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The most important features of a string matching algorithm are its efficiency and its flexibility.
Efficiency has traditionally received more attention, while flexibility in the search pattern is be-
coming a more and more important issue. Most classical string matching algorithms are aimed at
quickly finding an exact pattern in a text, being Knuth-Morris-Pratt (KMP) and the Boyer-Moore
(BM) family the most famous ones. A recent development uses deterministic “suffix automata”
to design new optimal string matching algorithms, e.g. BDM and TurboBDM. Flexibility has
been addressed quite separately by the use of “bit-parallelism”, which simulates automata in their
nondeterministic form by using bits and exploiting the intrinsic parallelism inside the computer
word, e.g. the Shift-Or algorithm. Those algorithms are extended to handle classes of characters
and errors in the pattern and/or in the text, their drawback being their inability to skip text
characters. In this paper we merge bit-parallelism and suffix automata, so that a nondetermin-
istic suffix automaton is simulated using bit-parallelism. The resulting algorithm, called BNDM,
obtains the best from both worlds. It is much simpler to implement than BDM and nearly as
simple as Shift-Or. It inherits from Shift-Or the ability to handle flexible patterns and from BDM
the ability to skip characters. BNDM is 30%-40% faster than BDM and up to 7 times faster than
Shift-Or. When compared to the fastest existing algorithms on exact patterns (which belong to
the BM family), BNDM is from 20% slower to 3 times faster, depending on the alphabet size.
With respect to flexible pattern searching, BNDM is by far the fastest technique to deal with
classes of characters and is competitive to search allowing errors. In particular, BNDM seems
very adequate for computational biology applications, since it is the fastest algorithm to search
on DNA sequences and flexible searching is an important problem in that area. As a theoretical
development related to flexible pattern matching, we introduce a new automaton to recognize
suffixes of patterns with classes of characters. To the best of our knowledge, this automaton has
not been studied before.
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Categories and Subject Descriptors: F.2.2 [Analysis of algorithms and problem complexity]:
Nonnumerical algorithms and problems—Pattern matching, Computations on discrete structures;
H.3.3 [Information storage and retrieval]: Information search and retrieval—Search process

1. INTRODUCTION

The string-matching problem is to find all the occurrences of a given pattern p =
P1P2 - .. Pm 1n a large text T' = ¢1t5...%,, both being sequences of characters drawn
from a finite character set 3. This problem is fundamental in computer science and
is a basic need of many applications, such as text retrieval, symbol manipulation,
computational biology, data mining, network security, etc.

Several algorithms exist to solve this problem. One of the most famous, and the
first having linear worst-case behavior, is Knuth-Morris-Pratt (KMP) [Knuth et al.
1977]. The search in KMP is done by scanning the text character by character, and
for each text position 7 remembering the longest prefix of the pattern which is also
a suffix of ¢;...¢;. This approach is O(n) worst-case time but it needs to scan all
characters in the text, independently of the pattern. A second algorithm, as famous
as KMP and which allows skipping characters, is Boyer-Moore (BM) [Boyer and
Moore 1977]. The search in BM is done inside a window of length m, ending at
position ¢ in the text. BM searches backwards the longest suffix of ¢; ...¢; which is
also a suffix of the pattern. If the suffix is the whole pattern a match is reported.
Then the window is shifted to the next occurrence of the suffix in the pattern. This
algorithm leads to several variations, like Horspool [Horspool 1980] and Sunday
[Sunday 1990], considered the fastest string-matching algorithms in practice.

A large part of the research in efficient algorithms for string matching can be
regarded as the quest for automata which are efficient in some sense. For instance,
KMP is simply a deterministic automaton that searches the pattern, being its main
merit that it is O(m) in space and construction time. Many variations of the BM
family are supported by an automaton too.

Another automaton, called a “suffix automaton”, is used in [Crochemore et al.
1993; Crochemore and Rytter 1994; Czumaj et al. 1994; Lecroq 1992; Raffinot
1997b], where the idea is to search a substring instead of a prefix (as KMP), or a
suffix (as BM). Optimal sublinear algorithms on average, like BDM or TurboBDM
[Crochemore and Rytter 1994; Czumaj et al. 1994], have been obtained with this
approach, which has also been extended to multipattern matching [Crochemore
et al. 1993; Crochemore and Rytter 1994; Raffinot 1997b] (i.e. looking for the
occurrences of any pattern from a given set).

Besides speed, flexibility in the types of patterns that can be searched is becoming
a more and more relevant issue in recent years, motivated by text retrieval, compu-
tational biology and signal processing applications (see, e.g., [Navarro 2000a}). In
these applications the pattern needs not be just a sequence of characters that is to
be found verbatim in the text, but it can include

Classes of characters, which are positions that match a set of characters of the
alphabet, rather than just on character. This permits in particular searching
with don’t care characters (which match every character) and case insensitive
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searching. This models typical needs of text retrieval applications (such as case
insensitive searching) and computational biology (where some pattern positions
are not completely determined). In computational biology is also possible that
the text contains classes of characters.

Bounded length gaps, which are pattern positions that match an arbitrary string
whose length is between a minimum and a maximum specified value. This is
typically of interest, for example, in protein searching.

Optional and repeatable characters, which are pattern characters or classes
that may or may not appear in a text occurrence; or that may appear 0, 1, or
more times; respectively. This is of interest in text retrieval.l

Network and regular expressions, which permit building patterns composed
from simple letters and the empty string, as well as union and concatenation
of other patterns, and (in the case of regular expressions) an arbitrary number
of repetitions of another pattern. These patterns are extremely powerful to
specify complex searching.

Approximate searching, which permits a limited number of differences between
the pattern and its occurrences in the text. Depending on the model, the differ-
ences permitted may be character substitutions (Hamming model); character
insertions, deletions and substitutions (Levenshtein model); etc. Approximate
searching is of great interest when the text is of bad quality (e.g. text obtained
by optical character recognition or just poorly written as in the Web, DNA
sequences which contain experimental errors, signals that have been corrupted
during transmission, etc.), or there is no absolute certainty about the search
pattern (e.g. searching for foreign names).

A related line of research in string matching, called “bit-parallelism” [Baeza-
Yates 1992], has yielded the best algorithms for flexible searching. The general
technique is to use the automata in their nondeterministic form instead of making
them deterministic. Usually the nondeterministic versions are very simple and
regular. This permits mapping the state of the search onto the bits of a computer
word and using the intrinsic parallelism of the bit manipulations of the processor to
parallelize the operations necessary to update the state of the search. Competitive
algorithms have been obtained for exact string matching (e.g., Shift-Or [Baeza-
Yates and Gonnet 1992; Wu and Manber 1992]), as well as for approximate string
matching [Baeza-Yates and Gonnet 1992; Baeza-Yates and Navarro 1999; Myers
1999; Wu and Manber 1992; Wu et al. 1996]. Although these algorithms generally
work well only on patterns of moderate length, they are simpler, more flexible
(e.g. they can easily handle classes of characters), and have very low memory
requirements.

In this paper we merge some aspects of the two approaches in order to obtain a
fast string matching algorithm, called Backward Nondeterministic Dawg Matching
(BNDM), which can be seen as a cross between BDM and Shift-Or. BNDM can be
extended to search classes of characters, to multipattern search and to approximate
search, just like Shift-Or. BNDM uses a nondeterministic suffix automaton that is
simulated using bit-parallelism, and it has the advantage of being faster than the
previous algorithms that could be extended in such a way (up to 7 times faster than
Shift-Or), being faster than BDM (30%-40% faster), and for small alphabets being
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up to 3 times faster than the best algorithms of the BM family. Indeed, BNDM
is the fastest search algorithm for small alphabets and moderate length patterns.
For larger alphabets the BM-Sunday algorithm is up to 20% faster. Additionally
BDNM uses few space in comparison with the BDM or TurboBDM algorithms (it
does not need to construct the deterministic suffix automaton), and it is very simple
to implement (e.g. complex variations of BDM like TurboBDM and BM_BDM are
easy to implement).

In particular, the ability to search for classes of characters has never been stud-
ied in relation to the BDM family. We give a new definition of an automaton
designed to recognize suffixes of patterns with classes of characters) and simulate
its nondeterministic version using bit-parallelism.

This paper is organized as follows. In section 2 we present the suffix automaton
and the BDM algorithm. In section 3 we present the bit-parallelism approach. In
section 4 we present our new algorithms for short and long patterns. We present
more complex and improved versions in section 5. The extension to classes of
characters is presented in section 6, to multipattern matching in section 7 and to
approximate string matching in section 8. We then present experimental results
in section 9. Finally, we give our conclusions and future work directions in section
10. Earlier partial versions of this work appeared in [Navarro 1998; Navarro and
Raffinot 1998].

We use the following definitions throughout the paper.

A word z € * is a factor (or substring) of p if p can be written p = uzv, u,v € T*.
We denote Fact(p) the set of factors of p. A factor z of pis called a suffizof pis p =
uz, u € 5*. The set of suffixes of p is called Suff(p). When we want to emphasize
the inter-letter positions in the pattern, we write p = ° p1 L p2 2.1 ™! P ™.

We denote as by...b; the bits of a computer word of length £. We use expo-
nentiation to denote bit repetition (e.g. 031 = 0001). Since the length w of the
computer word is fixed, we are hiding the details on where we store the £ bits in-
side it. We give such details when they are relevant. Finally, we use C-like syntax
for operations on the bits of computer words: “|” is the bitwise-or, “&” is the
bitwise-and, “” ” is the bitwise-xor and “~” complements all the bits. The shift-
left operation, “<<”, moves the bits to the left and enters zeros from the right, i.e.
bbm—1...b2b1 << r = bp_p...b2610". The shift-right, “>>" moves the bits in the
other direction. Finally, we can perform arithmetic operations on the bits, such as
addition and subtraction, which operate the bits as if they formed a number. For
instance, b;...6,10000 — 1 = b,...5,01111.

2. SEARCHING WITH SUFFIX AUTOMATA

We describe in this section the BDM pattern matching algorithm [Crochemore and
Rytter 1994; Czumayj et al. 1994]. This algorithm is based on a suffix automaton.
We first describe such automaton and then explain how it is used in the search
algorithm

2.1 Suffix Automata

A suffix automaton on a pattern p = p1ps...Pm (frequently called DAWG(p) -
for Deterministic Acyclic Word Graph) is the minimal (incomplete) deterministic
finite automaton that recognizes all the suffixes of this pattern. By “incomplete”
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we mean that unnecessary transitions are not present.

The nondeterministic version of this automaton has a very regular structure and
is shown in Figure 1. We show now how the corresponding deterministic automaton
is built.

@'.“::'e"-":--e“"-'-e L€ L€ L€ e L€
Y Y

¥ Y Y .Y ¥ ¥
baabbaa

Fig. 1. A nondeterministic suffix automaton for the pattern p = baabbaa. Dashed lines represent
e-transitions (i.e. they occur without consuming any input). Iis the initial state of the automaton.

Given a factor z of the pattern p, endpos(z) is the set of all the pattern positions
where an occurrence of  ends (there is at least one, since @ is a factor of the pattern,
and there are as many as repetitions of z inside p). Formally, given z € Fact(p), we
define endpos(z) = {i / Ju, p1pz...p; = uz}. We call each such integer a position.
For example, endpos(baa) = {3,7} in the word baabbaa. Notice that endpos(e) is
the complete set of possible positions (recall that € is the empty string). Notice
that for any u, v, endpos(u) and endpos(v) are either disjoint or one contained in
the other.

We define an equivalence relation = between factors of the pattern. For u,v €
Fact(p), we define

u = v if and only if endpos(u) = endpos(v)

(notice that one of the factors must be a suffix of the other for this equivalence
to hold, although the converse is not true). For instance, in our example pattern
p = baabbaa, we have that baa = aa because in all the places where aa ends in the
pattern, baa ends too (and vice-versa).

The nodes of the DAWG correspond to the equivalence classes of =, i.e. to sets
of positions. A state, therefore, can be thought of as a factor of the pattern already
recognized, except that we do not distinguish between some factors. Another way
to see this is that the set of positions is in fact the set of active states in the
nondeterministic automaton.

There is an edge labeled o from the set of positions {71, 12,.. .45} to ¥ (i1 +1,0)U
Yp(i2 + 1,0) U...U~p(ik, o), where

) {i}ifi<mandp, =0c
Yp(1,0) =

? otherwise

which is the same to say that we try to extend the factor that we recognized with the
next text character o, and keep the positions that still match. If we are left with no
matching positions, we do not build the transition. The initial state corresponds to
the set {0..m}. A state is terminal if its corresponding subset of positions contains
the last position m (i.e. we matched a suffix of the pattern). As an example, the
deterministic suffix automaton of the word baabbaa is given in Figure 2.

The (deterministic) suffix automaton is a well known structure [Blumer et al.
1989; Crochemore 1986; Crochemore and Rytter 1994; Raffinot 1997a], and we do
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Fig. 2. Deterministic suffix automaton of the word °b!a2a®b*b%a®a”

not prove any of its properties here (nor the correctness of the previous construc-
tion). The size of DAWG(p) is linear in m (counting both nodes and edges), and a
linear on-line construction algorithm exists [Crochemore 1986]. A very important
fact for our algorithm is that this automaton can not only be used to recognize the
suffixes of p, but also factors of p. By the suffix automaton definition, there is a
path labeled z form the initial node of DAWG(p) if and only if z is a factor of p.

2.2 Search Algorithm

The suffix automaton structure is used in [Crochemore and Rytter 1994; Czumayj
et al. 1994] to design a simple pattern matching algorithm called BDM. This al-
gorithm is O(mn) time in the worst case, but optimal on average (O(nlogm/m)
time'). Other more complex variations such as TurboBDM[Czumaj et al. 1994]
and MultiBDM[Crochemore and Rytter 1994; Raffinot 1997b] achieve linear time
in the worst case. To search a pattern p = pi1ps...pm in a text T = t1t5...1,, the
suffix automaton of p" = ppmPm—1...p1 (i.e the pattern read backwards) is built.
A window of length m is slid along the text, from left to right. The algorithm
searches backwards inside the window for a factor of the pattern p using the suf-
fix automaton. During this search, if a terminal state is reached which does not
correspond to the entire pattern p, the window position is recorded (in a variable
last). This corresponds to finding a prefiz of the pattern starting at position last
inside the window and ending at the end of the window (since the suffixes of p" are
the reverse prefixes of p). Since we remember the last prefix recognized backwards,
we have the longest prefix of p in the window. This backward search ends in two
possible forms:

(1) We fail to recognize a factor, i.e we reach a letter o that does not correspond to
a transition in DAWG(p"). Figure 3 illustrates this case. In this case we shift
the window to the right, its starting position corresponding to the position last
(we cannot miss an occurrence because in that case the suffix automaton would
have found its prefix in the window).

(2) We reach the beginning of the window, therefore recognizing the pattern p. We
report the occurrence, and shift the window exactly as in the previous case
(notice that we have the previous last value).

!The lower bound of {(nlogm/m) average time for any pattern matching algorithm under a
Bernouilli model with uniform character distribution and a RAM complexity model is from A. C.
Yao [Yao 1979].
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Window

last
\

-

Search for a factor with the DAWG

Record in last the window position where a terminal state is reached
last |

(LI T 1lo] } ‘HHHHHH\H

Fail to recognize a factor at o: the pattern can not start before o.

The maximum prefix starts at last

LI it tel PP PP P P ]

safe shift New window

Fig. 3. Basic search with the suffix automaton

The pseudo-code of the BDM algorithm is given in Figure 2.2. We note ép aw (g, o)
the transition function of the suffix automaton. §pawea(q, o) is the node that we
reach if we move along the edge labeled by o from the node g. If such an edge does
not exist, then §pawa(q, o) is null.

BDM(p = P1pP2 ...-Pmy T = t1t2 .. .tn)

1. Preprocessing

2. Build DAWG(p")

3. Search

4. pos <0

5. While pos < n—m do

6. j—m, last < m

7. state + initial state of DAWG(p")
8. While state # null do

9. state < 8p awc(state, tpostj)
10. je—3-—1

11. If state is terminal then

12. If > 0 then last + j
13. Else report an occurrence at pos + 1
14. End of if

15. End of while

16. pos < pos + last

17. End of while

Fig. 4. Pseudo-code of the BDM algorithm. The variable pos points at the character just before
the window, j is used to traverse the window backwards and last to record the last prefix matched.
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2.2.0.1 Search example:. we search the pattern aabbaab in the text
T=abbabaabbaab.

We first build DAWG(p" =baabbaa), which is given in Figure 2. We note the current
window between square brackets and the recognized prefix in a box. We begin with
T=[abbabaalbbaab,m="7 last =7.

(1) T=[abbabala]]lbbaab. ais (6) T = abbab[aabba]. ba is

a factor of p” and a reverse prefix of a factor of p”.

p- last = 6. (") T= abbab[aabb] baa
(2) T= [abbablaal]]bbaab. aais is a factor of p", and a reverse prefix

a factor of p” and a reverse prefix of of p. last = 4.

p. last = 5.

(3 T= [abbalbaa]lbbaab aab ) L= abbablaablbaab|]. baad

is a factor of 77 is a factor of p”.

(4) T= [abblabaa|]bbaakb (9)f:bb.“bfb:‘b[f“r“]'
We fail to recognize the next a. So aavh is a laclot ot pr -

we shift the window to last. We (10) T = abbab[a ].

search again in the position: T = baabba is a factor of p”.
abbablaabbaab], last =17. (11) T = abbab[].

(5) T= abbablaabbaa @ ]. bis We recognize the word aabbaab and
a factor of p”. report an occurrence.

3. BIT-PARALLELISM

In [Baeza-Yates and Gonnet 1992], a new approach to text searching was proposed.
It is based on bit-parallelism [Baeza-Yates 1992], a technique consisting in taking
advantage of the intrinsic parallelism of the bit operations inside a computer word.
By using cleverly this fact, the number of operations that an algorithm performs
can be cut down by a factor of at most w, where w is the number of bits in the
computer word. Since in current architectures w is 32 or 64, the speedup is very
significant in practice.

The Shift-Or algorithm uses bit-parallelism to simulate the operation of a nonde-
terministic automaton that searches the pattern in the text (see Figure 5). As this
automaton is simulated in time O(mn), the Shift-Or algorithm achieves O(mn/w)
worst-case time (optimal speedup). Notice that if we convert the nondeterministic
automaton to a deterministic one so as to have O(n) search time, we get a version of
the KMP algorithm [Knuth et al. 1977] (KMP, however, is twice as slow as Shift-Or
for m < w).

We explain now the Shift-And algorithm, which is an easier-to-explain (though a
little less efficient) variant of Shift-Or. The algorithm first builds a table B which
for each character stores a bit mask b,,...b1. The mask in B[c] has the i-th bit set if
and only if p; = ¢. The state of the search is kept in a machine word D = d,,...d3,
where d; is set whenever pip:...p; matches the end of the text read up to now
(another way to see it is to consider that d; tells whether the state numbered ¢ in
Figure 5 is active). Therefore, we report a match whenever d,, is set.
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P

l'baabbaa

Fig. 5. A nondeterministic automaton to search the pattern p = baabbaa in a text. The initial
state is O.

We set D = 0™ originally and, for each new text character ¢;, update D using
the formula

D' « ((D<<1)]|0™'1) & B[]

The formula is correct because the i-th bit is set if and only if the (:—1)-th bit was
set for the previous text character and the new text character matches the pattern
at position . In other words, ¢;_;y1..t; = p1..p;ifand only if ¢;_;41..8;_1 = p1..pi—1
and ¢; = p;. Again, it is possible to relate this formula to the movement that occurs
in the nondeterministic automaton for each new text character: each state gets the
value of the previous state, but this happens only if the text character matches the
corresponding arrow. Finally, the “| 0™ ~11” after the shift allows a match to begin
at the current text position. This corresponds to the self-loop at the beginning of
the automaton and is saved in Shift-Or, where all the bits are complemented.

The cost of this algorithm is O(n). Although we consider only masks of length m
here, in practice the masks are of length w (as explained earlier) and some provisions
may be necessary to handle the unwanted extra bits. For patterns longer than the
computer word (i.e. m > w), the algorithm uses [m/w] computer words for the
simulation (not all them are active all the time), with a worst-case cost of O(mn/w)
and an average case cost of O(n).

The Shift-And algorithm is very simple, and has some further advantages. The
most immediate one is that it is very easy to extend so as to handle classes of
characters. That is, each pattern position does not match just a single character
but a set of characters. If C; is the set of characters at position 7 in the pattern,
then we set the i-th bit of B[c] for all ¢ € C;. In [Baeza-Yates and Gonnet 1992]
they show also how to allow a limited number %k of mismatches in the occurrences,
at O(nmlog(k)/w) cost.

Later [Wu and Manber 1992] enhanced this paradigm to support extended pat-
terns, which allow wild cards (i.e. gaps of unbounded length), regular expressions,
approximate search with nonuniform costs, and combinations. Further development
of the bit-parallelism approach for approximate string matching led to some of the
fastest algorithms for short patterns [Baeza-Yates and Navarro 1999; Myers 1999].
In most cases, the key idea was to simulate a nondeterministic finite automaton. It
is interesting also to mention [El-Mabrouk and Crochemore 1996], which searches
allowing mismatches by using a combination of bit-parallelism and Boyer-Moore.

Bit-parallelism has become a general way to simulate simple nondeterministic
automata instead of converting them to deterministic. This is how we use it in this

paper.
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4. BIT-PARALLELISM ON SUFFIX AUTOMATA

We simulate the BDM algorithm using bit-parallelism. The result is an algorithm
which is simpler, uses less memory, has more locality of reference, and is easily
extended to handle more complex patterns, as shown in the next sections. We first
assume that m < w and later show how to extend the algorithm for longer patterns.

4.1 The Basic Algorithm

We simulate the automaton of Figure 1 on the reversed pattern. Just as for Shift-
And, we keep the state of the search using m bits of a computer word D = d,...d;.

The BDM algorithm moves a window over the text. Each time the window is
positioned at a new text position just after pos, it searches backwards the window
tpos+1--tpos+m using the DAWG automaton, until either m iterations are performed
(which implies a match in the current window) or the automaton cannot follow any
transition. In our case, the bit d; at iteration k is set if and only if pp—s41.m—itr =
tpos+1+m—k--tpos+m. Some observations follow

—Since we begin at iteration 0, the initial value for D is 1™ (recall that we use
exponentiation to denote bit repetition).

—There is a match if and only if after iteration m it holds d,, = 1.

—Whenever d,, = 1, we have matched a prefix of the pattern in the current window.
The longest prefix matched (excluding the complete pattern) corresponds to the
next window position (variable last).

—Since there is no initial self-loop, this automaton eventually runs out of active
states. Moreover, states (m — k)...m are inactive at iteration k.

The algorithm works as follows. Each time we position the window in the text
we initialize D and scan the window backwards. For each new text character we
update D. Each time we find a prefix of the pattern (d,, = 1) we remember the
position in the window. If we run out of 1’s in D then there cannot be a match and
we suspend the scanning (this corresponds to not having any transition to follow
in the automaton). If we can perform m iterations then we report a match.

We use a mask B which for each character ¢ stores a bit mask. This mask
sets the bits corresponding to the positions ¢ where p; = ¢ (just as in Shift-And).
Interestingly enough, the formula to update D turns out to be very similar to that
of the Shift-Or algorithm:

D' « (D & B[]) << 1

which should not be surprising given the similarity between both automata. The
algorithm is summarized in Figure 6. Some optimizations done on the real code,
related to improved flow of control and bit manipulation tricks, are not shown for
clarity.

4.1.0.2 Search erample:. we search the pattern aabbaab in the text

T=abbabaabbaakb.

We note the current window between square brackets and the recognized prefix in
a box. We begin with
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BNDM (p = P1P2...Pm;, T = tltz...tn)

1. Preprocessing
2. For c € ¥ do Blc] + 0™
3. For i € 1..m do B[pm—it1] & B[pm—it1] | 0™ 10' "
4. Search
5. pos <0
6. While pos <n—m do
7. jm, last «m
8. D=1"
9. While D # 0™ do
10. D « D & Bltpos+j]
11. je—3-—1
12. If D & 10™ ' #0™ then
13. If 7 >0 then last + j
14. Else report an occurrence at pos + 1
15. End of if
16. D—D<<1
17. End of while
18. pos  pos + last
19. End of while
Fig. 6. Bit-parallel code for BDM. Some optimizations are not shown for clarity.
T=|abbabaa]lbbaab, D=1111111,B= Z ;(1)(1)(1)3(1)(1) ,m =17, last
=7,75=".
(1) T= [abbabala]]bbaab. We fail to recognize the next a. So
1111111 j= we shift the window to last. We
& |1 100110 _ search again in the position: T =
D=[1ii00110 !t=6
abbablaabbaabl], last =7,
(2) T= [abbablaa]]bbaab g
. 1(;2(1)1(;2 j=5 (5) T = all)blalbl[alalblbaa@].
D=|1oo0o0i00 ¢=5 & |loo11001 1=6
D=looiio001| !st=7
(3 T=[abba|baa|]lbbaakb.
0001000 ]:
& |[001 1001
D-|ooo1000 (ast=5 (6) T= abbablaabbalabl].
0110010 ]:
(4) T= [abblabaal|]lbbaakb. D&:(l)iggtl)ig last=T7
0010000 ]:
& 1100110 last — 5
D=(|0000000O0
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(7) T= abbablaabblaab]]. (10) T=abbabla[abbaab]].
1000100 g 0100000 o
& llt1o00110 77 &llt1o00110 77
last = 4 last = 4
D=]1000100 D=]0100000
(8) T=abbablaablbaabl|].
0001000 _3
& |[oo11001 ;__ (11) T=abbabl|laabbaab|].
D-|l0ooo01000 ast = ¢ 1000000 ._,
&llt1o00110 77
D—ltooooo0o| last=4
(9) T=abbablaalbbaab|] =
¢ loo11001] 972
D=|0010000 last = 4 We report an occurrence at 6.

4.2 Handling Longer Patterns

We can cope with longer patterns by setting up an array of words D; and simulating
the work of a long computer word (we call this a “multi-word simulation” of the
simple algorithm). We propose a different alternative which was experimentally
found to be faster.

If m > w, we partition the pattern in M = [m/w] consecutive subpatterns s;,
p = 81 S2 ... Su, so that each subpattern s; is of length m; = wif ¢ < M and the last
one has the remaining characters (i.e. my = m — w(M — 1)). Those subpatterns
can therefore be searched with the basic algorithm.

We now search s; in the text with the basic algorithm. If s; is found at a
text position 7, we check whether s, follows it. That is, we position a window
at tj4my--tj4mi+m,—1 and use the basic algorithm for s, in that window. If s; is
in the window, we continue similarly with s3 and so on. This process ends either
because we find the complete pattern and report it, or because we fail to find some
subpattern s; in its window.

We have to shift the window now. An easy alternative is to use the shift last;
that corresponds to the search of s;. However, if we have tested the subpatterns
81 to s;, then each one gives a possible shift last;, and we use the maximum of all
those shifts.

Although this algorithm searches on a shorter window (i.e. of length w < m) and
therefore it performs shifts shorter than the multi-word simulation, this multi-word
simulation has to work on M computer words to traverse the window, in general
cancelling any possible benefit from performing a longer shift. Finally, the multi-
word simulation switches very fast the D; word it operates on, while our algorithm
operates a long time over a single D; word, therefore making it profitable to put
D, in a computer register for faster operation.

4.3 Analysis
The preprocessing time for our algorithm is O(m + |X|) if m < w, and O(m(1 +
|X|/w)) otherwise.

In the simple case m < w, the analysis of the search time is the same as for the
BDM algorithm. That is, O(mn) in the worst case (e.g. T = a®, p = a™ 1),
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O(n/m) in the best case (e.g. T = a", p = b™), and O(nlogs m/m) on average.
Our algorithm, however, benefits from more locality of reference, since we do not
access an automaton but only a few variables which can be put in registers (with
the exception of the B table). As we show in the experiments, this difference makes
our algorithm the fastest one.

When m > w, our algorithm is O(nm?/w) time in the worst case (since each of
the O(mn) steps of the BDM algorithm forces to work on [m/w] computer words).
The best case occurs when the text traversal using s; always performs its maximum
shift after looking one character, which leads to O(n/w) time. We show, finally,
that the average case is O(nlog s w/w). Clearly these complexities are worse than
those of the simple BDM algorithm for long enough patterns. We show in the
experiments up to which length our version is faster in practice.

The search cost for s; is O(nlogs w/w). With probability 1/|%[“, we find s,
and check for the rest of the pattern. The search for s; in the window costs O(w)
at most. With probability 1/|X[* we find s2 and search for sz, and so on. The
total cost incurred by the existence of ss...s37 i1s at most

M w w
2 < e = = =0(1)
2 g b

which therefore does not affect the main cost to search s; (neither in theory since the
extra cost is O(1) nor in practice since ¢ is very small). We consider the shifts now.
The search of each subpattern s; provides a shift last;, and we take the maximum
shift. Now, the shift last; participates in this maximum with probability 1/|Z|%*.
The longest possible shift is w. Hence, if we sum (instead of taking the maximum)
the longest possible shifts w weighted with their probability of participating, we
get into the same sum above, which is ¢ = O(1). Therefore, the average shift is
last; +¢ = last; + O(1), and hence the cost is that of searching s; plus lower order
terms.

Notice that, on the other hand, the multi-word simulation has worse complexity,
namely O(n logx|(m)/w), since it performs the same number of operations as BDM
(i.e. O(nlogjz(m)/m)) but for each operation it has to update O(m/w) machine
words.

5. FURTHER IMPROVEMENTS
5.1 A Linear Time Algorithm

Although our algorithm has an optimal average case, it is not linear in the worst
case even for m < w, since we can traverse the complete window backwards and
advance it by one character (e.g. T = a™, p = a™ 1b). In the worst case, the
algorithm is O(nm?/w). Our aim now is to reduce its worst case to O(nm/w), i.e.
O(n) when m = O(w).

In the last few years, studies have been undertaken to obtain, using DAWGs,
algorithms which are linear in the worst case and still sublinear on average, for
instance TurboRF? in [Czumaj et al. 1994], TurboBDM in [Czumaj et al. 1994;
Lecroq 1992]. The main idea is to avoid retraversing the same characters in the

2TurboRF uses a suffix tree, but it can be adapted to DAWGSs.
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backward window verification. When we determine that the window must be ad-
vanced in last positions, for last < m, we already know that #;,14s¢..tjtm—1 15 a
prefix of the pattern, and therefore it is possible to use this knowledge to avoid tra-
versing backwards the complete window ;4ias¢..t5 11ast+m—1. The ending position
(j +last + m — 1) of the prefix in the window is usually called the critical position.
Therefore, we want to avoid that the backward window verification continues after
reaching the critical position.

The main problem is how to determine the next shift if we are not going to
traverse again the area ¢, q5¢..t;+m—1. Recall that we have not stored information
about the next possible shifts following last (we only remembered the shortest
shift).

Two main strategies exist. The first one is to use a KMP algorithm to read again
the characters we read with the DAWG once we reach the critical position. We
keep in memory the longest prefix of the pattern that is also a suffix of the text we
read. We stop using the KMP algorithm when the maximal prefix we found is less
than half the size of the pattern. This strategy is used in [Crochemore and Rytter
1994; Lecroq 1992; Raffinot 1997b]. The algorithm obtained is linear in the worst
case, but the DAWG is used just to “help” KMP to skip some characters.

The second strategy makes a better use of the power of DAWGs by adding a
kind of BM machine to the BDM algorithm. To explain the algorithm we need the
definition of a border: the border of a string u is the set of prefixes of u which are
also suffixes.

The algorithm works as follows: if we reach the critical position after reading a
factor z with the DAWG, it is possible to know whether 2" is a suffix of the pattern

.
—If 2" is a suffix, then we have recognized the whole pattern p, and the next shift

corresponds to the longest prefix of p that is also a suffix of p, i.e the longest
border of p, which can be computed in advance.

—If 27 is not a suffix, then it appears in the pattern in a set of positions which is
given by the state we reached in the suffix automaton. If we shift to the rightmost
occurrence of z" in the pattern, like in the BM algorithm, then the shift is safe.

It is not difficult to simulate this idea in our BNDM algorithm. To know whether
the factor z we read with the DAWG is a suffix, we just have to test whether
there is a 1 at the |z|-th bit in D, i.e. d);. To get the rightmost occurrence,
we seek the rightmost 1 in D, which we can get (if it exists) in constant time with
log,(D & ~ (D—1)) 3. We implemented this algorithm under the name BM_BNDM
in the experimental part of this paper, but the plain BNDM is faster in practice.

Still this algorithm remains quadratic, because we do not keep a prefix of the
pattern after the BM shift. To make it linear time, we must keep this prefix. This
situation is shown in Figure 7.

Let u be the prefix finishing at the critical position. The TurboRF algorithm
(second variation) [Czumaj et al. 1994] uses a complicated preprocessing phase to

3In practice, it is faster and cleaner to implement this log, by shifting the mask to the right until
it becomes zero. Using this technique we can use the simpler expression D “ (D — 1) and get the
same result. However, the log, expression is important in theory because it can be computed in
constant time.
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Window

critical position
|

L] us LTI ] [Tt

Search for a factor with the DAWG

critical position
; |

1] u; | [Tt
zT

we reached the critical position, but uz" is not the pattern p.

e |

safe shift

r

border 2 .. "
of u; New critical position

Fig. 7. Skeleton of the BM shift if we reach the critical position.

associate in linear time an occurrence of z” in the pattern to a border b, of u, in
order to obtain the maximal prefix of the pattern that is a suffix of uz”. Moreover,
the TurboRF uses a suffix tree, and it is quite difficult (though not impossible) to
use this preprocessing phase on DAWGs. With our simulation, this preprocessing
phase becomes simple. To each prefix u; of the pattern p, we associate a mask
Bord[i] that registers the starting positions of the borders of u; (e included). This
table can be precomputed in O(m) time. Now, to join one occurrence of z" with
a border of u, we want the positions which start a border of u and continue with
an occurrence of z". The first set of positions is Bord[i], and the second one is
precisely the current D value (i.e. positions in the pattern where the recognized
factor z ends). Hence, the bits of X = Bord[i] & D are the positions satisfying
both criteria. As we want the rightmost such occurrence (i.e. the maximal prefix),
we take again log,(X & ~ (X — 1)). We implemented this algorithm under the
name TurboBNDM in the experimental part of this paper.

5.2 A Constant-Space Algorithm

It is also interesting to notice that, although the algorithm needs O(|X|m/w) extra
space, we can make it constant space on a binary alphabet X = {0, 1}. The trick
is that in this case, B[1] = p and B[0] = ~ B[1]. Therefore, we need no extra
storage apart from the pattern itself to perform all the operations. In theory, any
text over a finite alphabet X could be searched in constant space by representing
the symbols of X with bits and working on the bits (the misaligned matches have
to be discarded later). This involves an average search time of

<nlog2 =)

log,(mlog, |X|) )] = Normal time x log, || x (14
mlog, |X|

log, m

which if the alphabet is considered of constant size is of the same order of the
normal search time.

We present now some extensions applicable to our basic scheme, which form a
successful combination of efficiency and flexibility. The general concept is that all

log, log, |X|

)
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the extensions devised for the Shift-Or algorithm can be enriched with our approach
in order to speed them up.

6. HANDLING CLASSES OF CHARACTERS

As in the Shift-Or algorithm, we allow that each position in the pattern matches
not only a single character but an arbitrary set of characters. Some solutions for the
case of don’t care characters (i.e. pattern positions that match any character) have
been presented in [Abrahamson 1987; Fischer and Paterson 1974; Pinter 1985], but
these have been shown to be only of theoretical interest in [Baeza-Yates and Gonnet
1992]. Simple attempts to extend classical algorithms such as KMP or BM do not
work well. To the best of our knowledge, the fastest algorithm for this problem is
Shift-Or.

This type of patterns is called “limited expressions” in [Wu et al. 1996], and it is
a subset of the wealth of alternatives for “extended patterns” presented in [Baeza-
Yates and Gonnet 1992; Wu and Manber 1992]. Although formally it is enough to
say that each pattern position can match a set of characters, it is useful to give an
intuitive idea of the power allowed. The following patterns are examples of limited
expressions:

—word in case insensitive, i.e. {w,W}{o,0}{r,R}{d,D}.

—wo.d, where the ’.’ means any character, i.e. {w}{o}X{d}.

—wor[a-z], where [a-z] means any character in the range from ’a’ to ’z’, i.e.
{wH{oH{rHa z}.

—wo[abx]d, where [abx] means ’a’, b’ or ’x’, i.e. {w}{o}{a,b,x}{d}.

—w[~oulrd, where [~o0] means any character except o’ and ’u’, i.e. {w}(X —

{o,u}){r}{d}.

We denote a limited expression p = C1Cs...C,,. A word z = ziz2...2,
in X* is a factor of a limited expression p = C1C5...C,, if there exists an 1
such that z; € C;_,41,22 € Ci_py2,...,2, € C;. Such an 7 is called a po-
sitton of z in p. A factor ¢ = ziz2...2, of p = C1C3...Cy, is a suffiz if
T1 € Cm—r+17:c2 € C’i—T+27 sy Ty € C'm

Similarly to the first part of this work, we design an automaton which recognizes
all the suffixes of a limited expression p = C1C;...C,,. This automaton is not
anymore a DAWG. We call it Eztended_ DAWG. To our knowledge, this kind of
automaton has never been studied. We first give a formal construction, and then
prove its correctness.

6.1 Construction

The construction we use is quite similar to the one given for the DAWG, but with
the new definition of suffixes. For any z factor of p, we denote L-endpos(z) the
set of positions of z in p. For example, L-endpos(baa) = {3,7} in the limited
expression bfa,bJabbaa, and L-endpos(bba) = {3,6} (notice that, unlike before, the
sets of positions may be non-disjoint and no one a subset of the other). We define
the equivalence relation =g for u, v factors of p by

u =g v if and only if L-endpos(u) = L-endpos(v).
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We define v, (7,0) with : € {0,1,...,m,m+1},0 € = by

. 1+vif 1< mand o € C;
WU):{{} <

? otherwise

LEMMA 1. Let p be a limited expression and =g the equivalence relation on its
factors (as previously defined). The equivalence relation =g is compatible with the
concatenation of words.

PRrROOF. Let u and v be two different factors of p that belong to the same equiva-
lence class ¢, and let ¢ € X. S = {i1,12,..., %} is the set of positions corresponding
to g. Two cases appear:

—if uo (resp. vo) is not a factor of p, neither is vo (resp. uo). Suppose uo is not
a factor, but vo is. Then there exists a position 2 < ¢ < m where vo ends in p.
Hence v ends at ¢+ — 1. But, as u and v are at the same positions, u appears also
at position ¢ — 1 in p, and uo appears in 7. A contradiction.

—if uo (resp. vo) is a factor of p, vo (resp. uo) is also a factor of p and uo =g vo.
Assume that uo is a factor, then uo ends in p at positions S, = y(i1,0)U ... U
v¥(ix,0). As v ends at the same set of positions S as u, vo ends at S, too.
Therefore uo and vo belong to the same equivalence class.

Hence, the equivalence =g is compatible with the concatenation. [

This lemma allows us to define an automaton from our equivalence class. The
states of the automaton are the equivalence classes of =g. There is an edge labeled
by o from the set of positions {i1,42,...5k} to Yp(i1 + 1,0) Uvp(ia +1,0) U... U
¥p (it + 1, 0), if this is not empty. The initial node of the automaton is the set that
contains all the positions. Terminal nodes of the automaton are the sets of positions
that contain m. As an example, the suffix automaton of the word [a,b/aa/a,bjbaa is
given in Figure 8.

Fig. 8. Extended DAWG of the limited expression °[a,b]'a?a®[a,b]*b%a®a”.

LEMMA 2. The Extended_ DAWG of a limited expression p = C1Cs . ..C,, recog-
nizes the set of suffizes of p.

Proor. (1) Let v = uquz...u, be a suffix of p. We show that v is recognized
by Extended_ DAWG(p). We call E, = {i1, 42, ...} the set of ending positions
of w in p, which is not empty since it at least contains m. We denote:

Ey={0,1,2,... m}and E; ={ir—r+j,52—r+j..., 5 —r+j}
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Ej is the initial set of Extended DAWG(p). There is a path from Ej to a state
E'| D E, labeled ug, because E7 = vp(1,u1) Up(2,u1) U...U~p(m,u1), and
there is at least one u; in the positions E; (set of beginning positions of  in p).
Assume now there is a path from the initial state labeled uju;...u; arriving
at the set of nodes E, j < r and Ej} O E;. Let E} ; the state we reached by
using the edge labeled ;41 from E7. This state exists, because E; C E7, Ej is
not empty and u;,, appears at least at position E; ;. More than that, for the
same reason, ;1 C E;'+1- By induction, we proved that there is a path from
the initial node labeled w arriving at the set of nodes E!, which contains E,.
As F, contains m, E. also does. Therefore, E| is marked as a terminal state
in Extended_ DAWG(p) and the suffix v is recognized.

(2) If there is a path from the initial state to a final state labeled by the word u
in Extended_DAWG(p), then we show that u is a suffix of p. Let now E; be the
state we reach with u;...u;. E, contains m. To arrive at this state by reading
Up, U, must at least belong to Cp,, and the previous state, E,_;, contains
m — 1. By induction, it is clear that u, € Cpy,Uur—1 € Cp—1,... %1 € Cpy—py1,
and hence u is a suffix of p.

Therefore, Extended_DAWG(p) recognizes the set of suffixes of p. [

We can use this new automaton to recognize the set of suffixes of a limited ex-
pression p. We do not give an algorithm to build this Extended_ DAWG in its deter-
ministic form, but we simulate the deterministic automaton using bit-parallelism.

6.2 A Bit-parallel Implementation

from the above construction, the only modification that our algorithm needs is
that the B table has the i-th bit set for all characters belonging to the set of
the ¢-th position of the pattern. Therefore we simply change line 3 (part of the
preprocessing) in the algorithm of Figure 6 to

For i € 1..m,c € ¥ do If ¢ € C; then B[c] « B[] | 0™*10°~!

such that now the preprocessing takes O(|X|m) time but the search algorithm does
not change.

We combine the flexibility of limited expressions with the efficiency of a Boyer-
Moore-like algorithm. It should be clear, however, that the efficiency of the shifts
can be degraded if the classes of characters are significantly large and prevent long
shifts. However, as we show later in the experiments, BNDM is much more resistant
than some simple variations of Boyer-Moore since it uses more knowledge about
the matched characters.

We point out now another extension related to classes of characters: the text
itself may have basic characters as well as other symbols denoting sets of basic
characters. This is common, for instance, in DNA databases. We can easily handle
such texts. Assume that the symbol C represents the set {ci,...,c,}. Then we set
B[C] = Blei] | --- | Bler]- This is much more difficult to achieve with algorithms
not based on bit-parallelism.
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7. SEARCHING FOR MULTIPLE PATTERNS

Suppose we are interested in searching a set of patterns Pl...P" (where P =
p’i..pfni), i.e. reporting the occurrences of all P*’s. Assume that they are all of the
same length m, otherwise truncate them to the length of the shortest one. This
may be ineffective for patterns of very different lengths but it is a common practice
in all the algorithms of the Boyer-Moore family as well.

If the total length of the patterns does not exceed the size of a computer word,
i.e. r x m < w, we can very efficiently search all the patterns in parallel, exploiting
again the intrinsic parallelism inside computer words. This technique, based on
an arrangement described in [Baeza-Yates and Gonnet 1992], concatenates the r
patterns PL...P" as follows

P =pi p} .0} D} D} Dl e Doy Doy Dy

(i.e. all the first letters, then all the second letters, etc.) and searches P just as
a single pattern. The only difference in the algorithm of Figure 6 is that the shift
is not by one bit but by r bits in line 16 (since we have r bits per multipattern
position) and that instead of looking for the highest bit d,, of the computer word
we consider all the r bits corresponding to the highest position. That is, we replace
the old 10™~ 1! test mask by 170"(™~1) in line 12.

This method will automatically search for words of length m and keep all the bits
needed for each word. Moreover, it will report the matches of any of the patterns
and will not allow shifting more than what all patterns allow to shift.

An alternative arrangement is as follows:

p—ptp? _ p

(i.e. just concatenate the patterns). In this case the shift in line 16 is by one bit,
and the mask for line 12 is (10™~!)". On some processors a shift in one position
is faster than a shift in r > 1 positions, which could be an advantage for this
arrangement. On the other hand, in this case we must clear the bits that are
carried from the highest position of a pattern to the next one, replacing line 16
by D = (D << 1) & (1™~10)". This involves an extra operation. Finally, this
arrangement allows us to have patterns of different lengths for the algorithm of
[Baeza-Yates and Gonnet 1992] which is not possible in their current proposal.

Clearly this technique cannot be applied to the case m > w. However, if 2m < w
and » x m > w we divide the set of patterns into [r/|w/m]|] groups, so that the
patterns in each group fit in w bits. Therefore the cost to search r patterns of
length m can be made O(rm?n/w) in the worst case, and O(rn/w) in the best
case. This is respectively better than O(rmn) and O(rn/m) (which corresponds to
sequentially searching the r patterns with BDM).

8. APPROXIMATE STRING MATCHING

Approximate string matching is the problem of finding all text factors which are
at a “distance” of at most k to the pattern. This has a number of applications
in text retrieval, computational biology, pattern recognition, signal processing, etc.
Of course, the nature of the problem depends directly on the distance function we
use. Many distances exist, and among them two are commonly used: the Hamming
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and the Levenshtein (or edit) distance. We explain now how to use our algorithm
for approximate matching with these two distances.

8.1 Hamming Distance

The Hamming distance between two words is the minimal number of substitu-
tions of characters that have to be performed to make them equal. For example,
d("test","text") = 1. A number of algorithms exist to solve this problem [Baeza-
Yates and Gonnet 1994; El-Mabrouk and Crochemore 1996; Tarhio and Ukkonen
1993].

To adapt our algorithm to this problem, we still move a window of length m
on the text, and search backward a suffix u of the window that matches a pattern
factor after at most k£ substitutions. Instead of just storing one bit to know whether
u" ends at each position 7 in the reverse pattern p”, we use L = |log,(k)] + 1 bits
to encode the distance between u” and the factor of length |u| that ends at position
¢ in p". If this distance is larger than & we just encode k& + 1. We record in the
variable last the longest suffix of the window that is at distance at most & to a
pattern prefix.

When reading a new character of the window, we update the state of the search
by adding a properly spaced B mask to the current set of distances, so that each
mismatch adds 1 to the distances. Some provisions are needed to prevent the
distances to grow over k + 1 (basically clearing overflow bits). We can know in
O(1) time whether or not to update last by examining the L highest bits of the
computer word and determining whether the number is larger than % or not. If
all the distances in the computer word are greater than %k, then we can shift the
window to last since no pattern factor matches the window with % errors or less.
This fact can be tested in constant time by storing the distances plus 2X' —k — 1, so
when the distance reaches k 4+ 1 the highest bit is set. Hence when all the highest
bits are set we know that we can shift the window.

Figure 9 illustrates this algorithm. We note that most of the bit manipulation
part comes from [Baeza-Yates and Gonnet 1994].

8.2 Edit Distance

The Levenshtein distance (or just edit distance) between two words is the minimal
number of substitutions, insertions and deletions of characters needed to make them
equal. For instance, d("survey","surgery" ) = 2. A number of solutions to this
problem exist [Navarro 2000a], being [Baeza-Yates and Navarro 1999; Navarro and
Baeza-Yates 1999; Jokinen et al. 1996; Myers 1999; Navarro 1997; Wu et al. 1996]
the fastest in practice.

We present two extensions of our algorithm for approximate string matching.
Just like the original proposals they are based on, our solutions can be extended
to handle extensions of the edit distance, e.g. permitting each operation to have a
different cost.

8.2.1 Partitioning into Ezact Searching. In [Wu and Manber 1992], a simple but
very effective filter is proposed for approximate string matching. It is based on
the observation that if a pattern of length m appears with at most & errors in a
text position, and we divide the pattern in & + 1 pieces, then at least one of the
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Patterm a bbabbbababbbb
D [1[4[2[2[2[4]1]3]2[2]3[-]- |-

last

|
LI T T [[[alafblal] [TTT[TITITIIT]]

-
Search backward for a factor with at most 1 error
Record in last the longest prefix that matches with at most 1 error

Pattermn abbabbbababbbb
D [3[3[5[2[3[3][3][5]-[-]-[-]-]-

last

|
LD [ Ibbblalafblal [ [ [ [ [T [T[T[1]]

Fail to recognize a factor with at most 1 error

LT [ebblalablal [T LI

safe shift New window

Fig. 9. Basic search for approximate pattern matching with the Hamming distance.

pieces will appear with no errors in the occurrence (since k errors cannot alter & +1
pieces). Therefore, they propose to split the pattern into £+1 pieces of equal length
|m/(k +1)] (discarding some characters at the end if necessary) and searching all
the pieces in parallel. A classical algorithm is run on the text areas surrounding
the occurrences of pattern pieces, therefore filtering out all the rest of the text.

The multipattern search mechanism they propose is very similar to our setup
of Section 7 (although the bit arrangement is different). However, they use the
Shift-Or algorithm to search and therefore their efficiency is limited. On the other
hand, they keep their ability to handle classes of characters and other extensions.

Later, [Navarro and Baeza-Yates 1999] used a multipattern Boyer-Moore strategy
to perform the above search, which at the cost of not allowing limited expressions
gives a much more efficient algorithm. This algorithm was shown to be the fastest
in practice when the number of errors is low enough (this is, k/m < 1/(3logz m)
on random text and k/m < 1/4 on natural language).

Our multipattern search technique presented in Section 7 combines the best of
both worlds: our performance is comparable to that of the algorithms of the Boyer-
Moore family, and we keep the flexibility of the Shift-Or approach to handle classes
of characters. In this case the Sunday extension to multipattern search used in
[Navarro and Baeza-Yates 1999] is slightly faster in general because the search
patterns are rather short. We show later their relative performance.

8.2.2 A New Bit-Parallel Algorithm. Another algorithm for approximate string
matching is presented in [Wu and Manber 1992]. It is based on the bit-parallel
simulation of an NFA built from the pattern, which recognizes its approximate
occurrences in the text. In [Baeza-Yates and Navarro 1999] this automaton is
simulated using a different technique.

Our approach is based on the same automaton. We modify the NFA so that it
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Fig. 10. Our NFA to recognize suffixes of the pattern "survey" reversed. Unlabeled arrows match
any character.

recognizes not only the whole pattern but also any suffix of the pattern, allowing
up to k errors.

Figure 10 illustrates the modified NFA. First disregard the state labeled “I” and
the e-transitions leaving it. Each row denotes the number of errors seen. The
first one 0, the second one 1, and so on. Every column represents matching the
pattern up to a given position. Horizontal arrows represent matching a character,
vertical arrows represent insertions in the pattern, solid diagonal arrows represent
substitutions, and dashed diagonal arrows represent deletions in the pattern (they
are e-transitions). The automaton accepts a text position as the end of a match
with & errors whenever the rightmost state of the last row is active.

Consider now the initial state “I” we added. The e-transitions leaving from the
initial state allow the automaton to recognize, allowing %k errors, not only the whole
pattern but also any suffix of it. Our second modification on the original automaton
of [Baeza-Yates and Navarro 1999; Wu and Manber 1992] is the removal of a self-
loop at the top-left state, which allowed it to start a match at any text position.

In the case of edit distance, the size of a text occurrence ranges from m — k to
m-+k. We move a window of length m —k on the text, and search backward a suffix
u of the window which matches the pattern with at most k errors. This search is
done using the NFA explained above, which is built on the reversed pattern. We
record in the variable last the longest suffix of the window that is at distance at
most k to a pattern prefix. We can know in constant time when to update last by
checking whether the rightmost bottom state of the NFA is active. On the other
hand, if the NFA runs out of active states we know that a match is not possible in
the window and we can shift to the last position where we found a prefix, as in the
exact matching algorithm.

Each time we move the window to a new position we restart the automaton with
all its states active, which represents setting the initial state to active and letting
the e-transitions flush this activation to all the automaton (the states in the lower-
left triangle are also activated to allow initial insertions). If after reading the whole
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window the automaton still has active states, then it is possible that the current
window starts an occurrence, so we use the traditional automaton to compute the
edit distance from the initial window position in the text. After reading at most
m + k characters we have either found a match starting at the window position or
left the automaton without active states.

The rationale for this algorithm is as follows. We are interested only in occur-
rences that start at the current window position. Any occurrence has a length
between m — k and m + k. If there is an occurrence of the pattern p starting at
the window position with & errors, then a prefix of p must match the first m — &
characters with & errors or less. Hence, we cannot miss an occurrence if we keep
count of the matches of all the pattern prefixes in a window of length m — k. If the
automaton runs out of active states, then we cannot miss the start of an occurrence
and we shift the window to the next candidate. Finally, if the automaton has active
states after reading the complete window, then a match starting at the window is
possible and we have to check it explicitly since we can only ensure that a factor of
the pattern matches in the window.

The automaton can be simulated in a number of ways. Wu and Manber [Wu
and Manber 1992] do it row-wise (each row of the automaton is packed in a com-
puter word), while Baeza-Yates and Navarro [Baeza-Yates and Navarro 1999] do it
diagonal-wise. In this case we prefer the technique of Wu and Manber, since in the
other the initial diagonals of length < k are discarded and they are needed here.

9. EXPERIMENTAL RESULTS

We ran extensive experiments on random and real-world texts in order to show
how efficient are our algorithms in practice. The experiments were run on a Sun
UltraSparc-1 of 167 MHz, with 64 Mb of RAM and a machine word of 32 bits,
under Solaris 2.5.1. We measured CPU times and repeated the experiments many
times so that the relative error of the results is +2% with 95% confidence (this
involved thousands of repetitions).

All the algorithms were implemented by ourselves with a uniform I/O interface.
The text is read in chunks of 64 Kb, which gives the best tradeoff between locality of
reference and disk accesses in our machine. We use open instead of fopen because it
is much faster. The pattern is placed at the end of the text buffer to avoid checking
for the end point all the times. We made our best coding effort to implement all
the algorithms, carefully optimizing the register usage and turning on the compiler
optimizations.

We used texts of 10 Mb of size over which we searched many patterns. We ran
experiments on random text with uniformly distributed alphabets of sizes from 2 to
64, as well as non-random text, such as English text (from the TREC Wall Street
Journal collection) and DNA sequences (from “h.influenzae”). For random text
the patterns were randomly generated on the same alphabet, while for non-random
texts the patterns were selected randomly from the same text (at word beginnings
in the case of natural language).

9.1 Structural Measures

Before measuring real CPU times, we will study the number of operations of dif-
ferent kinds executed by our algorithms in comparison to the rest. These measures
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help explain why the simple BNDM version is better than the other algorithms in
a wide range of cases. We have included BDM, the simple BNDM, our two variants
BM_BNDM and TurboBNDM, the classical Boyer-Moore, its Horspool and Sun-
day versions and the linear time algorithms that do not improve with the pattern
length: the naive algorithm, KMP and Shift-Or.

Figure 11 shows the number of characters inspected on random texts of different
alphabet sizes. In these plots BDM and BNDM are indistinguishable. As can
be seen, the theoretical improvements of BM_BNDM and TurboBNDM have a
practical effect only for binary alphabets and short patterns (m < 10). Only Boyer-
Moore comes close to BDM/BNDM for small alphabet sizes, but it gets farther and
farther as the pattern length grows. From the linear time algorithms, Shift-Or
performs exactly one access to each text character, followed by KMP and Naive.

As the alphabet size grows, all the Boyer-Moore algorithms become closer to
BDM/BNDMs. The classical Boyer-Moore becomes indistinguishable from BDM
for an alphabet of size 16 (which is similar to natural language), while Horspool
and Sunday never get close enough. The linear time algorithms also get closer to
Shift-Or, but they never reach it.

This shows that our new algorithms are the best in terms of number of text
characters inspected, but they are not better than BDM and (sometimes) than
Boyer-Moore in this respect.

To get more insight on the reasons behind the different behavior of the algorithms,
Figure 12 shows the number of table accesses performed by the algorithms. By a
“table access” we mean any access to an indexed array (including the pattern itself).
We do not pay attention to the sizes of the tables, since all are of size O(m + |XZ|)
and very small in practice. In all cases the tables fit even in very small caches, so
their sizes should not affect the relative performance of the algorithms.

As can be seen, BDM and Boyer-Moore pay their few accesses to the text with a
high number of table accesses. In this respect, the BNDM algorithm and its variants
are by far superior. The relative performances between our three algorithms remain
unchanged when considering table accesses. About the linear time algorithms, we
see that KMP also pays a high price for its guaranteed linear time, being worse than
the naive algorithm in terms of table accesses. For non binary alphabets we do not
show KMP anymore. It is stabilized around 3 table accesses per text character.

For higher alphabet sizes, BDM gets closer to the BNDM family, while Boyer-
Moore stays far away, even farther than Horspool and Sunday.

The third part of the cost is given by the number of register accesses. We un-
derstand that every non-indexed variable is stored in a register, which is realistic
in modern architectures with many registers and for our algorithms that normally
have a few important variables. We observe that, despite that the register accesses
are much cheaper than the previous operations considered, the number of accesses
is an order of magnitude higher, so they should have an effect on the performance.

Only here we see the price paid by BM_BNDM and TurboBNDM. These more
complex algorithms inspect (slightly) less text characters and table cells than the
simple BNDM, but they pay this with much more accesses to register variables.
BDM and Boyer-Moore also stay far away from BNDM. On the other hand, KMP
and the naive algorithm are much more expensive than Shift-Or, KMP stabilizing
at a higher cost for larger alphabets (they are not shown in all the plots, but they
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Fig. 11. Fraction of text characters inspected, for random text and increasing pattern length, on
different alphabet sizes.
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stay about the same as for |Z| = 4).

For higher alphabets, we see that BDM gets closer to BNDM (but it is always
worse than BM_BNDM and TurboBNDM), while Boyer-Moore stays definitely more
expensive. A much more interesting effect is achieved by Sunday, which progres-
sively gets better than BNDM as the alphabet size grows.

As we have seen, BNDM has important algorithmic advantages over its competi-
tors. It inspects far less text characters than Horspool and Sunday, it pays far less
table accesses than Boyer-Moore and BDM, and it pays far less register accesses
than BM_BNDM and TurboBNDM. Hence, BNDM provides the best combination
when all the costs are considered together.

In which follows we see see how these algorithmic advantages map into real
improvements in the CPU time. There are many reasons that make this mapping
nontrivial to predict. For example, different machines will have different access
costs in their memory hierarchy. But more important, the pipelining mechanism of
the processor may permit performing some operations in parallel (e.g. a memory
fetch can be done in parallel with some register accesses), so it is not just a matter
of counting accesses multiplied by their relative costs.

9.2 Exact Matching

We consider real CPU times from now on. We included in this comparison all the
algorithms of the previous experiments. To make the plots more readable, we re-
moved the least interesting algorithms: Horspool is discarded because it is strictly
worse than Sunday and also slower in practice, the naive algorithm is always slower
than Shift-Or (4-10 milliseconds per megabyte), KMP is even slower (11-14 mil-
liseconds per megabyte) and, in some cases, Shift-Or (always around 4 milliseconds
per megabyte) is outside the range of interesting values.

Figure 14 shows the results for random text. For small alphabet sizes (up to 4)
BNDM is the fastest algorithm, provided the pattern is not too short. In particular,
simple BNDM is slightly faster than the BM_BNDM and TurboBNDM variations
because of the number of register accesses.

BNDM is especially good for small alphabets since it uses more information than
others on the matched text, and pays less table and register accesses to do it.
BDM and Boyer-Moore also use enough information on the matched text, but they
pay more processing time. Sunday pays little processing but it accesses more text
characters.

As the alphabet size grows, the differences in terms of text accesses with the
Sunday algorithm start to blur, and Sunday starts to dominate for short patterns.
The area where BNDM is the fastest starts to shrink, totally disappearing for
|2| > 32. Only Sunday beats BNDM, never by more than 20%.

We do not show the results for longer patterns but comment the main result:
BNDM ceases to improve for patterns longer than w = 32 letters, so BDM eventu-
ally becomes faster. This cut point is close to m = 50.

Figure 15 shows the results on non-random text: English and DNA. The results
are very similar to random text for |X| = 16 and |X| = 4, respectively. That is,
BNDM is reasonably competitive on English and the fastest for DNA. On French
and Spanish texts we obtained results similar as on English.
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9.3 Classes of Characters

We show some illustrative results using classes of characters, which were generated
as follows: we generated random texts of alphabet sizes |X| = 4,16 and 64, inside
which we searched random patterns of length 15 (resp. 30). In those patterns we
introduced from 1 to 7 (resp. 1 to 15) don’t cares randomly placed. By a don’t care
we mean a class of characters that matches all the alphabet. The results are shown
in Figure 16. Our algorithm is the fastest in all cases, far below Shift-Or (which
stays almost constant whatever the number of don’t cares is), Sunday and Boyer-
Moore extended to classes of characters*. As the length of the patterns grows, the
difference between our algorithm and the others increases sharply.

9.4 Multipattern Search

We present in Figure 17 some results on our multipattern algorithm, to show that
although we take the minimum shift among all the patterns, we can still do better
than searching each pattern separately. We take random groups of five patterns
of length 6 and show how our multipattern algorithm (Multi-BNDM, in its first
and second versions) performs against five sequential searches with our sequential
algorithm (BNDM), and against the parallel version proposed in [Baeza-Yates and
Gonnet 1992] (Multi-Shift-Or).

As it can be seen, our second arrangement is slightly more efficient than the
first one, both are always more efficient than a sequential search (although the
improvement is not five-fold but two- or three-fold because of shorter shifts), and
both more efficient than the proposal of [Baeza-Yates and Gonnet 1992] provided
5> 8.

9.5 Searching Allowing Substitutions

We show now the performance of our approximate string matching algorithm for
Hamming distance. Figure 18 shows the results for ,m = 10. We show random

4These extensions consist simply in redefining the equality among characters when a don’t care is
involved.
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text with |Z| = 8 as well as English text. We included in the comparison all the
algorithms we are aware of: Shift-Add [Baeza-Yates and Gonnet 1994; Wu and
Manber 1992], BY-filter [Baeza-Yates and Gonnet 1994], EMC-filter [El-Mabrouk
and Crochemore 1996], TU-filter [Tarhio and Ukkonen 1993], and Counting [Baeza-
Yates and Gonnet 1994]. We also included some algorithms that were designed
for edit distance and that we adapted for this simpler case: NFA [Baeza-Yates
and Navarro 1999], Part.Ex. [Navarro and Baeza-Yates 1999] and DFA [Navarro
1997]. Our algorithm is called simply BNDM in the plots, and we include the
Naive algorithm as well (the trivial extension of the naive exact string matching
algorithm).

In this case our algorithm is the fastest for moderate error levels (i.e. & < 3).
The same happens for 4 < |X| < 16 and pattern lengths between 10 and 16.
It is interesting to notice that for Hamming distance our algorithm beats exact
partitioning [Navarro and Baeza-Yates 1999], which is the fastest known algorithm
for edit distance.

In the areas where exact partitioning is faster, our algorithm is still reasonably
competitive. Moreover, we can efficiently handle classes of characters, while exact
partitioning quickly degrades if it uses the Sunday search algorithm. On the other
hand, exact partitioning can be made more resistant to errors by using our extension
of BNDM to multipattern search.

9.6 Searching Allowing Errors

We show now the performance of our extensions to deal with errors. We first show
how our multipattern algorithm performs when used for approximate string match-
ing. This algorithm is called Ex.Part./BNDM. We include also the fastest known
algorithms in the comparison: Ex.Part./Sunday is the same algorithm except that
Sunday is used for the multipattern search [Navarro and Baeza-Yates 1999] (this
is the fastest known algorithm for low error levels); Ex.Part./Shift-Or is the same
using Shift-Or for the multipattern search [Wu and Manber 1992]; Bit.Par.NFA
[Baeza-Yates and Navarro 1999] and Bit.Par.Matrix [Myers 1999] are bit-parallel
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Fig. 18. Times in milliseconds per megabyte, for approximate search under Hamming distance
on random and English text. We use m = 10 and the # axis is the number of errors allowed.

algorithms; and finally we include algorithms based on Counting [Jokinen et al.
1996], DFA [Navarro 1997] and 4-Russians [Wu et al. 1996].

Figure 19 shows the results for two alphabet sizes and m = 20 (we obtained
similar results for m = 10 and 30). As it can be seen, our implementation of exact
partitioning is quite close to Ex.Part./Sunday (sometimes even faster) and therefore
our algorithm is a competitive yet more flexible replacement, while it is faster than
the other flexible candidate Ex.Part./Shift-Or [Wu and Manber 1992].

Since BNDM is not very good for very short patterns, our algorithm works better
for m = 20 and 30. Moreover, it ceases to be competitive for higher error levels
since the length of the patterns to search for is O(m/k).
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Fig. 19. Times in milliseconds per megabyte, for random text on patterns of length 20, and || =
16 and 64, using edit distance. The z axis is the number of errors allowed.

Finally, we show the performance of our new algorithm for approximate string
matching based on the NFA simulation (NFA/BNDM). Figure 20 shows the results.
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As the algorithm works well for very low error levels, we show only the case £ = 1,
for random (|X| = 4) and English text. In the first case (very similar to DNA) our
algorithm outperforms all the others (this happens also for £ = 2 and k£ = 3). For
English text, it can be seen that for very low error levels and intermediate pattern
lengths, our algorithm becomes very close to [Navarro and Baeza-Yates 1999], which
is the fastest known algorithm for low error levels, beating all the other algorithms
(we have shown only those that are the fastest for these cases).

Random text, alphabet size 4, k=1 error English text, k=1 error
450 T . . . : :
NFA/BNDM —— 160 | j
400 Ex.Part./Sunday —— 1
350 | Bit.Par.NFA —=— | 140 ¢ 1
Bit.Par.Matrix ——
| i 120 NFA/BNDM —— |
o a Ex.Part/Sunday ——
2 2 ol Bit.ParNFA —=— |
g g Bit.Par.Matrix ——
DFA ——
60
40
0 L L L L 20 L L L L
5 10 15 20 25 30 5 10 15 20 25 30
Pattern length (m) Pattern length (m)

Fig. 20. Times in milliseconds per megabyte, for random and English and & = 1 error under edit
distance.

10. CONCLUSIONS AND FUTURE WORK

We have presented a new text searching algorithm called BNDM, which is based on
the bit-parallel simulation of a nondeterministic suffix automaton. This automaton
has been previously used in deterministic form in an algorithm called BDM. Bit-
parallelism is a general way to simulate nondeterministic automata using the bits
of the computer word, which has up to now led to flexible but slow algorithms for
exact searching and to competitive algorithms for approximate searching. Hence,
BNDM obtains the best of both worlds: the speed of BDM and the flexibility of
bit-parallelism.

We present also some variations called TurboBNDM and BM_BNDM which are
derived from the corresponding variants of BDM. These variants are much more
simply implemented using bit-parallelism and become practical algorithms. Tur-
boBNDM has an average performance very close to BNDM and O(n) worst case.
We have also extended BNDM in simple ways to solve a large set of extensions over
the basic string matching problem, such as matching classes of characters, multiple
pattern matching and approximate pattern matching.

Our new algorithm is experimentally shown to be very fast in practice. For ex-
act patterns it is the fastest on small alphabets and remains competitive for larger
ones. It is also competitive when dealing with extended patterns, being in particu-
lar the fastest to handle classes of characters and some cases of approximate pattern
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matching. In particular, BNDM seems to be a very attractive choice in computa-
tional biology applications, since it is the fastest to search DNA text for patterns
of lengths between 7 and 50, and its flexibility is necessary in many applications of
that field.

Recently, BNDM has been successfully extended to deal with other extensions of
the search problem, such as regular expression searching [Navarro and Raffinot 1999]
and PROSITE patterns for protein searching (i.e. permitting classes of characters
and bounded length gaps) [Navarro and Raffinot 2000]. A software called nrgrep
[Navarro 2000b] able of exact and approximate searching of patterns containing
classes of characters, optional and repeatable characters and regular expressions,
has been built based on the ideas presented in this paper.

The new suffix automaton we introduce and simulate for classes of characters has
never been studied. A study of this new automaton (maximal number of nodes and
edges, minimality, algorithms to build it, average number of nodes and edges) would
be interesting by itself and should permit us to extend the BDM and TurboRF to
handle classes of characters.
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