisticated choices
that are based on specific properties of the sa–tree: first-fit, timestamping, and inserting at the
fringe. Finally, we consider combinations of the previous choices and propose the best alternative
overall.

1The original algorithm [Nav02] has a mistake in line 12, as (d(q, b) − dmin) is not divided by 2 as it should.
2There exist classical alternatives to turn static into dynamic data structures [BS80, GR93]. Those are not

considered here because, although they would not degrade much the insertion performance, our best alternatives
indeed improve the insertion costs. Deletions, on the other hand, are handled by maintaining objects for some time
after they are removed, and we considered this unacceptable in this application, as explained in Section 6.
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5.1 Rebuilding the Subtree

The crudest approach is to collect all the set S again, and rebuild the sa–tree for S ∪{x}. This has
the advantage of preserving exactly the same tree that is built statically, and therefore the search
performance is as good as on the static tree. In particular, the tree will have the same arity as
with the static construction, O(log n) at the root of a subtree of size n [Nav02].

Let us refine a bit this procedure in order to avoid unnecessary recomputation. If we built the
tree on S∪{x}, x would take some place after we sorted the set by increasing distance to a (there is
no reason to choose x = a as the root). This means that x would find some of the neighbors in N(a)
already inserted when its time came. Should x be closer to any of the already inserted neighbors
than to a, x would be inserted into the subtree of that neighbor and the rest of the construction
would be exactly the same.

This means that, instead of fully rebuilding the tree, we could first check whether there exists
b ∈ N(a) such that d(b, a) ≤ d(x, a) (so b would be in N(a) when x was considered) and d(x, b) ≤
d(x, a) (so x would prefer to get into the subtree of b instead of being part of N(a)). If such a b
exists, we pick the one minimizing d(x, b) and continue the process of inserting x in the subtree
rooted at b. If, at some point, no such b exists, then x should become a neighbor of the current
tree node a. At this point we must fully rebuild the subtree rooted at a, since some nodes that
went into neighbors could now prefer to get into the new neighbor x.

This process strictly guarantees that the resulting tree is exactly the same sa–tree for S ∪ {x}.
However, we can slightly relax the condition of becoming a neighbor so as to insert x as low as
possible in the tree. Imagine that there is a neighbor b ∈ N(a) such that d(x, b) ≤ d(x, a), but
d(x, a) < d(b, a). In rigor, x should become a neighbor of a and b should get into the subtree rooted
at x. However, if we instead continue the insertion of x inside the subtree rooted at b, Condition
1 is still satisfied at node a. This is equivalent to assuming that x was appended at the end of the
sorted list S.3 The net result is that we will insert x into N(a) only when d(x, a) < d(x, b) for all
b ∈ N(a); otherwise we will insert x into the subtree of its closest neighbor in N(a). The resulting
tree is not exactly the same of the static sa–tree construction for S∪{x}, but still a correct sa–tree,
that can be built at lower cost. In particular, the same search algorithms of the static sa–tree can
be used.

Algorithm 4 shows the insertion algorithm for element x into a tree rooted at a. We follow
only one path from the tree root to the parent of the inserted element and then rebuild the whole
subtree. The dsa–tree can be built by successive insertions into an initial tree formed by a single
node a where N(a) = ∅ and R(a) = 0. Algorithm BuildTree(a,S), invoked at line 4, is that used
for the static construction (Algorithm 1).

Figure 14 (in the Appendix) shows the cost to build the sa–tree by successive insertions using
this technique versus that of building it statically. As it can be seen, even with the improvement we
have made, the incremental construction is prohibitively costly for this alternative to be considered
seriously (20–40 times the static construction cost).

5.2 Using Overflow Buckets

We can have an overflow bucket per node with “extra” neighbors that should go in the subtree
but have not yet been classified. We follow the same insertion mechanism of the previous section

3We saw that the sorting was necessary to ensure Condition 1 to hold, but this was used only to ensure that
elements inserted into N(a) were sorted; elements not inserted into N(a) could be in any order.
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InsertRB(Node a, Element x)

1. c← argminb∈N(a)d(b, x)

2. If d(a, x) < d(c, x) Then

3. Collect in S the elements of the subtree rooted at a
4. BuildTree(a,S ∪ {x}) /* rebuild the subtree */

5. Else

6. R(a)← max{R(a), d(a, x)}
7. InsertRB(c,x)

Algorithm 4: Insertion algorithm of a new element x into a dsa–tree with root a, using the method
of rebuilding the subtree.

until we determine that the new element x must become a neighbor of a. At this point, instead of
rebuilding the subtree rooted at a, we put x in the overflow bucket of a. Each time we reach a at
query time, we also compare q against all the elements in its overflow bucket and report any close
enough element.

We must limit the size of the overflow buckets in order to maintain a reasonable search efficiency.
We rebuild a subtree when its overflow bucket exceeds a given size. The main question is which is
the tradeoff in practice between reconstruction and query costs. As smaller overflow buckets are
permitted, we rebuild the tree more often and improve query time, but construction time increases.

Algorithm 5 illustrates the insertion process of a new element x into a dsa–tree rooted at a,
using overflow buckets. MaxOB is the maximum size allowed for the overflow bucket OB() of
a node. We follow the path from the root to the parent of the inserted element, and then, if its
overflow bucket is not full, we insert the new element there, otherwise we rebuild the whole subtree.
We can build the dsa–tree by successive insertions over an initial tree formed by a single node a
where N(a) = ∅, OB(a) = ∅ and R(a) = 0. Algorithm BuildTree(a,S), invoked at line 6, is that
used for the static construction (Algorithm 1). At line 5 we collect all the elements in the subtree
rooted at a, which includes those not yet classified and hence allocated in the overflow buckets.

InsertOB(Node a, Element x)

1. c← argminb∈N(a)d(b, x)

2. If d(a, x) < d(c, x) Then

3. If |OB(a)| < MaxOB Then OB(a)← OB(a) ∪ {x} /* add to bucket */

4. Else

5. Collect in S the elements of the subtree rooted at a
6. BuildTree(a,S ∪ {x}) /* rebuild the subtree */

7. Else

8. R(a)← max{R(a), d(a, x)}
9. InsertOB(c,x)

Algorithm 5: Insertion algorithm of a new element x into a dsa–tree rooted at a, using overflow
buckets.

Figure 15 shows the construction cost using different maximum bucket sizes, which exhibits
significant fluctuations and in some cases costs even less than a static construction. This is possible
because many unclassified elements are left in the buckets. For example, for bucket size 1,000,
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almost all the elements are in overflow buckets in the dictionary space. The fluctuations appear
because a larger bucket size may produce more rebuilds than a smaller one for a given set size n.

Algorithm 6 depicts the range search algorithm for a dsa–tree built using overflow buckets. It is
initially invoked as RangeSearchOB(a,q,r,d(a, q)) where a is the tree root. Note that, in recursive
invocations, the distance d(a, q) is already computed. The only difference from the algorithm
presented in Algorithm 2 is found at lines 3 and 4 of Algorithm 6, where we must compare the
query q against all the elements in the overflow buckets (OB), reporting those that are close enough
to q. The algorithm for k-NN queries is the same as that of Algorithm 3, except that all the elements
in OB(a) should be inserted into A after line 7.

RangeSearchOB(Node a, Query q, Radius r, Distance dmin)

1. If d(a, q) ≤ R(a) + r Then

2. If d(a, q) ≤ r Then Report a
3. For b ∈ OB(a) Do

4. If d(b, q) ≤ r Then Report b
5. dmin ← min {dmin} ∪ {d(q, c), c ∈ N(a)}
6. For b ∈ N(a) Do

7. If d(b, q) ≤ dmin + 2r Then RangeSearchOB(b,q,r,dmin)

Algorithm 6: Algorithm to search for q with radius r in a dsa–tree rooted at a built using overflow
buckets.

Figure 16 shows the search costs using overflow buckets. As it can be seen, this technique
permits interesting tradeoffs between search and construction costs. In general, lower construction
costs correspond to higher search costs. This has to do with the number of elements that stay in
the overflow buckets. It is usually possible to find a bucket size so that construction and search
costs are similar to those of the static version. The main problem with this method is its high
sensitivity to the maximum bucket size, which makes it difficult to select a bucket size that achieves
a good tradeoff.

5.3 A First-Fit Strategy

An alternative to the best-fit strategy is the first-fit strategy, which puts each node in the bag of
the first neighbor closer than a to q. Determining N(a) and the bag of each other element can now
be done all in one pass.

With the first-fit strategy we can easily add more elements by pretending that the new incoming
element x was the last in the bag. This means that, when x becomes a neighbor of a, it can be
simply appended at the end of N(a), and there were no further elements in the bag that had the
chance of getting into x. Hence, no reconstruction of the tree is necessary. This allows building the
structure by successive insertions at low cost.

Algorithm 7 depicts the insertion algorithm of a new element x into a dsa–tree rooted at a, built
using the first-fit strategy. Figure 17 shows that the construction using first-fit is much cheaper than
the static construction using best-fit strategy (disregard for now the curve labeled “Timestamp”).

Range searching under the first-fit strategy is a bit different. We consider the neighbors
{b1, . . . , bk} of a in order. We perform the minimization while we traverse the neighbors. That is, we
enter the subtree of b1 if d(q, b1) ≤ d(q, a)+2r; the subtree of b2 if d(q, b2) ≤ min(d(q, a), d(q, b1))+

15



InsertFF(Node a, Element x)

1. R(a)← max{R(a), d(a, x)}
2. c← a
3. For bi ∈ N(a) Do /* taking the neighbors bi in order */

4. If d(bi, x) ≤ d(a, x) Then

5. c← bi /* the first closer neighbor */

6. Break

7. If c = a Then

8. N(a)← N(a) ∪ {x}
9. N(x)← ∅, R(x)← 0
10. Else InsertFF(c,x)

Algorithm 7: Insertion algorithm of a new element x into a dsa–tree rooted at a, using first-fit
strategy.

2r; and in general the subtree of bi if d(q, bi) ≤ min(d(q, a), d(q, b1), . . . , d(q, bi−1)) + 2r. This is
because bi+j can never take out an element from bi, so even if there exists a closer neighbor later,
the elements of interest will choose the first one.

Algorithm 8 shows the search algorithm for a dsa–tree built using the first-fit strategy. It
is invoked as RangeSearchFF(a,q,r,d(a, q)), where a is the tree root. Note that, in recursive
invocations, the distance d(a, q) is already computed. Line 5 performs the minimization while
traversing the neighbors in order.

RangeSearchFF(Node a, Query q, Radius r, Distance dmin)

1. If d(a, q) ≤ R(a) + r Then

2. If d(a, q) ≤ r Then Report a
3. For bi ∈ N(a) Do /* considering neighbors in order */

4. If d(bi, q) ≤ dmin + 2r Then RangeSearchFF(bi,q,r,dmin)

5. dmin ← min{dmin, d(q, bi)}

Algorithm 8: Algorithm to search for q with radius r into a dsa–tree rooted at a built using the
first-fit strategy.

The k-NN search algorithm for this version is easily obtained by considering that the three
bounds mentioned in Section 4.3 still hold, as long as we understand that dmin is computed incre-
mentally as we traverse the neighbors, instead of first computing it over all the neighbors and then
using it to insert elements into Q. That is, line 10 of Algorithm 3 is removed and an instruction
dmin ← min{dmin, d(b, q)} is executed after each insertion at line 12.

Figure 18 shows range search times. As it can be seen, the search performance using a first-fit
construction is poor in the dictionary (except for r = 1) and in the space of feature vectors, at a
point that it cannot compete against simpler alternatives. However, in documents and in the space
of color histograms it obtains significantly better search performance than the static construction
using best-fit strategy. Thus, first-fit turns out to be a very interesting alternative for those spaces,
as in addition it provides much faster construction.
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5.4 Timestamping

The first-fit strategy suffers from two shortcomings. On one hand, the tree has more elements
in its first branches, and on the other hand, those branches are visited more frequently at search
time. This kind of unbalancing is usually beneficial in “difficult” spaces [CN05], as shown by the
experiments in the previous section, but not on most spaces. In this section we seek a more balanced
structure.

An alternative that partially solves the first problem (producing more balanced trees) and still
retains the low insertion cost of first-fit strategy, is based on keeping a timestamp of the insertion
time of each element. When inserting a new element, we add it as a neighbor at the appropriate
point using best-fit strategy, but do not rebuild the tree. Let us consider that neighbors are added
at the end, so by reading them left to right we have increasing insertion times. It also holds that
the parent is always older than its children.

Algorithm 9 depicts the insertion process for element x over a tree rooted at a. The dsa–tree
can be built by successive insertions over an initial tree formed by a single node a where N(a) = ∅,
time(a) = CurrentT ime = 1 and R(a) = 0.

InsertTS(Node a, Element x)

1. R(a)← max{R(a), d(a, x)}
2. c← argminb∈N(a)d(b, x)

3. If d(a, x) < d(c, x) Then

4. N(a)← N(a) ∪ {x}
5. N(x)← ∅, R(x)← 0
6. time(x)← CurrentT ime
7. CurrentT ime← CurrentT ime + 1
8. Else InsertTS(c,x)

Algorithm 9: Insertion of a new element x into a dsa–tree rooted at a, using the timestamp
technique.

As seen in Figure 17, this alternative can cost from a moderately more to much less than the
static construction, depending on the case.

At search time, we consider the neighbors {b1, . . . , bk} of a from oldest to newest. We perform
the minimization while we traverse the neighbors, exactly as in Section 5.3. This is because between
the insertion of bi and bi+j there may have appeared new elements that preferred bi just because
bi+j was not yet a neighbor, so we may miss an element if we do not enter bi because of the existence
of bi+j. Note that, although the search process is the same as under first-fit strategy, the insertion
puts the elements into their closest neighbor, so the structure is more balanced.

Up to now we do not really need timestamps but just to keep the neighbors sorted by them.
Yet a more sophisticated scheme is to use the timestamps to reduce the work done inside older
neighbors at search time. Say that d(q, bi) > d(q, bi+j)+2r. We have to enter bi because it is older.
However, only the elements with timestamp smaller than that of bi+j should be considered when
searching inside bi; younger elements have seen bi+j and they cannot be interesting for the search
if they chose bi. As parent nodes are older than their descendants, as soon as we find a node inside
the subtree of bi with timestamp larger than that of bi+j we can stop the search in that branch,
because its subtree is even younger.
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Algorithm 10 shows the range search algorithm considering a dsa–tree built using the timestamp
strategy. The computation of dmin is carried out in line 7, as we traverse the neighbors in ascending
timestamp order. The algorithm is initially invoked as RangeSearchTS(a,q,r,d(a, q),CurrentT ime)
where a is the tree root. Note that the distance d(a, q) is already computed in recursive invocations.
Despite the quadratic nature of the loop implicit in lines 3 and 5, the query is of course compared
only once against each neighbor.

RangeSearchTS(Node a, Query q, Radius r, Distance dmin, Timestamp t)

1. If time(a) < t ∧ d(a, q) ≤ R(a) + r Then

2. If d(a, q) ≤ r Then Report a
3. For bi ∈ N(a) Do /* in ascending timestamp order */

4. If d(bi, q) ≤ dmin + 2r Then

5. t′ ← min{t} ∪ {time(bj), j > i ∧ d(bi, q) > d(bj , q) + 2r}
6. RangeSearchTS(bi,q,r,dmin,t

′)

7. dmin ← min{dmin, d(bi, q)}

Algorithm 10: Algorithm to search for q with radius r into a dsa–tree rooted at a built with the
timestamp technique.

Let us now consider nearest neighbor searching. We have to manage to express our operational
handling of timestamps as lower bounds on distances. Instead of thinking in terms of maximum
allowed timestamp of interest inside y, let us think in terms of maximum search radius that permits
entering y. Each time we enter a subtree y of bi, we search for the siblings bi+j of bi that are older
than y. Over this set, we compute the maximum radius that permits us not to enter y, namely
ry = max(d(q, bi)− d(q, bi+j))/2. If it holds r < ry, then we do not need to enter the subtree y.

Assume that we are currently processing node bi and insert its children y into the priority
queue. We compute ry and insert it together with y into the priority queue. Later, when the time
to process y comes, we consider our current search radius r and discard y if r < ry. If we insert a
child z of y, then we put it with value max(ry, rz). Algorithm 11 shows the algorithm.

Figure 18 compares this technique against the static one. As it can be seen, timestamping is
a good alternative to the static construction in all the spaces except the dictionary, providing the
same or much better construction cost and also better search performance than the static version.
Timestamping also performs better than the first-fit strategy on some spaces.

5.5 Inserting at the Fringe

Let us imagine that we remove the “⇐” part of Condition 1 (Section 4.1), that is, there are some
elements closer to a than to any element of N(a), and yet those elements are not in N(a). This
part of Condition 1 guarantees that, if q is closer to a than to any neighbor in N(a), then we can
stop the search at that point because q should be in N(a) and not inside any subtree. If we weaken
Condition 1 as explained, then there is no such guarantee. Even if x is closer to a than to any
neighbor in N(a), x could be in the subtree of its closest neighbor in N(a).

Hence, at search time, instead of finding the closest c among {a} ∪ N(a) and entering any
b ∈ N(a) such that d(q, b) ≤ d(q, c) + 2r, we exclude the subtree root {a} from the minimization.
Therefore, we always continue to the leaves, by the closest neighbor and others close enough. This
seems to degrade the search time, but the difference is marginal in practice.
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NNsearchTS(Tree a, Query q, Neighbors wanted k)

1. create(Q), create(A)
2. insert(Q, (a, max{0, d(q, a)−R(a)}, d(q, a)))
3. r ←∞
4. While size(Q) > 0 Do

5. (a, lbound, dmin)← extractMin(Q)
6. If lbound > r Then Break

7. insert(A, (a, d(q, a)))
8. If size(A) > k Then extractMax(A)
9. If size(A) = k Then r ← max(A)
10. For bi ∈ N(a) Do /* in increasing timestamp order */

11. maxr ← max {(d(q, bi)− d(q, bj))/2, j > i}
12. insert(Q, (bi, max{maxr, (d(q, bi)− dmin)/2, d(q, bi)−R(bi), t}, dmin)
13. dmin ← min{dmin, d(q, bi)}

14. Return A

Algorithm 11: Algorithm to search for the k nearest neighbors of q in a dsa–tree rooted at a built
using timestamp. A is a priority queue of pairs (node,distance) sorted by decreasing distance. Q is
a priority queue of triples (node,lbound,dmin) sorted by increasing lbound.

The benefit is that, at insertion time, we are not forced anymore to put the new element x as
a neighbor of a, even when Condition 1 would require that. That is, at insertion time, even if x
is closer to a than to any element in N(a), we have the choice of not putting it as a neighbor of a
but inserting it into its closest neighbor in N(a). At search time we will reach x because the search
and insertion processes are similar.

An immediate consequence of this freedom is that we can always insert at the leaves of the tree.
That is, the tree is read-only in its top part and changes only at its fringe. However, we have to
permit the reconstruction of small subtrees so that the tree does not degenerate into a linked list.
So we permit inserting x as a neighbor when the size of the subtree to rebuild is small enough,
which leads to a tradeoff between insertion cost and quality of the tree at search time.

Algorithm 12 depicts the insertion algorithm of a new element x into a dsa–tree rooted at a.
MaxSize is the maximum tree size allowed to rebuild and size(a) is the size of the subtree rooted
at a. The dsa–tree can be built by successive insertions over an initial tree formed by a single node
a with N(a) = ∅, size(a) = 1 and R(a) = 0. At line 4 we invoke algorithm BuildTree(a,S) used
for the static construction (Algorithm 1).

Figure 19 shows the construction cost for different maximum tree sizes that can be rebuilt. As
it can be seen, permitting a tree size of 50 yields similar construction cost as the static version, and
reasonably close costs are achieved with tree sizes from 10 to 100.

Algorithm 13 depicts the range search algorithm considering that the dsa–tree was built using
insertion at the fringe. It is invoked as RangeSearchFR(a,q,r) where a is the tree root, and at
recursive invocations d(a, q) is already known. The algorithm is very similar to the static version
(Algorithm 2), but there is an important difference. The value dmin is not inherited, which means
that the root a is not included in the minimization, as explained. It also means that the neighbors
of ancestors of a, N(A(a)), are excluded from the minimization. The reason is that, given the
relaxation to Condition 1, it is not guaranteed that b ∈ N(a) is closer to a than to the parent of
a, or to any ancestor of a.
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InsertFR(Node a, Element x)

1. c← argminb∈N(a)d(b, x)

2. If d(a, x) < d(c, x) ∧ size(a) < MaxSize Then

3. Collect in S the elements of the subtree rooted at a
4. BuildTree(a,S ∪ {x}) /* rebuild the subtree */

5. Else

6. R(a)← max{R(a), d(a, x)}
7. InsertFR(c,x)

Algorithm 12: Insertion algorithm of a new element x into a dsa–tree rooted at a, using insertion
at the fringe.

RangeSearchFR(Node a, Query q, Radius r)

1. If d(a, q) ≤ R(a) + r Then

2. If d(a, q) ≤ r Then Report a
3. dmin ← min {d(q, bi), bi ∈ N(a)}
4. For bi ∈ N(a) Do

5. If d(bi, q) ≤ dmin + 2r Then RangeSearchFR(bi,q,r)

Algorithm 13: Algorithm to search for q with radius r into a dsa–tree rooted at a built by insertion
at the fringe.

Nearest neighbor searching is also simplified from that of Algorithm 3. It is not necessary to
store dmin together with the subtrees maintained in Q, and in line 10, element {dmin} can be
excluded from the minimization in the right hand of the assignment.

Figure 20 shows the search time using this technique. As it can be seen, using a tree size of 10
to 100 yields usually much better search time compared to the static version. The exception is the
dictionary, where all the costs are very close anyway. This shows that it may be beneficial to move
elements downward in the tree, which is an interesting result we study more in depth next.

5.6 Bounding the Arity

The relaxation used in the previous section can be used in several ways. It is particularly interesting
how it can significantly reduce construction time while retaining a competitive search time. By
analyzing the trees resulting from the above dynamic construction, we have found that, in the cases
where dynamic construction improves most over static construction, the average arity (number of
children) of the tree nodes is reduced most. This seems to indicate that the reason why the sa–tree
performs poorly in some spaces is that its arity is too high. Even when the sa–tree automatically
adapts its arity to the space, this mechanism is not optimal.

This gives us a motivation for a different way of controlling insertions in a dsa–tree. We directly
control the tree arity by fixing a maximum admissible arity, MaxArity. Whenever a new inserted
element wants to become a neighbor of a tree node a, we permit that only if |N(a)| < MaxArity,
otherwise the element is forced to choose its closest b ∈ N(a) and continue the insertion there.
Algorithm 14 gives the insertion algorithm, which is very similar to InsertFR. Range and nearest
neighbor searching are identical to the version for inserting at the fringe.
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InsertBA(Node a, Element x)

1. c← argminb∈N(a)d(b, x)

2. If d(a, x) < d(c, x) ∧ |N(a)| < MaxArity Then

3. Collect in S the elements of the subtree rooted at a
4. BuildTree(a,S ∪ {x}) /* rebuild the subtree */

5. Else

6. R(a)← max{R(a), d(a, x)}
7. InsertBA(c,x)

Algorithm 14: Insertion algorithm of a new element x into a dsa–tree rooted at a, using bounded
arity.

Figure 21 shows the construction cost for different maximum arities. As it can be seen, permit-
ting a maximum arity of 4 yields the same construction cost of the static version. The construction
cost increases as the arity grows, and it becomes too large already for arity 8 in most cases.

Figure 22 shows the search time using this technique. Except on the dictionary, the lowest arity
is the best, and the static search cost is reached for arity 8. In the dictionary, on the other hand,
we need larger arities, reaching a search cost similar to the static version for arity at least 8. This
shows again that it may be beneficial to move elements downward in the tree.

5.7 Combining Insertion Algorithms

The last two alternatives yielded better construction times than the static version. Although
the initial idea was to limit the size of the tree to rebuild, a side effect was that the dynamic
tree was better suited to some spaces. These restrictions on the insertion point can therefore be
viewed as tuning parameters by themselves, unrelated to the goal of limiting the size of the tree to
rebuild. Moreover, the reconstruction cost itself can be completely avoided by combining them with
timestamping. This way, we would have trees that use timestamping to avoid any reconstruction,
and at the same time limit the possible insertion points with the aim of obtaining a tree of better
shape.

The variant combining timestamping with bounded arity works as follows. We fix a maximum
tree arity, and also keep a timestamp of the insertion time of each element. The search for the
insertion point is exactly as in Algorithm 14, except that in lines 3 and 4 we do not rebuild
the subtree but rather add x as the last neighbor in the list. Algorithm 15 gives the algorithm.
The variant combining timestamping with insertion at the fringe (InsertTF) is similar: Condition
|N(a)| < MaxArity in line 3 becomes size(a) < MaxSize.

Figure 23 shows the construction costs combining timestamping with insertion at the fringe. The
costs are much better than without timestamping, and much better than the static construction cost
as well. Figure 24 shows the construction cost for different maximum arities, using timestamping
plus bounded arity. The results are very similar.

At search time we have to combine the considerations done for timestamping with those for
bounded arity. Algorithm 16 shows the search algorithm (algorithm RangeSearchTF for insertion
at the fringe is identical). Note that d(a, q) is always known except in the first invocation.

Figures 25 and 26 compare the search costs of the methods that combine timestamping with
insertion at the fringe and bounded arity, respectively, against the static version. Except on the
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InsertTBA(Node a, Element x)

1. R(a)← max(R(a), d(a, x))
2. c← argminb∈N(a)d(b, x)

3. If d(a, x) < d(c, x) ∧ |N(a)| < MaxArity Then

4. N(a)← N(a) ∪ {x}
5. N(x)← ∅, R(x)← 0
6. time(x)← CurrentT ime
7. CurrentT ime← CurrentT ime + 1
8. Else InsertTBA(c,x)

Algorithm 15: Insertion of a new element x into a dsa–tree with root a using timestamping plus
bounded arity.

RangeSearchTBA(Node a, Query q, Radius r, Timestamp t)

1. If time(a) < t ∧ d(a, q) ≤ R(a) + r Then

2. If d(a, q) ≤ r Then Report a
3. dmin ←∞
4. For bi ∈ N(a) Do /* in ascending timestamp order */

5. If d(bi, q) ≤ dmin + 2r Then

6. t′ ← min{t} ∪ {time(bj), j > i ∧ d(bi, q) > d(bj , q) + 2r}
7. RangeSearchTBA(bi,q,r,t

′)

8. dmin ← min{dmin, d(bi, q)}

Algorithm 16: Searching for q with radius r in a dsa–tree rooted at a, built with timestamping
plus bounded arity.
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dictionary, the performance of the static version is surpassed, and smallest trees or arities work
better. On the dictionary, we must use large enough tree reconstruction sizes and arities to approach
the performance of the static version.

Nearest neighbor searching is also a combination of both algorithms. It is almost like NNsearchTS
(Algorithm 11) except that dmin is not stored in Q but initialized at ∞ just before line 10.

5.8 Choosing the Best Insertion Algorithm

We have proposed a number of techniques to build the sa–tree incrementally, each one giving us
different tradeoffs between construction and search cost. Several of those have improved construc-
tion and search time simultaneously. Figures 4 and 5 illustrate this tradeoff, for every space and
search radius. Observe that a difference in the x axis is more significant as that scale is logarithmic.

In all the insertion methods and metric spaces, the standard deviation of the search process is
around 0.5 of the mean, and therefore the standard deviation of the estimations is 5% to 0.5% of
the mean, depending on the size of the space.

The first conclusion is that the static version is never an interesting choice. In each case there is
some other alternative that obtains better construction and search cost simultaneously. The only
case where it is not superseded is in the dictionary and large search radius, but even there it is
very close to other methods. Similarly, the use of timestamping (alone) and of overflow buckets is
never the best choice.

A remarkable alternative that turns out to be relevant for its very low construction cost is first-
fit. Although it is usually far from the best search time that can be achieved, no other technique
can obtain the same search performance with as low construction cost.

With regard to search time, a remarkable method is insertion at the fringe, which in many cases
obtains results far better than what can be achieved with any other choice. In some cases it is
closely followed by bounded arity, but only on strings with r = 3 the latter is clearly better.

Finally, both combined alternatives are very similar and much more stable with respect to
changing parameters. They usually offer a tradeoff between first-fit and insertion at the fringe or
with bounded arity.

In order to continue our work with deletions, to keep the scope of the paper reasonably bounded,
we will stick to one of the insertion techniques. Yet, any other technique can be easily adapted
to support deletions. We have chosen the combination of timestamping with bounded arity, which
is in most cases among the best choices and never a very bad choice. Although sometimes it is
widely surpassed by bounded arity alone, its good performance is more consistent. For example,
it works also well on strings, which is a discrete space that behaves very differently of the others.
We could also have chosen the combination of timestamping with insertion at the fringe. However,
the bounded arity has an extra plus if we have secondary memory as a future goal: Bounding the
arity simplifies the task of packing subtrees into disk blocks, and deciding how many subtree levels
fit in a block.

6 Deletions

To delete an element x, the first step is to find it in the tree. Unlike most classical data structures
for traditional search problems, doing this is not equivalent to simulating the insertion of x and
seeing where it leads us to in the tree. The reason is that the tree was different at the time x was
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space of color histograms (right).
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inserted. If x were inserted again, it could choose to enter a different path in the tree, which did
not exist at the time of its first insertion.

An elegant solution to this problem is to perform a range search with radius zero, that is, a
query of the form (x, 0). This is reasonably cheap and will lead us to all the places in the tree
where x could have been inserted.

On the other hand, whether this search is necessary is application-dependent. The application
could return a handle when an object was inserted into the dataset. This handle can contain a
pointer to the corresponding tree node. Adding pointers to the parent in the tree would permit us
to locate the path for free (in terms of distance computations). Henceforth we do not consider the
location of the object as a part of the deletion problem, although we have shown how to proceed if
necessary.

We have studied several alternatives to delete elements from a dsa–tree. From the beginning
we have discarded the trivial option of marking the element as deleted without actually deleting it.
As explained in the Introduction, this is likely to be unacceptable in most applications. We assume
that the element has to be physically deleted. We may, if desired, keep its node in the tree, but
not the object itself.

It should be clear that a tree leaf can always be removed without any cost or complication, so
we focus on how to remove internal tree nodes. Note, however, that most tree nodes are leaves,
especially when the arity is higher. Thus, there will be a motivation to use higher arity when
deletions are considered.

We present several deletion alternatives in this section. The first two disconnect the subtree
of the deleted node and reinsert it (wholly or in parts) from the tree root again, with the hope of
redistributing the tree better. The third choice manages to rebuild the affected subtree exactly as
if x was never inserted, which guarantees the quality of the tree after successive deletions (this is
not achieved by the first choices). As all the deletion costs turn out to be significant, we also give a
way to amortize the cost of a reconstruction over many deletions, while maintaining a desired tree
quality. The final method we present replaces the deleted element with another that occupies its
place in the node, in order to avoid any rebuilding. Still, we must periodically rebuild the trees to
avoid degrading query performance.

6.1 Reinserting Subtrees

A widespread idea in the Euclidean range search community is that reinserting the elements of a
disk page may be beneficial because, with more elements in the tree, the space can be clustered
better. We follow this principle now to obtain a method with costly deletions but good search
performance.

When node x is deleted, we disconnect the subtree rooted at x from the main tree. This
operation does not affect the correctness of the remaining tree, but we have now to reinsert the
subtrees rooted at the nodes of N(x). To do this efficiently we try to reinsert complete subtrees
whenever possible.

In order to reinsert a subtree rooted at y, we follow the same steps as for inserting a fresh
object y, so as to find the insertion point a. The difference is that we have to assume that y is a
“fat” object with radius R(y). That is, we can choose to put the whole subtree rooted at y as a
new neighbor of a only if d(y, a) + 2R(y) is smaller than d(y, b) for any b ∈ N(a). Similarly, we
can choose to go down by neighbor c ∈ N(a) only if d(y, c) + 2R(y) is smaller than d(y, b) for any
b ∈ N(a). When none of these conditions hold, we are forced to split the subtree rooted at y into
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its elements: one is the single element y, and the others are the subtrees rooted at N(y). Once we
split the subtree, we continue the insertion process with each constituent separately.

Every time we insert a node or a subtree, we pick a fresh timestamp for it. The elements inside
the subtree should get fresh timestamps while keeping the relative ordering among the subtree
elements. The easiest way to do this is to assume that timestamps are stored relative to those of
their parent. In this way, nothing has to be done. We need, however, to store at each node the
maximum differential time stored in the subtree, so as to update CurrentT ime appropriately when
a whole subtree is reinserted. This is easily done at insertion time and omitted in the pseudocode
for simplicity.

During reinsertion, we also modify the covering radii of the tree nodes a traversed. When
inserting a whole subtree we have to include d(y, a) + R(y), which may be larger than necessary.
This involves at search time a price for having reinserted a whole subtree in one shot.

Algorithm 17 shows the algorithm to reinsert a tree with root y into a dsa–tree rooted at a, as
well as to delete node x from the tree via subtree reinsertion.

ReinsertT(Node a, Node y)

1. If |N(a)| < MaxArity Then M ← {a} ∪N(a) Else M ← N(a)
2. c1 ← argminb∈Md(b, y)
3. c2 ← argminb∈M−{c1}d(b, y)

4. If d(c1, y) + 2 · R(y) ≤ d(c2, y) Then /* keep subtree together */

5. R(a)← max(R(a), d(a, y) + R(y))
6. If c1 = a Then /* insert it here */

7. N(a)← N(a) ∪ {y}
8. time(y)← CurrentT ime /* subtree shifts automatically */

9. Else ReinsertT(c1, y) /* go down */

10. Else /* split subtree */

11. For z ∈ N(y) Do ReinsertT(a, z)
12. N(y)← ∅, R(y)← 0
13. ReinsertT(a, y)

DeleteT(Node a, Node x)

1. b← parent(x)
2. N(b)← N(b)− {x}
3. For y ∈ N(x) Do ReinsertT(a,y)

Algorithm 17: Algorithm to delete x from a dsa–tree with root a, by reinserting subtrees.

Note that it may seem that, when searching for the place to reinsert the subtrees of a removed
node x, one could save some time by starting the search at the parent of x. However, the tree has
changed since the time the subtree of x was created, and new choices may exist now. So it might
be that the subtree chooses a different path this time. Yet, we can make use of timestamps to
take some advantage of this fact. Say that x will be deleted, and let A(x) be the set of ancestors
of x. When a node y was inserted into the subtree rooted at x, it was compared against all the
elements in N(A(x)) whose timestamp was lower than that of y. Using this information we can
avoid reevaluating distances to these nodes when revisiting them at the time of reinserting y. That
is, when looking for the neighbor closest to y, we know that the one in A(x) is closer to y than any
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older neighbor, so we have to consider only newer neighbors. Note that this is valid as long as we
reenter the same path where c was previously inserted.

Figure 27 shows the deletion cost by reinsertion of subtrees, when we delete up to 10% of
randomly chosen database elements, using different arities. The figures display a high cost and
large variance, due to the fact that the deletion cost depends strongly on the subtree size of the
deleted element. It is also interesting to notice that deletion costs are not monotonic with the arity.
The reason is that, the higher the arity, the smaller is the subtree rooted by a random node chosen
for deletion (in particular the probability of the node being a leaf increases), and thus the smaller
is the number of nodes to reinsert. On the other hand, as the arity increases, the cost to reinsert
each of those fewer subtree nodes increases. In all cases the optimum turned out to be arity 8.

Let us now consider how the search costs are affected by deletions. We search on an index built
on half the database elements. This half is built by inserting more elements and then removing
enough elements to leave 50% of the set in the index. So we compare the search on sets of the
same size where a percentage of the elements has been deleted in order to leave the set in that size
(recall the end of Section 2). Figure 28 compares search costs after deletions, using arity 32 for the
dictionary and 4 for the other spaces. This gives a reasonable tradeoff between insertion, search,
and deletion cost.

As it can be seen, the reinsertion of whole subtrees may significantly degrade the search perfor-
mance. This could be argued to be a consequence of the overestimation of covering radii: If we have
to reinsert a subtree rooted at y, we follow the path from the root to a node where we reinsert the
whole subtree or we have to split it, and then reinsert y and every subtree rooted at N(y). In every
node a traversed in this path we have to update, inevitably, R(a) to a value possibly greater than
necessary, d(a, y) + R(y). In the next section we look for a technique that gives tighter covering
radii.

6.2 Reinserting Elements

In an attempt to reduce covering radii, we explore in this section the idea of reinserting all the
subtree rooted at y element-wise. This will increase deletion cost but could improve search costs.
The new deletion algorithm is shown in Algorithm 18.

Figure 29 shows the deletion cost by reinsertion of elements, when we delete up to 10% of
random database elements, using different arities. Figure 30 compares search costs after deletions.

As it can be seen, deletion costs have increased slightly as expected, but we have not solved the
degradation problem. A possible reason is that, even when reinserting element-wise, there is still
an overestimation of covering radii due to the fact that no covering radius is reduced after deletion
of x. That is, if x was farthest to its ancestor b among all the elements rooted at b, then R(b)
should be reduced when x is removed. This is not done because it is too expensive.

We have repeated the experiments by artificially recomputing the tight values of all covering
radii after the deletions, and the results vary very little. This indicates that the problem is not
the covering radii. There must be a more complex explanation for the degradation of a dsa–tree
after successive deletions. Note that it is necessary to sort out this problem in order to have a data
structure that can handle datasets for long periods of time upon insertions, deletions and searches.

We conjecture that the reason is of a geometric nature. In a dsa–tree, each subtree handles
the points closer to it than to other subtrees. This is a kind of Voronoi partitioning of the space,
where each subtree root acts as the center of the area. When one removes one such subtree, its
elements might be inserted elsewhere, since the partitioning at higher levels of the tree may have
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ReinsertE(Node a, Node y)

1. If |N(a)| < MaxArity Then M ← {a} ∪N(a) Else M ← N(a)
2. N ← N(y) /* keep neighbors of y */

3. N(y)← ∅, R(y)← 0
4. c1 ← argminb∈Md(b, y)
5. R(a)← max{R(a), d(a, y)}
6. If c1 = a Then /* reinsert here */

7. N(a)← N(a) ∪ {y}
8. time(y)← CurrentT ime
9. Else ReinsertE(c1, y) /* go down */

10. For z ∈ N Do ReinsertE(a, z)

DeleteE(Node a, Node x)

1. b← parent(x)
2. N(b)← N(b)− {x}
3. For y ∈ N(x) Do ReinsertE(a,y)

Algorithm 18: Algorithm to delete x from a dsa–tree with root a, by reinserting elements.

changed. In this case, the emptied area is covered by other neighbors of x, which however have no
elements in there. This reduces the accurateness of the search because those neighbors that cover
those empty areas receive many useless searches for those areas. Alternatively, imagine that the
elements in the subtree of x do fall again in the same subtree. They will be appended at the end of
the neighbor list, losing their original place and producing a rightward asymmetry (i.e., towards
younger neighbors). This means that any search will give priority to the first neighbors (which still
are covering the emptied areas) and then, additionally, will enter the newer neighbors that actually
contain the elements of that area. In a sense, x was acting as a stopper that prevented searches
from unnecessarily entering its younger neighbors. After removing such a stopper, searches are
more expensive.

6.3 Rebuilding Subtrees

Irrespective of whether the above conjecture holds, it seems clear that we should find a deletion
method that does not degrade searches. The best way to ensure that is to ensure that the tree
resulting from the deletion of x is exactly as if x had never been inserted. This is what we do in
this section.

When node x ∈ N(b) is deleted, we disconnect x from the main tree. Hence all its descendants
must be reinserted. Moreover, elements in the subtree of b that are younger than x have been
compared against x to determine their insertion point. Therefore, these elements, in absence of
x, could choose another path if we reinsert them into the tree. Then, we retrieve all the elements
younger than x that descend from b (that is, those whose timestamp is greater, which includes the
descendants of x) and reinsert them into the tree, leaving the tree as if x had never been inserted.

If we reinsert the elements younger than x like fresh elements, that is, if they get new timestamps,
then we must search for the appropriate reinsertion point beginning at the tree root. On the other
hand, if we maintain their original timestamp, then we can begin reinsertion from b and save many
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comparisons. The reason is that we are reinserting them as if the current time was that of their
original insertion, when all the newer choices that appeared later did not exist, and hence those
elements should make the same choice as at that moment, arriving again at b. In order to leave the
resulting tree exactly as if x had never been inserted, we must reinsert the elements in the original
order, that is, in increasing order of their timestamps.

Therefore, when node x ∈ N(b) is deleted, we retrieve all the elements younger than x from
the subtree rooted at b, disconnect them from the tree, sort them in increasing order of timestamp,
and reinsert them one by one, searching for their reinsertion point from b. Algorithm 19 shows the
deletion algorithm.

DeleteR(Node x)

1. b← parent(x)
2. Collect in S the elements of the subtree rooted at b, younger than x
3. Sort S by increasing timestamps

4. N(b)← N(b)− {x}
5. For y ∈ S Do InsertTBA(b,y) /* without changing its timestamp */

Algorithm 19: Algorithm to delete x from a dsa–tree, by rebuilding subtrees.

We make two optimizations to rebuilding subtrees. Say that x will be deleted from the subtree
rooted at node b (that is x ∈ N(b)). The first optimization makes a more clever use of timestamps.
We observe that there are some elements younger than x that will not change their insertion point
when we reinsert them into the subtree rooted at b. These elements are those older than the first
child of x and also than the last sibling of x. For those elements we can avoid computing their
new insertion point. To see this, note that we refer to the first nodes inserted after x. Those nodes
had already the choice of entering x, but they chose otherwise (as they came before the element
that chose to be the first child of x). All those nodes have, at their reinsertion point, exactly the
same options they had at their insertion time except for x, which was not preferred anyway. Thus
they will choose the same again. The only possible exception is that, because of the bounded arity,
they had been forced to enter some neighbor although they would have preferred to become a new
neighbor of b. Now, the absence of x leaves them space to become a new neighbor of b. This is
why we can ensure the property only until the insertion time of the last sibling of x.

A second optimization is similar to the one made in Section 6.1, that is, we know that the
elements in A(y) are closest to y than any older neighbor, so we need to compare y only against
newer neighbors (as long as we repeat the same insertion path).

Figure 31 shows the deletion cost by rebuilding subtrees, when we delete up to 10% of random
database elements, using different arities. As it can be seen, rebuilding subtrees is considerably
more expensive than reinserting elements. The reason is that we reinsert not only the subtree of x
but also all the younger descendants of its parent. The fact that we are reinserting from the parent
of x and not from the tree root is not enough to counterweight the larger number of elements
reinserted. We note that this time the best results are obtained with arity 4.

The reward comes at search time. As it can be seen in Figure 32, the search quality stays
the same no matter how many deletions we make. This happens even when, under this deletion
method, the covering radii can still become overestimated, because they are never reduced due to
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a deleted element. This confirms that overestimation is not really an issue4.

6.4 Using Fake Nodes

We observe that the deletion costs obtained in the previous sections are rather high compared to
insertion costs, as we have to rebuild whole subtrees. In this section we show how to amortize this
cost over many deletions.

An alternative to delete an element x is to leave its node in the tree (without content) and mark
it as deleted. Such a node is said to be fake. Although cheap and simple at deletion time, we must
now figure out how to carry out a consistent search when some nodes do not contain any object.

Basically, if node b ∈ N(a) is fake, we do not have enough information to avoid entering the
subtree of b once we have reached a. So we cannot include b in the minimization and always have
to enter its subtree (except if we can use the timestamp information of b to prune the search).

The search performed at insertion time, on the other hand, has to follow just one path in
the tree. In this case, one is free to choose inserting the new element into any fake neighbor of
the current node, or into the closest non-fake neighbor. A good policy is, however, trying not to
increase the size of subtrees rooted at fake nodes, as they will have to be eventually rebuilt, and
also because they are entered more frequently during searches.

Hence, although deletion is simple, the performance of the search process degrades. Therefore,
we must periodically get rid of fake nodes and actually delete them. Note that the cost of rebuilding
a subtree would not be much different if it contained many fake nodes, so we could remove all the
fake nodes with a single reconstruction, therefore amortizing the high reconstruction cost over many
deletions.

Our idea is to ensure that every subtree has at most a fraction α of fake nodes. We say that
such subtrees are “dense”, otherwise they are “sparse”. When we mark a new node x ∈ N(a) as
fake, we check if we have not made its subtree sparse. In this case, x is actually deleted from the
tree. In the process of reinserting elements, we also discard every other fake node we find.

This technique has a nice performance property. If the number of elements to reinsert is m, this
is because αm of them are fake and we will only reinsert (1− α)m real nodes. Therefore, we only
perform (1−α)m reinsertions for each group of αm deletions that have occurred. The reinsertions
get rid of those αm fake nodes, so we are actually paying an amortized deletion cost which is
(1− α)/α times the cost of an insertion. Asymptotically, the tree works as if we permanently had
a fraction α of fake nodes. Hence, we can control the tradeoff between deletion and search cost.

A small complication of this scheme is that deleting x may make sparse several ancestors of x,
even if x is just a leaf that can be directly removed, and even if the ancestor is not rooted at a fake
node. As an example, consider a unary tree of height 3n where all the nodes at distance 3i from
the root, i ≥ 0, are fake. The tree is dense for α = 1/3, but removing the leaf or marking it as fake
makes every node sparse.

We solve this problem incrementally. Upon marking x as fake, we follow the path from x
upwards to the tree root, checking at each node a whether it becomes sparse or not. If we find
a node a that becomes sparse, we rebuild the whole subtree from the parent of a, and continue
checking upwards. Rebuilding a lower subtree makes it more probable that higher subtrees become
dense again, at a lower cost compared to rebuilding the highest sparse subtree directly.

4The documents exhibit a strange behavior in this case, as the searches perform slightly better after 20% of
deletions. Actually, the covering radii happen to be tighter than with other deletion percentages. We attribute this
to variance, as the searched sets are different in all cases (although they are of the same size).
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Figures 33 and 34 show deletion costs combining reinsertion of elements and rebuilding of
subtrees, respectively, with fake nodes for different values of α. We maintain arity 4 for all spaces
except the dictionary, which uses arity 32.

It can be seen that the deletion costs are largely reduced by using even moderate α values.
For example, the average insertion cost in the space of color histograms is about 37 distance
computations per element. Each deletion using reinsertion of elements costs about 250 distance
computations, that is, almost 7 times the cost of an insertion. The combined method largely
improves upon this: using α as low as 1% we have a deletion cost of 63 distance computations, and
with α=3% this reduces to 37, the same cost of an insertion. If we consider rebuilding of subtrees,
each deletion costs 800 distance computations, more than 20 times the cost of an insertion. By
using α as low as 1% we have a deletion cost of 128 distance computations, and with α=3% this
reduces to 72.

Figures 35 and 36 show the results of searching an index built on half the dataset, combining
reinsertion of elements with fake nodes, deleting 10% and 40% of elements. As it can be seen, the
search quality degrades as α grows. With 10% deleted the degradation is not so significant, but for
40% it is very noticeable. The reason is that, as α grows, the search needs to enter all the children
of fake nodes. The degradation is noticeable even for α=1%, except on the dictionary. The worst
space in this respect is that of the documents5.

Figures 37 and 38 show the same results, combining rebuilding of subtrees with fake nodes. As
expected, for a given α value, we obtain better search time, albeit we paid a higher deletion cost.

6.5 Ghost Hyperplanes

Our final technique is inspired on an idea presented in [UN03] for dynamic gna–trees [Bri95], called
ghost hyperplanes. This method replaces the deleted element by a leaf, which is easy to delete. This
way rebuilding is not necessary, but in exchange some tolerance must be exercised when entering
the replaced node at search time.

Remind that the neighbors of a node b in the sa–tree partition the space in a Voronoi-like fashion,
with hyperplanes. If element y replaces a neighbor x of b, the hyperplanes will be shifted (slightly, if
y is close to x). We can think of a “ghost” hyperplane, corresponding to the deleted element x, and
a real one, corresponding to the new element y. The data in the tree is initially organized according
to the ghost hyperplane, but incoming insertions will follow the real hyperplane. A search must be
able to find all elements, inserted before or after the deletion of x.

For this sake, we have to maintain a tolerance dg(x) at each node x. This is set to dg(x) = 0
when x is first inserted. When x is deleted and the content of its node is replaced by y, we will
set dg(x) = dg(x) + d(x, y) (the node is still called x although its object is that of y). Note that
successive replacements may shift the hyperplanes in all directions so the new tolerance must be
added to previous ones.

At search time, we have to consider that each node x can actually be offset by dg(x) when
determining whether or not we must enter a subtree. Therefore, we wish to keep dg() values as
small as possible, that is, we want to find replacements that are as close as possible to the deleted
object. Algorithm 20 shows the pseudocode of the modified search algorithm.

5We note that the behavior in this case is not monotonic on α. These fluctuations are possible because the subtrees
are not rebuilt over increasing subsets, and because the final searches are done over different subsets, even if they all
have the same size.
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RangeSearchTBA-GH(Node a, Query q, Radius r, Timestamp t)

1. If time(a) < t ∧ d(a, q)− dg(a) ≤ R(a) + r Then

2. If d(a, q) ≤ r Then Report a
3. dmin ←∞
4. For bi ∈ N(a) Do /* in ascending timestamp order */

5. If d(bi, q)− dg(bi) ≤ dmin + 2r Then

6. t′ ← min{t} ∪ {time(bj), j > i ∧ d(bi, q)− dg(bi) > d(bj , q) + dg(bj) + 2r}
7. RangeSearchTBA-GH(bi,q,r,t

′)

8. dmin ← min{dmin, d(bi, q) + dg(bi)}

Algorithm 20: Modified search algorithm for q with radius r in a dsa–tree rooted at a, so that
ghost hyperplanes are considered.

When node x is deleted, we look for a substitute in its subtree to ensure that we reduce the
problem size. In [UN03] they choose a leaf of the subtree by descending always to the child that
is closest to x. Although this does not guarantee that y is the leaf closest to x, performing a true
nearest-neighbor query in the subtree is argued to be too expensive. We consider this alternative
of choosing the replacement among the leaves with the same policy. The sa–tree, however, has an
interesting advantage over the gna–tree in the sense that the neighbors (i.e., children) of a node are
chosen to be close to it, while in the gna–tree they are random or chosen to be far apart from each
other [Bri95]. In a sa–tree, choosing the replacement among the neighbors of the deleted element
could give a good candidate for replacement at very low cost. We explain now both methods in
detail.

Choosing a leaf substitute: We descend in the subtree of x by the children closest to x all the
time. When we reach a leaf y, we disconnect y from the tree and put y into the node of x, retaining
the original timestamp of x. Then we update the dg value of the node. Algorithm 21 depicts the
algorithm.

Choosing a neighbor substitute: We select y as the closest to x among N(x) and copy object
y into the node of x as above. If the former node of y was a leaf we delete it and finish. Otherwise
we recursively continue the process at that node. So, we turn to ghost all the nodes in a path
from x to a leaf of its subtree, following closest neighbors. In exchange, the dg() values should be
smaller. Algorithm 22 shows this deletion algorithm.

Choosing the nearest-element substitute: We select y as the nearest element to x among all
the elements in the subtree of x and copy object y into the node of x as above. If the former node
of y was a leaf we delete it and finish. Otherwise we recursively continue the process at that node.
So, we turn to ghost some nodes in a path from x to a leaf of its subtree, following the nearest
elements. The dg() values should be smaller than with the other alternatives.

Algorithm 23 illustrates the algorithm. NNsearch(x,x,1) invokes the algorithm to perform a
1-NN search for query x in the subtree of x. Given the dsa–tree version we use, the algorithm
corresponds to NNsearchTBA, described at the end of Section 5.7 as a modification of the algorithm
in Algorithm 11.
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DeleteGH1(Node x)

1. b← parent(x)
2. If N(x) 6= ∅ Then

3. y ← FindSubstituteLeaf (x)
4. dg(x)← dg(x) + d(x, y)
5. Copy object of y into node x
6. Else N(b)← N(b)− {x}

FindSubstituteLeaf(Node x): Node

1. y ← x
2. While N(y) 6= ∅ Do

3. x← y
4. y ← argminc∈N(b)d(c, x)

5. N(x)← N(x)− {y}
6. Return y

Algorithm 21: Algorithm to delete x from a dsa–tree, using ghost hyperplanes, and finding a
substitute for x among the leaves of its subtree.

DeleteGH2(Node x)

1. b← parent(x)
2. If N(x) 6= ∅ Then

3. y ← argminc∈N(x)d(c, x)

4. dg(x)← dg(x) + d(x, y)
5. Copy object of y into node x
6. DeleteGH2 (y)
7. Else N(b)← N(b)− {x}

Algorithm 22: Algorithm to delete x from a dsa–tree, using ghost hyperplanes, and choosing its
replacement among its neighbors.

Figure 39 shows the deletion cost by ghost hyperplanes replacing by a leaf, when we delete up to
10% of random database elements, using different arities. Figure 40 shows the same, replacing by
a neighbor. Figure 41 depicts also the same but substituting by the nearest element in its subtree.
In all cases the deletion costs are very low, comparable with using fake nodes. Similarly, we expect
successive deletions to degrade the quality of the trees.

Figures 42, 43, and 44 compare search costs after deletions, using arity 32 for the dictionary
and 4 for the other spaces, for all the replacement options. As it can be seen, the search quality
degrades almost as fast as with fake nodes. That is, even when we now have an element in the place
of the deleted node which permits us not entering into its subtree at every search, the tolerance

DeleteGH3(Node x)

1. b← parent(x)
2. If N(x) 6= ∅ Then

3. y ← NNsearch(x,x,1)
4. dg(x)← dg(x) + d(x, y)
5. Copy object of y into node x
6. DeleteGH3 (y)
7. Else N(b)← N(b)− {x}

Algorithm 23: Algorithm to delete x from a dsa–tree, using ghost hyperplanes, and choosing its
replacement as its nearest element in its subtree.
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introduced by dg(x) is also a significant factor in worsening the search quality.
Thus, for a permanent regime that includes deletions, we must periodically get rid of ghost

hyperplanes and reconstruct the tree to delete them. Just as with fake nodes, when we rebuild the
subtree we get rid of all the ghost hyperplanes that are inside it. Therefore, we can apply exactly
the same mechanism used in Section 6.4 to control the amount of fake nodes. We set a maximum
allowable proportion α of ghost hyperplanes, and rebuild the tree when this limit is exceeded.

Figures 45, 46, and 47 show deletion costs with all the replacement options. Figures 48 to
53 show the corresponding search costs, for 10% and 40% deleted elements. It can be seen that,
using some intermediate α values, we can obtain a reasonable tradeoff between deletion and search
time. We can also see that the alternative of replacing the deleted node by a neighbor performs
slightly worse than the others. This is probably caused by the higher number of ghost hyperplanes
introduced.

6.6 Choosing the Best Deletion Method

Figures 6 and 7 help illustrate the tradeoff (by varying α). In each case we show search versus
deletion costs, when deleting 10% or 40% of the database. For brevity, we have included only one
representative search radius per space. The point labeled “Insertion vs. Search” shows the insertion
cost combined with the search cost when no deletions have occurred.

The best deletion method is different for each space, but most of them perform quite similarly.
Among them, GH1 and GH3 are the ones that perform consistently well.

The beauty of the methods using α is that they permit controlling the expected deletion cost
as a proportion of the insertion cost. For example, we could state that our deletion cost should be
similar to the insertion cost. In this case, using the points “Insertion vs. Search” one can see that
the search costs would be just 3%–13% higher after 10% of deletions (compared to no deletions at
all), and 8%–23% after 40% of deletions.

7 Comparison with Previous Work

As explained in Section 3, only a few data structures provide full support for insertions, and even
fewer support deletions. In the previous sections we have studied several alternatives to give the
dsa–tree these insertion and deletion capabilities.

In order to evaluate how our dsa–tree compares to previous work in terms of distance evaluations
for construction and searching, we have chosen a set of good representative data structures. Those
include data structures that are actually dynamic, as well as those that can presumably be made
dynamic with reasonable effort. In particular, we have included the M–tree as a dynamic data
structure (yet not supporting deletions), because it is an important referent in the literature,
even if the M–tree is in fact designed for secondary memory. Construction is made by successive
insertions for the M–tree and dsa–tree, and therefore construction cost serves to compare insertion
performance. The other structures are actually static, and thus their construction cost displays the
best achievable insertion cost if the structures were made dynamic.

Our experiments show that the dsa–tree stands out as a practical and efficient dynamic data
structure for metric space searching, being very competitive against existing alternatives.
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Figure 6: Tradeoffs for all the deletion methods proposed, when deleting 10% and retrieving 0.1%
of database, or with radius 2 for strings.

7.1 M–tree

The M–tree [CPZ97] is probably the best-known existing dynamic data structure, and a baseline
most of the newer developments compare with. A practical advantage of the M–tree is that its code
is available online6. Another prominent alternative is the D–index, yet this has already been shown
to perform similar to the M–tree [Doh04, DGSZ03].

The M–tree also performs well in secondary memory, although in this paper we are only in-
terested in the number of distance evaluations. We have used the parameter setting suggested by
the authors [CPZ97]. We have also checked several other parameterizations to make sure that the
suggested values were indeed the best choices when considering number of distance evaluations at
search time (it is possible to reduce construction costs by increasing search costs, but we chose to
give more importance to searches). We do not compare deletion costs because the available version
of the M–tree does not support deletions.

To show how the dsa–tree compares against its original static version, we have also included the
sa–tree in the experiments. For the dsa–tree we have used arity 32 for the space of strings and 4
for the others, as this gives a good tradeoff between insertion, deletion, and search times.

6At http://www-db.deis.unibo.it/research/Mtree/
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Figure 7: Tradeoffs for all the deletion methods proposed, when deleting 40% and retrieving 0.1%
of database, or with radius 2 for strings.

Figure 8 shows the comparison of the construction costs over the four metric spaces, and Figure 9
depicts the results of the search experiments.

As it can be seen, our dsa–tree requires up to 4 times fewer distance evaluations than both
alternatives for construction. If we consider the search performance, we have that the dsa–tree
outperforms the M–tree in three of the considered metric spaces, reaching up to 3 times fewer
distance evaluations. The only space where the M–tree is superior is that of the documents, yet it
achieves only 5% fewer distance computations.

Another practical advantage of the dsa–tree over the M–tree is the number and types of param-
eters to be tuned. In the case of the dsa–tree this consists only of maximum arity allowed, whereas
the parameterization is not trivial on the M–tree.

7.2 Pivots

A large number of metric space methods is based on pivots. We compare our dsa–tree against a
generic pivoting algorithm. Pivot algorithms can improve their performance by using a (possibly
impractical) amount of memory. In this section we compare the performance of the basic pivot
algorithm when using s times the amount of memory used by the dsa–tree. We note that the pivot
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Figure 8: Comparison of construction costs against the M–tree.

algorithm we consider is not dynamic, yet there exist variants that could be made dynamic more
or less straightforwardly [CMBY99]. Our generic pivot algorithm chooses k pivots at random. We
assume that only the space to store the kn distances to the pivots is necessary. This implies a
linear amount of extra CPU time at searching, but there exist practical alternatives to reduce the
extra CPU time without significantly increasing the space [CMN01].

In a compact implementation of our data structure we could have in each node an array with
its neighbors (not pointers to the neighbors but their records would be physically placed in the
array), so we need a pointer to the array and the number of neighbors (the number of bits for the
latter is limited by the logarithm of the maximum arity allowed). Therefore, we need 32 bits for
the array pointer and 2 or 5 bits more for the number of neighbors (depending on the arity used);
1 byte is enough for most practical arities (up to 256). Also, we store the covering radius (32 bits
suffices when distances are represented by a float or an integer) and the timestamp (32 bits is more
than enough). Besides, leaves are distinguished for having zero neighbors, and they do not need to
store the covering radius nor the neighbor array. It is easy to arrange leaves and non-leaves sharing
the same neighbor array despite their different sizes, for example by putting all the leaves at the
end and putting the “number of neighbors” field in the beginning of the record; a sequential scan
can distinguish the place where leaves begin in the array. This slightly increases CPU times for
insertions and deletions, but not significantly. Overall, according to our conservative computation,
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Figure 9: Comparison of search costs against the M–tree.

leaves require 5 bytes and internal nodes 13 bytes. We do not consider the metric space objects
themselves, as they have to be stored in every kind of index.

The average percentage of leaves in our trees is above 57% in all the metric spaces used in the
experiments. Hence, the space needed to store our dsa–tree is 69 bits per element. On the other
hand, as 32 bits are needed to represent a distance, the minimal space to use k pivots is 32kn bits.
In the sequel, Pivot(s) is equivalent to using k = 2s pivots, as this is a good approximation to
using s times the amount of memory used by the dsa–tree.

Figure 10 compares the search costs of the dsa–tree and the generic pivot algorithm, considering
values of s from 1 to 32. As it can be seen, if we bound the number of pivots at the same space
needed for the dsa–tree, our data structure is always better. In order to outperform the dsa–tree for
all considered radii, the pivot algorithm needs to use much more space, namely 8 times for feature
vectors and the dictionary, 2 times for color histograms, and 4 times for documents. Besides, the
dsa–tree tolerates large radii better than pivots.

7.3 List of Clusters

List of Clusters is another good example of clustering-based data structures [CN05]. The construc-
tion process chooses an element p and finds the m closest elements in S. This is the cluster of p.
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Figure 10: Comparison of search costs against a generic pivot algorithm, giving the pivots s times
the space needed for the dsa–tree.

The process continues recursively with the remaining elements until a list of n/(m + 1) clusters
is obtained. The covering radius cr() of each cluster is stored. At search time the clusters are
inspected one by one. If d(q, pi)− r > cr(pi) we do not enter the cluster of pi, otherwise we verify
it exhaustively. If d(q, pi)+ r < cr(pi) we do not need to consider subsequent clusters. The authors
report unbeaten performance on “difficult” spaces, at the cost of O(n2/m) construction time. The
space required is linear in n.

Although List of Clusters is not a dynamic data structure, some hints to make it dynamic (with
rather high insertion/deletion costs, O(n/m)) are given in [CN05]. This is a structure that can
obtain very good search times at the price of a very high construction (and update) cost.

To make a fair comparison against the dsa–tree we consider the construction time required. We
test different values of m (LC(m)), so as to obtain either similar construction time or similar search
time compared with the dsa–tree.

Figure 11 compares the search costs of the dsa–tree and List of Clusters. In the dictionary, with
a cluster size of 836 we obtain the same construction cost of dsa–tree, but our data structure beats
Lists of Clusters on search radii 3 and 4. In order to beat the dsa–tree in all the radii considered, List
of Clusters needs 4 times our construction cost, that is, a cluster size of 200. In the space of feature
vectors, for similar construction time (achieved with cluster size 1279) our dsa–tree significantly
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outperforms List of Clusters; Lists of clusters needs 25 times the construction cost of the dsa–tree
to outperform it (using cluster size 50). In the space of color histograms, List of Clusters (using
cluster size 3073) obtains the same construction cost of the dsa–tree, but its search performance is
significantly worse than ours. Only if we use cluster size 100, requiring 30 times the construction
cost of the dsa–tree, List of Clusters achieves scarcely better search performance in all radii. For
the space of documents, with cluster size 51 List of Clusters obtains similar construction cost as
the dsa-tree, but the latter obtains better search costs. In this case we could not find a cluster size
that allows List of Clusters outperform the dsa-tree, even if we disregard construction costs.
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Figure 11: Comparison of search costs against List of Clusters considering different cluster sizes.

Thus, dsa–trees provide a better tradeoff between efficiency and construction cost than List of
Clusters. It is necessary to pay much more construction time to beat dsa–trees, although in some
cases this is not enough.

7.4 C–Tree

Another dynamic and balanced data structure is the C–tree [Ver95]. The C–tree is a clustering-
based data structure inheriting from the Monotonous Bisector tree [NVZ92]. The C–tree supports
insertion and deletion of elements, but the code is not available.

Therefore, in order to give an idea of the comparison between our dsa–tree and the C–tree, we
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select a simplified version of it, that is, we compare the dsa–tree against the Bisector tree (bs–tree).
However, we strengthen the bs–tree with the hyperplane criterion (used by a close relative, the
gh-tree [Uhl91b]), at search time.

Figure 12 compares construction costs and Figure 13 compares search performances. Except on
the space of strings, where the dsa–tree is costlier to build and significantly (14%–37%) faster to
search, in the other spaces the construction costs are almost identical. From those, the dsa–tree is
10%–18% faster to search on feature vectors and 6%–12% on histograms. It is slower than bst–trees
to search on documents, albeit the difference is just 0.7%–1.3%.
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Figure 12: Comparison of construction costs against the bs–tree.

8 Conclusions

We have presented a dynamic version of the sa–tree data structure, which is able of handling
insertions and deletions over arbitrarily long periods of time efficiently and without affecting its
search quality. Very few data structures for searching metric spaces are fully dynamic. Furthermore,
we have shown that our dynamic version can actually improve the static one both in construction
and search performance.

The sa–tree was a promising data structure for metric space searching, with several drawbacks
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Figure 13: Comparison of search costs against the bs–tree.

that prevented it from being practical: high construction cost and poor search performance in some
spaces, and inability to accommodate insertions and deletions.

We have addressed all these weaknesses. Our new dsa–tree stands out as a practical and efficient
data structure that can be used in a wide range of applications, while retaining the good features
of the original data structure.

We are currently pursuing in the direction of making the dsa–tree work efficiently in secondary
memory. In that case both the number of distance computations and disk accesses are relevant.
A simple solution to store the dsa–tree in secondary storage is to try to store whole subtrees in
disk pages so as to minimize the number of pages read at search time. This has an interesting
relationship with our data structure because we can control the maximum arity of the tree so as
to make the neighbors fit in a disk page. It will also be interesting to compare the inherently
top-dowm construction of the dsa–tree with the bottom-up construction of the M–tree.

For deletions, we have considered unacceptable just to mark the deleted elements, because this
is not space-effective in the long term. However, in some applications, we could permit a small
fraction of deleted elements in the tree, without significantly increasing the overall storage cost.
This can be regarded as going one step further from fake nodes, and as such it could amortize
tree reconstructions over several deletions. Unfortunately the amount of deleted objects that could
be maintained depends on their actual size, and thus on the application. This is another topic of
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future work.
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A Performance Plots
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Figure 14: Construction costs per element by rebuilding the subtree.
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Figure 15: Construction costs per element using overflow buckets.
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Figure 16: Search costs using overflow buckets.
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Figure 17: Construction costs per element using first-fit and using timestamps.
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Figure 18: Search costs using first-fit and timestamping strategies.
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Figure 19: Construction costs per element inserting at the fringe.
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Figure 20: Search costs using insertion at the fringe.
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Figure 21: Construction costs per element using bounded arity.
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Figure 22: Search costs using bounded arity.
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Figure 23: Construction costs per element combining timestamping with insertion at the fringe.
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Figure 24: Construction costs per element using timestamping plus bounded arity.
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Figure 25: Search costs combining timestamping with insertion at the fringe.
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Figure 26: Search costs using timestamping plus bounded arity.
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Figure 27: Deletion cost per element using reinsertion of subtrees.
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Figure 28: Search costs using reinsertion of subtrees.
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Figure 29: Deletion cost per element using reinsertion of elements.
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Figure 30: Search costs using reinsertion of elements
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Figure 31: Deletion cost per element using rebuilding of subtrees.
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Figure 32: Search costs using rebuilding of subtrees.
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Figure 33: Deletion cost per element combining reinsertion of elements with fake nodes.
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Figure 34: Deletion cost per element combining rebuilding of subtrees with fake nodes.
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Figure 35: Search costs combining reinsertion of elements with fake nodes, for 10% of elements
deleted.
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Figure 36: Search costs combining reinsertion of elements with fake nodes, for 40% of elements
deleted. The search is done over half of the set.
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Figure 37: Search costs combining rebuilding of subtrees with fake nodes, for 10% of elements
deleted. The search is done over half of the set.
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Figure 38: Search costs combining rebuilding of subtrees with fake nodes, for 40% of elements
deleted. The search is done over half of the set.
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Figure 39: Deletion cost per element using ghost hyperplanes, replacing by a leaf.
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Figure 40: Deletion cost per element using ghost hyperplanes, replacing by a neighbor.
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Figure 41: Deletion cost per element using ghost hyperplanes, replacing by the nearest element.
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Figure 42: Search costs using ghost hyperplanes and replacing by a leaf. The search is done over
half of the set.
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Figure 43: Search costs using ghost hyperplanes and replacing by a neighbor. The search is done
over half of the set.
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Figure 44: Search costs using ghost hyperplanes and replacing by the nearest element. The search
is done over half of the set.
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Figure 45: Deletion cost per element working with ghost hyperplanes and replacing by a leaf, for
different values of α.
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Figure 46: Deletion cost per element working with ghost hyperplanes and replacing by a neighbor,
for different values of α.
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Figure 47: Deletion cost per element working with ghost hyperplanes and replacing by the nearest
element, for different values of α.
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Figure 48: Search costs combining ghost hyperplanes that replace by a leaf, with a fraction α of
ghost hyperplanes allowed, for 10% of elements deleted. The search is done over half of the set.
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Figure 49: Search costs combining ghost hyperplanes that replace by a leaf, with a fraction α of
ghost hyperplanes allowed, for 40% of elements deleted. The search is done over half of the set.
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Figure 50: Search costs combining ghost hyperplanes that replace by a neighbor, with a fraction α
of ghost hyperplanes allowed, for 10% of elements deleted. The search is done over half of the set.
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Figure 51: Search costs combining ghost hyperplanes that replace by a neighbor, with a fraction α
of ghost hyperplanes allowed, for 40% of elements deleted. The search is done over half of the set.
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Figure 52: Search costs combining ghost hyperplanes that replace by the nearest element, with a
fraction α of ghost hyperplanes allowed, for 10% of elements deleted. The search is done over half
of the set.
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Figure 53: Search costs combining ghost hyperplanes that replace by the nearest element, with a
fraction α of ghost hyperplanes allowed, for 40% of elements deleted. The search is done over half
of the set.
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