

# Improved Compressed Indexes for Full-Text Document Retrieval $\star$

Djamal Belazzougui<sup>a,1,2</sup>, Gonzalo Navarro<sup>b,2,\*</sup>, Daniel Valenzuela<sup>b,2</sup>

<sup>a</sup>*LIAFA, Univ. Paris Diderot - Paris 7, France.*

<sup>b</sup>*Department of Computer Science, University of Chile, Chile.*

---

## Abstract

We give new space/time tradeoffs for compressed indexes that answer document retrieval queries on general sequences. On a collection of  $D$  documents of total length  $n$ , current approaches require at least  $|\text{CSA}| + O(n \frac{\lg D}{\lg \lg D})$  or  $2|\text{CSA}| + o(n)$  bits of space, where  $\text{CSA}$  is a full-text index. Using monotone minimal perfect hash functions (mmphfs), we give new algorithms for document listing with frequencies and top- $k$  document retrieval using just  $|\text{CSA}| + O(n \lg \lg \lg D)$  bits. We also improve current solutions that use  $2|\text{CSA}| + o(n)$  bits, and consider other problems such as colored range listing, top- $k$  most important documents, and computing arbitrary frequencies. We give proof-of-concept experimental results that show that using mmphfs may provide relevant practical tradeoffs for document listing with frequencies.

*Keywords:* Document retrieval, monotone minimal perfect hash functions, compact data structures.

---

## 1. Introduction and Related Work

Full-text document retrieval is the problem of, given a collection of  $D$  documents (i.e., general sequences of symbols), preprocess them so as to later answer various queries of significance in IR. As opposed to the traditional IR operations on natural language text collections, which are handled well with inverted indexes [1, 2], the generalized problem has received much attention recently [3, 4, 5, 6, 7, 8, 9, 10] for its applications in IR on Oriental languages such as Chinese and Korean, software repositories handling source code modules,

---

$\star$ An early version of this article appeared in *Proc. SPIRE 2011*.

\*Corresponding author. Department of Computer Science, University of Chile, Blanco Encalada 2120, Santiago, Chile.

Email addresses: [dbelaz@liafa.jussieu.fr](mailto:dbelaz@liafa.jussieu.fr) (Djamal Belazzougui), [gnavarro@dcc.uchile.cl](mailto:gnavarro@dcc.uchile.cl) (Gonzalo Navarro), [dvalenzu@dcc.uchile.cl](mailto:dvalenzu@dcc.uchile.cl) (Daniel Valenzuela)

<sup>1</sup>Partially supported by the French ANR-2010-COSI-004 MAPPI Project.

<sup>2</sup>Partially funded by Fondecyt Grant 1-110066, Chile.

and bioinformatic databases handling DNA and protein sequences. The most studied queries, among several others, are defined next.

**Definition 1** *Given a set of strings, called documents, and a string  $P$ , called the pattern, we define the following problems.*

Document listing: *List the distinct documents where  $P$  appears.*

Document listing with frequencies: *List the distinct documents where  $P$  appears, and the frequency (number of occurrences) of  $P$  in each.*

Top- $k$  retrieval: *List the  $k$  documents where  $P$  appears most times.*

As space is a serious problem in classical solutions [3, 6], much effort has been put on extending compressed full-text indexes, which only find occurrences of patterns  $P[1, m]$ , to answer the more complex document retrieval queries. Typically, the  $D$  documents are concatenated into a text  $T[1, n]$  over an alphabet  $[1, \sigma]$ , and a compressed full-text index [11] on  $T$  is used as the base structure. This is usually a compressed suffix array of  $T$  (we call this structure CSA and its bit space  $|\text{CSA}|$ ). The CSA simulates the suffix array  $A[1, n]$  [12], where  $A[i]$  points to the  $i$ th lexicographically smallest suffix in  $T$ . The CSA finds the interval  $A[sp, ep]$  of occurrences of  $P$  in time  $t_{\text{search}}$ , usually  $O(m \lg \sigma)$  or less [13, 14]. It can also compute any cell  $A[i]$ , and even  $A^{-1}[i]$ , in time  $O(t_{\text{SA}})$ , usually  $O(\lg^{1+\varepsilon} n)$  for any constant  $\varepsilon > 0$ . These indexes represent the text and the suffix array within as little as  $nH_h(T) + o(n \lg \sigma)$  bits, for any  $h \leq \alpha \lg_{\sigma} n$  and constant  $\alpha < 1$ . Here  $H_h(T)$  is the empirical  $h$ -th order entropy of  $T$  [15], a lower bound on the bits-per-symbol a statistical order- $h$  compressor may achieve on  $T$ .

In the rest of the section we describe our contributions in context. We introduce at this point the concepts of binary *rank*, *select*, and of a monotone minimal perfect hash function (*mmpfh*).

**Definition 2** *Given a bitmap  $B$ , operation  $\text{rank}_b(B, i)$  counts the number of occurrences of bit  $b \in \{0, 1\}$  in  $B[1, i]$ , whereas  $\text{select}_b(B, j)$  is the position of the  $j$ th occurrence of bit  $b$  in  $B$ .*

Let  $B$  be of length  $n$  and with  $m$  bits set. There exists a representation for  $B$  using  $\lg \binom{n}{m} + O(\lg \lg m) + o(n) = m \lg \frac{n}{m} + O(m) + o(n)$  bits [16], solving both operations in constant time. As  $B$  can be reconstructed using operation *rank*, this space is optimal, save for the  $o(n)$  term. A *mmpfh* can be seen as a weaker structure on  $B$ .

**Definition 3** *Given a bitmap  $B$ , a monotone minimal perfect hash function (*mmpfh*) built on  $B$  is a data structure able to compute  $\text{rank}_1(B, i)$  for any  $i$  such that  $B[i] = 1$ , giving an arbitrary value elsewhere.*

Note that the *mmpfh* is unable to tell whether  $B[i] = 1$  or 0. An *mmpfh* can be represented within less space than the previous lower bound: within  $O(m \lg \lg \frac{n}{m})$  bits it answers the limited *rank* query in constant time, and using  $O(m \lg \lg \lg \frac{n}{m})$  bits it takes time  $O(\lg \lg \frac{n}{m})$  [17].

### 1.1. Document Listing with Frequencies

The pioneering work in this area [3] defines a *document array*  $E[1, n]$ , where  $E[i]$  tells the document to which suffix  $A[i]$  belongs. As noted by Sadakane [4], a bitmap  $B[1, n]$  marking the document boundaries in  $T$  is enough to find  $E[i] = \text{rank}_1(B, A[i])$  in time  $O(t_{\text{SA}})$ . The extra space for  $B$  is just  $D \lg \frac{n}{D} + O(D) + o(n)$  bits [16]. This permits simulating Muthukrishnan’s optimal document listing algorithm [3] within time  $O(t_{\text{SA}})$  per document reported, in addition to the time  $t_{\text{search}}$ . The total space is  $|\text{CSA}| + O(n)$ , the latter coming from range minimum query (RMQ) data structures [18]. The space was made succinct by Hon et al. [6], by sparsifying the RMQ structures over array blocks of size  $\lg^\varepsilon n$ : time raises to  $O(t_{\text{SA}} \lg^\varepsilon n)$  and the space drops to  $|\text{CSA}| + o(n) + D \lg \frac{n}{D} + O(D)$ .

We do not innovate on the plain document listing problem, but on the variant that computes frequencies. The solutions build over plain document listing and add extra data structures using two main approaches. A first one stores, in addition to the *CSA* of the whole collection, one  $\text{CSA}_d$  for each individual document  $d$ , for a total space of  $2|\text{CSA}| + O(n)$  [4] or  $2|\text{CSA}| + o(n) + D \lg \frac{n}{D} + O(D)$  [6]. This extra  $|\text{CSA}|$  space is used to compute document frequencies along with the document listing. The times are as for document listing without frequencies.

A second approach [5, 7] represents the document array directly, in the form of a wavelet tree [13]. This data structure makes the document listing times independent of  $t_{\text{SA}}$  and enables algorithms that do not derive from Muthukrishnan’s [7], listing each document in  $O(\lg D)$  time. The space, however, is at least  $n \lg D + o(n)$  (achievable by using a recent encoding of the redundancy [19]).

Gagie et al. [8] abstracted this problem in terms of representing a sequence  $E$  providing support for accessing any element of  $E$ , enumerating each distinct element in a range of  $E$ , and computing  $\text{rank}_d(E, i)$  (the number of occurrences of document  $d$  in  $E[1, i]$ ), so that each document can be listed within the sum of these three times. The abstraction enabled new space/time tradeoffs for document listing with frequencies, achieving times as good as  $O(\lg \lg D)$ .

An interesting observation of Gagie et al. was that one could use *succinct indexes* over a given sequence representation, for example in order to support the  $\text{rank}_d$  operation on top of just the  $B$  bitmap. These “weaker” representations that need an auxiliary mechanism to compute the cells of  $E$  are able to reduce space. For example, they achieved  $O(n \frac{\lg D}{\lg \lg D})$  bits with  $O(t_{\text{SA}} \lg \lg D)$  time by using a succinct index by Grossi et al. [20]. The very same lower bounds on sequence  $\text{rank}$  given by Grossi et al. show that this tradeoff is optimal.

*Our first major contribution* improves upon this apparent lower bound. We obtain a succinct index on top of the  $B$  bitmap that enables us to carry out document listing with frequencies within *less time and space* than the best previous succinct index. We achieve  $O(n \lg \lg D)$  bits extra space and  $O(t_{\text{SA}})$  time, or  $O(n \lg \lg \lg D)$  bits space and  $O(t_{\text{SA}} + \lg \lg D)$  time per reported document.

Our solution is based on mmphfs. As we can solve only a limited case of  $\text{rank}$ , we cannot follow Gagie et al.’s framework [8]. Instead, we simulate Sadakane’s method [4] using mmphfs instead of a second *CSA*. Our space/time results are incomparable with those of Sadakane. Compared to the methods

| Src.   | Extra space                                           | Extra Time                           | Space (colors)                           | Time (colors)                |
|--------|-------------------------------------------------------|--------------------------------------|------------------------------------------|------------------------------|
| [3]    | $O(n \lg n)$                                          | $O(1)$                               | $O(n \lg n)$                             | $O(1)$                       |
| [4]    | $ \text{CSA}  + O(n)$                                 | $O(t_{\text{SA}})$                   | n/a                                      | n/a                          |
| [6]    | $ \text{CSA}  + o(n)$<br>$+ D \lg \frac{n}{D} + O(D)$ | $O(t_{\text{SA}} \lg^\varepsilon n)$ | n/a                                      | n/a                          |
| [7, 9] | $n \lg D + o(n)$                                      | $O(\lg \frac{D}{ndoc})$              | $n \lg D + o(n)$                         | $O(\lg \frac{D}{ncol})$      |
| [8]    | $n \lg D + O(n)$                                      | $O(\frac{\lg D}{\lg \lg n})$         | $n \lg D + O(n)$                         | $O(\frac{\lg D}{\lg \lg n})$ |
| [8]    | $n \lg D + O(n)$                                      | $O(\lg \lg D)$                       | $n \lg D + O(n)$                         | $O(\lg \lg D)$               |
| [8]    | $O(n \frac{\lg D}{\lg \lg D})$                        | $O(t_{\text{SA}} \lg \lg D)$         | $n \lg D + O(n \frac{\lg D}{\lg \lg D})$ | $O(\lg \lg D)$               |
| Ours   | $O(n \lg \lg D)$                                      | $O(t_{\text{SA}})$                   | $n \lg D + O(n \lg \lg D)$               | $O(1)$                       |
| Ours   | $O(n \lg \lg \lg D)$                                  | $O(t_{\text{SA}} + \lg \lg D)$       | $n \lg D + O(n \lg \lg \lg D)$           | $O(\lg \lg D)$               |

Table 1: Current and new results on document listing with frequencies (left side) and colored range listing with frequencies (right side). On the left, the extra space is on top of the  $|\text{CSA}|$  bits of the full-text index. The time complexities are in addition to  $t_{\text{search}}$ , and per each of the  $ndoc$  elements returned. They are valid for any constant  $\varepsilon > 0$ . On the right we give total space, and total time per each of the  $ncol$  results reported.

that represent directly the document array, we obtain the least space, while the time comparison depends on  $t_{\text{SA}}$  (e.g., there are full-text indexes where  $t_{\text{SA}} = O(\lg^\varepsilon n \lg^{1-\varepsilon} \sigma)$  for any  $\varepsilon > 0$ , yet they use  $O((1 + \frac{1}{\varepsilon})nH_h(T))$  bits [13]).

Actually our solution is general enough to solve the *colored range listing* problem, that is, finding the distinct colors (and their frequencies) of any range in an array  $E[1, n]$  of  $D$  possible colors. Our solution is the *first* in achieving *optimal time* (i.e.,  $O(1)$  time per color reported) within *succinct space* (i.e.,  $n \lg D + n o(\lg D)$  bits). Achieving this optimal time involves solving in linear time a particular sorting problem, which can be of independent interest.

Table 1 summarizes our results on this part.

### 1.2. Top- $k$ Document Retrieval

The pioneering work of Hon et al. [6] uses a sampled suffix tree [21] of  $o(n)$  extra bits to reduce this problem to that of accessing  $E[i]$  and computing *arbitrary frequencies* (document listing with frequencies turns out to be a simpler problem). They achieve time  $O(t_{\text{search}} + k \lg^{4+\varepsilon} n)$  using  $2|\text{CSA}| + o(n)$  bits.

Our *second major contribution* is the reduction of their time to  $O(t_{\text{search}} + k \lg k \lg^{2+\varepsilon} n)$ . First, we show that by choosing better the block sizes one can reduce one  $\lg n$  to  $\lg k$  (in practice  $k$  is much smaller than  $n$ , and this improvement applies to many previous solutions). The other  $\lg n$  is removed thanks to an improved algorithm to compute arbitrary frequencies, that reduces the time from their  $O(t_{\text{SA}} \lg n)$  to  $O(t_{\text{SA}} \lg \lg n)$ . While both ideas are simple, their impact on performance is large and general.

When representing the document array with support for *rank* operations, arbitrary document counting is easy. Gagie et al. [8], apart from improving the time achieved by Hon et al., gave several new space/time tradeoffs by replacing the second  $|\text{CSA}|$ -bit space by *rank*-capable representations of  $E$ .

| Src. | Extra space                                      | Extra Time                                                     | Simplif. time                    |
|------|--------------------------------------------------|----------------------------------------------------------------|----------------------------------|
| [6]  | $ \text{CSA}  + o(n) + D \lg \frac{n}{D} + O(D)$ | $O(t_{\text{SA}} \lg^{3+\varepsilon} n)$                       | $O(\lg^{4+\varepsilon} n)$       |
| [8]  | $ \text{CSA}  + o(n) + D \lg \frac{n}{D} + O(D)$ | $O(t_{\text{SA}} \lg D \lg \frac{D}{k} \lg^{1+\varepsilon} n)$ | $O(\lg^{4+\varepsilon} n)$       |
| Ours | $ \text{CSA}  + o(n) + D \lg \frac{n}{D} + O(D)$ | $O(t_{\text{SA}} \lg k \lg \frac{D}{k} \lg^\varepsilon n)$     | $O(\lg k \lg^{2+\varepsilon} n)$ |
| [8]  | $n \lg D + o(n)$                                 | $O(\lg D \lg \frac{D}{k} \lg^\varepsilon n)$                   | $O(\lg^{2+\varepsilon} n)$       |
| [8]  | $O(n \frac{\lg D}{\lg \lg D})$                   | $O(t_{\text{SA}} \lg D \lg \frac{D}{k} \lg^\varepsilon n)$     | $O(\lg^{3+\varepsilon} n)$       |
| Ours | $n \lg D + o(n)$                                 | $O(\lg k \lg \frac{D}{k} \lg^\varepsilon n)$                   | $O(\lg k \lg^{1+\varepsilon} n)$ |
| Ours | $O(n \frac{\lg D}{\lg \lg D})$                   | $O(t_{\text{SA}} \lg k \lg \frac{D}{k} \lg^\varepsilon n)$     | $O(\lg k \lg^{2+\varepsilon} n)$ |
| Ours | $O(n \lg \lg D)$                                 | $O(t_{\text{SA}} \lg k \lg^{1+\varepsilon} n)$                 | $O(\lg k \lg^{2+\varepsilon} n)$ |

Table 2: Current and new results on top- $k$  retrieval, using the same conventions of Table 1. The last column assumes  $t_{\text{SA}} = O(\lg^{1+\varepsilon} n)$ , as in optimal-space CSAs [14].

Replacing the document array by a weak representation based on mmphfs is not straightforward, as mmphfs do not support general *ranks*. Our *third main contribution* is a technique that modifies Hon et al.’s sampled suffix tree [6] so as to achieve the least space among the methods that represent the document array, while increasing their time by an  $O(\lg n)$  factor with respect to the most space-consuming variant. The solution owes in part to the observation that there are not too many candidates around a sampled suffix tree node to replace its precomputed top- $k$  documents. This idea can be useful in other scenarios.

Table 2 summarizes the state of the art and our contribution to the top- $k$  problem. As noted by Hon et al. [6], the bounds apply to the frequency mining problem (list all documents with frequency over  $f$ ), by running top- $k$  queries with  $k = 2^j$  for consecutive  $j$  values. Our final contribution is to reduce the time to report the  $k$  *most important* documents (i.e., they have a fixed priority) where  $P$  appears, from  $O(t_{\text{search}} + k \lg^{3+\varepsilon} n)$  [6] to  $O(t_{\text{search}} + k \lg k \lg^{1+\varepsilon} n)$ . There are also some heuristic solutions to the top- $k$  problem using wavelet trees which, although do not give interesting worst-case bounds, perform competitively in practice [9, 22].

## 2. Range Color Listing with Frequencies

We solve the following abstract problem, whose connection with the document listing problem with frequencies is obvious.

**Definition 4** *Given an array  $E[1, n]$  over  $D$  colors, the range color listing with frequencies problem is to preprocess  $E$  so as to answer queries of the form: given  $i$  and  $j$ , list all the  $ncol$  distinct colors in  $E[i, j]$  and their number of occurrences.*

Muthukrishnan [3] solved this problem without reporting frequencies. He builds an array  $F[1, n]$  where  $F[i] = \max\{j < i, E[j] = E[i]\}$ . Then, using a data structure that answers RMQ queries on  $F$  ( $rmq(i, j) = \arg \min_{i \leq r \leq j} F[r]$ ) in constant time (e.g., Fischer’s [18] takes  $2n + o(n)$  bits and does not access  $F$ ), he finds the leftmost occurrences of all distinct colors in  $E[i, j]$  in time  $O(ncol)$ .

For computing frequencies, Sadakane [4] finds also the rightmost occurrences of the colors by building another RMQ structure on the array  $\bar{F}$  built on the reverse sequence  $\bar{E}$ . The colors could be reported in different order when listing their rightmost or leftmost occurrences. He does not represent  $F$  nor  $\bar{F}$ , and as a consequence needs to mark the colors found in an array  $V[1, D]$ . The rest of Sadakane's solution is particular of document retrieval; we instead build on it to obtain an improved solution to the general problem.

**Theorem 1** *We can augment a sequence of  $n$  colors in  $[1, D]$  with a structure using  $O(n \lg \lg D)$  bits, so that range color listing with frequencies can be solved in  $O(1)$  time per color reported, or using  $O(n \lg \lg \lg D)$  bits and  $O(\lg \lg D)$  time.*

The theorem assumes  $D = O(n)$ ; otherwise a mapping to the colors actually occurring in the sequence, using  $O(n \lg \frac{D}{n}) + o(D)$  bits [16], must be added.

To achieve the result, for each color  $c$  we store in a mmphf  $f_c$  the positions  $i$  such that  $E[i] = c$  (i.e.,  $f_c(i) = \text{rank}_c(E, i)$  if  $E[i] = c$ ). Let  $n_c$  be the frequency of color  $c$  in  $E$ , then this structure occupies  $\sum_c O(n_c \lg \lg \frac{n}{n_c})$  bits, which by the log-sum inequality is  $O(n(\lg H_0(E) + 1)) = O(n \lg \lg D)$  bits. The two RMQ data structures will add just  $O(n)$  bits. Then a query proceeds in four steps:

1. Use the RMQ on (virtual array)  $F$  to get the leftmost occurrences of the  $ncol$  colors appearing in the interval. This step takes time  $O(ncol)$ .
2. Use the RMQ on (virtual array)  $\bar{F}$  to get the rightmost occurrences of the  $ncol$  colors appearing in the interval. This step also takes time  $O(ncol)$ .
3. Match the left and right occurrences of the  $ncol$  colors. This can be done via sorting, but we show how to do it in time  $O(ncol)$ .
4. For each color with leftmost and rightmost occurrences  $l_i$  and  $r_i$ , report the color and its frequency  $f_c(r_i) - f_c(l_i) + 1$  in constant time.

To avoid the sorting in step 3, we will slightly modify steps 1 and 2. We will store  $V$  and the following additional structures:

1. A vector  $R[1, \frac{D}{\lg n}]$ , where each cell occupies  $\lg D$  bits;  $R$  uses at most  $D$  bits.
2. A dynamic vector  $Q$  storing triplets  $(c_i, l_i, r_i)$  and taking  $O(ncol \lg n)$  bits.
3. A dynamic vector  $S$  storing leftmost positions  $(c_i, l_i)$ , in  $O(ncol \lg n)$  bits.
4. A counter  $C$ .

Initially the bits in  $V$  and  $R$  are set to zero<sup>3</sup>,  $Q$  and  $S$  are empty, and  $C$  is set to 1. We then run step 1, setting the bits in  $V$  as we progress, and appending the unique colors and their leftmost positions  $(c_i, l_i)$  in array  $S$ .

We now traverse  $S$  and, for each color  $c_i$ , compute  $g = \lfloor c_i / \lg n \rfloor$ . Then, if  $R[g] = 0$ , we set  $R[g] = C$  and  $c = \text{rank}_1(V[g \lg n + 1, (g + 1) \lg n], \lg n)$ , which can be computed in constant time in the RAM model [23]. Then we append  $c$

---

<sup>3</sup>This is done at indexing time. After a query returns the  $ncol$  results and sets those  $ncol$  bits, we reset them to 0 one by one, leaving  $V$  and  $R$  ready for the next query.

copies of the dummy triplet  $(\#, \#, \#)$  at the end of vector  $Q$  and finally update counter  $C = C + c$ . At the end of this process array  $Q$  will be of size  $ncol$  and each distinct color in  $E[i, j]$  will have an allocated position into  $Q$ .

We now retrace  $S$  and write each pair  $(c_i, l_i)$  in the triplet  $Q[R[g] + p]$ , where  $p = rank_1(V[g \lg n + 1, g \lg n + r], r)$ ,  $g = \lfloor c_i / \lg n \rfloor$ , and  $r = c_i - g \lg n$ . So  $V$  and  $R$  simulate pointers to array  $Q$ , where we have already the information on leftmost positions, and now are prepared to write the rightmost positions.

Now we run step 2, but instead of using  $V$  to check if we have already reported a color  $c_i$ , we compute  $g$  and  $p$  as before and check whether  $Q[R[g] + p] = (c_i, l_i, \#)$ . If the third component is a  $\#$ , then we had not seen the color before and can set the component to  $r_i$ . Otherwise we have already seen it.

Now  $Q$  has the input to step 4, and step 3 is avoided. Note our working space  $O(ndoc \lg n)$  bits of the query is of the same order used to store the output.

Let us now consider the case where our mmphfs use  $O(n_c \lg \lg \lg \frac{n}{n_c})$  bits. By the log-sum inequality these add up to  $O(n \lg \lg \lg D)$  bits. The time to query  $f_c$  is  $O(\lg \lg \frac{n}{n_c})$ . To achieve  $O(\lg \lg D)$  worst case, we use constant-time mmphfs when  $\frac{n}{n_c} > D \lg \lg D$ . This implies that on those arrays we spend  $O(n_c \lg \lg \frac{n}{n_c}) = O(\frac{n}{D \lg \lg D} \lg \lg D) = O(n/D)$  bits, as it is increasing with  $n_c$  and  $n_c < \frac{n}{D \lg \lg D}$ . Adding over all possible colors  $c$ , we have at most  $O(n)$  bits.

By applying the algorithm to document retrieval, where accesses to  $E$  are through the **CSA**, we have the following result.

**Theorem 2** *We can augment a **CSA** on  $T[1, n]$  containing  $D$  documents with a data structure using  $O(n \lg \lg D)$  bits, so that document listing with frequencies can be solved in time  $O(t_{\text{SA}})$  per document reported, or one using  $O(n \lg \lg \lg D)$  bits and time  $O(t_{\text{SA}} + \lg \lg D)$ . The  $\lg D$  in the space complexities can be replaced by  $\lg(H) + 1$ , where  $H = \sum \frac{n_d}{n} \lg \frac{n}{n_d}$  and  $n_d$  is the length of document  $d$ .*

In particular, if we use a recent **CSA** [24], the second variant is more appealing, since  $t_{\text{SA}}$  dominates  $\lg \lg D$ .

**Corollary 1** *Given a concatenation  $T[1, n]$  of  $D$  documents over alphabet  $[1, \sigma]$ , the document listing with frequencies problem for  $P[1, m]$  can be solved using  $nH_h(T) + o(nH_h(T)) + O(n \lg \lg \lg D)$  bits of space and in time  $O(m + ndoc \lg^{1+\varepsilon} n)$ , where  $ndoc$  is the number of documents reported, for any  $h \leq \alpha \lg_\sigma n$ , where  $0 < \alpha < 1$  and  $\varepsilon > 0$  are any constants.*

### 3. Faster Top- $k$ Retrieval

In this section we considerably improve the time complexities of Hon et al.'s scheme [6] for top- $k$  retrieval. Their solution partitions the suffix array into chunks of  $b = k\ell$  bits. A suffix tree [21] on  $T$  is built and all the suffix tree nodes that are lowest common ancestors (*lca*) of consecutive chunk endpoints are represented in a *sampled* suffix tree, which contains  $O(n/b)$  nodes. At each sampled node they store the top- $k$  solution of its subtree.

When a pattern is mapped to the suffix array interval  $A[sp, ep]$ , it is shown that there exists a sampled node covering an area  $A[sp', ep']$ , where both  $sp' - sp$  and  $ep - ep'$  are less than  $b$ . Thus one can simply collect the  $k$  precomputed candidates and the (at most  $2b$ ) distinct documents mentioned in these remaining intervals, compute their frequencies in  $A[sp, ep]$ , and take the  $k$  highest frequencies. By using y-fast tries [25] on the identifiers and on the frequencies, the process takes time  $O(t_{\text{op}}b)$ , where  $t_{\text{op}} = t_{\text{SA}} + t_{\text{count}} + \lg \lg n$  and  $t_{\text{count}}$  is the time to count an arbitrary frequency (the  $\lg \lg n$  will be absorbed by a  $\lg^\varepsilon n$  later).

Since  $k$  is unknown at indexing time, this structure is built for all  $k$  powers of 2 (i.e.,  $\lg D$  sampled trees), and at query time the next power of 2 is used. By storing the top- $k$  identifiers in increasing order [8] a node uses  $O(k \lg(D/k))$  bits, and the total space is  $O((n/b)k \lg D \lg(D/k)) = O((n/\ell) \lg D \lg(D/k))$  bits. This allows using  $b = k\ell = k \lg D \lg(D/k) \lg^\varepsilon n$ , which defines the query time.

Something that is not properly considered by Gagie et al. [8] is that if the trees are stored using pointers, then there is a component of  $O((n/b) \lg n)$  bits for  $k = 1$ , and thus  $\ell$  must be at least  $\lg^{1+\varepsilon} n$ .

To avoid this we store the sampled tree in succinct form [26] using just  $2+o(1)$  bits per node and supporting in  $O(1)$  time many operations, including  $\text{lca}$ ,  $\text{preorder}$  (whose consecutive values are used to index an array storing the top- $k$  candidate data on each node), and  $\text{preorder}^{-1}$ . For each pair of consecutive chunk endpoints  $p_i$  and  $p_{i+1}$  we store the preorder  $x_i$  of the sampled tree node  $\text{lca}(p_i, p_{i+1})$ . As  $x_i \geq x_{i-1}$ , values  $x_i + i$  are increasing, and thus can be stored in a structure of  $(n/b) \lg \frac{2n}{n/b} + O(n/b)$  bits that retrieves any  $x_i$  in constant time [27]<sup>4</sup>. This space is  $O((n/b) \lg b) = O(n \frac{\lg k + \lg \lg n}{k \lg D \lg(D/k) \lg^\varepsilon n}) = o(n)$ . Now we can find in constant time the lowest sampled node covering chunk interval  $[L, R]$  as  $\text{lca}(\text{preorder}^{-1}(x_L), \text{preorder}^{-1}(x_{R-1}))$ . We will omit  $\text{preorder}^{-1}$  for simplicity.

### 3.1. Lowering the $\lg D$ Factor to $\lg k$

The fact that we wish to answer queries for any  $k \leq D$  translates into a  $\lg D$  factor in the formula for  $\ell$ , which impacts the time complexities. If we set a limit  $k^*$  on the maximum  $k$  allowed at queries, this  $\lg D$  becomes  $\lg k^*$ . We show now that, by carefully choosing  $\ell$ , we can convert the time to  $\lg k$ .

Instead of choosing  $\ell = \lg D \lg(D/k) \lg^\varepsilon n$  so that all the sampled suffix trees have the same size, we reduce it to  $\ell = \lg k \lg(D/k) \lg^\varepsilon n$ , which is slightly increasing with  $k$ . Then the space for a given  $k$  is  $(n/b)k \lg(D/k) = (n/\ell) \lg(D/k) = \frac{n}{\lg k \lg^\varepsilon n}$ . Added over all the  $k = 2^j$  values this gives  $\sum_{j=1}^{\lg D} \frac{n}{j \lg^\varepsilon n} = O(\frac{n \lg \lg D}{\lg^\varepsilon n}) = o(n)$ .

Therefore we obtain times  $O(t_{\text{op}}b) = O(t_{\text{op}}k \lg k \lg(D/k) \lg^\varepsilon n)$ . Note this applies also to previous solutions [8], as shown in Table 2.

---

<sup>4</sup>Using a constant-time  $\text{rank}/\text{select}$  implementation on their internal bitmap  $H$  [23].

### 3.2. Computing Arbitrary Frequencies

We additionally remove an  $O(\lg n)$  factor from Hon et al.'s top- $k$  retrieval query time [6], while using the same asymptotic space. The following theorem states the result building on the improved variant of Gagie et al. [8] and on Section 3.1.

**Theorem 3** *Given a concatenation  $T[1, n]$  of  $D$  documents, the top- $k$  retrieval problem can be solved in time  $O(t_{\text{search}} + t_{\text{SA}} k \lg k \lg(D/k) \lg^\varepsilon n)$  while using  $2|\text{CSA}| + o(n) + D \lg \frac{n}{D} + O(D)$  bits of space, where  $t_{\text{search}}$  is the time to find the suffix array interval of pattern  $P$  in the CSA of  $T$ ,  $t_{\text{SA}}$  is the time to compute a position of the suffix array or its inverse, and  $\varepsilon > 0$  is any constant.*

The theorem is obtained just by noting that time  $t_{\text{count}} = O(t_{\text{SA}} \lg n)$  in Hon et al.'s algorithm comes from a binary search for the  $ep_d$  such that an interval  $[sp_d, ep_d]$  inside a local  $\text{CSA}_d$  is mapped to a given interval  $[sp, ep]$  in the global CSA. This binary search can be sped up by sampling every  $\lg^2 n$  positions in  $\text{CSA}_d$  and storing their corresponding position in the global CSA. This sampled array stores  $\lfloor n_d / \lg^2 n \rfloor$  entries and thus takes  $O(n_d / \lg n)$  bits of space for each document  $d$  of length  $n_d$ . The overall space is thus  $O(n / \lg n) = o(n)$ .

We store that array of increasing values in a y-fast trie [25] so that a predecessor query takes  $O(\lg \lg n)$  time. Then the binary search for  $ep$  can be done by first querying the y-fast trie in time  $O(\lg \lg n)$ , which will delimit an interval of size  $\lg^2 n$ , and then with a binary search within that interval in time  $t_{\text{count}} = O(t_{\text{SA}} \lg \lg n)$ . They also need to find  $sp_d$  given  $ep_d$ , which is similar. With the optimum-space CSA used by Hon et al. [6] this time is  $O(\lg^{1+\varepsilon} n)$ , and the overall time reduces from  $O(\lg^{4+\varepsilon} n)$  per element returned, to  $O(\lg k \lg^{2+\varepsilon} n)$ . More precisely, and using a more recent CSA [24], we obtain the following result.

**Corollary 2** *Given a concatenation  $T[1, n]$  of  $D$  documents over alphabet  $[1, \sigma]$ , the top- $k$  retrieval problem for  $P[1, m]$  can be solved using  $2nH_h(T) + o(nH_h(T)) + O(n)$  bits of space and in time  $O(m + k \lg k \lg(D/k) \lg^{1+\varepsilon} n)$ , for any  $h \leq \alpha \lg_\sigma n$ , where  $0 < \alpha < 1$  and  $\varepsilon > 0$  are any constants.*

## 4. Using Mmphpfs for Top- $k$ Retrieval

We now use mmphpfs  $f_c$  as in Section 2, instead of the local  $\text{CSA}_d$ 's. This would give  $t_{\text{count}} = \lg \lg D$  using  $O(n \lg \lg \lg D)$  bits. Then the time would be  $O((t_{\text{SA}} + \lg \lg D + \lg \lg n)k\ell) = O(t_{\text{SA}}k\ell)$ , as the  $\lg \lg n$  term is absorbed by the  $\lg^\varepsilon n$  in  $\ell$ .

The problem is that mmphpfs do not give a way to compute arbitrary frequencies. We could only do so if the document appeared *both* in  $A[sp, sp' - 1]$  and  $A[ep' + 1, ep]$ . In such a case we could easily find its leftmost ( $l_i$ ) and rightmost ( $r_i$ ) occurrence in  $A[sp, ep]$  and compute the frequency as  $f_c(r_i) - f_c(l_i) + 1$ .

The candidates can be divided into four groups: (1) appearing only inside  $A[sp', ep']$ ; (2) appearing both in  $A[sp, sp' - 1]$  and  $A[ep' + 1, ep]$ , and possibly in  $A[sp', ep']$ ; (3) appearing in  $A[sp, sp' - 1]$ , and possibly in  $A[sp', ep']$ , but not

in  $A[ep' + 1, ep]$ ; and (4) appearing in  $A[ep' + 1, ep]$ , and possibly in  $A[sp', ep']$ , but not in  $A[sp, sp' - 1]$ .

The only interesting candidates of group (1) are those in the precomputed top- $k$  list, for which we must store the frequencies, as we will have no other way to compute them. This raises the  $\lg(D/k)$  time of Section 3 to  $\lg n$ . Candidates of group (2) are found by scanning both subintervals, finding the documents that appear in both, and their leftmost and rightmost positions. This is done in time  $O(b \lg \lg n)$  with y-fast tries. Then we compute their frequencies using the corresponding mmphf. Next we show how to handle the other two groups.

#### 4.1. Bounding the Number of Valid Candidates

We show that the number of documents that can make it to the top- $k$  list if they appear only to the left (or, similarly, to the right) chunk of the precomputed interval, is  $O(k\sqrt{\ell})$ . This allows us to store all those potentially relevant documents within the nodes. By storing their frequency in  $A[sp', ep']$ , we can complete the frequency computation in  $A[sp, ep']$  by just traversing the area  $A[sp, sp' - 1]$  and increasing the frequencies of the documents found (we omit this step on documents that have already been found in both tails, as explained).

In order for a document to be out of the top- $k$  list, but able to make it to the list by scanning the chunk to the left of the sampled node, its frequency must be between  $f - b + 1$  and  $f$ , where  $f$  is the frequency of the  $k$ th most frequent candidate stored. Therefore its frequency can be stored using  $O(\lg b) = O(\lg k + \lg \lg n)$  bits. Moreover each document with frequency under  $f - \ell + 1$  must appear at least  $\ell$  times in the chunk in order to have a chance, thus there are at most  $b/\ell = k$  such nodes. The rest need only  $O(\lg \ell)$  bits. Therefore the total space per node will be  $O(k \lg n + k \lg b + k\sqrt{\ell} \lg \ell) = O(k \lg n + k\sqrt{\ell} \lg \lg n)$  (note we are *not* storing the document identifiers of these extra candidates), and the overall space for a given  $k = 2^j$  will be  $O((n/b)k(\lg n + \sqrt{\ell} \lg \lg n))$ . For the sum of spaces over  $j$  to be  $o(n)$  we need that  $\ell = \lg k \lg^{1+\varepsilon} n$  for some  $\varepsilon > 0$ .

To know which documents are indeed candidates (i.e., can make it to the top- $k$  list so we have stored their frequency inside the node) we set up a bitmap of length  $b$  marking the rightmost occurrence of such candidates, and their position in the array of frequencies is obtained with  $rank_1$  on that bitmap (a second bitmap distinguishes  $\lg b$ -bit from  $\lg \ell$ -bit candidates). As it has at most  $k\sqrt{\ell}$  bits set, the bitmap can be stored within  $O(k\sqrt{\ell} \lg \sqrt{\ell}) = O(k\sqrt{\ell} \lg \lg n)$  bits. Thus we traverse  $A[sp, sp' - 1]$  right to left. When we find a 1 in this bitmap, this is the first time we see a relevant candidate. We compute its identity in  $O(t_{SA})$  time and find its  $A[sp', ep']$  frequency using  $rank_1$  as explained. Now we have the data to insert it (increasing its frequency by 1) into the y-fast trie. The next occurrences (when the bitmap has value 0) correspond to candidates that either have already been found (and thus are already inserted in the y-fast trie) or candidates that cannot make it to the top- $k$  list (and thus are not present in the y-fast trie and we must not care about them).

The missing piece is to prove that there are sufficiently few candidates.

**Lemma 1** Let  $\text{top}_k(s, e)$  be  $k$  most frequent colors in an array  $E[s, e]$ . Then there is a choice of  $\text{top}_k(\cdot, \cdot)$  sets in case of frequency ties such that, for any  $b$ ,  $|\cup_{r=0}^b \text{top}_k(s-r, e)| < k + \sqrt{2bk}$ .

**Proof.** Let us call  $C(b) = |\cup_{r=0}^b \text{top}_k(s-r, e)|$ . Let us call  $s_t < s$  the position where  $k \cdot t$  new elements have made it in  $\text{top}_k$  at some point, i.e.,  $C(s-s_t) = C(0) + kt = k + kt$ . Let us call  $f_r$  the  $k$ th highest frequency in  $E[r, e]$ . Since all elements not in  $\text{top}_k(s, e)$  have frequency at most  $f = f_s$  in  $E[s, e]$ , a new element must appear at least once in  $E[r, s-1]$  to reach frequency  $f+1$  and force us choose it for  $\text{top}_k(r, e)$ . Hence  $s_1 \leq s-k$ .

Now, as  $k$  distinct elements have entered in  $\text{top}_k(s_1, e)$ , it must hold that  $f_{s_1} \geq f+1$ , as we have seen  $k$  distinct elements reaching frequency  $f+1$ . Thus the  $(k+1)$ th *distinct* element appearing in  $\text{top}_k(r, e)$  must appear at least twice in  $E[r, s-1]$ , to jump from frequency at most  $f$  to at least  $f+2$ . Thus we need  $2k$  occurrences of elements that are incompatible with the previous  $k$  occurrences in order to have  $k$  new distinct elements, thus  $s_2 \leq s-3k$ .

Once these new  $k$  distinct elements enter in  $\text{top}_k(s_2, e)$ , it holds that  $f_{s_2} \geq f+2$ , and thus we need  $3k$  incompatible occurrences for the next  $k$  occurrences, and so on. Iterating the argument, it holds  $s_t \leq s - \frac{t(t+1)}{2}k$  for all  $t \geq 1$ .

Thus as long as  $s_t \geq s-b$  we have  $\frac{t(t+1)}{2}k \leq b$ , and thus  $t < \sqrt{2b/k}$ . Hence the number of new elements entering into some  $\text{top}_k(s-r, e)$  for  $1 \leq b \leq r$  is  $C(b) < k(t+1) < k + \sqrt{2bk}$ .  $\square$

In our case  $b = k\ell$  so the bound is  $C(b) = O(k\sqrt{\ell})$ . We have proved the main result. The time simplifies to  $O(t_{\text{search}} + k \lg k \lg^{2+\varepsilon} n)$  when  $t_{\text{SA}} = \lg^{1+\varepsilon} n$ .

**Theorem 4** Given a concatenation  $T[1, n]$  of  $D$  documents, the top- $k$  retrieval problem can be solved in time  $O(t_{\text{search}} + t_{\text{SA}} k \lg k \lg^{1+\varepsilon} n)$  using  $O(n \lg \lg \lg D)$  extra bits, where  $t_{\text{search}}$  is the time to find the suffix array interval of pattern  $P$  in the CSA of  $T$ ,  $t_{\text{SA}}$  is the time to compute a position of the suffix array or its inverse, and  $\varepsilon > 0$  is any constant.

Again, using a recent CSA [24], we obtain the following particular case.

**Corollary 3** Given a concatenation  $T[1, n]$  of  $D$  documents over alphabet  $[1, \sigma]$ , the top- $k$  retrieval problem for  $P[1, m]$  can be solved using  $nH_h(T) + o(nH_h(T)) + O(n \lg \lg \lg D)$  bits of space and in time  $O(m + k \lg k \lg(D/k) \lg^{2+\varepsilon} n)$ , for any  $h \leq \alpha \lg_\sigma n$ , where  $0 < \alpha < 1$  and  $\varepsilon > 0$  are any constants.

## 5. Top- $k$ Most Important Document Retrieval

A particular variant of top- $k$  document retrieval, somewhat easier than the one that seeks for the highest frequencies, is one where the documents have a fixed *importance* or priority. An example is the PageRank value of Web pages.

**Definition 5** *Given a set of strings, called documents, with an associated importance value, and a string  $P$ , called the pattern, the top- $k$  most important retrieval problem is to list the  $k$  documents of highest importance value where  $P$  appears.*

A way to handle this problem is to sort the documents by importance, so that document  $i$  is the  $i$ th most important in the collection. Then the problem becomes that of finding the  $k$  smallest distinct values in  $E[sp, ep]$ . While methods based on range quantile queries on wavelet trees [7] naturally report the documents in sorted order and thus automatically solve this problem in  $O(k \lg D)$  time by pruning the process after reporting  $k$  results, the situation is not that easy for the other approaches that use potentially less space.

A solution comes from the same top- $k$  retrieval technique of Hon et al. [6]. This time one stores the  $k$  smallest document values within each sampled node, and traverses the tails of the interval looking for smaller document identifiers. No frequencies need to be computed, which allows for an  $O(t_{SA}k \lg k \lg(D/k) \lg^\varepsilon n)$  time solution, e.g.,  $O(k \lg k \lg^{2+\varepsilon} n)$ . This seems unimportant now that we have reduced the complexity of the more difficult top- $k$  retrieval problem to the same level. Yet, we show that this particular problem can be solved faster, removing the  $\lg(D/k)$  factor.

**Theorem 5** *Given a concatenation  $T[1, n]$  of  $D$  documents, the top- $k$  most important retrieval problem can be solved in time  $O(t_{\text{search}} + t_{SA}k \lg k \lg^\varepsilon n)$  while using  $|\text{CSA}| + o(n) + D \lg \frac{n}{D} + O(D)$  bits of space, where  $t_{\text{search}}$  is the time to find the suffix array interval of pattern  $P$  in the CSA of  $T$ ,  $t_{SA}$  is the time to compute a position of the suffix array or its inverse, and  $\varepsilon > 0$  is any constant.*

For  $t_{SA} = \lg^{1+\varepsilon} n$ , this is  $O(t_{\text{search}} + k \lg k \lg^{1+\varepsilon} n)$  time. More precisely [24]:

**Corollary 4** *Given a concatenation  $T[1, n]$  of  $D$  documents over alphabet  $[1, \sigma]$ , the top- $k$  most important retrieval problem for  $P[1, m]$  can be solved using  $nH_h(T) + o(nH_h(T)) + O(n)$  bits of space and in time  $O(m + k \lg k \lg^{1+\varepsilon} n)$ , for any  $h \leq \alpha \lg_\sigma n$ , where  $0 < \alpha < 1$  and  $\varepsilon > 0$  are any constants.*

The result of Hon et al. [6] is achieved by using chunks of  $b = k\ell$  positions for  $\ell = \lg^{2+\varepsilon} n$  (for the more refined complexity we use  $\ell = \lg k \lg(D/k) \lg^\varepsilon n$ ). Our idea is to further divide those chunks into  $\lg(D/k)$  buckets of size  $b' = k \lg k \lg^\varepsilon n$ . For each chunk we build a small local sampled suffix tree. A query will then span at most one global node, two local nodes, and two tail buckets.

Consider the endpoints  $p_1 \dots p_r$  of the buckets inside a given chunk, and call  $v = \text{lca}(p_1, p_r)$  the lowest sampled global suffix tree node that covers the chunk. Just as for the global scheme, find in the suffix tree the  $\text{lca}$  nodes of each pair of consecutive endpoints,  $\text{lca}(p_i, p_{i+1})$ . All those  $\text{lca}$  nodes are below  $v$  or are  $v$ .

There are overall  $O(n/b')$  local sampled nodes. Moreover, if some node  $u = \text{lca}(p_i, p_{i+1})$  covers the whole chunk  $[p_1, p_r]$ , then it must be an ancestor of  $v = \text{lca}(p_1, p_r)$ , but since it is also a descendant of  $v$ , we have  $u = v$ . That is,

the local sampled suffix tree nodes (that are not already global sampled suffix tree nodes) cannot cover a chunk and hence span less than  $2b$  positions.

Instead of storing the top- $k$  document identifiers using  $O(k \lg(D/k))$  bits, for these local sampled nodes we will store the *positions* of some occurrence of those identifiers within the local sampled node, sorted by increasing position. The identifier must be obtained with an access to that position, which will not change the complexity. Since local positions span less than  $2b$ , they require  $O(k \lg(b/k)) = O(k \lg \ell) = O(k \lg \lg n)$  bits. The tree topology itself will require  $2 + o(1)$  bits per node, as for the global tree. The total space for a given  $k = 2^j$  is  $O((n/b')k \lg \lg n) = O(n \frac{\lg \lg n}{\lg k \lg^\varepsilon n})$ , which added over all  $k = 2^j$  values gives  $o(n)$  bits overall. We also must store a local node identifier  $y_i = \text{preorder}(\text{lca}(p_i, p_{i+1}))$  for each bucket, which requires  $O((n/b') \lg b) = O(n \frac{\lg k + \lg \lg n}{k \lg k \lg^\varepsilon n}) = O(n \frac{\lg \lg n}{k \lg^\varepsilon n})$ , which added over all  $k = 2^j$  values gives  $o(n)$  bits as well.

To query, we determine the interval  $A[sp, ep]$  of  $P$  and the covered chunk  $[L, R]$ , the covered bucket  $[l_1, r_1 = Lb'/b]$  to the left of chunk  $L$ , and the covered bucket  $[l_2 = Rb'/b, r_2]$  to the right of chunk  $R$ . Then we find the global sampled node  $v = \text{lca}(x_L, x_{R-1})$ , and the local sampled nodes  $u_1 = \text{lca}(y_{l_1}, y_{r_1-1})$  and  $u_2 = \text{lca}(y_{l_2}, y_{r_2-1})$ . If  $u_1$  or  $u_2$  are equal to  $v$  we discard them. Now we take the at most  $3k$  candidates from  $v$ ,  $u_1$  and  $u_2$ , and also consider the elements in  $E[sp, r_1 b' - 1]$  and  $E[b' l_2 + 1, ep]$ . The time is  $O(t_{\text{SA}}(k + b'))$  to extract all the candidate identifiers, plus  $O(k \lg \lg n)$  to maintain a heap of the smallest  $k$  values seen in the process using a y-fast trie [25]. The time adds up to  $O(t_{\text{SA}} k \lg k \lg^\varepsilon n)$ .

## 6. Experimental Results

In this section we implement our idea for document listing with frequencies (Section 2), in order to explore the practical potential of mmphfs. Different practical studies on this problem [9, 22] have demonstrated that the schemes based on the individual  $\text{CSA}_d$  structures are not competitive in practice, as they pose too much space overhead and are in addition rather slow. Thus both articles advocate for the use of wavelet trees as the only practical tool for document listing with frequencies (as well as top- $k$  retrieval). Navarro et al. [22] studied in further detail different ways to compress wavelet trees, and came up with four different space/time tradeoffs, which are in this moment the best structures in practice. Our experiments show that the new mmphf-based algorithms may offer a competitive alternative in practice, not only in theory.

We use their same experimental framework [22], sharing the same collections and queries. We consider three collections of different nature: English, symbolic, and biological sequences. They also feature widely different number of documents, whereas the space is comparable. A brief description follows.

**ClueWiki:** A 131 MB sample of ClueWeb09, formed by 3,334 Web pages from the English Wikipedia.

| Collection | $n$   | $D$     | RMQ  | $B$  | mmphf | CSA  | Total      |
|------------|-------|---------|------|------|-------|------|------------|
| ClueWiki   | 131MB | 3,334   | 3.08 | 0.30 | 4.67  | 28/s | 11.13+28/s |
| KGS        | 25MB  | 18,838  | 3.07 | 0.31 | 3.14  | 25/s | 9.59+25/s  |
| Proteins   | 56MB  | 143,244 | 3.07 | 0.32 | 3.56  | 26/s | 10.02+26/s |

Table 3: Space breakdown, in bpc, of our scheme for the three collections. Value  $s$  is the sampling step chosen to support access to the CSA cells. The total space includes *two* RMQ structures,  $B$ , MMphf, and the CSA sampling.

**KGS:** A 25 MB collection of 18,838 sgf-formatted Go game records from year 2009 ([www.u-go.net/gamerecords](http://www.u-go.net/gamerecords)).

**Proteins:** A 56 MB collection formed by 143,244 sequences of Human and Mouse proteins ([www.ebi.ac.uk/swissprot](http://www.ebi.ac.uk/swissprot)).

Our tests ran on an Intel Core2 Duo machine, of 3Ghz, with 8GB RAM and 6MB cache. Our code was compiled using `g++` with full optimization. We measure user times. Our queries are randomly generated intervals of length 10,000 from the suffix array and we report the time to solve the whole query.

As the global CSA we use Sadakane’s [28], downloadable from the *PizzaChili* site (<http://pizzachili.dcc.uchile.cl>). As the global CSA search for a pattern (to obtain  $sp$  and  $ep$ ) is common to all the approaches, we do not consider the time for this search, nor the space for that global CSA. We only count the extra space/time required to support document retrieval once  $[sp, ep]$  has been determined. We give the space usage in bits per text character (bpc).

For our mmphf-based method, we use a practical mmphf implementation by Belazzougui et al. (space-optimized since its original publication [29]). We use the RMQ implementation by Simon Gog (<http://www.uni-ulm.de/in/theo/research/sds1>). We implement the algorithm as described in Section 2, except that we do a naive sorting of the leftmost and rightmost occurrences.

Note that the CSA is used by all the techniques to obtain  $sp$  and  $ep$ , but in addition our method uses it to compute suffix array cell contents. To carry out this task the CSA makes use of a further sampling, whose space cost will be charged (only) to our data structure. This is not totally fair with us because, in a scenario where one wants to carry out document retrieval and pattern locating queries, we would use the same sampling structure for both activities.

Table 3 gives the space of the different substructures that make up our solution. It is interesting that spaces are roughly equal and basically independent of, say, how compressible is the collection. Note also that the space is basically independent on the number of documents in the collection. This is in contrast to the  $O(n \lg D)$  space of wavelet-tree based solutions, and suggests that our scheme could compare better on much larger test collections.

As for times, we note that each occurrence we report requires to compute 4 RMQ queries, 2 accesses to  $B$  and to the CSA, and 0 or 2 mmphf (this can be zero when the leftmost and rightmost position are the same, so we know that the frequency is 1 without invoking the mmphf). We made a first experiment

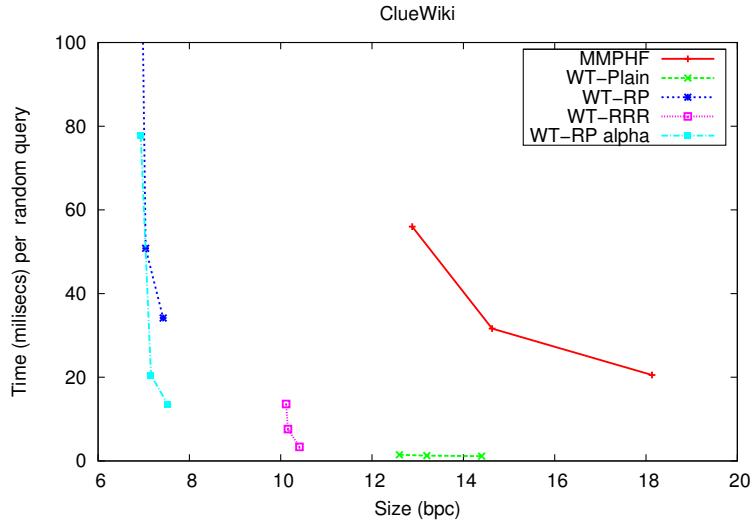


Figure 1: Space-time performance of the different alternatives for collection ClueWiki.

replacing the CSA with a plain suffix array (where  $t_{SA}$  corresponds to simply accessing a cell). The times were 12.8 msec on ClueWiki and 18.4 msec on KGS and Proteins. These are significantly lower than the times we will see on CSAs, which shows that the time performance is sharply dominated by parameter  $s$ . Due to the design of Sadakane’s CSA (and most implemented CSAs, in fact), the time  $t_{SA}$  is essentially linear on  $s$ . This gives our space/time tradeoff.

We compare the four wavelet tree variants [22] called *WT-Plain*, *WT-RP*, *WT-RRR*, and *WT-alpha*, with our mmphf-based idea. In their case, space-time tradeoffs are obtained by varying various samplings. They are stretched to essentially the minimum space they can possibly use.

Figures 1 to 3 give the space/time results. When we compare to *WT-Plain*, which is the basic wavelet tree based theoretical solution, the mmphf-based technique makes good its theoretical promise of using less space (at least on Proteins, where  $D$  is sufficiently large). The wavelet tree uses 12.5 to 19 bpc depending on the number of documents in the collection. Our technique uses, in our experiments, as little as 12 bpc. On the other hand, the time  $O(t_{SA})$  spent for each document reported turns out to be, in practice, much higher than the  $O(\lg D)$  used to access the wavelet tree. The space/time tradeoff obtained is likely to keep improving on collections with even more documents, as the space and time of wavelet trees grow with  $\lg D$ , whereas our solution has a time independent of  $D$  and a space that depends log-logarithmically (or less) on  $D$ .

When we consider the practical improvements to compress wavelet trees [22], however, we have that these offer more attractive tradeoffs on collections ClueWiki and KGS, whereas on Proteins their attempt to compress has a very limited effect. Indeed, it is not clear in which cases do these compression tech-

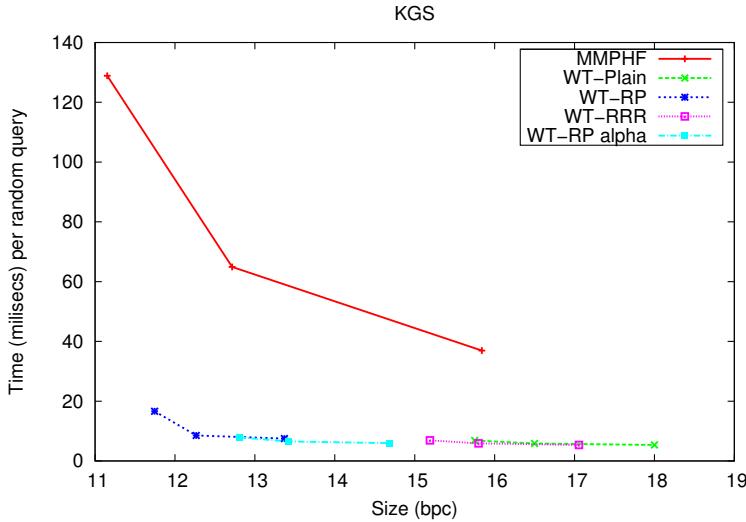


Figure 2: Space-time performance of the different alternatives for collection KGS.

niques work. It has been shown that there is a (coarse) relation to the  $k$ -th order compressibility of the collection [8], but the dependence is quite mild.

Our technique stands as a robust alternative whose performance is very easy to predict, independently of the characteristics of the collection. On large collections that are resilient to the known techniques to compress the wavelet tree, the mmphf-based solution offers a relevant space/time tradeoff. Moreover, our technique is likely to be more scalable, as explained, and its times benefit directly from any improvement in access times to Compressed Suffix Arrays.

## 7. Conclusions

The space of solutions to document retrieval problems has been dominated by two approaches: one using an individual suffix array for each document, and another representing the array of document identifiers of all the suffixes. Both store redundant information that poses serious space overheads, both in theory and in practice, on top of text searching indexes.

In this paper we break this dichotomy by proposing a third approach, based on monotone minimal perfect hash functions (mmphfs). These store less information than the document array, and consequently can be represented using considerably less space, while retaining competitive times. Our proof-of-concept experimental results show that this approach may also be relevant in practice.

Answering the document retrieval queries with a tool that stores less information than document arrays (i.e., the mmphfs) poses interesting algorithmic challenges. While some problems, like document listing with frequencies, were straightforward to solve, problems like top- $k$  document retrieval required much

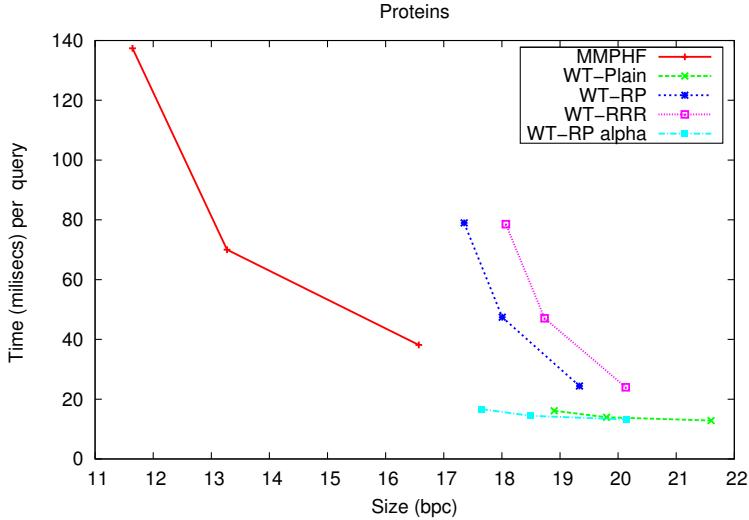


Figure 3: Space-time performance of the different alternatives for collection Protein.

more sophisticated ideas, which could be of interest in other scenarios. Besides, we have given significant improvements to several of the existing approaches, and also proposed novel solutions to other problems such as top- $k$  most important document retrieval, and color listing with frequencies. For the latter problem we have given the first solution with constant time and succinct space.

Moving from pattern searching to document searching represented an important step towards bringing the compact data structures that had been successful in indexed pattern matching closer to the interests of the Information Retrieval community. We believe it may be time to take a further step. Our document retrieval problems are defined in terms of a *single* pattern, be it a word, a phrase, or an arbitrary string. Most document retrieval scenarios of interest consider the *bag of words* paradigm, where a set of strings is given, and we look for the top- $k$  documents where the *combined* relevance of all the words is maximized. There are various formulas to combine relevances. Furthermore, when considering combined relevance, term frequency becomes a too simple measure, and it must be weighted with other factors that complicate ranking algorithms.

A nice feature of our schemes is that the existing approaches to top- $k$  retrieval on bag-of-words work only on natural language collections. They cannot handle other types of texts, and queries are usually limited to words. These approaches build on so-called inverted indexes that store the documents where each word appears, in decreasing order of frequency (or another measure of relevance), and read a prefix of the lists of the query words. Our top- $k$  techniques allow us to generate on the fly the sorted list of *any* string pattern, and therefore any of the existing IR algorithms can be built on them in order to handle general string collections. In order to compete with inverted indexes on natural

language collections, however, it is necessary to devise algorithms that are more efficient than simulating inverted indexes. This is a very interesting challenge.

## References

### References

- [1] D. M. B. Croft, T. Strohman, Search Engines: Information Retrieval in Practice, Pearson Education, 2009.
- [2] R. Baeza-Yates, B. Ribeiro, Modern Information Retrieval, 2nd Edition, Addison-Wesley, 2011.
- [3] S. Muthukrishnan, Efficient algorithms for document retrieval problems, in: Proc. 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2002, pp. 657–666.
- [4] K. Sadakane, Succinct data structures for flexible text retrieval systems, Journal of Discrete Algorithms 5 (1) (2007) 12–22.
- [5] N. Välimäki, V. Mäkinen, Space-efficient algorithms for document retrieval, in: Proc. 18th Annual Symposium on Combinatorial Pattern Matching (CPM), 2007, pp. 205–215.
- [6] W.-K. Hon, R. Shah, J. S. Vitter, Space-efficient framework for top- $k$  string retrieval problems, in: Proc. 50th IEEE Annual Symposium on Foundations of Computer Science (FOCS), 2009, pp. 713–722.
- [7] T. Gagie, S. J. Puglisi, A. Turpin, Range quantile queries: Another virtue of wavelet trees, in: Proc. 16th International Symposium on String Processing and Information Retrieval (SPIRE), 2009, pp. 1–6.
- [8] T. Gagie, G. Navarro, S. J. Puglisi, Colored range queries and document retrieval, in: Proc. 17th International Symposium on String Processing and Information Retrieval (SPIRE), 2010, pp. 67–81.
- [9] S. Culpepper, G. Navarro, S. Puglisi, A. Turpin, Top- $k$  ranked document search in general text databases, in: Proc. 18th Annual European Symposium on Algorithms (ESA), 2010, pp. 194–205 (part II).
- [10] M. Karpinski, Y. Nekrich, Top- $k$  color queries for document retrieval, in: Proc. 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2011, pp. 401–411.
- [11] G. Navarro, V. Mäkinen, Compressed full-text indexes, ACM Computing Surveys 39 (1) (2007) art. 2.
- [12] U. Manber, G. Myers, Suffix arrays: a new method for on-line string searches, SIAM Journal on Computing 22 (5) (1993) 935–948.

- [13] R. Grossi, A. Gupta, J. Vitter, High-order entropy-compressed text indexes, in: Proc. 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2003, pp. 841–850.
- [14] P. Ferragina, G. Manzini, V. Mäkinen, G. Navarro, Compressed representations of sequences and full-text indexes, ACM Transactions on Algorithms 3 (2) (2007) art. 20.
- [15] G. Manzini, An analysis of the Burrows-Wheeler transform, Journal of the ACM 48 (3) (2001) 407–430.
- [16] R. Raman, V. Raman, S. Rao, Succinct indexable dictionaries with applications to encoding  $k$ -ary trees and multisets, in: Proc. 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2002, pp. 233–242.
- [17] D. Belazzougui, P. Boldi, R. Pagh, S. Vigna, Monotone minimal perfect hashing: searching a sorted table with  $o(1)$  accesses, in: Proc. 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2009, pp. 785–794.
- [18] J. Fischer, Optimal succinctness for range minimum queries, in: Proc. 9th Latin American Symposium on Theoretical Informatics (LATIN), 2010, pp. 158–169.
- [19] M. Pătrașcu, Succincter, in: Proc. 49th IEEE Annual Symposium on Foundations of Computer Science (FOCS), 2008, pp. 305–313.
- [20] R. Grossi, A. Orlandi, R. Raman, Optimal trade-offs for succinct string indexes, in: Proc. 37th International Colloquium on Automata, Languages and Programming (ICALP), 2010, pp. 678–689.
- [21] A. Apostolico, The myriad virtues of subword trees, in: Combinatorial Algorithms on Words, NATO ISI Series, Springer-Verlag, 1985, pp. 85–96.
- [22] G. Navarro, S. Puglisi, D. Valenzuela, Practical compressed document retrieval, in: Proc. 10th International Symposium on Experimental Algorithms (SEA), LNCS 6630, 2011, pp. 193–205.
- [23] I. Munro, Tables, in: Proc. 16th Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), LNCS 1180, 1996, pp. 37–42.
- [24] D. Belazzougui, G. Navarro, Alphabet-independent compressed text indexing, in: Proc. 19th Annual European Symposium on Algorithms (ESA), LNCS 6942, 2011, pp. 748–759.
- [25] D. E. Willard, Log-logarithmic worst-case range queries are possible in space  $\theta(n)$ , Information Processing Letters 17 (2) (1983) 81–84.

- [26] K. Sadakane, G. Navarro, Fully-functional succinct trees, in: Proc. 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2010, pp. 134–149.
- [27] D. Okanohara, K. Sadakane, Practical entropy-compressed rank/ select dictionary, in: Proc. 8th Workshop on Algorithm Engineering and Experiments (ALENEX), 2007.
- [28] K. Sadakane, New text indexing functionalities of the compressed suffix arrays, *Journal of Algorithms* 48 (2) (2003) 294–313.
- [29] D. Belazzougui, P. Boldi, R. Pagh, S. Vigna, Theory and practise of monotone minimal perfect hashing, in: Proc. 10th Workshop on Algorithm Engineering and Experiments (ALENEX), 2009.