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Abstract

Compressed Suffix Arrays (CSAs) offer the same functionality as classical suffix
arrays (SAs), and more, within space close to that of the compressed text, and
in addition they can reproduce any text fragment. Furthermore, their pattern
search times are comparable to those of SAs. This combination has made CSAs
extremely successful substitutes for SAs on space-demanding applications. Their
weakest point is that they are orders of magnitude slower when retrieving the
precise positions of pattern occurrences. SAs have other well-known shortcom-
ings, inherited by CSAs, such as not retrieving those positions in a useful order.
In this paper we present new techniques that, on the one hand, improve the
current space/time tradeoffs for retrieving pattern occurrences in CSAs, and on
the other, efficiently support extended pattern locating functionalities, such as
retrieving occurrences in text order or limiting the occurrences to within a text
window. Our experimental results display considerable savings with respect to
the baseline techniques in many cases of interest: in some cases we outperform
their time by a factor of two or three.

1. Introduction

Suffix arrays [I6] 28] are text indexing data structures that support various
pattern matching functionalities. Built on a text T[1,n] over an alphabet [1, o],
the most basic functionality provided by a suffix array (SA) is to count the
number of times a given pattern P[1,m| appears in 7. This can be done in
O(mlogn) and even O(m + logn) time [28]. Once counted, SAs can retrieve
each of the occ positions of P in T in O(1) time (this is called reporting or
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locating the pattern occurrences). A suffix array uses O(nlogn) bits of space
and can be built in O(n) time [25] 24} 23].

The space usage of suffix arrays, albeit “linear” in classical terms, is asymp-
totically larger than the nlg o bits needed to represent T’ itsele| Since the year
2000, two families of compressed suffix arrays (CSAs) have emerged [32]. One
family, simply called CSAs [19] 20, 38|, [39] [18]], is built on the compressibility of
a so-called ¥ function (see details in the next section), and simulates the basic
SA procedure for pattern searching, achieving the same O(mlogn) counting
time of basic SAs. A second family, called FM-indexes [0} [7, [8, [1], built on the
Burrows-Wheeler transform [3] of T' and on a new concept called backward-
search, which allows O(mlog o) and even O(m) time for counting occurrences.
The counting times of all CSAs are comparable to those of SAs in practical
terms as well [5]. Their space usage can be made asymptotically equal to that
of the compressed text under the k-th order empirical entropy model, and in
all cases it is O(nlogo) bits. Within this space, CSAs support even stronger
functionalities than SAs. In particular, they can reconstruct any text segment
T[l,r], as well as to compute “inverse” suffix array entries (again, details in the
next section), efficiently. Reproducing any text segment allows CSAs to replace
T, further reducing space.

The weakest part of CSAs in general is that they are much slower than
SAs at retrieving the occ positions where P occurs in T. SAs require basically
occ contiguous memory accesses. Instead, both CSA families use a sampling
parameter s that induces an extra space of O((n/s)logn) bits (and therefore
s is typically chosen to be Q(logn)); then U-based CSAs require O(s) time
per reported position and FM-indexes require O(slogo). In practical terms,
all CSAs are orders of magnitude slower than SAs when reporting occurrence
positions [5], even when the distribution of the queries is known [I0]. Text
extraction complexities for windows T'[l, 7] are also affected by s, but to a lesser
degree: they require O(s +r — 1) steps.

Although widely acknowledged as a powerful and flexible tool for text search-
ing activities, the SA has some drawbacks that can be problematic in certain
applications. The simplest one is that it retrieves the occurrence positions of
P in an order that is not left-to-right in the text. This complicates displaying
the occurrences in order (unless one obtains and sorts them all), as for example
when displaying the occurrences progressively in a document viewer. A related
one is that there is no efficient way to retrieve only the occurrences of P that
are within a window of T unless one uses Q(n logn) bits of space [27, 2] B3] 21].
This is useful, for example, to display occurrences only within some documents
of a collection (T being the concatenation of the documents), for instance only
recent news in a collection of news documents.

In this paper we present new techniques that speed up the basic pattern
locating functionalities of CSAs, and also efficiently support extended function-
alities. Our experimental results show that the new solutions outperform the

IWe use Ig to denote logarithm to the base 2.



baseline solutions, in many cases of interest, by a wide margin. The detailed
breakdown of our contributions is as follows.

1.

We unify the samplings for pattern locating and for displaying text sub-
strings into a single data structure, by using the fact that they are essen-
tially inverse permutations of each other. This yields improved space/time
tradeoffs for locating pattern positions and displaying text substrings, es-
pecially in memory-reduced scenarios where large values of s must be used.

. We show that CSAs, which are based on the ¥ function, can be further

improved by using two methods of representing increasing lists, which
were recently applied successfully to inverted indexes [44] B5]. Our exper-
iments show that adapting these techniques to CSAs results in improved
space/time tradeoffs for small and large alphabet inputs. For example,
for a word parsed text, the new solutions are more than twice as fast as
previous state-of-the-art CSA implementations.

The occ positions of P have variable locating cost in a CSA. We use a data
structure that takes 2n+o(n) additional bits to report the occurrences of P
from cheapest to most expensive, thereby making reporting considerably
faster when only some occurrences must be displayed (as in search engine
interfaces, or when one displays results progressively and can show a few
and process the rest in the background). Our experiments show that,
when reporting less than around 15% of the occurrences, this technique
is faster than reporting random occurrences, even when the baseline uses
those extra 2n + o(n) bits to reduce s. A simple alternative that turns
out to be very competitive is just to report first the occurrences that are
sampled in the CSA, and thus can be reported at basically no cost.
Variants of the previous idea have been used for document listing [31] and
for reporting positions in text order [33]. We study this latter application
in practice. While for showing all the occurrences in order it is better
to extract and partially sort them, one might need to show only the first
occurrences, or might have to show the occurrences progressively. Our
implementation becomes faster than the baseline when we report a frac-
tion below 25% of the occurrences, and improves for lower fractions. For
example, we report three times faster the first 5% of the occurrences, even
letting the baseline spend those 2n + o(n) extra bits on a denser sampling.
Finally, we extend this second idea to report the text positions that are
within a given text window. While the result is not competitive for win-
dows located at random positions of 7', our method is faster than the
baseline of filtering the text positions by brute force when the window
is within the first 15% of T'. This is particularly useful in versioned col-
lections or news archives, when the latest versions/dates are those most
frequently queried.

The improved sampling we propose is now available in the Succinct Data
Structure Library (spsL). The library contains state-of-the-art C++11 imple-
mentations of many succinct data structures proposed in over 40 research pub-
lications. It is available in at |https://github.com/simongog/sdsl-lite.
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2. Compressed Suffix Arrays

Let T[0,n — 1] be a text over the alphabet [0,0 — 1]. Then a substring
Tli,n — 1] is called a suffiz of T, and is identified with position i. A suffiz
array SA[0,n — 1] is a permutation of [0,n — 1] containing the positions of the
n suffixes of T in increasing lexicographic order (thus the suffix array uses at
least nlgn bits). Since the positions of the occurrences of P[0,m — 1] in T are
precisely the suffixes of T that start with P, and those form a lexicographic
range, counting the number of occurrences of P in T is done via two binary
searches using SA and T, within O(mlogn) time. Once we find that SA[sp, ep]
contains all the occurrences of P in T, their number is occ = ep — sp + 1 and
their positions are SA[sp], SA[sp+1],...,SA[ep]. With some further structures
adding up to O(nlogn) bits, suffix arrays can do the counting in O(m + logn)
time [28]. This can be reduced to O(m) by resorting to suffix trees [43], which
still use O(nlogn) bits but too much space in practice.

Our interest in this paper is precisely using less space while retaining the SA
functionality. A compressed suffiz array (CSA) is a data structure that emulates
the SA while using O(nlogo) bits of space, and usually less on compressible
texts [32]. One family of CSAs [19] 20} [38] [39, 18] builds on the so-called ¥
function: W(i) = SA~1[SA[i] + 1], where SA~! is the inverse permutation of the
suffix array (given a text position j, SA71[j] tells where in the suffix array is
the pointer to the suffix T'[j,n — 1]). Thus, if SA[i] = j, ¥(i) tells where is
j + 1 mentioned in SA, SA[U(¢)] = SA[i]] + 1 = j + 1. It turns out that array
U is compressible up to the k-th order empirical entropy of T' [29]. With small
additional data structures, ¥-based CSAs find the range [sp, ep] for P[0, m — 1]
in O(mlogn) time.

A second family, FM-indexes [0} [7, 8 [I], build on the Burrows-Wheeler
transform [3] (BWT) of T', denoted T°**, which is a reversible permutation of the
symbols in T" that turns out to be easier to compress. With light extra structures
on top of T®"*  one can implement a function called LF(i) = SA™'[SA[i] — 1],
the inverse of ¥, in time at most O(log o). An extension to the LF function is
used to implement a so-called backward-search, which allows finding the interval
[sp, ep] corresponding to a pattern P[0, m—1] in O(mlog o) and even O(m) time
[1]. Some ¥-based CSAs have also been adapted to backward search, retaining
their O(mlogn) search complexity but reducing time in practice [39).

Once the range SA[sp,ep] is found (and hence the counting problem is
solved), locating the occurrences of P requires finding out the values of SA[k] for
k € [sp, ep], which are not directly stored in CSAs. All the practical CSAs use
essentially the same solution for locating occurrences [32]. Text T is sampled at
regular intervals of length s, and we store those sampled text positions in a sam-
pled suffiz array SA;[0,n/s], in suffix array order. More precisely, we mark in a
bitmap B0, n— 1] the positions SA~![s-j], for all j, with a 1, and the rest are Os.
Now we traverse B left to right, and append the value SA[i]/s to SA, for each
i such that B[i] = 1. Array SA, requires (n/s)lg(n/s) + O(n/s) bits of space,
and B can be implemented in compressed form using (n/s)lg s+ O(n/s) +o(n)
bits [36], [34], for a total of (n/s)lgn + O(n/s) + o(n) bits.



To locate SA[i], we proceed as follows on a W-based CSA. If B[i] = 1,
then the position is sampled and we know its value is in SA,, precisely at
position rank;(B, i), which counts the number of 1s in B[1,4] (this function
is implemented in constant time in the compressed representation of B [36]).
Otherwise, we test B[W(4)], B[¥?(i)], and so on until we find B[W¥(i)] = B[i'] =
1. Then we find the corresponding value at SA,; the final answer is SA[i] =
SAgranky(B,i)] - s — k. The procedure is analogous on an FM-index, using
function LF, which traverses T' backwards instead of forwards. The sampling
guarantees that we need to perform at most s steps before obtaining SA[i].

To display T'[l, 7] we use the same sampling positions s-j, and store a sampled
inverse suffiz array SA;'[1,n/s] with the suffix array positions that point to
the sampled text positions, in text order. More precisely, we store SA;'[j] =
SA71[j-s] for all j. This requires other (n/s)lgs+0(n/s) bits of space. Then, in
order to display T'[l,r] with a ¥-based CSA, we start displaying slightly earlier,
at text position |I/s] - s, which is pointed from position i = SA;![|l/s]] in SA.
The first letter of a suffix SA[i] is easily obtained on all CSAs if ¢ is known.
Therefore, displaying is done by listing the first letter of suffixes pointed from
SA[i], SA[W(i)], SA[¥2(4)], ... until covering the window T'[l,r]. The process is
analogous on FM-indexes. In total, we need at most s 4+ r — [ steps.

This mechanism is useful as well to compute any SA~![j] value. If j is a
multiple of s then the answer is at SA;[j/s]. Otherwise, on a W-based CSA,
we start at i = SAT![|j/s]] and the answer is WF(i), for k = j — [j/s] - s
(analogously on an FM-index), taking up to s steps. Computing SA~![j] is
useful in many scenarios, such as compressed suffix trees [40] [12] and document
retrieval [41].

3. A Combined Structure for Locating and Displaying

In order to have a performance related to s in locating and displaying text,
the basic scheme uses 2(n/s)lgn + O(n/s) + o(n) bits. In this section we show
that this can be reduced to (1 +€)(n/s)lgn + O(n/s) + o(n) bits, retaining the
same locating cost and increasing the display cost to just 1/e + s+ r — [ steps.

The key is to realize that the SAs and SA;! are essentially inverse permu-
tations of each other. Assume we store, instead of the value i = SA;![j], the
smaller value i’ = SA;1*[j] = rank;(B,i). Since B[i] = 1, we can retrieve i
from 4’ with the operation ¢ = select; (B,4'), which finds the i'th 1 in B and is
implemented in constant time in the compressed representation of B [36]. Now,
at the cost of computing select; once when displaying a text range, we can store
SA;1* in (n/s)lg(n/s) +O(n/s) bits. What is more important, however, is that
SAg and SA;'* arrays are two permutations on [0,7/s], and are inverses of each
other. Fig.|l| shows an example.

Theorem 1. Permutations SAs and SA7'* are inverses of each other.

PROOF. SA,[SATV[j]] = SA[rank (B, SAZ[j])] = SA[SAT'[5])/s =
SA[SAT[j - s]l/s = (j-s)/s =]
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)

0 13 6 0 $ SA;,= 4 1 0 2 3
1 12 7 1 a$ -1 _

2 4 9 0 atenatsea$ SA7 = 6 5 813 1
3 8 5 0 atsea$ SA-1*= o9 {1 3 4 0
4 11 2 0 ea$ s

5 3 12 1 eatenatsea$

6 0 8 1 eeleatenatsea$

7 1 10 0 eleatenatsea$ SA=i - 5] = SA7M[i]

8 6 3 1 enatsea$ s

9 2 13 0 1leatenatsea$ = select(B, SA;*[i])
10 7 11 0 natsea$

11 10 4 0 sea$

12 5 1 0 tenatsea$

13 9 0 1 tsea$

Figure 1: Example of a suffix array, its inverse, and the sample arrays SAs, the conceptional
and formerly used SA~1, and SA~1* for s = 3.

Munro et al. [30] showed how to store a permutation w[0,n' — 1] in (1 +
e)n’lgn’ + O(n') bits, so that any m(i) can be computed in constant time and
any 7~ 1(j) in time O(1/¢). Basically, they add a data structure using en’lgn’+
O(n') bits on top of a plain array storing 7. By applying this technique to SAs,
we retain the same fast access time to it, while obtaining O(1/¢€) time access to
SA;1* without the need to represent it directly. This yields the promised result
(more precisely, the space is (1 4 €)(n/s)lg(n/s) + (n/s)lgs + O(n/s) + o(n)
bits). We choose to retain faster access to SAs because it is more frequently
used, and for displaying the extra O(1/e) time cost is blurred by the remaining
O(s +r —1) time. One is free, of course, to choose the opposite.

Our experiments will show that this technique is practical and yields a sig-
nificant improvement in the space-time tradeoff of CSAs, especially when the
space is scarce and relatively large s values must be used.

4. Faster Locating on ¥-based CSAs

CSAs based on ¥ built over a sequence of integer tokens are remarkably
similar to inverted indexes. Inverted indexes are generally built over a tokenized
and stemmed representation of a given input text. In an inverted index, each
unique parsed token ¢ is represented (among other components) by a postings
list consisting of an increasing sequence of document identifiers containing t.
Many storage schemes have been proposed to efficiently compress and process
these increasing sequences of integers.

Array W is the concatenation of o increasing sequences, one for each of the
o symbols in the input. Those sequences do not represent document identifiers,
but rather suffix array positions. Usually, the values in ¥ are differentially
encoded using Elias-y/é codes [39]. The codes have been engineered to allow
efficient decoding using lookup tables [22].

In practice, the complete ¥ array is encoded as a continuous sequence of
integers. The sequence is split into blocks of equal size (e.g., 128 elements) —



to allow random access into W — which are then differentially encoded using
Elias codes. A transition between two runs of adjacent symbols in ¥ within a
block can result in difference encoding generating a negative number. Instead
of using a “run aware” encoding scheme where differences between symbols in
adjacent runs are not computed, the negative numbers are encoded as large
positive numbers. This simplifies the encoding and decoding process and avoids
storing additional information to identify run transitions in the encoded data.

Here we explore how recent advances in compression techniques used for
postings list compression can be applied to W-based CSAs. Specifically, we
explore the applicability of PForDelta based compression codes [44] and parti-
tioned Elias-Fano inspired encodings [26] to compress .

Replacing Elias-v/6 coding by PForDelta. The PForDelta family of com-
pression codes encodes differences between adjacent integers using a fixed num-
ber of b bits; numbers needing more bits are encoded separately as exceptions.
Different schemes exist which employ different strategies to choose b and to
encode the exceptions. In practice, the PForDelta scheme providing the best
compression effectiveness [26] is the OptPFor scheme of Yan et al. [44]. OptPFor
chooses b optimally for each encoded block and uses Simple16 [45] to encode ex-
ceptions. Lemire and Boytsov [26] further employ SIMD instructions to extract
b integers efficiently before decoding the exceptions of each block. However,
many of the SIMD schemes are currently restricted to 32-bit integers. Adapting
OptPFor to encode and decode VW is straightforward. Similarly to Elias based
codes, the sequence is split into blocks of fixed size. The differences within a
block are encoded using OptPFor. Potential negative values resulting from dif-
ference encoding across run boundaries are again represented as large positive
values. Within a block, this value will then be encoded as an exception, whereas
smaller values within each block can still be encoded efficiently.

Adapting partitioned Elias-Fano-Coding. Recently, Ottaviano and Ven-
turini [35] have proposed a block based alternative encoding scheme based on
the Elias-Fano [4] representation of monotone sequences, instead of standard
differential based encoding schemes. They extend the Elias-Fano based post-
ings list encoding scheme of Vigna [42] by creating a two-level structure for each
postings list. The top level structure stores an Elias-Fano encoded sequence of
block representatives, which can be used to efficiently find numbers in postings
lists (a basic operation in many inverted index query processing schemes). The
bottom level of the postings list is encoded by partitioning the integer sequence
into blocks, where different encoding schemes are used for each block. Partition-
ing is either performed uniformly into fixed sized blocks, or “optimally” using an
approximation scheme [9]. Individual blocks are stored using three different en-
coding schemes: (1) as a plain bitvector (2) as an Elias-Fano encoded sequence
or (3) no encoding. The latter is used if the block contains all the values in
between two block representatives stored in the top level. For example, a block
consisting of all 128 values in [257,385] can be encoded using zero bits, as the



contents can be inferred from the values stored in the top level: 256, the last
value in the previous block, and 385. Such blocks are called uniform.

Adapting this partitioned Elias-Fano based encoding scheme to encode ¥
requires certain modifications to the original scheme [35]. Instead of encoding
individual monotonically increasing sequences, a sequence containing ¢ mono-
tonically increasing runs has to be encoded. Thus, certain properties used by
Ottaviano and Venturini do not hold in our case: (1) the top level structure
storing the block representatives is not monotonically increasing; (2) the top
level structure cannot be used to determine if a block is uniform; (3) individual
blocks in the lower level may not contain a monotonically increasing sequence.
Vigna [42] encodes frequency information in inverted indexes using Elias-Fano
encoding by storing the prefix-sum of the values in a non-increasing sequence.
In case individual blocks contain run transitions, of which there are o in total,
we store the block as a prefix-sum encoded sequence. For each block we store, in
a bitvector, if the block is prefix-sum encoded or if it contains a monotonically
increasing sequence where the regular partition Elias-Fano scheme [35] is used.
Note that this cannot be determined using the top level entries, as a run tran-
sition may occur within a block, whereas the top level entries for the adjacent
blocks remain increasing. Additionally, Ottaviano and Venturini subtract the
largest value in the previous block (stored in the top level) from all values in
the current block to decrease the universe within which block values have to be
encoded. This, again, cannot always be applied: While the values in a block
might be monotonically increasing, the last value in the previous block might
be the last value of the previous run, and can thus be larger than the smallest
value in the current block. Encoding the top level sequence also provides sev-
eral trade-offs. To allow fast search within individual runs, it may be useful to
encode the non-increasing sequences using prefix-sum based Elias-Fano encod-
ing. Ottaviano and Venturini use fast CPU instructions to sequentially process
the Elias-Fano sequence; to allow faster random access to sequence it might be
beneficial to support constant time select operations on the high parts of the
top level bitvector [34].

Uniform Blocks. The notion of uniform blocks used in the partitioned Elias-
Fano encoding scheme can also be applied to the OptPFor and Elias-vy/d schemes.
If the block contains all values within the block interval, no encoding is neces-
sary. While this optimization seems to be straightforward it was not used in
the original CSA implementation of Sadakane [38] or in previous versions of
spsL [13].

Experiments. In the experimental section we will explore the performance of
different ¥ encoding methods. We compare standard Elias-6 based encoding?|to
OptPFor and Elias-Fano based encoding schemes. We measure the performance
of accessing U[i] and how differences in ¥[i] access performance translate to

2The original CSA implementation by Sadakane uses Elias-v, but both performed similarly
in our experiments.



accessing SA[i] and SA~![i] respectively. We further evaluate the performance
over both small and large alphabet inputs as alphabet size influences the number
of run transitions within W.

5. A Structure for Prioritized Location of Occurrences

Assume we want to locate only some, say ¢, occurrences of P in SA[sp, ep],
as for example in many interfaces that show a few results. In a W-based CSA,
the number of steps needed to compute SA[k] is its distance to the next multiple
of s, that is, D[k] = 0 if SA[k] is a multiple of s and D[k] = s — (SA[k] mod s)
otherwise. In an FM-index, the cost is D[k] = SA[k] mod s. We would like to
use this information to choose low-cost entries k € [sp, ep] instead of arbitrary
ones, as current CSAs do. The problem, of course, is that we do not yet know
the value of SA[k] before computing it! (some CSAs actually store the value
SA[k] mod s [37], but they are not competitive with the best current CSAs when
using the same space [17]).

However, we do not need that much information. It is sufficient to know,
given a range D|x,y|, which is the minimum value in that range. This is called
a range minimum query (RMQ): RMQ(z, y) is the position of a minimum value
in D[z,y]. The best current (and optimal) result for RMQs [I1] preprocesses D
in linear time, producing a data structure that uses just 2n 4 o(n) bits. Then
the structure, without accessing D, can answer RMQ(x, y) queries in O(1) time.

The basic method. We use the RMQ data structure to progressively ob-
tain the values of SA[sp,ep] from cheapest to most expensive, as follows [31].
We compute k& = RMQ(sp, ep), which is the cheapest value in the range, re-
trieve and report SA[k] as our first value, and compute D[k] from it. The tuple
(sp, ep, k, D[k]) is inserted as the first element in a min-priority queue that sorts
the tuples by D[k] values. Now we iteratively extract the first (cheapest) element
from the queue, let it be the tuple (Ip,rp,k,v), compute k; = RMQ(Ip, k — 1)
and k, = RMQ(k + 1,7p), then retrieve and report SA[k;] and SA[k,], and insert
tuples (Ip, k — 1, k;, D[k]) and (k + 1,7p, k., D[k]) in the priority queue (unless
they are empty intervals). We stop when we have extracted the desired number
of answers or when the queue becomes empty. We carry out O(t) steps to report
t occurrences [31].

A stronger solution using B. Recall bitmap B that marks the sampled
positions. The places where D[k] = 0 are precisely those where B[k] = 1.
We can use this to slightly reduce the space of the data structure. First, using
operations rank; and select; on B, we spot all those k € [sp, ep] where B[k] = 1.
Only then we start reporting the next cheapest occurrences using the RMQ data
structure as above. This structure, however, is built only on the entries of array
D’, which contains all D[k] # 0. Using rankg operations on B (which counts
0s, ranko(B,i) = i — ranki (B, 1)), we map positions in D[lp,rp] to D'[lp’, rp'].
Mapping back can be solved by using a selecty structure on B, but we opt for an
alternative that is faster in practice and spends little extra memory: we create



a sorted list of pairs (k, ranky(B,k)) for the already spotted k with B[k] = 1,
and binary search it for mapping the positions back.

Refining priorities. The process can be further optimized by refining the
ordering of the priority queue. Our method sorts the intervals [sp,ep] only
according to the minimum possible value u (= D[k]). Assuming that the values
in Dlsp, ep| are distributed uniformly at random in [u, s) we can calculate the

z
value of the expected minimum n(lp, rp,u) = u + 23—1 (S*”) , where z =

v=u+1 S—u

rp—Ip+1 is the range size. This can be used as a refined priority value.

Experiments. In the experimental section we will explore the performance of
four solution variants: The ‘standard’ method, which extracts the first ¢ entries
in SA[sp, epl; a variant we call ‘select’, which enhances the baseline by using rank
and select to first report all SA[k] with B[k] = 1; and the described RMQ ap-
proach on D’, with the priority queue ordering according to the minimum value
DIlk] (‘RMQ’) or the expected minimum in the intervals (‘RMQ+est.min.”).

Locating occurrences in text position order. By giving distinct seman-
tics to the D array, we can use the same RMQ-based mechanism to prioritize
the extraction of the occurrences in different ways. An immediate application,
already proposed in the literature (but not implemented) [33], is to report the
occurrences in text position order, that is, using D[k] = SA[k]. In the exper-
imental section we show that our implementation of this mechanism is faster
than obtaining all the SA[sp, ep] values and sorting them, even when a significant
fraction of the occurrences is to be reported.

6. Range-Restricted Location of Occurrences

We now extend the mechanism of the previous section to address, partially,
the more complex problem of retrieving the occurrences of SA[sp, ep] that are
within a text window T'[l, 7]. Again, we focus on retrieving some of those “valid”
occurrences, not all of them. We cannot guarantee a worst-case complexity (as
it would not be possible in succinct space [21]), but expect that in practice
we perform faster than the baseline of scanning the values left to right and
reporting those that are within the range, I < SA[k] < r, until reporting the
desired number of occurrences.

If, as in the end of Section [5] we obtain the occurrences in increasing text
position order, we will eventually report the leftmost occurrence within T'[, 7],
and since then we will report all valid occurrences. As soon as we report the first
occurrence position larger than r, we can stop. Although introducing ordering in
the process, this mechanism is unlikely to be very fast, because it must traverse
all the positions to the left of [ before reaching any valid occurrence.

We propose the following heuristic modification, in order to arrive faster to
the valid occurrences. We again store tuples (Ip,rp, k, SA[k]), where k gives
the minimum position in SA[lp,rp]. But now we use a max-priority queue
sorted according to SA[k], that is, it will retrieve first the largest minima of
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the enqueued ranges. After inserting the first tuple as before, we iteratively
extract tuples (Ip,rp, k, SA[k]). If SA[k] > r, then the extracted range can be
discarded and we continue. If SA[k] < I, then we split the interval into two as
before and reinsert both halves in the queue (position SA[k] is not reported).
Finally, if I < SA[k] < r, we run the algorithm at the end of Section [5{ on the
interval SA[lp, rp], which will give all valid positions to report. This process on
SA[lp, rp] finishes when we extract the first value larger than r, at which point
this segment is discarded and we continue the process with the main priority
queue.

Note that, although this heuristic is weaker in letting us know when we can
stop, it is likely to reach valid values to report sooner than using the algorithm of
Section bl In the experimental section we will show that, although our technique
is slower than the baseline for general intervals (e.g., near the middle of the
text), it is faster when the desired interval is close to the beginning (or the end,
as desired). This biased range-restricted searching is useful, for example, in
versioned systems, where the latest versions are those most frequently queried.

7. Experimental Results

All experiments were run on a server equipped with 144 GB of RAM and
two Intel Xeon E5640 processors each with a 12 MB L3 cache. We used the
P1zzA& CHILI corpusEL which contains texts from various application domains.

Our implementations are based on structures of version 2.0.2 of SDSL. The
CSAs of sSDSL can be parameterized with the described traditional sampling
method, which uses a bitmap B to mark the sampled suffixes. It has recently
been shown [15] that this sampling strategy, when B is represented as|sd_vector
[34], gives better time/space tradeoffs than a strategy that does not use B but
samples every SA[i] with ¢ =0 mod s.

7.1. Combined sampling structures for locating and displaying

In our first experiment, we compare the traditional sampling using SA;,
SA;! and B to the new solution that replaces SA;! by just €-n/s samples
plus a bitmap B’ of length n/s to mark those samples in SA;. We opted for
€ = 1/8, so that every SA~! value can be retrieved in at most 8 steps, and B’ is
represented as an uncompressed bitmap (bit_vector). The underlaying CSA
is a very compact FM-index (csa_wt) parameterized with a Huffman-shaped
wavelet tree (wt_huff) and a compressed bitmap (rrr_vector). We choose this
FM-index deliberately, since the ratio of space assigned to samples is especially
high. With the new method we save so much space that we can also afford to
represent B as|bit_vector. Fig.|2|shows the time/space tradeoffs for accessing
SA and SA™! on one text (the results were similar on the others). The points
representing the same s value in the new solution lie to the left left, since we

3 Available under http://pizzachili.dcc.uchile.cl/.
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Figure 2: Time/space tradeoffs to extract a SA (o) respectively SA~! value (A) from indexes
over input english.2108MB. Sampling density s was varied between 1 and 32.

saved space. Replacing B with an uncompressed bitmap slightly reduces access
time, in addition. We only report this basic experiment, but we note that these
better tradeoffs directly transfer to applications that need simultaneous access
to SA and SA~1, like the child operation in compressed suffix trees.

7.2. Improved ¥ array representations

In the second experiment, we compare the performance impact of differ-
ent ¥ encoding methods. We compare Elias-6 (Elias-y performance is similar),
OptPFor provided by the FastPFor library [26] and our own modified version
of partitioned Elias-Fano encoding [35]. All encoding schemes encode blocks
of size 128 and store starting positions of each block to allow pseudo-random
access to ¥. The performance of the Elias-§ scheme is optimized by using
lookup tables and partial block decoding and to our knowledge represents a
state-of-the-art baseline [22]. We additionally implemented the Uniform Block
optimization in our OptPFor encoding scheme. As the alphabet size can in-
fluence decoding performance, we perform our experiment on english.2108MB
from the P1zzA& CHILI corpus and on a word parsing enwiki.4646MB of the
English Wikipedia (o = 3,903,703).

Figure [3| shows the performance of accessing ¥[i] over both collections aver-
aged over ten million random positions in [0,n — 1]. No suffix array sampling
is used in this experiment, as it does not affect the performance of ¥[i]. As
it can be seen, Partitioned Elias-Fano offers the best time performance, by a
significant margin, but it is also slightly larger than the most space-economical
alternative in each case. The difference in space is around 5%-10%, however,
whereas the time difference is more significant. In the byte alphabet case, the
Elias-Fano scheme can answer W[i] queries in around 200 nanoseconds, which is
roughly the cost of two memory accesses and thus close to optimal.

Interestingly, OptPFor dominates the classical Elias-d in space and time
on the larger alphabet size of enwiki.4646MB (being the difference in time
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Figure 3: Mean time for one W[i] access in english.2108MB (left) and enwiki.4646MB (right)
averaged over ten million operations for sample rate 16 and different ¥ encoding schemes.

more significant), whereas the opposite occurs on the smaller alphabet size of
english.2108MB (being the difference in space more significant).

We conjecture that the better performance of OptPFor in enwiki.4646MB is
a result of the higher number of run transitions within blocks of ¥ induced by the
larger alphabet size. These transitions are encoded as large positive numbers,
which can be efficiently handled by PForDelta encodings, whereas more work
during decoding and/or more bits of space are necessary on the other encodings.

Next, we measure the impact of improved V¥[i] access performance on the
speed of SA[i] and SA~1[i] operations. Figure [4] shows the mean access time
for both operations, again averaged over ten million executions. Our new sam-
pling method using sample rates in {8, 16, 32,64} and the sd_vector]is used in
this experiment to achieve different time-space trade-offs. The run-time per-
formance is similar to what is observed for W[i] access. The OptPFor scheme
significantly outperforms the Elias-§ scheme for integer alphabets, but performs
slightly worse on byte alphabets. Again, the Elias-Fano scheme outperforms
both other schemes in all test instances, for the same sampling rate. Compared
to Elias-d encoding, it is almost twice as fast for large sampling rates, yet the
difference diminishes as the sampling becomes denser. Still, the difference in
run time performance is not as significant as for isolated W[i] access. This is
likely caused by the additional access to the sd_vector each time ¥ is accessed,
which can incur a non-negligible speed penalty.

The space usage also varies between test instances. The OptPFor encoding
performs well for large alphabets, where it uses less space than the other two
schemes. This is because many run transitions are encoded as exceptions, and
the uniform block scheme further reduces the space usage of the encoding. For
english.2108MB, however, OptPFor is outperformed in space by both other
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Figure 4: Mean time for one access to SA™![i] (top) and to SA[i] (bottom) in english.2108MB
(left) and enwiki.4646MB (right) averaged over ten million operations for sample rates
8,16,32,64 and different ¥ encoding schemes.

schemes. In this input, the original Elias-é encoding still obtains the best space
performance.

If we consider both space and time, where differences in time can be traded
for space by using sparser or denser samplings, we have that, essentially, OptPFor
is the dominating alternative for large alphabets, whereas the Elias-Fano scheme
dominates on byte alphabets.

7.8. Prioritized location of occurrences

In the third experiment, we measure the time to extract ¢ = 50 arbitrary
SA[k] values from a range [sp,ep]. We use the same FM-index of Section
We create one index with s = 6 and another using an RMQ structure on D’
(rmg_succinct_sct). Setting s’ = 10 for the latter index results in a size of
2,261 MB; slightly smaller than the s = 6 index (2,303 MB).

Fig. [5| (top) shows the time and the average distance of the retrieved values
to their nearest sample. Solution ‘standard’ spends the expected (s'—1)/2 = 2.5
LF steps per SA value, independently of the range size. Method ‘select’ first
reports all sampled values in the range, hence the average distance linearly
decreases and is close to zero at s x 50 = 300. The RMQ based indexes spend
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Figure 5: Left: Time to report 50 values in the range SA[sp, sp+z—1]. Right: Distance of a
reported SA[k] value to its nearest sample. Input: english.2108MB (top) and enwiki.4646MB
(bottom).

the expected (s—1)/2 = 4.5 steps for z = 50. Using the RMQ information helps
to decrease time and distance faster than linearly. The version using minimum
estimation performs fewer LF steps for ranges in [150, 220], but the cost of the
RMQs in this case is too high compared to the saved LF steps.

In scenarios where LF is more expensive, ‘RMQ+est.min.’ can also outper-
form ‘select’ in runtime. The cost of one LF step depends logarithmically on
the alphabet size o, while the RMQ cost stays the same. Thus, using a text
over a larger alphabet yields a stronger correlation between the distance and
runtime, as shown in Fig. [5[ (bottom), where we repeat the experiment using an
FM-index (csa_wt parameterized with wt_int) on enwiki.4646MB . The RMQ
supported index takes 3362 MB for s’ = 10 and we get 3393 MB for s = 6.

Using almost the same index on english.2108MB (RMQ is built on SA this
time, using s’ = 32 and s = 10, obtaining sizes 1,554 MB and 1,590 MB),
we now evaluate how long it takes to report the ¢ = 10 smallest SA[k] values
in a range SA[sp, ep]. The standard version sequentially extracts all values in
SAlsp, ep], while keeping a max-priority queue of size k with the minima. The
RMQ based method uses a min-priority queue that is populated with ranges
and corresponding minimum values. Fig. [6] contains the results. For range size
z = 10, the standard method is about 3 times faster, since we decode 10 values
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in both methods and the sampling of the standard method is 3.2 times denser
than that of the RMQ supported index. The RMQ index extracts 2t — 1 values
in the worst case, when there are ¢t — 1 left in the priority queue. Therefore it is
not surprising that the crossing point lies at about 60 ~ 3.2 x (2t — 1).

Lastly, we explore the performance of range-restricted locating on the same
indexes. We take pattern ranges of size 10,000 and search for occurrences in
text ranges T'[l,] + 0.01n], which corresponds to the scenario drawn earlier in
the paper. Fig.[7]shows that our heuristic using a max-priority queue to retrieve
subranges that contain values > [, is superior to the standard approach in the
first 15% of the text. The approach of the previous experiment extracts first all
the occurrences located in T'[0,]/—1), and thus becomes quickly slower than the
standard approach.
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