
Average-Optimal Single and Multiple Approximate

String Matching

KIMMO FREDRIKSSON

University of Joensuu

and

GONZALO NAVARRO

University of Chile

We present a new algorithm for multiple approximate string matching. It is based on reading
backwards enough ℓ-grams from text windows so as to prove that no occurrence can contain the
part of the window read, and then shifting the window.

We show analytically that our algorithm is optimal on average. Hence our first contribution
is to fill an important gap in the area, since no average-optimal algorithm existed for multiple
approximate string matching.

We consider several variants and practical improvements to our algorithm, and show experi-
mentally that they are resistant to the number of patterns and the fastest for low difference ratios,
displacing the long-standing best algorithms. Hence our second contribution is to give a practical
algorithm for this problem, by far better than any existing alternative in many cases of interest.
On real life texts, our algorithm is especially interesting for computational biology applications.

In particular, we show that our algorithm can be successfully used to search for one pattern,
where many more competing algorithms exist. Our algorithm is also average-optimal in this case,
being the second after that of Chang and Marr. However, our algorithm permits higher difference

ratios than Chang and Marr, and this is our third contribution.
In practice, our algorithm is competitive in this scenario too, being the fastest for low difference

ratios and moderate alphabet sizes. This is our fourth contribution, which also answers affirma-
tively the question of whether a practical average-optimal approximate string matching algorithm
existed.

Categories and Subject Descriptors: F.2.2 [Analysis of algorithms and problem complexity]:
Nonnumerical Algorithms and Problems—Pattern matching, Computations on discrete struc-
tures; H.3.3 [Information storage and retrieval]: Information Search and Retrieval—Search
process

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Algorithms, approximate string matching, multiple string
matching, optimality, biological sequences

Supported by the Academy of Finland, grant 202281 (first author), partially supported by Fonde-
cyt grant 1-020831 (second author).

Authors’ address: Kimmo Fredriksson, Department of Computer Science, P.O. Box 111, FI-
80101 Joensuu, Finland. Email: kfredrik@cs.joensuu.fi. Gonzalo Navarro, Department
of Computer Science, University of Chile, Blanco Encalada 2120, Santiago, Chile. Email:
gnavarro@dcc.uchile.cl.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–45.

2 · K. Fredriksson and G. Navarro

1. INTRODUCTION

Approximate string matching is one of the main problems in classical string algo-
rithms, with applications to text searching, computational biology, pattern recogni-
tion, etc. Given a text T1...n, a pattern P1...m, and a maximal number of differences
permitted, k, we want to find all the text positions where the pattern matches the
text up to k differences. The differences can be substituting, deleting or inserting a
character. We call α = k/m the difference ratio, and σ the size of the alphabet Σ.

A natural extension to the basic problem consists of multipattern searching, that
is, searching for r patterns P 1 . . . P r simultaneously in order to report all their
occurrences with at most k differences. This has also several applications such as
virus and intrusion detection [Kumar and Spafford 1994], spelling [Kukich 1992],
speech recognition [Dixon and Martin 1979], optical character recognition [Elliman
and Lancaster 1990], handwriting recognition [Lopresti and Tomkins 1994], text
retrieval under synonym or thesaurus expansion [Baeza-Yates and Ribeiro-Neto
1999], computational biology [Sankoff and Kruskal 1983; Waterman 1995], multidi-
mensional approximate matching [Baeza-Yates and Navarro 2000], batch process-
ing of single-pattern approximate searching, etc. Moreover, some single-pattern
approximate search algorithms resort to multipattern searching of pattern pieces
[Navarro and Baeza-Yates 2001]. Depending on the application, r may vary from a
few to thousands of patterns. The naive approach is to perform r separate searches,
so the goal is to do better.

In this paper we use the terms “approximate matching” and “approximate search-
ing” indistinctly, meaning the search for approximate occurrences of short strings
(the patterns) inside a longer string (the text). This is one particular case of the
wider concept of sequence alignment, pervasive in computational biology. Actually,
the area of sequence alignment is divided into global alignment (where two strings
are wholly compared), semi-global alignment (where one string is compared against
any substring of the other, our focus in this paper), and local alignment (where all
substrings of both strings are compared). Multiple alignment refers to comparing
a set of strings so as to find common parts to all of them. Note that this is quite
different from multiple string matching, where many (pattern) strings are compared
against one (the text).

For average case analyses of text search algorithms it is customary to assume
random text and patterns drawn over a uniformly distributed alphabet. Average-
case complexity thus refers to averaging the cost of an algorithm over all possible
texts of length n and patterns of length m, giving equal weight to each combination.
The average complexity of a problem refers to the best possible average case of an
algorithm solving the problem, and an average-optimal algorithm is one whose
average-case complexity matches the average complexity of the problem.

The single-pattern problem has received a lot of attention since the sixties [Navarro
2001]. After the first dynamic-programming-based O(mn) time solution to the
problem [Sellers 1980], many faster techniques have been proposed, both for the
worst and the average case. For low difference ratios (the most interesting case)
the so-called filtration algorithms are the most efficient ones. These algorithms
discard most of the text by checking for a necessary condition, and use another
algorithm to verify the text areas that cannot be discarded. For filtration algo-

ACM Journal Name, Vol. V, No. N, Month 20YY.

Average-Optimal Single and Multiple Approximate String Matching · 3

rithms, the two important parameters are the filtration speed and the maximum
difference ratio α up to which they work. Note that, in any case, one needs a good
non-filtration algorithm to verify the text that the filter cannot discard.

The best non-filtration algorithms are in practice by Baeza-Yates & Navarro
[Baeza-Yates and Navarro 1999; Navarro and Baeza-Yates 2001], and by Myers
[Myers 1999], with average complexities of O(kmn/w) and O(kn/w), respectively,
where w is the length in bits of the computer word. In 1994, Chang & Marr [Chang
and Marr 1994] showed that the average complexity of the problem is O((k +
logσ m)n/m), and gave the first (filtration) algorithm that achieved that average-
optimal cost for α < 1/3 − O(1/

√
σ). In practice, the fastest algorithms, based

on filtration, have a complexity of O(k logσ(m)n/m) and work for α < 1/ logσ m
[Navarro and Baeza-Yates 1999]. Hence the quest for an average-optimal algorithm
whose optimality shows up in practice has been advocated [Navarro and Raffinot
2002].

The multipattern problem has received much less attention, not because of lack of
interest but because of its difficulty. There exist algorithms that search permitting
only k = 1 difference [Muth and Manber 1996], that handle too few patterns [Baeza-
Yates and Navarro 2002], that handle only low difference ratios [Baeza-Yates and
Navarro 2002], and that handle only very short patterns [Hyyrö et al. 2004]. No
effective algorithm exists to search for many patterns with intermediate difference
ratio. Moreover, as the number of patterns grows, the difference ratios that can
be handled get reduced, as the most effective algorithm [Baeza-Yates and Navarro
2002] works for α < 1/ logσ(rm). No optimal algorithms have been devised, and the
existing algorithms are not that fast. Hence multiple approximate string matching
is a rather undeveloped area.

In this paper we present several contributions to the approximate search problem,
for a single pattern and for multiple patterns:

—We present a new algorithm for multiple approximate string matching. It is
based on sliding a window over the text. At each window, we read backwards
successive ℓ-grams until we can prove that no pattern occurrence can contain
those ℓ-grams read. This is done by a preprocessing that counts the minimum
number of differences needed to match each ℓ-gram inside any pattern. Then the
window is displaced far enough to avoid containing the scanned ℓ-grams.

—We show analytically that the average complexity of our algorithm is O((k +
logσ(rm))n/m) for α < 1/2 − O(1/

√
σ). We show that this is average-optimal,

which makes our algorithm the first average-optimal multiple approximate string
matching algorithm. If applied to a single pattern, the algorithm is also optimal,
like that of Chang & Marr. However, our algorithm works for higher difference
ratios, since Chang & Marr works only for α < 1/3−O(1/

√
σ).

—We consider several practical improvements to our algorithm, such as optimal
choice of the window ℓ-grams, reduction of the cost to check windows that cannot
be discarded, reduction of preprocessing costs for many patterns, and so on. As
a result, our algorithm turns out to be very competitive in practice, apart from
theoretically optimal.

—We perform exhaustive experiments to evaluate the different aspects of our algo-
rithm and to compare it against others. We show that our algorithm is resistant

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · K. Fredriksson and G. Navarro

to the number of patterns and that it works well for low difference ratios. In
these cases, our algorithm displaces the long-standing best algorithms [Muth and
Manber 1996; Baeza-Yates and Navarro 2002] (since 1996) in most cases, largely
improving their search times. Our algorithm is competitive even to search for one
single pattern, where many more competing alternatives exist. In this case our
algorithm becomes the fastest choice for low difference ratios and not very large
alphabets. On real life texts, we show that our algorithm is especially interesting
for computational biology applications (searching dna and proteins).

—As a side contribution, we explore several variants of our algorithm, which turn
out to be more or less direct extensions to multipattern searching of Chang &
Marr [Chang and Marr 1994], let by Chang & Lawler [Chang and Lawler 1994],
laq by Sutinen & Tarhio [Sutinen and Tarhio 1996]. We also consider combining
the basic idea of laq with our main algorithm. In most cases our new algorithm
is superior, although these variants are of interest in some particular situations.

Hence we have positively settled the question of the existence of a practical
average-optimal approximate string matching algorithm [Navarro and Raffinot 2002].
It is interesting that our algorithm is theoretically optimal for low and intermediate
difference ratios, but good in practice only for low difference ratios. The reason has
to do with the space requirement of our algorithm, that is polynomial but high,
and that forces us in practice to use suboptimal parameter settings.

Preliminary partial versions of this paper appeared in [Fredriksson and Navarro
2003; 2004].

2. RELATED WORK

In this section we cover the existing algorithms for multiple approximate string
matching, as well as the techniques for simple approximate string matching that
are relevant to our work. We explain them up to the level necessary to understand
their relevance for us.

2.1 Multiple Approximate String Matching

The naive approach to multipattern approximate searching is to perform r separate
searches, one per pattern. If we use the optimal single-pattern algorithm [Chang
and Marr 1994], the average search time becomes O((k+logσ m)rn/m) for the naive
approach. On the other hand, if we use the classical O(mn) algorithm [Sellers 1980]
the time is O(rmn).

Few algorithms exist for multipattern approximate searching under the k differ-
ences model. The first one was presented by Muth and Manber [Muth and Manber
1996]. It permits searching with k = 1 differences only, but it is rather tolerant
to the number of patterns r, which can reach the hundreds without affecting much
the cost of the search. They show that, if an approximate occurrence of P in T
ends at position j and we take P ′ = Tj−m+1...j , then there are character posi-
tions s and s′ such that P and P ′ become equal if we remove their s-th and s′-th
character, respectively. Therefore they take all the m choices of removing a single
character of every pattern P i and store the rm strings in a hash table. Later, they
consider every text window of the form Tj−m+1...j , and for each of the m choices
of removing a single window character, they search for the resulting substring in

ACM Journal Name, Vol. V, No. N, Month 20YY.

Average-Optimal Single and Multiple Approximate String Matching · 5

the hash table. If the substring is found in the table, they check the appropriate
pattern in the text window. The preprocessing time is O(rm) and the average
search time is O(mn(1 + rm2/M)), where M is the size of the hash table. This
adds up O(rm + nm(1 + rm2/M)), which is O(m(r + n)) if M = Ω(m2r). The
time is basically independent of r if n is large enough. However, in order to permit
a general number k of differences, they should consider every way of removing k
characters from the windows, resulting in an O(mk(r + n)) time algorithm, which
is clearly impractical for all but very small k values.

Baeza-Yates and Navarro [Baeza-Yates and Navarro 2002] have presented several
algorithms for this problem. One of them, partitioning into exact search, uses the
fact that, if P is cut into k +1 pieces, then at least one of the pieces appears inside
every occurrence with no differences. Hence the algorithm splits every pattern
into k + 1 pieces and searches for the r(k + 1) pieces with an exact multipattern
search algorithm. The preprocessing takes O(rm) time. If they used an optimal
multipattern exact search algorithm like MultiBDM [Crochemore and Rytter 1994],
the search time would have been O(k logσ(rm)n/m) on average. For practical
reasons they used another algorithm, more suitable to searching for short pieces (of
length ⌊m/(k + 1)⌋), albeit with worse theoretical complexity. This technique can
be applied for α < 1/ logσ(rm), a limit that gets stricter as m or r increase.

They also presented other algorithms that, although can handle higher difference
ratios, are linear on r, which means that they give a speedup only up to a con-
stant number c of patterns and then just divide the search into r/c groups that are
searched for separately. Superimposition uses a standard search technique on a set
of “superimposed” patterns, which means that the i-th character of the superimpo-
sition matches the i-th character of any of the superimposed patterns. Implemented
over a newer bit-parallel algorithm [Myers 1999], superimposition would yield aver-
age time O(rn/(σ(1−α)2)) for α < 1−e

√

r/σ on patterns shorter than the number
of bits in the computer word, w (typically w = 32 or 64). Different techniques are
used to cope with longer patterns, but the times are worse. Counting extends a
single-pattern algorithm that slides a window of length m over the text checking in
linear time whether it shares at least m− k characters with the pattern (regardless
of the order). The multipattern version keeps several counters in a single computer
word, achieving an average search time of O(rn log(m)/w) for α < e−m/σ.

Hyyrö et al. [Hyyrö et al. 2004] have recently presented another bit-parallel tech-
nique to simultaneously search for a few short patterns. When m ≤ w, they need
O(⌈r/⌊w/m⌋⌉n) worst-case time instead of O(rn). On average this improves to
O(⌈r/⌊w/ max(k, log m)⌋⌉n).

2.2 Dynamic Programming and Myers’ Bit-parallel Algorithm

The classical algorithm to find the approximate occurrences of pattern P inside
text T [Sellers 1980] is to compute a matrix Ci,j for 0 ≤ i ≤ m and 0 ≤ j ≤ n,
using dynamic programming as follows:

Ci,0 = i , C0,j = 0

Ci+1,j+1 = if Pi+1 = Tj+1 then Ci,j else 1 + min(Ci,j , Ci,j+1, Ci+1,j)

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · K. Fredriksson and G. Navarro

which can be computed, for example, column-wise. We need only the previous
column in order to compute the current one. Every time the current column value
Cm,j ≤ k we report text position j as the endpoint of an occurrence. The algorithm
needs O(mn) time and O(m) space.

The same matrix can be used to compute the edit distance (number of differences
necessary to convert one string into the other) just by changing C0,j = j in the
initial conditions. The distance is then Cm,n.

One of the most successful non-filtration approximate string matching algorithms
consists of a bit-parallel version of the dynamic programming matrix [Myers 1999].
On a computer word of w bits, the algorithm obtains O(mn/w) search time. The
central idea is to represent the current column C∗,j using two streams of m bits,
one indicating positive and the other negative differences of the form Ci,j −Ci−1,j .
Since consecutive cells in C differ at most by ±1, this representation is sufficient.
Myers manages to update those vectors in constant time per column.

2.3 The Algorithm of Tarhio and Ukkonen

Tarhio and Ukkonen [Tarhio and Ukkonen 1993; Jokinen et al. 1996] presented
the first filtration algorithm (1991), using a Boyer-Moore-like technique to filter
the text. The idea is to align the pattern with a text window and scan the text
backwards. The scanning ends where more than k “bad” text characters are found.
A “bad” character is one that not only does not match the pattern position it is
aligned with, but it also does not match any pattern character at a distance of k
characters or less. More formally, assume that the window starts at text position
j + 1, and therefore Tj+i is aligned with Pi. Then Tj+i is bad when Bad(i, Tj+i),
where Bad(i, c) has been precomputed as c 6∈ {Pi−k, Pi−k+1, ..., Pi, ...Pi+k}.

The idea of the bad characters is that we know for sure that we have to pay a
difference to match them, that is, they will not match as a byproduct of inserting
or deleting other characters. When more than k characters that are differences for
sure are found, the current text window can be abandoned and shifted forward. If,
on the other hand, the beginning of the window is reached, the area Tj+1−k..j+m

must be checked with a classical algorithm.
To know how much can we shift the window, the authors show that there is no

point in shifting P to a new position j′ where none of the k+1 text characters that
are at the end of the current window (Tj+m−k, ...Tj+m) match the corresponding
character of P , that is, where Tj+m−s 6= Pm−s−(j′−j). If those differences are fixed
with substitutions we make k+1 differences, and if they can be fixed with less than
k + 1 operations, then it is because we aligned some of the involved pattern and
text characters using insertions and deletions. In this case, we would have obtained
the same effect aligning the matching characters from start.

So for each pattern position i ∈ {m− k..m} and each text character a that could
be aligned to position i (that is, for all a ∈ Σ) the shift to align a in the pattern is
precomputed, that is, Shift(i, a) = mins>0{Pi−s = a} (or m if no such s exists).
Later, the shift for the window is computed as mini∈m−k..m Shift(i, Tj+i). This
last minimum is computed together with the backward window traversal.

The (simplified) analysis [Tarhio and Ukkonen 1993; Navarro 2001] shows that the
search time is O(k2n/σ), for α < e−(2k+1)/σ. The analysis is valid for m≫ σ > k.
The algorithm is competitive in practice for low difference ratios. Interestingly, the

ACM Journal Name, Vol. V, No. N, Month 20YY.

Average-Optimal Single and Multiple Approximate String Matching · 7

version k = 0 corresponds exactly to Horspool algorithm [Horspool 1980]. Like
Horspool, it does not take proper advantage of very long patterns.

2.4 The Algorithm of Chang and Marr

Chang and Marr [Chang and Marr 1994] show that no approximate search algorithm
for a single pattern can be faster than O((k + logσ m)n/m) on the average. This is
not hard to prove, and we give more details in Section 4.

In the same paper [Chang and Marr 1994], Chang and Marr presented an al-
gorithm achieving that optimal average time complexity. In the preprocessing
phase they build a table D as follows. They choose a number ℓ in the range
1 ≤ ℓ ≤ ⌈(m−k)/2⌉, whose exact value we will consider shortly. For every string S
of length ℓ (ℓ-gram), they search for S in P and store in D[S] the smallest number of
differences needed to match S inside P (this is a number between 0 and ℓ). Hence
D requires space for σℓ entries and is computed in O(σℓℓm) time. A numerical
representation of Σℓ permits constant time access to D.

The text scanning phase consists of logically dividing the text into blocks of length
b = ⌈(m−k)/2⌉, which ensures that any approximate occurrence of P (which must
be of length at least m−k) contains at least one whole block. Each block Tib+1...ib+b

is processed as follows. They take the first ℓ-gram of the block, S1 = Tib+1...ib+ℓ,
and obtain D[S1]. Then they take the next ℓ-gram, S2 = Tib+ℓ+1...ib+2ℓ, and obtain
D[S2], and so on. If, before reaching the end of the block, they have obtained
∑

1≤t≤u D[St] > k, then they can safely skip the block because no occurrence of
P can contain the block, as merely matching those t ℓ-grams anywhere inside P
requires more than k differences. If, on the other hand, they reach the end of the
block without surpassing k total differences, the block must be checked. In order
to check for Tib+1...ib+b they run the classical dynamic programming algorithm over
Tib+b+1−m−k...ib+m+k.

In order to keep the space requirement polynomial in m, it is required that
ℓ = O(logσ m). On the other hand, in order to achieve the claimed complexity, it
is necessary that ℓ ≥ x logσ m for some constant x > 3, so the space is O(mx). The
optimal complexity holds as long as α < 1/3−O(1/

√
σ).

A somewhat related algorithm is let, by Chang & Lawler [Chang and Lawler
1994]. In this case the window is not fixed but slides over the text and they
keep count of the minimum number of differences necessary to match the current
window. To slide the window they include text at its right and discard from its
left. let, however, does not permit approximate but just exact matching of the
window substrings inside P , and therefore its tolerance to differences is lower.

2.5 The Approximate BNDM Algorithm

Navarro and Raffinot [Navarro and Raffinot 2000] presented a novel approach based
on suffix automata. A suffix automaton built over a string recognizes all the suffixes
of the string. In [Navarro and Raffinot 2000], they adapted an exact string matching
algorithm, BDM, to allow differences.

The idea of the original BDM algorithm is as follows [Crochemore and Rytter
1994]. The deterministic suffix automaton of the reverse pattern is built, so it
recognizes the reverse prefixes of the pattern. Then the pattern is aligned with a
text window, and the window is scanned backwards with the automaton (this is

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · K. Fredriksson and G. Navarro

why the pattern is reversed). The automaton is active as long as what it has read
is a substring of the pattern. Each time the automaton reaches a final state, it has
seen a pattern prefix, so we remember the last time it happened. If the automaton
arrives with active states to the beginning of the window then the pattern has
been found, otherwise what is there is not a substring of the pattern and hence
the pattern cannot be in the window. In any case the last window position that
matched a pattern prefix gives the next initial window position.

The algorithm BNDM [Navarro and Raffinot 2000] is a bit-parallel implemen-
tation of the nondeterministic suffix automaton, which is much faster in practice
and allows searching for extended patterns. This nondeterministic automaton is
then modified to match any suffix of the pattern with up to k differences, and then
essentially the same BDM algorithm is applied.

The window will be abandoned when no pattern substring matches with k differ-
ences what was read. The window is shifted to the next pattern prefix found with
k differences. The matches must start exactly at the initial window position. The
window length is m− k, not m, to ensure that if there is an occurrence starting at
the window position then a substring of the pattern occurs in any suffix of the win-
dow (so we do not abandon the window before reaching the occurrence). Reaching
the beginning of the window does not guarantee a match, however, so we have to
check the area by computing edit distance from the beginning of the window (at
most m + k text characters).

In [Navarro 2001] it is shown that the algorithm inspects on average O(n(k +
logσ(m)/m)) characters, and the filter works well for α < 1/2 − O(1/

√
σ). This

looks optimal and works for higher difference ratios than Chang & Marr. However,
characters cannot be inspected in constant time. In the original algorithm [Navarro
and Raffinot 2000], the nondeterministic automaton is simulated in O(km/w) oper-
ations per character. Later [Hyyrö and Navarro 2002] this was improved to O(m/w)
by adapting Myers’ bit-parallel simulation. However, optimality is attained only
for m = O(w).

In practice, the result is competitive for low difference ratios and for pattern
lengths close to w.

3. OUR ALGORITHM

We explain now the basic idea of our algorithm, and later consider different practical
improvements.

Given r search patterns P 1 . . . P r, the preprocessing fixes value ℓ (to be discussed
later) and builds a table D : Σℓ → N telling, for each possible ℓ-gram, the minimum
number of differences necessary to match the ℓ-gram inside any of the patterns.
Figure 1 illustrates.

The scanning phase proceeds by sliding a window of length m − k over the
text. The invariant is that any occurrence starting before the window has already
been reported. For each window position i + 1 . . . i + m− k, we read successive ℓ-
grams backwards, that is, S1 = Ti+m−k−ℓ+1...i+m−k, S2 = Ti+m−k−2ℓ+1...i+m−k−ℓ,
. . ., St = Ti+m−k−tℓ+1...i+m−k−(t−1)ℓ, and so on. Any occurrence starting at the
beginning of the window must fully contain those ℓ-grams. We accumulate the D
values for the successive ℓ-grams read, Mu =

∑

1≤t≤u D[St]. If, at some point, the

ACM Journal Name, Vol. V, No. N, Month 20YY.

Average-Optimal Single and Multiple Approximate String Matching · 9

P 1 = aacaccgaaa P 2 = gaacgaacac P 3 = ttcggcccgg

aa ac ag at ca cc cg ct ga gc gg gt ta tc tg tt

DP1 0 0 1 1 0 0 0 1 0 1 1 1 1 1 1 2

DP2 0 0 1 1 0 1 0 1 0 1 1 1 1 1 1 2

DP3 2 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

D 0 0 1 1 0 0 0 1 0 0 0 1 1 0 1 0

Fig. 1. An example of the table D, computed for the set of three dna patterns and for ℓ = 2. For

example, the 2-gram ga occurs in P 1 and P 2 with 0 errors and in P 3 with 1 error. The table D
is obtained by taking the minimum of the table entries for each of the patterns.

Current window position is T25..33:

i 24 25 26 27 28 29 30 31 32 33 34 35 36 37

T ... c c t a g g t a a t t t a c ...

M = D[T32...33] + D[T30..31] = D[at] + D[ta] = 2 > k
⇒ The window can be shifted past T [30]:

i 30 31 32 33 34 35 36 37 38 39 40 41 42 43

T ... t a a t t t a c a a t t a g ...

M = D[T38...39] + D[T36..37] + D[T34..35] + D[T32..33] = D[aa] + D[ac] + D[tt] + D[at] = 1 ≤ k
⇒ Must verify the area T31..41. The next window position is T32..40.

Fig. 2. An example of CanShift(24, D) using the D table of Figure 1. The parameters are
m = 10, k = 1, and ℓ = 2.

sum Mu exceeds k, it is not possible to have an occurrence containing the sequence
of ℓ-grams read Su . . . S1, as merely matching those ℓ-grams inside any pattern in
any order needs more than k differences.

Therefore, if at some point we obtain Mu > k, then we can safely shift the window
to start at position i+m− k−uℓ+2, which is the first position not containing the
ℓ-grams read.

On the other hand, it might be that we read all the ℓ-grams fully contained in the
window and do not surpass threshold k. In this case we must check the text area of
the window with a non-filtration algorithm, as it might contain an occurrence. We
scan the text area Ti+1...i+m+k for each of the r patterns, so as to cover any possible
occurrence starting at the beginning of the window and report any match found.
Then, we shift the window by one position and resume the scanning. Figure 2
illustrates.

The above scheme may report the same ending position of occurrence several

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · K. Fredriksson and G. Navarro

times, if there are several starting positions for it. A way to avoid this is to remem-
ber the last position scanned when verifying the text, c, so as to prevent retraversing
the same text areas but just restarting from the point we left the last verification.

We use Myers’ algorithm [Myers 1999] for the verification of single patterns,
which makes the cost O(m2/w) per pattern, being w the number of bits in the
computer word.

Figure 3 gives the code in its simplest form. We present next several improve-
ments over the basic idea and change accordingly some modules of this code.
Search is the main module, using variables i and c denoting the position pre-
ceding the first character of the window and the first position not yet verified, re-
spectively. The verification algorithm must be reinitialized when verification must
restart ahead of the last verified position, otherwise the last verification is resumed
from position c. CanShift(i, D) considers window i + 1 . . . i + m − k and scans
ℓ-grams backwards from it until determining that it can be shifted or not. It re-
turns a position pos such that the new window can start at position pos + 1. If
pos = i it means that the window must be verified. Preprocess computes ℓ and
D. The computation of ℓ takes the largest value such that it will not exceed the
window length, the D table will fit in memory, and the preprocessing cost will not
exceed the average search cost. Finally, MinDist(S, P) computes the minimum
edit distance of S inside P , using the formula of Section 2.2 to find the “pattern”
S inside the “text” P . In this case 0 ≤ i ≤ ℓ and 0 ≤ j ≤ m, and it turns out to
be more convenient for presenting our later developments to compute the matrix
row-wise rather than column-wise.

3.1 Optimal Choice of ℓ-grams

The basic algorithm uses the last consecutive ℓ-grams of the block in order to
find more than k differences. This is simple, but not necessarily the best choice.
Note that any set of non-overlapping ℓ-grams found inside the window whose total
number of differences inside P exceeds k permits us discarding the window. Hence
the question of using the best possible set is raised.

The optimization problem is as follows. Given the text window Ti+1...i+m−k we
have m − k − ℓ + 1 possible ℓ-grams, namely Ti+1...i+ℓ, Ti+2...i+ℓ+1, . . .,
Ti+m−k−ℓ+1...i+m−k. From this set we want a subset of non-overlapping ℓ-grams
S1 . . . Su such that

∑

1≤t≤u D[St] > k. Moreover, we want to process the set right
to left and detect a good enough subset as soon as possible.

This is solved by redefining Mu as the maximum sum that can be obtained using
disjoint ℓ-grams that start at positions i + u . . . i + m − k. Initially we start with
Mu = 0 for m− k− ℓ + 2 < u ≤ m− k + 1. Then we traverse the block computing,
for decreasing u values,

Mu ← max(D[Ti+u...i+u+ℓ−1] + Mu+ℓ , Mu+1), (1)

where the first term accounts for the fact that we choose to use the ℓ-gram that
starts at u and add to it the best solution to the right that does not overlap this
ℓ-gram; and the second term accounts for the fact that we do not use the ℓ-gram
that starts at u.

We compute Mu for decreasing u until either (i) Mu > k, in which case we shift
the window, or (ii) u = 0, in which case we have to verify the window. Figure 4

ACM Journal Name, Vol. V, No. N, Month 20YY.

Average-Optimal Single and Multiple Approximate String Matching · 11

Search (T1...n, P 1
1...m . . . P r

1...m, k)
1. Preprocess ()
2. i← 0, c← 0
3. While i ≤ n− (m − k) Do

4. pos← CanShift (i, D)
5. If pos = i Then

6. If i + 1 > c Then

7. Initialize verification algorithm
8. c← i + 1
9. Run verification in text area Tc...i+m+k

10. c← i + m + k + 1
11. pos← pos + 1
12. i← pos

CanShift (i, D)
1. M ← 0
2. p← m− k
3. While p ≥ ℓ Do

4. p← p− ℓ
5. M ←M + D[Ti+p+1...i+p+ℓ]

6. If M > k Then Return i + p + 1
7. Return i

Preprocess ()

1. ℓ← according to Eq. (4)
2. For S ∈ Σℓ Do

3. D[S]← ℓ
4. For i ∈ 1 . . . r Do

5. D[S]← min(D[S],MinDist(S, P i))

MinDist (S1...ℓ, P1...m)
1. For j ∈ 0 . . . m Do Cj ← 0
2. For i ∈ 1 . . . ℓ Do

3. Cold← C0, C0 ← i
4. For j ∈ 1 . . . m Do

5. If Si = Pj Then Cnew ← Cold
6. Else Cnew← 1 + min(Cold, Cj , Cj−1)
7. Cold← Cj , Cj ← Cnew
8. Return min0≤j≤m Cj

Fig. 3. Simple description of the algorithm. The main variables are global in the rest of the paper,
to simplify the presentation.

gives the code.

Note that the cost of choosing the best set of ℓ-grams is that, if we abandon the
block after considering position x, then we work O(x/ℓ) with the simple method
and O(x) with the current one. (This assumes we can read an ℓ-gram in constant
time.) However, x itself may be smaller with the optimization method.

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · K. Fredriksson and G. Navarro

CanShift (i, D)
1. For u ∈ m − k − ℓ + 2 . . . m− k + 1 Do Mu ← 0
2. u← m− k − ℓ + 1
3. While u ≥ 0 Do

4. Mu ← max(D[Ti+u...i+u+ℓ−1] + Mu+ℓ , Mu+1)
5. If M > k Then Return i + u + 1
6. u← u− 1
7. Return i

Fig. 4. Optimization technique to choose the set of overlapping ℓ-grams that maximize the sum
of differences.

P1 P2 P3 P4

P1
P2

P3
P4

P1 P2
P3

P4

Fig. 5. Pattern hierarchy for 4 patterns.

3.2 Hierarchical Verification

On the windows that have to be verified, we could simply run the verification for
every pattern, one by one. A more sophisticated choice is hierarchical verification

(already presented in previous work [Baeza-Yates and Navarro 2002]). We form a
tree whose nodes have the form [i, j] and represent the group of patterns P i . . . P j .
The root is [1, r]. The leaves have the form [i, i]. Every internal node [i, j] has two
children [i, ⌊(i + j)/2⌋] and [⌊(i + j)/2⌋+ 1, j].

The hierarchy is used as follows. For every internal node [i, j] we have a ta-
ble D computed using the minimum distances between each ℓ-gram and patterns
P i . . . P j . This is done by computing first the leaves (that is, each pattern sepa-
rately) and then computing every cell of D in the internal node as the minimum
over the corresponding cell in its two children. In order to scan the text, we use
the D table of the root node, which corresponds to the full set of patterns. Every
time a window has to be verified with respect to a node in the hierarchy (at first,
the root node), we rescan the window considering the two children of the current
node. It is possible that the window can be discarded for both children, for one,
or for none. We recursively repeat the process for every child that does not permit
discarding the window, see Figure 5. If we process a leaf node and still have to
verify the window, then we run the verification algorithm for the corresponding
single pattern.

The idea of using the hierarchy instead of plainly checking the r patterns one by
one is that it is possible that the grouping of the patterns matches a block, but

ACM Journal Name, Vol. V, No. N, Month 20YY.

Average-Optimal Single and Multiple Approximate String Matching · 13

PreprocessD (i)
1. For S ∈ Σℓ Do

2. Di,i[S]←MinDist(S, P i)

HierarchyPreprocess (i, j)
1. If i = j Then PreprocessD(i)
2. Else

3. p← ⌊(i + j)/2⌋
4. HierarchyPreprocess (i, p, S)
5. HierarchyPreprocess (p + 1, j, S)
6. For S ∈ Σℓ Do

7. Di,j [S]← min(Di,p[S],Dp+1,j [S])

Preprocess ()
1. ℓ← according to Eq. (6)
2. HierarchyPreprocess(1, r)

Fig. 6. Preprocessing to build the hierarchy. It produces global tables Di,j to be used by Hier-

archyVerify. Table D is D1,r .

that none of its halves match. In this case we save verification time. On the other
hand, the plain technique needs O(σℓ) space, while hierarchical verification needs
much more, O(rσℓ). This means that, given an amount of main memory, we can
use a larger ℓ with the plain technique, which may result in less verifications.

Another possible drawback of hierarchical verification is that, in the worst case,
it will work O(rm) to reach the leaves and still will pay O(rm2/w) for all the
verifications, just like the plain algorithm. However, if this becomes an issue, this
means that the whole scheme will work poorly because α is too high.

Figures 6 and 7 give code for hierarchical preprocessing and verification. Since
now verification proceeds pattern-wise rather than as a block for all the patterns,
we need to record in ci the last text position verified for P i. HierarchyVerify is in
charge of doing all necessary verifications and finally shift the window. It first tries
to discard the window for all the patterns in one shot. If not possible, it divides the
set of patterns into two and yields the smallest shift among the two subsets. When
faced against a single pattern that cannot shift the window, it verifies the window
for that pattern.

Note that verification would benefit if the patterns we group together are as
similar as possible, in terms of numbers of differences. The more similar the patterns
are, the larger are the average ℓ-gram distances. A simple clustering method is to
group consecutive patterns after sorting them as follows: We start with any pattern,
follow with the pattern that minimizes the edit distance to the previous pattern,
and so on. This simple clustering technique requires O(r2m2) time.

3.3 Reducing Preprocessing Time

Either if we use plain or hierarchical verification, preprocessing time is an issue. We
have to search every pattern for every ℓ-gram, resulting in O(rℓmσℓ) preprocessing
time. In the case of hierarchical verification we pay an additional O(rσℓ) time to

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · K. Fredriksson and G. Navarro

HierarchyVerify (i, j, pos)
1. npos← CanShift(pos, Di,j)
2. If pos 6= npos Then Return npos
3. If i 6= j Then

4. p← ⌊(i + j)/2⌋
5. Return min(HierarchyVerify(i, p, pos),HierarchyVerify(p + 1, j, pos))
6. If pos + 1 > ci Then

7. Initialize verification algorithm of P i

8. ci ← pos + 1
9. Run verification for P i in text area Tci...pos+m+k

10. ci ← pos + m + k + 1
11. Return npos + 1

Search (T1...n, P 1
1...m . . . P r

1...m, k)
1. Preprocess ()
2. For j ∈ 1 . . . r Do cj ← 0
3. i← 0
4. While i ≤ n− (m − k) Do

5. i← HierarchyVerify(1, r, i)

Fig. 7. The search algorithm using hierarchical verification.

create the D tables of the internal nodes, but this is negligible compared to the
cost to process the individual patterns.

We present now a method to reduce the preprocessing time to O(rmσℓ), which
has been used before in the context of indexed approximate string matching [Navarro
et al. 2000]. Instead of running the ℓ-grams one by one over a pattern P , we form
a trie data structure of all the ℓ-grams. For every trie node whose path from the
root spells out the string S, we compute the last row of the C matrix corresponding
to searching for S inside P . For this sake we use the previous matrix row, which
was computed for the parent node. Hence, if we traverse the trie using a classical
depth first search recursion and compute a new matrix row at each invocation, then
the execution stack contains the matrix computed up to now, so we use the row
computed at the invoking process to compute the row of the invoked process. Since
we work O(m) at every trie node and there are O(σℓ) nodes, the overall process
takes O(mσℓ) time. It needs just space for the stack, O(mℓ). By repeating this
over each pattern we obtain O(rmσℓ) time.

Note finally that the trie of ℓ-grams does not need to be explicitly built, as we
know that we have every possible ℓ-gram and hence can use an implicit method to
traverse all them without actually storing them. Only the minima over the final
rows are stored into the corresponding D entries. Figure 8 shows the code.

Actually, we use Myers’ algorithm [Myers 1999] rather than dynamic program-
ming to compute the matrix rows, which makes the preprocessing time O(rmσℓ/w).
For this sake we need to modify Myers’ algorithm so that it takes the ℓ-gram as
the text and P i as the pattern. This means that the matrix is transposed, so the
current “column” starts with zeros and at the i-th step its first cell has the value i.
The necessary modifications are simple and are described, for example, in [Hyyrö
and Navarro 2002].

ACM Journal Name, Vol. V, No. N, Month 20YY.

Average-Optimal Single and Multiple Approximate String Matching · 15

RecPreprocessD (P, S, Cold, D)
1. If |S| = ℓ Then D[S]← min0≤j≤m Coldj

2. Else

3. For s ∈ Σ Do

4. Cnew0 ← |S|
5. For j ∈ 1 . . . m Do

6. If s = Pj Then Cnewj ← Coldj−1

7. Else Cnewj ← 1 + min(Coldj−1, Coldj , Cnewj−1)
8. RecProcessD (P, Ss,Cnew, D)

PreprocessD (i)
1. For j ∈ 0 . . . m Do Cj ← 0
2. RecPreprocessD (P i, ε, C, Di,i)

Fig. 8. Faster preprocessing for a single table. ε denotes the empty string.

The only complication is how to obtain the value min0≤j≤m Cℓ,j from Myers’
compressed representation of C as a bit vector of increments and decrements. A
solution is to use bit magic, so as to store preprocessed answers that give the total
increment and minimum value for every bit mask of a given length. Since C is
represented using two bit vectors of m bits (one for increments and the other for
decrements), we need O(22x) space in order to process the bit vector in O(m/x)
time. A reasonable choice not affecting the time complexity is x = w/4 for 32-bit
machines or x = w/8 for 64-bit machines (for a table of 216 entries). This was done,
for example, in [Fredriksson 2003].

3.4 Packing Counters

Our final optimization resorts to bit-parallelism, that is, to storing several values
inside the same computer word (this has been also used, for example, in the counting
algorithm [Baeza-Yates and Navarro 2002]). For this sake we will denote the bitwise
and operation as “&”, the or as “|”, and the bit complementation as “∼”. Shifting
i positions to the left (right) is represented as “<< i” (“>> i”), where the bits
that fall are discarded and the new bits that enter are zero. We can also perform
arithmetic operations over the computer words. We use exponentiation to denote
bit repetition, such as 031 = 0001, and write the most significant bit at the leftmost
position.

In our process of adding up differences, we start with zero differences and grow
at most up to k + ℓ differences before abandoning the window. This means that
it suffices to use B = ⌈log2(k + ℓ + 1)⌉ bits to store a counter. Instead of taking
minima over several patterns, we could separately store their counters in a single
computer word C of w bits (w = 32 or 64 in current architectures). This means
that we could store A = ⌊w/B⌋ = O(w/ log k) counters in a single machine word
C.

Consequently, we should keep several difference counts in the same machine word
of a D cell. We can still add up our counter and the corresponding D cell and all
the counters will be added simultaneously, so the cost is exactly the same as for
one single counter or pattern.

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · K. Fredriksson and G. Navarro

Every text window must be traversed until all the counters exceed k, so we need
a mechanism to check for this condition over all the counters in a single operation.
A solution is to initialize the counters not at zero but at 2B−1−k−1, which ensures
that the highest bit in each counter will be activated as soon as the counter reaches
the value k+1. However, this means that the values stored inside the counters may
now reach 2B−1 + ℓ− 1. This will not cause overflow as long as 2B−1 + ℓ− 1 < 2B,
that is, 2ℓ ≤ 2B. So in fact B should be chosen such that 2B > max(k + ℓ, 2ℓ− 1).
Moreover, we have to ensure that 2B−1−k−1 ≥ 0 to properly initialize the counters.
Overall, this means B = ⌈log2 max(k + ℓ + 1, 2ℓ, 2k + 1)⌉.

With this arrangement, in order to check whether all the counters have exceeded
k, we simply check whether all the highest bits of all the counters are set. This is
achieved using the bitwise and operation: Let H = (10B−1)A be the bit mask where
all the highest bits of the counters are set. Then, all the counters have exceeded k
if and only if H & C = H . In this case we can abandon the window.

Note that it is still possible that our counters overflow, because we can have that
some of them have exceeded k + ℓ while others have not. We avoid using more bits
for the counters and at the same time ensure that, once a counter has its highest
bit set, it will stay with this bit set. Before adding C ← C + D[S], we remove all
the highest bits from C, that is, we assign O← H & C, and replace the simple sum
by the assignment C ← ((C & ∼ H) + D[S]) | O. Since we have selected B such
that ℓ ≤ 2B−1, adding D[S] to a counter with its highest bit clear cannot cause an
overflow. Note also that highest bits that are already set are always preserved.

This technique permits us searching for A = ⌊w/B⌋ patterns at the same time. If
we have more patterns we resort to grouping. In a plain verification scenario, we can
group r/A patterns in a single counter and search for the A groups simultaneously,
with the advantage of having to verify only r/A patterns instead of all the r patterns
whenever a window requires verification. In a hierarchical verification scenario, the
result is that our hierarchy tree has arity A instead of two, and has no root. That
is, there are A tree roots that are searched for together, and each root packs r/A
patterns. If one such node has to be verified, then we consider its A children nodes
(that pack r/A2 patterns each), all together, and so on. This reduces not only
verification costs but also the preprocessing space, since we need less tables.

We have also to consider how this is combined with the optimization algorithm
of Section 3.1, since the best choice to maximize one counter may not be the best
choice to maximize another. The solution is to pack also the different values of
Mu in a single computer word. The operation of Eq. (1) can be perfectly done in
parallel for several counters, as long as we replace the sum by the above technique
to avoid overflows. The only obstacle is the maximum, but this has already been
solved [Paul and Simon 1980].

If we have to compute max(X, Y), where X and Y contain several counters
properly aligned, in order to obtain the counter-wise maxima, we need an extra
highest bit per counter, which is always zero. Say that counters have now B + 1
bits, counting this new highest bit. We precompute the bit mask J = (10B)A

(where now A = ⌊w/(B + 1)⌋) and perform the operation F ← ((X | J)− Y) & J .
The result is that, in F , each highest bit is set if and only if the counter of X is
larger than that of Y . We now compute F ← F − (F >> B), so that the counters

ACM Journal Name, Vol. V, No. N, Month 20YY.

Average-Optimal Single and Multiple Approximate String Matching · 17

CanShift (i, D)
1. B ← ⌈log2 max(k + ℓ + 1, 2ℓ, 2k + 1)⌉
2. A← ⌊w/(B + 1)⌋
3. H ← (010B−1)A

4. J ← (10B)A

5. For u ∈ m − k − ℓ + 2 . . . m− k + 1 Do

6. Mu ← (2B−1 − k − 1)× (0B1)A

7. u← m− k − ℓ + 1
8. While u ≥ 0 Do

9. X ←Mu+ℓ

10. O ← X & H
11. X ← ((X & ∼ H) + D[Ti+u...i+u+ℓ−1]) | O
12. Y ←Mu+1

13. F ← ((X | J)− Y) & J
14. F ← F − (F >> B)
15. Mu ← (X & F) | (Y & ∼ F)

16. If H & Mu = H Then Return i + u + 1
17. u← u− 1
18. Return i

Fig. 9. The bit-parallel version of CanShift. It requires that D is preprocessed by packing the
values of A different patterns in the same way. Lines 1–6 can in fact be done once at preprocessing
time.

Fig. 10. On top, the basic pattern hierarchy for 27 patterns. On the bottom, pattern hierarchy
with bit-parallel counters (27 patterns).

where X is larger than Y have all their bits set in F , and the others have all the
bits in zero. Finally, we choose the maxima as max(X, Y)← (X & F) | (Y & ∼ F).

Figure 9 shows the bit-parallel version of the counter accumulation, and Figure 10
shows an example of pattern hierarchy.

4. ANALYSIS

We start by analyzing our basic algorithm and proving its average-optimality. In
particular, our basic analysis does not make any use of bit-parallelism, so as to
be comparable with classical developments. Later we consider the impact of the

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · K. Fredriksson and G. Navarro

diverse practical improvements proposed on the average performance. This section
can be safely skipped by readers interested only in the practical aspects of the
algorithm.

4.1 Basic Algorithm

We analyze an algorithm that is necessarily worse than ours for every possible text
window, but simpler to analyze. In every text window, the simplified algorithm
always reads 1 + ⌊k/(cℓ)⌋ consecutive ℓ-grams, for some constant 0 < c < 1 that
will be considered shortly. After having read them, it checks whether any of the
ℓ-grams produces less than cℓ differences in the D table. If there is at least one
such ℓ-gram, the window is verified and shifted by 1. Otherwise, we have at least
1 + ⌊k/(cℓ)⌋ > k/(cℓ) ℓ-grams with at least cℓ differences each, so the sum of the
differences exceeds k and we can shift the window to one position past the last
character read.

Note that, for this algorithm to work, we need to read 1+ ⌊k/(cℓ)⌋ ℓ-grams from
a text window. This is at most ℓ + k/c characters, a number that must not exceed
the window length. This means that c must observe the limit ℓ+k/c ≤ m−k, that
is, c ≥ k/(m− k − ℓ).

It should be clear that the real algorithm can never read more ℓ-grams from any
window than the simplified algorithm, can never verify a window that the simplified
algorithm does not verify, and can never shift a window by less positions than the
simplified algorithm. Hence an average-case analysis of this simplified algorithm is
a pessimistic average-case analysis of the real algorithm. We later show that this
pessimistic analysis is tight.

Let us divide the windows we consider in the text into good and bad windows.
A window is good if it does not trigger verifications, otherwise it is bad. We will
consider separately the amount of work done over either type of window.

In good windows we read at most ℓ + k/c characters. After this, the window is
shifted by at least m− k− (ℓ + k/c) + 1 characters. Therefore, it is not possible to
work over more than ⌊n/(m− k − (ℓ + k/c) + 1)⌋ good windows. Multiplying the
maximum number of good windows we can process by the amount of work done
inside a good window, we get an upper bound for the total work over good windows:

ℓ + k/c

m− k − (ℓ + k/c) + 1
n = O

(

ℓ + k

m
n

)

, (2)

where we have assumed k + k/c < x(m − ℓ) for some constant 0 < x < 1, that is,
c > k/(x(m− ℓ)− k). This is slightly stricter than our previous condition on c.

Let us now focus on bad windows. Each bad window requires O(rm2) verification
work, using plain dynamic programming over each pattern. We need to show that
bad windows are unlikely enough. We start by restating two useful lemmas proved
in [Chang and Marr 1994], rewritten in a way more convenient for us.

Lemma 1 [Chang and Marr 1994] The probability that two random ℓ-grams have
a common subsequence of length (1 − c)ℓ is at most aσ−dℓ/ℓ, for constants a =
(1+o(1))/(2πc(1−c)) and d = 1−c+2c logσ c+2(1−c) logσ(1−c). The probability
decreases exponentially for d > 0, which surely holds if c < 1− e/

√
σ.

Lemma 2 [Chang and Marr 1994] If S is an ℓ-gram that matches inside a given

ACM Journal Name, Vol. V, No. N, Month 20YY.

Average-Optimal Single and Multiple Approximate String Matching · 19

string P (larger than ℓ) with less than cℓ differences, then S has a common subse-
quence of length ℓ− cℓ with some ℓ-gram of P .

Given Lemmas 1 and 2, the probability that a given ℓ-gram matches with less
than cℓ differences inside some P i is at most that of having a common subsequence
of length ℓ − cℓ with some ℓ-gram of some P i. The probability of this is at most
mraσ−dℓ/ℓ. Consequently, the probability that any of the considered ℓ-grams in
the current window matches is at most (1 + k/(cℓ))mraσ−dℓ/ℓ.

Hence, with probability (1 + k/(cℓ))mraσ−dℓ/ℓ the window is bad and costs us
O(m2r). Being pessimistic, we can assume that all the n−(m−k)+1 text windows
have their chance to trigger verifications (in fact only some text windows are given
such a chance as we traverse the text). Therefore, the average total work on bad
windows is upper bounded by

(1 + k/(cℓ))mraσ−dℓ/ℓ O(rm2) n = O(r2m3n(ℓ + k/c)aσ−dℓ/ℓ2). (3)

As we see later, the complexity of good windows is optimal provided ℓ = O(logσ(rm)).
To obtain overall optimality it is sufficient that the complexity of bad windows does
not exceed that of good windows. Relating Eqs. (2) and (3) we obtain the following
condition on ℓ:

ℓ ≥ 4 logσ m + 2 logσ r + logσ a− 2 logσ ℓ

d
=

4 logσ m + 2 logσ r −O(log log(mr))

d
,

and therefore a sufficient condition on ℓ that retains the optimality of good windows
is

ℓ =
4 logσ m + 2 logσ r

1− c + 2c logσ c + 2(1− c) logσ(1− c)
. (4)

It is time to define the value for constant c. We are free to choose any constant
k/(x(m− ℓ)−k) < c < 1−e/

√
σ, for any 0 < x < 1. Since this implies k/(m−k) =

α/(1−α) < 1−e/
√

σ, the method can only work for α < (1−e/
√

σ)/(2−e/
√

σ) =
1/2−O(1/

√
σ). On the other hand, for any α below that limit we can find a suitable

constant x such that, asymptotically on m, there is space for constant c between
k/(x(m− ℓ)− k) and 1− e/

√
σ. For this to be true we need that r = O(σo(m)) so

that ℓ = o(m). (For example, r polynomial in m meets the requirement.)
If we let c approach 1− e/

√
σ, the value of ℓ goes to infinity. If we let c approach

k/(m− ℓ− k), then ℓ gets as small as possible but our search cost becomes O(n).
Any fixed constant c will let us use the method up to some α < c/(c + 1), for
example c = 3/4 works well for α < 3/7. Having properly chosen c and ℓ, our
algorithm is on average

O

(

n(k + logσ(rm))

m

)

(5)

character inspections. We remark that this is true as long as α < 1/2−O(1/
√

σ),
as otherwise the whole algorithm reduces to dynamic programming. (Let us remind
that c is just a tool for a pessimistic analysis, not a value to be tuned in the real
algorithm.)

Recall that our preprocessing cost is O(mrσℓ), thanks to the smarter prepro-
cessing of Section 3.3. Given the value of ℓ, this is O(m5r3σO(1)). The space with

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · K. Fredriksson and G. Navarro

plain verification is σℓ = m4r2σO(1) integers. We must consider the impact of
preprocessing time and space in the overall time.

The preprocessing cost must not exceed the average search time of the algorithm.
This means that it must hold mrσℓ = O((k + ℓ)n/m), that is ℓ ≤ logσ(kn/(m2r)),
or r = O(n1/3/m2). Also, it is necessary that ℓ ≤ m − k, which means r =
O(σ(m−k)/2/m2). This is looser than our previous limit r = O(σo(m)). Finally, we
must have enough memory M to hold σℓ entries, so ℓ ≤ logσM. Therefore, the
claimed complexity is obtained provided the above limits on r andM hold.

To summarize, we have shown that we are able to work, on average, O(n(k +
logσ(rm))/m) time whenever α < (1 − e/

√
σ)/(2 − e/

√
σ) = 1/2 − O(1/

√
σ),

r = O(min(n1/3/m2, σo(m))) and we haveM = O(m4r2σO(1)) memory available.
It has been shown that, for a single pattern, O(n(k + logσ m)/m) is optimal

[Chang and Marr 1994]. This comes from adding up two facts. The first is that
it is necessary to inspect at least k + 1 characters in order to skip a given text
window of length m, so we need at least Ω(kn/m) character inspections. The
second is that the Ω(n logσ(m)/m) lower bound of Yao [Yao 1979] for exact string
matching applies to approximate searching too, as exact searching is included in
the approximate search problem (that is, we have to report the exact occurrences
of P as well). When searching for r patterns, this second lower bound becomes
Ω(n logσ(rm)/m) [Navarro and Fredriksson 2004]. Hence our algorithm is average-
optimal.

Moreover, used on a single pattern we obtain the same optimal complexity of
Chang & Marr [Chang and Marr 1994], but our filter works up to α < 1/2 −
O(1/

√
σ). The filter of Chang & Marr works only up to α < 1/3 − O(1/

√
σ).

Hence we have obtained not only the first average-optimal multipattern approxi-
mate search algorithm, but also improved the only average-optimal simple approx-
imate search algorithm with respect to its area of applicability.

Note that, except that on the difference ratio, all the conditions of applicability
can be weakened by reducing r. Therefore, if some of those conditions is not met,
we can find the maximum r′ < r such that they hold, divide our pattern set into
⌈r/r′⌉ groups of at most r′ patterns each, and search for each set separately. The
resulting algorithm is not optimal anymore, but we can still apply the technique.

In particular, if the problem is that our main memory available is M < σℓ, we
can use some space tradeoff techniques. A first one is that we can use the maximum
value ℓ′ = logσM that can be handled with our available memory. The r value
that makes the search optimal with that ℓ′ value is r′ = Md/2/m2. Hence, if we
search for r/r′ separate groups of r′ patterns each, we get a total search time of

O

(

rm2

Md/2

k + logσM
m

n

)

= O

(

rm(k + logσM)

Md/2
n

)

.

Another simple technique is to map the alphabet onto a smaller alphabet set, so
that several characters are merged into one. This is particularly interesting when
the alphabet is not uniform, so we can pack several characters of low probability
into one. (It should be clear that the optimum is to make the merged probabilities
as uniform as possible, as this maximizes average distances.) The result effectively
reduces σ, so that σℓ can now fit in our memory. However, to retain optimality, ℓ
should get larger. It turns out that, in order to fit the available memory, we must

ACM Journal Name, Vol. V, No. N, Month 20YY.

Average-Optimal Single and Multiple Approximate String Matching · 21

merge the alphabet onto σ′ = (2c ln c+2(1−c) ln(1−c))/(ln(m4r2)/ lnM−(1−c))
different characters, for a total complexity of

O

((

k +
log(rm)

logM

)

n

m

)

.

Comparing, we find out that alphabet mapping is analytically more promising
than grouping, under reasonable assumptions (MlnM > rm). Later, we test in
practice how these techniques perform.

4.2 Improvements

We analyze now the diverse practical optimizations proposed over our basic scheme,
except for that of Section 3.3, that is already included in the basic analysis.

The optimal choice of ℓ-grams (Section 3.1), as explained, results in equal or
better performance for every possible text window. Hence the average complexity
cannot change because it is already optimal.

On the other hand, if we do not use the optimization, we can manage to read
whole ℓ-grams in single computer instructions, for an average number of O((1 +
k/ logσ(rm))n/m) instructions executed. This breaks the lower bound simply be-
cause the lower bound counts number of characters read and we are counting com-
puter instructions. An ℓ-gram must fit in a computer word of length log2M because
ℓ log2 σ ≤ log2M, otherwiseM is not enough to hold the σℓ entries of D.

The fact that we use Myers’ algorithm [Myers 1999] instead of dynamic program-
ming reduces the O(m2) costs in the verification and preprocessing to O(m2/w).
This does not change the complexities but it permits reducing ℓ a bit in practice.

Let us now analyze the effect of hierarchical verification (Section 3.2). This time
we start with r patterns, and if the block requires verification, we run two new
scans for r/2 patterns, and continue the process until a single pattern asks for
verification. Only then we perform the dynamic programming verification. Let
p = (1 + k/(cℓ))maσ−dℓ/ℓ. Then the probability of verifying the root node is
pr. For a non-root node, the probability that it requires verification given that the
parent requires verification is Pr(child/parent) = Pr(child ∧ parent)/P (parent) =
Pr(child)/Pr(parent) = p(r/2)/(pr) = 1/2, since if the child requires verification
then the parent requires verification. Then the number of times we scan the whole
block is on average

pr(2 + 2(1/2(2 + 2(1/2 . . . = 2pr log2 r.

Hence the total character inspections for the scans that require verifications is
O(pmr log r). Finally, each individual pattern is verified provided an ℓ-gram of the
text block matches inside it. This accounts for O(prm2) verification cost. Hence
the overall cost of bad windows under hierarchical verification is

O

(

(1 + k/(cℓ))am2r(m + log r)

ℓ
σ−dℓ n

)

,

which is clearly better than the cost with plain verification. The condition on ℓ to
obtain the same search time of Eq. (5) is now

ℓ ≥ logσ(m3r(m + log2 r))

d
=

3 logσ m + logσ r + logσ(m + log2 r)

1− c + 2c logσ c + 2(1− c) logσ(1− c)
, (6)

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · K. Fredriksson and G. Navarro

which is smaller and hence requires less preprocessing effort. This time the prepro-
cessing cost is O(m4r2(m + log r)σO(1)/w), lower than with plain verification (re-
gardless of the “/w”). The space requirement of hierarchical verification, however,
is 2rσℓ = 2m3r2(m + log2 r)σO(1), larger than with plain verification. However,
we notice that it is only slightly larger, 1 + log(r)/m times rather than r times
larger as initially supposed. The reason is that ℓ itself is smaller thanks to hier-
archical verification. Therefore, it seems clear that hierarchical verification brings
only benefits.

Finally, let us consider the use of bit-parallel counters (Section 3.4). This time
the arity of the tree is A = ⌊w/(1 + ⌈log2(k + 1)⌉)⌋ and it has no root. We have
r/A tables in the leaves of the hierarchical tree. The total space requirement is less
than r/(A − 1) tables. The verification effort is now O(pmr logA r) for scanning
and re-scanning, and O(prm2) for dynamic programming. This puts a less stringent
condition on ℓ:

ℓ ≥ logσ(m3r(m + logA r))

d
=

3 logσ m + logσ r + logσ(m + logA r)

1− c + 2c logσ c + 2(1− c) logσ(1 − c)
,

and reduces the preprocessing effort to O(m4r2(m + logA r)σO(1)/w). The space
requirement is ⌈r/(A − 1)⌉σℓ = m3r2(m + logA r)σO(1)/(A − 1). With plain veri-
fication the space requirement is still smaller, but the difference is this time even
less significant.

Actually, using bit-parallel counters the probability of having a bad window is
reduced, because the sum of distances must exceed k inside some of the A groups.
However, the difference goes unnoticed under our simplified analysis (where a win-
dow is bad if some considered ℓ-gram matches with few enough differences inside
any pattern).

5. SOME VARIANTS OF OUR ALGORITHM

We briefly present in this section several variants of our algorithm. They are not
analytically superior to our basic algorithm, but in some cases they turn out to be
interesting alternatives in practice.

5.1 Direct Extension of Chang & Marr

The algorithm of Chang & Marr [Chang and Marr 1994] (Section 2.4) can be directly
extended to handle multiple patterns. We perform exactly the same preprocessing
of our algorithm in order to build the D table and then the scanning phase is the
same as in Section 2.4: If we surpass k differences inside a block we are sure that
none of the patterns match, since there are t ℓ-grams inside the block that need
overall more than k differences in order to be found inside any pattern. Otherwise,
we check the patterns one by one over the block. All the improvements we have
proposed in Section 3 for our algorithm can be applied to this version too.

Figure 11 gives the code, including hierarchical verification. HierarchyVerify

is the same of Figure 7 except that the cj markers are not used. Rather, for block
bi + 1 . . . bi+ b we check the area Tib+b+1−m−k...ib+m+k as explained in Section 2.4.
The other difference is inside Preprocess, where the computation of ℓ must be
done according to the following analysis.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Average-Optimal Single and Multiple Approximate String Matching · 23

Search (T1...n, P 1
1...m . . . P r

1...m, k)
1. Preprocess ()
2. b← ⌈(m − k)/2⌉
3. For i ∈ 0 . . . ⌊n/b⌋ − 1 Do

4. HierarchyVerify (1, r, b · i)

Fig. 11. Direct extension of Chang & Marr algorithm.

The analysis of this algorithm is a bit simpler than that of our central algorithm,
because there are no sliding but just fixed windows. Overall, there are ⌊2n/(m−
k)⌋ = O(n/m) windows to consider. Hence we can apply the same simplification of
Section 4 and obtain a very similar result about the probability of a window being
verified.

There are two main differences, however. The first is that now there are O(n/m)
candidates to bad windows, while in the original analysis there are potentially O(n)
bad windows. Hence the overall complexity in this case is

O

(

n

m

(

(1 + k/(cℓ))m3r2aσ−dℓ/ℓ + ℓ +
k

c

))

,

where the first summand corresponds to the average plain verification cost and the
others to the average (fixed in our simplified model) block scanning cost. This
slightly reduces the minimum value ℓ must have in order to achieve optimality to

ℓ =
3 logσ m + 2 logσ r

1− c + 2c logσ c + 2(1− c) logσ(1− c)
,

so it is possible that this algorithm performs better than our central algorithm when
the latter is unable of using the right ℓ because of memory limitations.

The second difference is that windows are of length (m− k)/2 instead of m− k,
and therefore ℓ+k/c must not reach (m−k)/2. This reduces the difference ratio up
to which the method is applicable to α < 1/3−O(1/

√
σ), so we expect our central

algorithm to work well for α values where this method does not work anymore.

5.2 A Linear Time Algorithm

When the difference ratio becomes relatively high, it is possible that our central
algorithm retraverses many times the same text in the scanning phase, apart from
verifying a significant part of the text. A way to alleviate the first problem is to
slide the window over the text ℓ-gram by ℓ-gram, updating the cumulative sum of
D values over all the ℓ-grams of the window.

That is, the window contains t ℓ-grams, where t = ⌊(m − k + 1)/ℓ⌋ − 1. If we
only consider text windows for the form Tiℓ+1...iℓ+tℓ, then we are sure that every
occurrence contains a complete window. Then, if the ℓ-grams inside the window
add up more than k differences, we can move to the next window. Otherwise, before
moving we must verify the area Tiℓ+tℓ−(m+k)...iℓ+(m+k)

Since consecutive windows overlap with each other by t − 1 ℓ-grams, we are
able to update our difference accumulation from one text window to the next in
constant time. This is rather easy, although it does not permit anymore the use of
the optimization of Section 3.1.

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · K. Fredriksson and G. Navarro

Search (T1...n, P 1
1...m . . . P r

1...m, k)
1. Preprocess ()
2. t← ⌊(m − k + 1)/ℓ⌋ − 1
3. M ← 0
4. For i ∈ 0 . . . t− 2 Do M ←M + D[Tiℓ+1...iℓ+ℓ]
5. For i ∈ t− 1 . . . ⌊n/ℓ⌋ − 1 Do

6. M ←M + D[Tiℓ+1...iℓ+ℓ]
7. If M ≤ k Then Verify T(i−t)ℓ−2k+2...(i−t+1)ℓ+m+k

8. M ←M −D[T(i−t+1)ℓ+1...(i−t+1)ℓ+ℓ]

Fig. 12. Our linear time algorithm. The verification area has been optimized a bit.

The resulting algorithm takes O(n) time. Its difference ratios of applicability are
the same of our central algorithm, α < 1/2−O(1/

√
σ), since this basically depends

on the window length. Therefore, analytically the algorithm does not bring any
benefit. However, we expect it to be of some interest in practice for high difference
ratios.

Figure 12 shows this algorithm. The verification can also be done hierarchi-
cally. The result reminds algorithm let of Chang & Lawler [Chang and Lawler
1994]. However, the latter used exact matching of varying-length window sub-
strings, rather than approximate matching of length-ℓ window substrings. As all
the filters based on exact matching, the difference ratio of applicability of let is
just α < 1/ logσ m + O(1). On the other hand, if ℓ = 1, then our linear time fil-
ter becomes an elaborate implementation of the counting filter [Grossi and Luccio
1989; Baeza-Yates and Navarro 2002].

5.3 Enforcing Order Among ℓ-grams

Note that our algorithms do not induce order on the ℓ-grams. They can appear in
any order, as long as their total distance to the patterns is at most k. The filtering
efficiency can still be improved by requiring that the ℓ-grams from the pattern
must appear in approximately same order in the text. This approach was used in
[Sutinen and Tarhio 1996], in particular in algorithm laq.

The idea is that we are interested in occurrences of P that fully contain the
current window, so an ℓ-gram at window position uℓ + 1 . . . uℓ + ℓ can only match
inside Puℓ−ℓ+1...uℓ+ℓ+k−1 = P(u−1)ℓ+1...(u+1)ℓ+k−1, since larger displacements mean
that the occurrence is also contained in an adjacent pattern area. Hence, the D table
is processed in a slightly more complex way. We have t tables D, one per ℓ-gram
position in the window. Table Du gives distances to match an ℓ-gram at position
uℓ in the window, so it gives minimum distance in the area P(u−1)ℓ+1...(u+1)ℓ+k−1

instead of in the whole P .
At a given window iℓ+1 . . . iℓ+tℓ we compute Mi =

∑

0≤u<t Du[Tiℓ+uℓ+1...iℓ+uℓ+ℓ].
If M exceeds k we do not need to verify the window. In order to shift the window,
however, the current value of M is of no use, which defeats the whole purpose of the
linear filter. However, bit-parallelism is useful here. We can store t consecutive M
values in a single computer word, which we call again M . There is a single table D
where D[S] contains the concatenation of the counters Dt[S], Dt−1[S], . . ., D1[S].
When we read the i-th text ℓ-gram, S, we update M = (M << v) + D[S], being

ACM Journal Name, Vol. V, No. N, Month 20YY.

Average-Optimal Single and Multiple Approximate String Matching · 25

Preprocess ()
1. ℓ← according to Eq. (4)
2. t← ⌊(m − k + 1)/ℓ⌋ − 1
3. v ← ⌈log2(tℓ + 1)⌉
4. For S ∈ Σℓ Do

5. D[S]← 0
6. For u ∈ 1 . . . t Do

7. min← ℓ
8. For i ∈ 1 . . . r Do

9. min← min(min, MinDist(S, P i
(u−1)ℓ+1...(u+2)ℓ+k−1

))

10. D[S]← D[S] | (min << (u− 1)v)

Search (T1...n, P 1
1...m . . . P r

1...m, k)
1. Preprocess ()
2. M ← 0
3. For i ∈ 0 . . . t− 2 Do M ←M + D[Tiℓ+1...iℓ+ℓ]
4. For i ∈ 0 . . . ⌊n/ℓ⌋ − 1 Do

5. M ← (M << v) + D[Tiℓ+1...iℓ+ℓ]
6. If (M >> (t− 1)v) ≤ k Then Verify T(i−t)ℓ−2k+2...(i−t+1)ℓ+m+k

Fig. 13. Extension of laq algorithm to multiple patterns. We assume that the computer word is
exactly of length tv for simplicity, otherwise all the values must be properly aligned to the left.

v the width in bits of the counters. As we do this over t consecutive ℓ-grams, the
t-th counter in M contains Mi−t+1 properly computed.

The same idea can be applied for multiple patterns as well, by storing the mini-
mum distance over all the patterns in Du. Figure 13 gives the pseudocode. Hierar-
chical verification is of course possible here as well, although for simplicity we have
written down the plain version of Preprocess.

5.4 Ordered ℓ-grams for Backward Matching

In the basic algorithm we permit that the ℓ-grams match anywhere inside the
patterns. This has the disadvantage of being excessively permissive. However, it
has an advantage: When the ℓ-grams read accumulate more than k differences, we
know that no pattern occurrence can contain them in any position, and hence can
shift the window next to the first position of the leftmost ℓ-gram read. We show
now how the matching condition can be made stricter without losing this property.

First consider S1. In order to shift the window by m− k− ℓ +1, we must ensure
that S1 cannot be contained in any pattern occurrence, so the condition D[S1] > k
is appropriate. If we consider S2 : S1, to shift the window by m − k − 2ℓ + 1, we
must ensure that S2 : S1 cannot be contained inside any pattern occurrence. The
basic algorithm uses the sufficient condition D[S1] + D[S2] > k.

However, a stricter condition can be enforced. In an approximate occurrence
of S2 : S1 inside the pattern, where pattern and window are aligned at their ini-
tial positions, S2 cannot be closer than ℓ positions from the end of the pattern.
Therefore, for S2 we precompute a table D2, which considers its best match in the
area P1...m−ℓ rather than P1...m. In general, St is input to a table Dt, which is
preprocessed so as to contain the number of differences of the best occurrence of its

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · K. Fredriksson and G. Navarro

T:
P:

text window

Area for 1 S[]D

Area for 2 S[]D

Area for 3 S[]D

1

2

3

S3 S2 S1

Fig. 14. Pattern P aligned over a text window. The text window and ℓ-grams correspond to the
basic algorithm (Section 3) and for the algorithm of Section 5.4. The window is of length m− k.
The areas correspond to the Section 5.4. All the areas for St for the basic algorithm are the same
as for D1.

CanShift (i, D)
1. M ← 0
2. p← m− k
3. t← 1
4. While p ≥ ℓ Do

5. p← p− ℓ
6. M ←M + Dt[Ti+p+1...i+p+ℓ]
7. If M > k Then Return i + p + 1
8. t← t + 1
9. Return i

Fig. 15. The algorithm for stricter matching condition.

argument inside P1...m−(t−1)ℓ, for any of the patterns P . Hence, we will shift the
window to position i+m− k−uℓ+2 as soon as we find the first (that is, smallest)
u such that Mu =

∑u
t=1 Dt[S

t] > k.
The number of tables is U = ⌊(m− k)/ℓ⌋ and the length of the area for DU is at

most 2ℓ− 1. Fig. 14 illustrates.
Since Dt[S] ≥ D[S] for any t and S, the smallest u that permits shifting the

window is never smaller than for the basic method. This means that, compared to
the basic method, this variant never examines more ℓ-grams, verifies more windows,
nor shifts less. So this variant can never work more than the basic algorithm, and
usually works less. In practice, however, it has to be shown whether the added
complexity, preprocessing cost and memory usage of having several D tables instead
of just one, pays off. The preprocessing cost is increased to O(r(σℓ(m/w + m) +
U)) = O(rσℓm). Fig. 15 gives the code.

5.5 Shifting Sooner

We now aim at abandoning the window as soon as possible. Still the more powerful
variant developed above is too permissive in this sense. Actually, the ℓ-grams should
match the pattern more or less at the same position they have in the window. We
therefore combine the ideas of Sections 5.3 and 5.4.

The idea is that we are interested in occurrences of P that start in the range
i − ℓ + 1 . . . i + 1. Those that start before have already been reported and those
that start after will be dealt with by the next windows. If the current window
contains an approximate occurrence of P beginning in that range, then the ℓ-gram

ACM Journal Name, Vol. V, No. N, Month 20YY.

Average-Optimal Single and Multiple Approximate String Matching · 27

T:
P:

text window

Area for 1 S[]D

Area for 2 S[]D

1

2

Area for 3 S[]D 3

3S S2 S1

Fig. 16. Pattern P aligned over a text window. The areas for the algorithm of Section 5.5. The
areas overlap by ℓ + k − 1 characters. The window length is Uℓ.

at window position (t− 1)ℓ + 1 . . . tℓ can only match inside P(t−1)ℓ+1...tℓ+k.
We have U = ⌊(m − k − ℓ + 1)/ℓ⌋ tables Dt, one per ℓ-gram position in the

window. Table DU−t+1 gives distances to match the t-th window ℓ-gram, so it
gives minimum distance in the area P(t−1)ℓ+1...tℓ+k instead of in the whole P , see
Fig. 16.

At a given window, we compute Mu =
∑

0≤t<u Dt[S
t] until we get Mu > k and

then shift the window. It is clear that Dt is computed over a narrower area that
before, and therefore we detect sooner that the window can be shifted. The window
is shifted sooner, working less per window.

The problem this time is that it is not immediate how much can we shift the
window. The information we have is only enough to establish that we can shift by
ℓ. Hence, although we shift the window sooner, we shift less. The price for shifting
sooner has been too high.

A way to obtain better shifting performance resorts to bit-parallelism. Values
Dt[S] are in the range 0 . . . ℓ. Let us define l as the number bits necessary to store
one value from each table Dt. If our computer word contains at least Ul bits, then
the following scheme can be applied.

Let us define table D[S] = D1[S] : D2[S] : . . . : DU [S], where the U values
have been concatenated, giving l bits to each, so as to form a larger number (D1

is in the area of the most significant bits of D). Assume now that we accumulate
Mu =

∑u
t=1(D[St] << (t − 1)l). The leftmost field of Mu will hold the value

∑u
t=1 Dt[S

t], that is, precisely the value that tells us that we can shift the window
when it exceeds k. Similar idea was briefly proposed in [Sutinen and Tarhio 1996],
but their (single pattern) proposal was based on direct extension of Chang & Marr
algorithm [Chang and Marr 1994].

In general, the s-th field of Mu, counting from the left, contains the value
∑u

t=s Dt[S
t−s+1]. In order to shift by ℓ after having read u ℓ-grams, we need

to ensure that the window SU . . . S1 contains more than k differences. A sufficient
condition is the familiar

∑u
t=1 Dt[S

t] > k, that is, when the leftmost field exceeds k.
In order to shift by 2ℓ, we need also to ensure that the window SU−1 . . . S1S0 con-
tains more than k differences. Here S0 is the next ℓ-gram we have not yet examined.
A lower bound to the number of differences in that window is

∑u
t=2 Dt[S

t−1] > k,
where the summation is precisely the content of the second field of Mu, counting
from the left. In general, we can shift by sℓ whenever all the s leftmost fields of
Mu exceed k.

Let us consider the value for l. The values in Dt are in the range 0 . . . ℓ. In
our Mu counters we are only interested in the range 0 . . . k + 1, as knowing that

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · K. Fredriksson and G. Navarro

CanShift (i, D)
1. l← ⌈log2 max(k + ℓ + 1, 2ℓ, 2k + 1)⌉
2. U = ⌊(m − k − ℓ + 1)/ℓ⌋
3. H ← (10l−1)U

4. O ← 10Ul−1

5. C ← (2l−1 − k − 1) × (0l−11)U

6. p← Uℓ
7. While p > 0 Do

8. p← p− ℓ
9. C ← ((C & ∼ H) + D[Ti+p+1...i+p+ℓ]) | (C & H)
10. If C & O = O Then Return i + (U − 1− ⌊log2((C & H)∧H)⌋/l)ℓ
11. Return i

Fig. 17. CanShift with fast shifting. It requires that D is preprocessed as in laq. Lines 1–5 can
in be done once at preprocessing time.

the value is larger than k + 1 does not give us any further advantage. We can
therefore apply the same bounding technique that was used in Section 3.4, so that
l = O(log2(k + ℓ)) bits is sufficient.

The problem with this method is how to compute the shift. Recall from Sec-
tion 3.4 that the bit mask C contains our counters, and the bit mask H has all
the highest bits of the counters set, and zeros elsewhere. We want to shift by sℓ
whenever the s leftmost highest counter bits in C are set. Let us rather consider
Y = (C & H)∧H , where “∧” is the bitwise “xor” operation, so now we are in-
terested in how many leftmost highest counter bits in Y are not set. This means
that we want to know which is the leftmost set bit in Y . If this corresponds to
the s-th counter, then we can shift by (s− 1)ℓ. But the leftmost bit set in Y is at
position y = ⌊log2 Y ⌋, so we shift by (U−1−y/l)ℓ. The logarithm can be computed
fast by casting the number to float (which is fast in modern computers) and then
extracting the exponent from the standardized real number representation.

If there are less than Ul bits in the computer word, there are several alternatives:
space the ℓ-grams in the window by more than ℓ, prune the patterns to reduce m,
or resort to using more computer words for the counters. In our implementation we
have used a combination of the first and last alternatives: for long patterns we use
simulated 64 bit words (in our 32 bit machine), directly supported by the compiler.
If this is not enough, we use less counters, i.e. use spacing h, where h > ℓ, for
reading the ℓ-grams. This requires that the areas are ℓ + h− 1 + k characters long,
instead of 2ℓ − 1 + k, and there are only ⌊(m − k − h + 1)/h⌋ tables Dt. On the
other hand, this makes the shifts to be multiples of h.

The same idea can be applied for multiple patterns as well, by storing the min-
imum distance over all the patterns in Dt. The preprocessing cost is this time
O(r(σℓ(m/w + m))) = O(rσℓm), computing the minimum distances bit-parallelly.

This variant is able of shifting sooner than previous ones. In particular, it never
works more than the others in a window. However, even with the bit-parallel
improvement, it can shift less. The reason is that it may shift “too soon”, when
it has not yet gathered enough information to make a longer shift. For example,
consider the basic algorithm with D[S1] = 1 and D[S2] = k. It will examine S1 and

ACM Journal Name, Vol. V, No. N, Month 20YY.

Average-Optimal Single and Multiple Approximate String Matching · 29

S2 and then will shift by m−k−2ℓ+1. If the current variant finds D1[S
1] = k +1

and Dt[S
t] = k for t ≥ 2, it will shift right after reading S1, but will shift only by

ℓ.
This phenomenon is well known in exact string matching. For example, the non-

optimal Horspool algorithm [Horspool 1980] shifts as soon as the window suffix
mismatches the pattern suffix, while the optimal BDM [Crochemore et al. 1994]
shifts when the window suffix does not match anywhere inside the pattern. Hence
BDM works more inside the window, but its shifts are longer and at the end it has
better average complexity than Horspool algorithm.

6. EXPERIMENTAL RESULTS

We have implemented the algorithms in c, compiled using icc 7.1 with full op-
timizations. The experiments were run in a 2GHz Pentium 4, with 512mb ram,
running Linux 2.4.18. The computer word length is w = 32 bits. We measured user
times, averaged over five runs. This was sufficient as the variance was very low.

We ran experiments for alphabet sizes σ = 4 (dna), σ = 20 (proteins) and σ = 96
(ascii text). The test data were randomly generated 64mb files. By default, the
randomly generated patterns were 64 characters long for dna and proteins, and 16
characters long for ascii. However, we also show some experiments with varying
pattern lengths.

We show later some experiments using real texts. These are: the E.coli dna se-
quence (4,638,690 characters) from Canterbury Corpus1, real protein data (5,050,292
characters) from TIGR Database (TDB)2, and the Bible (4047392 characters), from
Canterbury Corpus. In this case the patterns were randomly extracted from the
texts. In order to better compare with the experiments with random data, we
replicated the texts up to 64mb. We have experimentally verified that there is no
statistical difference between using real-life texts of 64mb versus replicating a 5mb

one.
All the files were represented in plain ascii, hence we read ℓ-grams at O(ℓ) cost.

Note that if the texts were stored used only 2 (dna) and 5 bits (protein) per char-
acter, that would have allowed O(1) time access to the ℓ-grams. See [Fredriksson
and Navarro 2003] for experiments with this “compressed” searching.

6.1 Preprocessing and Optimality

Table I gives the preprocessing times for various alphabets, number of patterns and
ℓ values. We have considered hierarchical verification because it gave consistently
better results, so the preprocessing timings include all the hierarchy construction.
In particular, they correspond to a binary hierarchy. Using the bit-parallel coun-
ters technique produces a shorter hierarchy but it requires slightly more time. The
space usage for the D tables is at most 2rσℓ bytes for the binary hierarchy, and
slightly less with bit-parallel counters. For example, this means 128MB of memory
for dna with 256 patterns and ℓ = 9. The laq algorithm needs much more prepro-
cessing effort, although our implementation was highly optimized in this case (we

1http://corpus.canterbury.ac.nz/descriptions/
2http://www.tigr.org/tdb

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 · K. Fredriksson and G. Navarro

Table I. Preprocessing times in seconds for r ∈ {1, 16, 64, 256} and for various ℓ-gram lengths.
The pattern lengths are m = 64 for dna and proteins, and m = 16 for ascii. Left: binary
hierarchy; right: binary hierarchy with laq for k = 0.

dna 1 16 64 256 w/ laq 1 16 64 256

5 0.00 0.00 0.02 0.06 5 0.00 0.02 0.08 0.33

6 0.00 0.01 0.06 0.23 6 0.01 0.06 0.25 1.02

7 0.01 0.06 0.23 0.91 7 0.02 0.24 0.91 3.72

8 0.01 0.23 0.93 3.80 8 0.05 0.28 3.64 14.53

9 0.07 0.98 3.96 15.94 9 0.20 3.47 14.33

proteins 1 16 64 256 w/ laq 1 16 64 256

2 0.00 0.00 0.01 0.03 2 0.00 0.02 0.06 0.24

3 0.02 0.02 0.10 0.39 3 0.02 0.32 1.31 5.35

4 0.03 1.50 6.11 24.17 4 0.56 9.58

ascii 1 16 64 256 w/ laq 1 16 64 256

2 0.00 0.03 0.10 0.41 2 0.04 0.65 2.57 10.47

3 0.23 4.76 19.31 77.44 3 18.30

preprocess each pattern block separately). The values shown are for k = 0, which
gives the maximum number of blocks, and hence the slowest preprocessing times.

As it can be seen, the maximum values in practice are ℓ ≤ 8 for dna, ℓ ≤ 3 for
proteins, and ℓ ≤ 2 for ascii. The search times that follow were measured for these
maximum values unless otherwise stated. For r = 256 patterns, the associated
memory requirements using those maximum ℓ values are 32MB, 4MB and 4.5MB,
respectively. For Figures 18, 19, and 20 we show only the search times (as we
compare our own algorithms), while for the other figures we show the total times
(searching and all preprocessing).

Observe that the ℓ values required by our analysis (Section 4) in order to have
optimal complexity are, depending on r ∈ 1 . . . 256, ℓ = 12 . . . 20 for dna, ℓ =
6 . . . 10 for proteins, and ℓ = 3 . . . 5 for ascii. In the case of the simpler algorithm
of Section 5.1 the values are slightly lower: ℓ = 9 . . . 17 for dna, ℓ = 4 . . . 8 for
proteins, and ℓ = 2 . . . 5 for ascii. For example, for r = 256, the space required for
those ℓ values is 8TB (terabytes) for dna, 12TB for proteins, and 4TB for ascii.

These are well above the values we can handle in practice. The result is that,
although our algorithms are very fast as expected, they can cope with difference
ratios much smaller than those predicted by the analysis. This is the crux of the
difference between our theoretical and practical results.

6.2 Comparing Variants of Our Algorithm

In this section we compare several combinations over variants of our algorithm.
They are identified in the plots as follows:

-Sb:. The main algorithm of Section 3. “Sb” stands for “sublinear, reading
window backwards”.

-Sf:. The sublinear time filter that extends Chang & Marr, Section 5.1. The “f”
stands for forward ℓ-gram scanning inside windows.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Average-Optimal Single and Multiple Approximate String Matching · 31

No label:. The linear time filter of Section 5.2.

L:. The extension of laq algorithm, Section 5.3.

Furthermore, we add some modifiers to the above labels to denote different opti-
mizations. If the label is suffixed by -O, then the optimization method of Section 3.1
is applied as well. Suffix -L denotes the stricter matching condition of Section 5.4,
and the additional suffix -F denotes the method of Section 5.5 to obtain the shift
faster. If the label is prefixed by -B, then also bit-parallel counters (Section 3.4) were
used. Note that several possible variations are omitted here (e.g. -Sb -L -O), and
several variations are not possible in general (e.g. -B -Sb -L -F). As mentioned,
all the algorithms use hierarchical verification.

Figures 18, 19, and 20 show search times for the dna, proteins, and ascii alpha-
bets.

As it can be seen, our main algorithm is in most cases the clear winner, as
expected from the analysis. The filtering capability of Chang & Marr extension
collapses already with quite small difference ratios, due to the use of small text
blocks, and this collapse is usually very sharp. Our main algorithm uses larger
search windows, so it triggers less verifications and permits larger difference rations.
In addition, even with small difference ratios it skips more characters, and hence it
is faster for all values of k/m. The main algorithm is usually faster than the linear
time filter, because the latter cannot skip text characters. This fact stays true even
for large difference ratios.

For laq we need bit-parallelism and soon we need more than 32 bits to hold the
state of the search. For dna and proteins we resort to simulated 64 bit counters and
this slows down the algorithm. For ascii we use the native 32-bit counters. These
choices are sufficient for our parameters (m, k). If we did not have enough bits, we
could use larger and fewer blocks, and correspondingly use sampling rates greater
than ℓ (so there is some space between consecutive text ℓ-grams). This would make
the filtering capability of the algorithm poorer, but note that on the other hand
this could be used to speed up the search if k/m were small enough. We used the
full number of blocks in each case, hence the choice of simulated 64 bits for long
patterns. The algorithm is comparable with the linear time filter for low k/m (if
we can do with 32 bits), but for large k/m it triggers much less verifications, and
becomes comparable with our main algorithm, especially with large r and ascii

alphabet. However, laq needs much more preprocessing effort (not included in the
plots, but see Table I), and hence always loses. Using smaller ℓ values for laq did
not help.

Optimal choice of ℓ-grams helps sometimes, but is usually slower as it is more
complicated. It usually helps significantly on the Chang & Marr variant, to delay
the collapse of the algorithm. In a few cases it also helps our main algorithm
significantly. The bit-parallel counters, on the other hand, speed up the search for
large rm, or in other words, they allow larger r (using smaller ℓ). The use of bit-
parallel counters never damages the performance. The combination of optimization
with bit-parallel counters is not as attractive as without the counters. It is more
complicated to implement with the bit-parallel counters, but in some cases it can
push the limit for k/m a bit further.

ACM Journal Name, Vol. V, No. N, Month 20YY.

32 · K. Fredriksson and G. Navarro

 0.1

 1

 1 2 3 4 5 6 7 8 9 10 11 12

tim
e

(s
)

k

DNA, r=1

 0.1

 1

 1 2 3 4 5 6 7 8 9 10 11 12

tim
e

(s
)

k

DNA, r=1

 0.1

 1

 1 2 3 4 5 6 7 8 9 10

tim
e

(s
)

k

DNA, r=16

 0.1

 1

 1 2 3 4 5 6 7 8 9 10

tim
e

(s
)

k

DNA, r=16

 0.1

 1

 1 2 3 4 5 6 7 8

tim
e

(s
)

k

DNA, r=64

 0.1

 1

 1 2 3 4 5 6 7 8

tim
e

(s
)

k

DNA, r=64

 0.1

 1

 1 2 3 4 5 6

tim
e

(s
)

k

DNA, r=256

 0.1

 1

 1 2 3 4 5 6

tim
e

(s
)

k

DNA, r=256

-Sf
-Sb

-Sf -O

-Sb -O
-Sb -L

-Sb -L -F
-L

-B
-B -Sf

-B -Sb

-B -Sf -O
-B -Sb -O
-B -Sb -L

Fig. 18. Search times in seconds. Parameters are σ = 4, m = 64, and ℓ = 8. The figures show,
from top to bottom, r = 1, r = 16, r = 64, and r = 256. The right plots use bit-parallel counters.
The x-axis is k, and y-axis time (logarithmic scale).

ACM Journal Name, Vol. V, No. N, Month 20YY.

Average-Optimal Single and Multiple Approximate String Matching · 33

 0.1

 1

 2 4 6 8 10 12 14 16

tim
e

(s
)

k

Proteins, r=1

 0.1

 1

 2 4 6 8 10 12 14 16

tim
e

(s
)

k

Proteins, r=1

 0.1

 1

 2 4 6 8 10 12 14

tim
e

(s
)

k

Proteins, r=16

 0.1

 1

 2 4 6 8 10 12 14

tim
e

(s
)

k

Proteins, r=16

 0.1

 1

 2 4 6 8 10 12

tim
e

(s
)

k

Proteins, r=64

 0.1

 1

 2 4 6 8 10 12

tim
e

(s
)

k

Proteins, r=64

 0.1

 1

 10

 2 4 6

tim
e

(s
)

k

Proteins, r=256

 0.1

 1

 10

 2 4 6 8 10

tim
e

(s
)

k

Proteins, r=256

-Sf
-Sb

-Sf -O

-Sb -O
-Sb -L

-Sb -L -F
-L

-B
-B -Sf

-B -Sb

-B -Sf -O
-B -Sb -O
-B -Sb -L

Fig. 19. Search times in seconds. Parameters are σ = 20, m = 64, and ℓ = 3. The figures show,
from top to bottom, r = 1, r = 16, r = 64, and r = 256. The right plots use bit-parallel counters.
The x-axis is k, and y-axis time (logarithmic scale).

ACM Journal Name, Vol. V, No. N, Month 20YY.

34 · K. Fredriksson and G. Navarro

 0.1

 1

 1 2 3 4

tim
e

(s
)

k

ASCII, r=1

 0.1

 1

 1 2 3 4

tim
e

(s
)

k

ASCII, r=1

 0.1

 1

 1 2 3 4 5

tim
e

(s
)

k

ASCII, r=16

 0.1

 1

 1 2 3 4 5

tim
e

(s
)

k

ASCII, r=16

 0.1

 1

 1 2 3 4

tim
e

(s
)

k

ASCII, r=64

 0.1

 1

 1 2 3 4

tim
e

(s
)

k

ASCII, r=64

 1

 10

 1 2 3 4

tim
e

(s
)

k

ASCII, r=256

 1

 10

 1 2 3 4

tim
e

(s
)

k

ASCII, r=256

-Sf
-Sb

-Sf -O

-Sb -O
-Sb -L

-Sb -L -F
-L

-B
-B -Sf

-B -Sb

-B -Sf -O
-B -Sb -O
-B -Sb -L

Fig. 20. Search times in seconds. Parameters are σ = 96, m = 16, and ℓ = 2. The figures show,
from top to bottom, r = 1, r = 16, r = 64, and r = 256. The right plots use bit-parallel counters.
The x-axis is k, and y-axis time (logarithmic scale).

ACM Journal Name, Vol. V, No. N, Month 20YY.

Average-Optimal Single and Multiple Approximate String Matching · 35

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6

tim
e

(s
)

k

DNA

m=16
m=32
m=48
m=64

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6 7 8

tim
e

(s
)

k

DNA

m=16
m=32
m=48
m=64

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10

tim
e

(s
)

k

Proteins

m=16
m=32
m=48
m=64

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10 12 14 16

tim
e

(s
)

k

ASCII

m=8
m=16
m=32
m=48
m=64

Fig. 21. Total times (preprocesing and searching) in seconds for different m and r = 64. Top row,
left: dna and ℓ = 6, right: dna and ℓ = 8. Bottom row, left: proteins and ℓ = 3, right: ascii and
ℓ = 2.

Our basic algorithm beats the extensions proposed in Secs. 5.4 and 5.5, with
the exception of single pattern real protein, where the algorithm of Section 5.4
is better. The success of our basic algorithm is due to lower preprocessing cost
and the fact that the D tables better fit into cache, which is important factor in
modern computers. Note that this is true only if we use the same parameter ℓ for
both algorithms. If we are short of memory we can use the variant of Section 5.4
with smaller ℓ, and beat the basic algorithm. We have verified this, but omit the
detailed experiments.

From now on we will focus on the most successful algorithm, -B -Sb, that is, our
main algorithm with bit-parallel counters and without optimization of ℓ-grams.

6.3 Tuning Our Algorithm

Figure 21 shows running times for different pattern lengths. Note that we can
slightly increase the difference ratio for larger m if ℓ is “too” large. For example,
ℓ = 6 is faster than ℓ = 8 for dna if m = 16 and k = 1, because the total length
of the ℓ-grams that fit into the text window is larger for ℓ = 6. The corresponding
search times (without preprocessing) are 12.27 for ℓ = 6 and 45.75 seconds for
ℓ = 8. This shows that the choice of ℓ must be done with some care.

If k/m and/or rm becomes too large, we are not able to use large enough ℓ to
keep the filtering efficient. Using bit-parallel counters helps when r becomes large,
as it effectively searches for smaller pattern subsets in parallel. This helps only to
some extent because the number of bits in computer word is limited (typically to
32 or 64). One possibility would be to simulate longer words using several native

ACM Journal Name, Vol. V, No. N, Month 20YY.

36 · K. Fredriksson and G. Navarro

words. However, the total time is likely to grow proportionally to the number of
machine words that simulate a long virtual computer word. Following this line,
we could explicitly divide the pattern set into smaller subsets, and search for each
subset separately. This was considered at the end of Section 4.1. The optimal
complexity will be lost, but this is already inevitable if the maximum ℓ value we
can afford is fixed by our available main memory. Given that the ℓ value we can
use is smaller than the optimal, searching in separate groups can reduce the total
time.

Figure 22 shows experiments for explicitly dividing the pattern set into several
subsets. This method clearly extends the practical value of the algorithms, allowing
both larger k/m and r. It can also be seen that, the larger k, the less grouping
is advisable. This coincides with the analysis, which recommends subgroup size
r′ = σdℓ′/2/m2, being ℓ′ the value we can afford.

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6

tim
e

(s
)

k

DNA

G=1
G=4
G=8

G=12
G=16

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6 7 8 9 10 11 12

tim
e

(s
)

k

Proteins

G=1
G=4
G=8

G=12
G=16

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4
tim

e
(s

)
k

ASCII

G=1
G=4
G=8

G=12
G=16

Fig. 22. Pattern grouping for algorithm -B -Sb. The parameters are r = 1024; ℓ = 6 for dna,
ℓ = 3 for proteins, and ℓ = 2 for ascii. The curves show total time (searching and preprocessing).
From left to right, dna, proteins, and ascii. G = x means that we used G groups of 1024/G
patterns each.

As explained in Section 5, clustering the patterns to form groups may benefit the
overall performance. We used real texts E.coli and the Bible for this experiment.
Figure 23 gives the results. It shows that clustering helps, but seems not to be worth
it. We repeated the experiment by generating pattern sets where the distance
between subsequent patterns is only 2. The results show that clustering can be
useful in some (extreme) cases. Note that we used only ℓ = 4 for dna here, to
emphasize the effect. Using larger ℓ gives more or less the same timings for all the
cases.

Alphabet mapping can be used to speed up the algorithm for skewed character
distributions, as explained at the end of Section 4.1. We experimented with the
Bible using different combinations of ℓ and number of character groups, denoted by
M = x in Figure 24, meaning that we map the characters into x groups, each having
approximately the same total probability of occurrence. The optimal mapping
depends on r and k, but the method clearly improves the results.

6.4 Comparing against Other Algorithms

We compare our (generally) best algorithm, -B -Sb, against previous work, both for
searching single and multiple patterns. Following [Navarro 2001] we have included
only the relevant algorithms in the comparison. These are:

ACM Journal Name, Vol. V, No. N, Month 20YY.

Average-Optimal Single and Multiple Approximate String Matching · 37

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6

tim
e

(s
)

k

Ecoli (DNA)

extracted, w/o clustering
extracted, w/ clustering
generated, w/o clustering
generated, w/ clustering

 0

 2

 4

 6

 8

 10

 0 1 2

tim
e

(s
)

k

Bible (ASCII)

extracted, w/o clustering
extracted, w/ clustering
generated, w/o clustering
generated, w/ clustering

Fig. 23. The effect of clustering the patterns prior to searching (with algorithm -B -Sb). Left:
Ecoli (dna), m = 64, r = 64, ℓ = 4. Right: Bible (ascii), m = 12, r = 245, ℓ = 2.

 0.01

 0.1

 1

 0 1 2 3 4 5 6

tim
e

(s
)

k

r=1

l=3, M=16
l=2, M=64

 0.01

 0.1

 1

 10

 0 1 2 3 4

tim
e

(s
)

k

r=16

l=4, M=8

l=3, M=16
l=4, M=16

 0.01

 0.1

 1

 10

 100

 0 1 2 3 4

tim
e

(s
)

k

r=64

l=3, M=16
l=4, M=16
l=5, M=8

 0.1

 1

 10

 100

 0 1 2 3

tim
e

(s
)

k

r=256

l=3, M=16
l=4, M=16
l=5, M=8

Fig. 24. Total times in seconds using alphabet mapping for the Bible, for different ℓ (“l” in the
plots) and number of character groups M . The figures are from left to right, top to bottom, for
r = 1, 16, 64, 256, and m = 16. The curve without label is for the standard search, without
mapping. Note the logarithmic scale.

Ours:. Our -B -Sb algorithm, without pattern grouping, clustering, or alphabet
mapping, except otherwise stated.

EXP:. Partitioning into exact search [Baeza-Yates and Navarro 2002], an algo-
rithm for single and multiple approximate pattern matching, implemented by its
authors. The algorithm is optimized with a bit-parallel verification machine and
hierarchical verification, so it can be fairly compared with our -B -Sb version.

MM:. Muth & Manber algorithm [Muth and Manber 1996], the first multipat-
tern approximate search algorithm we know of, able of searching only with k = 1
differences and until now unbeatable in its niche, when more than 50–100 patterns

ACM Journal Name, Vol. V, No. N, Month 20YY.

38 · K. Fredriksson and G. Navarro

0.01

0.1

1

10

100

1 16 64 256

r

Ours, random DNA
MM, random DNA

Ours, Ecoli
MM, Ecoli

0.01

0.1

1

10

1 16 64 256

r

Ours, random proteins
MM, random proteins

Ours, real proteins
MM, real proteins

0.1

1

10

1 16 64 256

r

Ours, random ASCII
MM, random ASCII

Ours, Bible
MM, Bible

Fig. 25. Comparison against Muth & Manber, for k = 1. Note the logarithmic scale.

are searched for. The implementation is also from its authors.

TU:. Tarhio & Ukkonen algorithm [Tarhio and Ukkonen 1993], a Boyer-Moore
type single pattern approximate search algorithm, reported in [Navarro 2001] as
relevant in some special cases. Implemented by its authors.

ABNDM:. Approximate BNDM algorithm [Navarro and Raffinot 2000; Hyyrö
and Navarro 2002], a single pattern approximate search algorithm extending clas-
sical BDM. The implementation is by its authors. We used the version of [Navarro
and Raffinot 2000] which gave better results in our architecture, although it is the-
oretically worse than [Hyyrö and Navarro 2002]. Verification is also done using
bit-parallelism, so the comparison against our algorithm is fair.

BPM:. Bit-parallel Myers [Myers 1999], currently the best non-filtering algorithm
for single patterns, using the implementation of its author. We do not expect this
algorithm to be competitive against filtering approaches, but it should give a useful
control value.

We have modified ABNDM and BPM to use the superimposition technique
[Baeza-Yates and Navarro 2002] to handle multiple patterns, combined with hier-
archical verification. The superimposition is useful only if r/σ is reasonably small.
In particular, it does not work well on dna, and in that case we simply run the
algorithms r times. For proteins and the Bible we superimposed a maximum of 16
patterns at a time, and for random ascii, 64 patterns at a time. Note that the
optimal group size depends on k, decreasing as k increases. However, we used the
above group sizes, which is optimized for small k values, for all the cases.

Since MM is limited to k = 1, we compare this case separately in Figure 25. As
it can be seen, our algorithm is better by far, 4–40 times faster depending on the
alphabet size, except for real world ascii for large r, where MM is about twice as
fast for large r.

Figures 26, 27, and 28 show results for the other algorithms, for the case r = 1
(single patterns), as well as larger r values. As it can be seen, our algorithm is the
fastest in the majority of cases.

EXP beats our algorithm for large k, and this happens sooner for larger r. On
random ascii our algorithm is the best only for small k and large r. Real world
ascii is hard for our algorithm, where EXP is in most cases the best choice. For
ascii we are not able to use large enough ℓ-grams. Using alphabet mapping and
pattern grouping on real world ascii allows the use of larger ℓ, but at the same
time the mapping itself weakens the filtering sensitivity. The result is faster, but
beats EXP only for k = 1.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Average-Optimal Single and Multiple Approximate String Matching · 39

In general, from the plots it seems that our algorithms are better on random than
on real data. For ascii this is partly due to the skewed character distribution, but
the high preprocessing cost also affects.

Figure 29 shows the areas where each algorithm is best. As it can be seen, our
new algorithm becomes the fastest choice for low k, and is useful to search for 1
to 1,000 patterns (although, the more patterns are sought, the smaller k value is
dominated by our algorithm). We have displaced the previously fastest algorithm
for this case [Baeza-Yates and Navarro 2002] to the area of intermediate difference
ratios. Finally, we note that, when applied to just one pattern, our algorithm
becomes indeed the fastest for low difference ratios. Note also that our algorithm
would be favored on even longer texts, as its preprocessing depends only on rm.

7. CONCLUSIONS

Multiple approximate string matching is an important problem that arises in several
applications, and for which the current state of the art is in a very primitive stage.
Nontrivial solutions exist only for the case of very low difference ratios or very few
patterns.

We have presented a new algorithm to improve this situation. Our algorithm is
optimal on average for low and intermediate difference ratios (up to 1/2), filling
an important gap in multipattern approximate string matching, where very few
algorithms existed and no average-optimal algorithm was known.

We presented several variants, improvements, and tuning techniques over our al-
gorithm. We have shown that, in practice, our algorithm performs well in handling
from one to a very large number of patterns, and low difference ratios. Our algo-
rithm becomes indeed the best alternative in practice for these cases. In particular,
this includes being the fastest single-pattern search algorithm for low difference
ratios, which is a highly competitive area. On real life texts, we show that our
algorithm is especially interesting for computational biology applications (dna and
proteins).

The reason for the mismatch between theory and practice is that the space re-
quirement of the algorithm, although polynomial in the size of the pattern set, is
too large in practice and does not let us use the optimal ℓ-gram length. Space
usage (and preprocessing time) is always one of the main concerns of multipattern
search algorithms, and our algorithms are not an exception. We have studied sev-
eral choices to alleviate this situation, which permit using our algorithm reasonably
well in those extreme cases too.

Our algorithms can be extended in a number of ways. For example, it is very
simple to adapt them to handle classes of characters in the patterns. This means
that each pattern position can match a subset of the alphabet rather than just a
single character. The only change needed by the algorithm is to set up correctly
the minimum distances between ℓ-grams and patterns, by using a bit-parallel algo-
rithm (that handles well classes of characters) both in the preprocessing and the
verification. In particular, we have implemented case insensitive search for natural
language text and iub codes for dna (standard degeneracy symbols, “wild cards”).

Likewise, it is possible to extend our algorithms to handle edit distances with
general real-valued weights, essentially without changes. It is enough to precompute

ACM Journal Name, Vol. V, No. N, Month 20YY.

40 · K. Fredriksson and G. Navarro

 0.01

 0.1

 1

 10

 2 4 6 8 10 12 14 16

tim
e

(s
)

k

random DNA, r=1

 0.01

 0.1

 1

 10

 2 4 6 8 10 12 14 16

tim
e

(s
)

k

Ecoli, r=1

 0.1

 1

 10

 100

 2 4 6 8 10 12 14 16

tim
e

(s
)

k

random DNA, r=16

 0.1

 1

 10

 100

 2 4 6 8 10 12 14 16

tim
e

(s
)

k

Ecoli, r=16

 0.1

 1

 10

 100

 2 4 6 8 10 12 14

tim
e

(s
)

k

random DNA, r=64

 0.1

 1

 10

 100

 2 4 6 8 10 12 14

tim
e

(s
)

k

Ecoli, r=64

 0.1

 1

 10

 100

 2 4 6 8 10 12 14

tim
e

(s
)

k

random DNA, r=256

 0.1

 1

 10

 100

 2 4 6 8 10 12 14

tim
e

(s
)

k

Ecoli, r=256

Ours, l=6
Ours, l=8

EXP
BPM

ABNDM
TU

Fig. 26. Comparing different algorithms in dna, considering both preprocessing and searching
time. On the left, random data; on the right E.coli. From top to bottom: r = 1, 16, 64, 256. ℓ
looks as “l”. Note the logarithmic scale.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Average-Optimal Single and Multiple Approximate String Matching · 41

 0.01

 0.1

 1

 10

 100

 2 4 6 8 10 12 14 16

tim
e

(s
)

k

random proteins, r=1

 0.01

 0.1

 1

 10

 100

 2 4 6 8 10 12 14 16

tim
e

(s
)

k

real proteins, r=1

 0.1

 1

 10

 100

 2 4 6 8 10 12 14 16

tim
e

(s
)

k

random proteins, r=16

 0.1

 1

 10

 100

 2 4 6 8 10 12 14 16

tim
e

(s
)

k

real proteins, r=16

 0.1

 1

 10

 100

 2 4 6 8 10 12 14 16

tim
e

(s
)

k

random proteins, r=64

 0.1

 1

 10

 100

 2 4 6 8 10 12 14 16

tim
e

(s
)

k

real proteins, r=64

 0.1

 1

 10

 100

 2 4 6 8 10 12 14 16

tim
e

(s
)

k

random proteins, r=256

 0.1

 1

 10

 100

 2 4 6 8 10 12 14 16

tim
e

(s
)

k

real proteins, r=256

Ours EXP BPM ABNDM TU

Fig. 27. Comparing different algorithms in proteins, considering both preprocessing and searching
time. On the left, random data; on the right real proteins. From top to bottom: r = 1, 16, 64, 256.
We used ℓ = 3 for our algorithm. Note the logarithmic scale.

ACM Journal Name, Vol. V, No. N, Month 20YY.

42 · K. Fredriksson and G. Navarro

 0.01

 0.1

 1

 10

 1 2 3 4 5 6

tim
e

(s
)

k

random ASCII, r=1

Ours
EXP

TU
BPM

 ABNDM

 0.1

 1

 10

 100

 1 2 3 4 5 6

tim
e

(s
)

k

Bible, r=1

Ours
Ours, (4,16)

EXP
TU

BPM
ABNDM

 0.1

 1

 10

 1 2 3 4 5 6

tim
e

(s
)

k

random ASCII, r=16

Ours
EXP
BPM

 ABNDM

 0.1

 1

 10

 100

 1 2 3 4 5 6

tim
e

(s
)

k

Bible, r=16

Ours
Ours, (4,16)

EXP
BPM

ABNDM

 0.1

 1

 10

 1 2 3 4 5 6

tim
e

(s
)

k

random ASCII, r=64

Ours
EXP
BPM

 ABNDM
 1

 10

 100

 1 2 3 4 5 6

tim
e

(s
)

k

Bible, r=64

Ours
Ours, (5,8)

Ours, (4,16), G
EXP
BPM

ABNDM

 0.1

 1

 10

 100

 1 2 3 4 5 6

tim
e

(s
)

k

random ASCII, r=256

Ours
EXP
BPM

 ABNDM
 10

 100

 1 2 3 4 5 6

tim
e

(s
)

k

Bible, r=256

Ours, (3,16), G
EXP
BPM

ABNDM

Fig. 28. Comparing different algorithms in ascii, considering both preprocessing and searching
time. On the left, random data; on the right, the Bible. From top to bottom: r = 1, 16, 64, 256.
Ours (x, y) means alphabet mapping with ℓ = x, and the number of character groups = y. G
means grouping with 8 groups. All others are for the standard algorithm with ℓ = 2. Note the
logarithmic scale.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Average-Optimal Single and Multiple Approximate String Matching · 43

256

64

16

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

BPM

Ours
EXP

k

r

256

64

16

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

BPM

Ours
EXP

k

r

256

64

16

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ours

k

r

EXP

256

64

16

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ours

k

r

EXP

P

E
X

256

64

16

1

r

1 2 3 4 5 6

Ours

k

BPM
EXP

E
X
P

A
B
D
M
N

256

64

16

1

r

1 2 3 4 5 6

k

EXP

BPM

M
M

r
s

O
u

Fig. 29. Areas where each algorithm performs best. From left to right, dna (m = 64), proteins
(m = 64), and ascii (m = 16). Top row is for random data, and bottom row for real world data.

the minimum weight necessary to match each ℓ-gram inside any pattern, and all the
arguments remain the same. The only delicate point is to determine the minimum
length of an occurrence of any pattern, which is not m − k anymore. We should
consider eliminating the characters of P , from cheaper to more expensive, until
surpassing threshold k, and take the minimum length over all the patterns. In
particular, we have implemented Hamming distance, a simplification where only
replacements are permitted, at cost 1. This permits using windows of length m, as
well as a bit smaller ℓ in practice (because the average ℓ-gram distances are a bit
larger).

We believe that still several ideas can be pursued to reduce preprocessing time
and memory usage.

One idea is lazy evaluation of the table cells. Instead of fully computing the D
tables of size σℓ for each pattern, we compute the cells only for the text ℓ-grams
as they appear. If a given table cell is not yet computed, we compute it on the fly

for all the patterns. This gives a preprocessing cost that is O(rmσℓ(1 − e−n/σℓ

))
on the average (using Myers’ algorithm for the ℓ-grams inside the patterns, as
⌈ℓ/w⌉ = 1). This, however, is advantageous only for very long ℓ-grams, namely
ℓ + Θ(log log ℓ) > logσ n.

Another possibility is to compute D only for those ℓ-grams that appear in a
pattern with at most ℓ′ differences, and assume that all the others appear with
ℓ′ + 1 differences. This reduces the effectiveness at search time but, by storing the
relevant ℓ-grams in a hash table, requires O(rm(σℓ)ℓ′) space and preprocessing time
(either for plain or hierarchical verification), since the number of strings at distance
ℓ′ to an ℓ-gram is O((σℓ)ℓ′) [Ukkonen 1985]. With respect to plain verification, the
space is reduced for ℓ′ < (ℓ−logσ(rm))/(1+logσ ℓ), and with respect to hierarchical
verification, for ℓ′ < (ℓ− logσ m)/(1 + logσ ℓ). These values seem reasonable.

REFERENCES

Baeza-Yates, R. and Navarro, G. 2000. New models and algorithms for multidimensional
approximate pattern matching. Journal of Discrete Algorithms (JDA) 1, 1, 21–49. Special
issue on Matching Patterns.

ACM Journal Name, Vol. V, No. N, Month 20YY.

44 · K. Fredriksson and G. Navarro

Baeza-Yates, R. and Navarro, G. 2002. New and faster filters for multiple approximate string

matching. Random Structures and Algorithms (RSA) 20, 23–49.

Baeza-Yates, R. and Ribeiro-Neto, B. 1999. Modern Information Retrieval. Addison-Wesley.

Baeza-Yates, R. A. and Navarro, G. 1999. Faster approximate string matching. Algorith-
mica 23, 2, 127–158.

Chang, W. and Lawler, E. 1994. Sublinear approximate string matching and biological appli-
cations. Algorithmica 12, 4/5, 327–344.

Chang, W. and Marr, T. 1994. Approximate string matching and local similarity. In Proc. 5th
Combinatorial Pattern Matching (CPM’94). LNCS 807. 259–273.

Crochemore, M., Czumaj, A., Ga̧sieniec, L., Jarominek, S., Lecroq, T., Plandowski, W.,
and Rytter, W. 1994. Speeding up two string matching algorithms. Algorithmica 12, 4/5,
247–267.

Crochemore, M. and Rytter, W. 1994. Text Algorithms. Oxford University Press.

Dixon, R. and Martin, T., Eds. 1979. Automatic speech and speaker recognition. IEEE Press.

Elliman, D. and Lancaster, I. 1990. A review of segmentation and contextual analysis tech-
niques for text recognition. Pattern Recognition 23, 3/4, 337–346.

Fredriksson, K. 2003. Row-wise tiling for the Myers’ bit-parallel approximate string match-
ing algorithm. In Proc. 10th Symposium on String Processing and Information Retrieval
(SPIRE’03). LNCS 2857. 66–79.

Fredriksson, K. and Navarro, G. 2003. Average-optimal multiple approximate string matching.
In Proc. 14th Combinatorial Pattern Matching (CPM’03). LNCS 2676. 109–128.

Fredriksson, K. and Navarro, G. 2004. Improved single and multiple approximate string
matching. In Proc. 15th Combinatorial Pattern Matching (CPM’04). LNCS 3109. 457–471.

Grossi, R. and Luccio, F. 1989. Simple and efficient string matching with k mismatches.
Information Processing Letters 33, 3, 113–120.

Horspool, R. 1980. Practical fast searching in strings. Software Practice and Experience 10,
501–506.

Hyyrö, H., Fredriksson, K., and Navarro, G. 2004. Increased bit-parallelism for approximate
string matching. In Proc. 3rd Workshop on Efficient and Experimental Algorithms (WEA’04).
LNCS 3059. 285–298.

Hyyrö, H. and Navarro, G. 2002. Faster bit-parallel approximate string matching. In Proc.
13th Combinatorial Pattern Matching (CPM’02). LNCS 2373. 203–224. Extended version to
appear in Algorithmica.

Jokinen, P., Tarhio, J., and Ukkonen, E. 1996. A comparison of approximate string matching
algorithms. Software Practice and Experience 26, 12, 1439–1458.

Kukich, K. 1992. Techniques for automatically correcting words in text. ACM Computing
Surveys 24, 4, 377–439.

Kumar, S. and Spafford, E. 1994. A pattern-matching model for intrusion detection. In Proc.
National Computer Security Conference. 11–21.

Lopresti, D. and Tomkins, A. 1994. On the searchability of electronic ink. In Proc. 4th Inter-
national Workshop on Frontiers in Handwriting Recognition. 156–165.

Muth, R. and Manber, U. 1996. Approximate multiple string search. In Proc. 7th Combinatorial
Pattern Matching (CPM’96). LNCS 1075. 75–86.

Myers, E. W. 1999. A fast bit-vector algorithm for approximate string matching based on
dynamic programming. Journal of the ACM 46, 3, 395–415.

Navarro, G. 2001. A guided tour to approximate string matching. ACM Computing Sur-
veys 33, 1, 31–88.

Navarro, G. and Baeza-Yates, R. 1999. Very fast and simple approximate string matching.
Information Processing Letters 72, 65–70.

Navarro, G. and Baeza-Yates, R. 2001. Improving an algorithm for approximate pattern
matching. Algorithmica 30, 4, 473–502.

Navarro, G. and Fredriksson, K. 2004. Average complexity of exact and approximate multiple
string matching. Theoretical Computer Science 321, 2–3, 283–290.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Average-Optimal Single and Multiple Approximate String Matching · 45

Navarro, G. and Raffinot, M. 2000. Fast and flexible string matching by combining bit-

parallelism and suffix automata. ACM Journal of Experimental Algorithmics (JEA) 5, 4.

Navarro, G. and Raffinot, M. 2002. Flexible Pattern Matching in Strings – Practical on-line
search algorithms for texts and biological sequences. Cambridge University Press.

Navarro, G., Sutinen, E., Tanninen, J., and Tarhio, J. 2000. Indexing text with approximate
q-grams. In Proc. 11th Combinatorial Pattern Matching (CPM’00). LNCS 1848. 350–363.

Paul, W. and Simon, J. 1980. Decision trees and random access machines. In Proc. International
Symposium on Logic and Algorithmic. Zurich, 331–340.

Sankoff, D. and Kruskal, J., Eds. 1983. Time Warps, String Edits, and Macromolecules: The
Theory and Practice of Sequence Comparison. Addison-Wesley.

Sellers, P. 1980. The theory and computation of evolutionary distances: pattern recognition.
Journal of Algorithms 1, 359–373.

Sutinen, E. and Tarhio, J. 1996. Filtration with q-samples in approximate string matching. In
Proc. 7th Combinatorial Pattern Matching. LNCS 1075. 50–63.

Tarhio, J. and Ukkonen, E. 1993. Approximate Boyer-Moore string matching. SIAM Journal
of Computing 22, 2, 243–260.

Ukkonen, E. 1985. Finding approximate patterns in strings. Journal of Algorithms 6, 132–137.

Waterman, M. 1995. Introduction to Computational Biology. Chapman and Hall.

Yao, A. C. 1979. The complexity of pattern matching for a random string. SIAM Journal of
Computing 8, 3, 368–387.

ACM Journal Name, Vol. V, No. N, Month 20YY.

