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Abstract

We give new space/time tradeoffs for compressed indexes that answer document
retrieval queries on general sequences. On a collection of D documents of total
length n, current approaches require at least |CSA| +O(n%) or 2|CSA|+o(n)
bits of space, where CSA is a full-text index. Using monotone minimal perfect
hash functions (mmphfs), we give new algorithms for document listing with
frequencies and top-k document retrieval using just |CSA|+ O(nlglglg D) bits.
We also improve current solutions that use 2|CSA| + o(n) bits, and consider
other problems such as colored range listing, top-k most important documents,
and computing arbitrary frequencies. We give proof-of-concept experimental
results that show that using mmphfs may provide relevant practical tradeoffs
for document listing with frequencies.

Keywords: Document retrieval, monotone minimal perfect hash functions,
compact data structures.

1. Introduction and Related Work

Full-text document retrieval is the problem of, given a collection of D docu-
ments (i.e., general sequences of symbols), preprocess them so as to later answer
various queries of significance in IR. As opposed to the traditional IR opera-
tions on natural language text collections, which are handled well with inverted
indexes [1, 2], the generalized problem has received much attention recently
[3, 4, 5, 6, 7, 8, 9, 10] for its applications in IR on Oriental languages such
as Chinese and Korean, software repositories handling source code modules,
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and bioinformatic databases handling DNA and protein sequences. The most
studied queries, among several others, are defined next.

Definition 1 Given a set of strings, called documents, and a string P, called
the pattern, we define the following problems.

Document listing: List the distinct documents where P appears.

Document listing with frequencies: List the distinct documents where P appears,
and the frequency (number of occurrences) of P in each.

Top-k retrieval: List the k documents where P appears most times.

As space is a serious problem in classical solutions [3, 6], much effort has
been put on extending compressed full-text indexes, which only find occurrences
of patterns P[1,m], to answer the more complex document retrieval queries.
Typically, the D documents are concatenated into a text T'[1, n] over an alphabet
[1,0], and a compressed full-text index [11] on T is used as the base structure.
This is usually a compressed suffix array of T' (we call this structure CSA and
its bit space |CSA|). The CSA simulates the suffix array A[l,n] [12], where
Ali] points to the ith lexicographically smallest suffix in 7. The CSA finds the
interval A[sp, ep| of occurrences of P in time fsearch, usually O(mlgo) or less
[13, 14]. It can also compute any cell Afi], and even A~[i], in time O(tsa),
usually O(lgH‘g n) for any constant € > 0. These indexes represent the text and
the suffix array within as little as nHp(T') + o(nlgo) bits, for any h < alg,n
and constant o < 1. Here Hp(T) is the empirical h-th order entropy of T' [15], a
lower bound on the bits-per-symbol a statistical order-h compressor may achieve
on 7.

In the rest of the section we describe our contributions in context. We
introduce at this point the concepts of binary rank, select, and of a monotone
minimal perfect hash function (mmphf).

Definition 2 Given a bitmap B, operation ranky(B,i) counts the number of
occurrences of bit b € {0,1} in B[1,i], whereas selecty(B,j) is the position of
the jth occurrence of bit b in B.

Let B be of length n and with m bits set. There exists a representation for
B using Ig (') + O(Iglgm) + o(n) = mlg Z 4+ O(m) + o(n) bits [16], solving
both operations in constant time. As B can be reconstructed using operation
rank, this space is optimal, save for the o(n) term. A mmphf can be seen as a
weaker structure on B.

Definition 3 Given a bitmap B, a monotone minimal perfect hash function
(mmphf) built on B is a data structure able to compute ranky(B,i) for any i
such that Bli]| = 1, giving an arbitrary value elsewhere.

Note that the mmphf is unable to tell whether B[i] = 1 or 0. An mmphf
can be represented within less space than the previous lower bound: within
O(mlglg /=) bits it answers the limited rank query in constant time, and using
O(mlglglg =>) bits it takes time O(lglg *) [17].



1.1. Document Listing with Frequencies

The pioneering work in this area [3] defines a document array E[1,n], where
Eli] tells the document to which suffix A[¢] belongs. As noted by Sadakane [4], a
bitmap BI[1,n] marking the document boundaries in 7' is enough to find E[i] =
ranky (B, Ali]) in time O(tsa). The extra space for B is just D1g 7 +0O(D)+o0(n)
bits [16]. This permits simulating Muthukrishnan’s optimal document listing
algorithm [3] within time O(tsa) per document reported, in addition to the time
tsearch- The total space is |[CSA| + O(n), the latter coming from range minimum
query (RMQ) data structures [18]. The space was made succinct by Hon et
al. [6], by sparsifying the RMQ structures over array blocks of size 1g° n: time
raises to O(tsalg® n) and the space drops to |CSA| 4 o(n) + D1g % + O(D).

We do not innovate on the plain document listing problem, but on the variant
that computes frequencies. The solutions build over plain document listing
and add extra data structures using two main approaches. A first one stores,
in addition to the CSA of the whole collection, one CSA4 for each individual
document d, for a total space of 2|CSA|+O(n) [4] or 2|CSA|+o(n)+Dlg F+O0(D)
[6]. This extra |CSA| space is used to compute document frequencies along with
the document listing. The times are as for document listing without frequencies.

A second approach [5, 7] represents the document array directly, in the form
of a wavelet tree [13]. This data structure makes the document listing times
independent of tsa and enables algorithms that do not derive from Muthukrish-
nan’s [7], listing each document in O(lg D) time. The space, however, is at least
nlg D + o(n) (achievable by using a recent encoding of the redundancy [19]).

Gagie et al. [8] abstracted this problem in terms of representing a sequence
FE providing support for accessing any element of F, enumerating each distinct
element in a range of E, and computing ranky(E, i) (the number of occurrences
of document d in F[1,1]), so that each document can be listed within the sum
of these three times. The abstraction enabled new space/time tradeoffs for
document listing with frequencies, achieving times as good as O(lglg D).

An interesting observation of Gagie et al. was that one could use succinct
indexes over a given sequence representation, for example in order to support the
ranky operation on top of just the B bitmap. These “weaker” representations
that need an auxiliary mechanism to compute the cells of E are able to reduce
space. For example, they achieved O(nléglgDD) bits with O(tsalglg D) time by
using a succinct index by Grossi et al. [20]. The very same lower bounds on
sequence rank given by Grossi et al. show that this tradeoff is optimal.

Our first major contribution improves upon this apparent lower bound. We
obtain a succinct index on top of the B bitmap that enables us to carry out
document listing with frequencies within less time and space than the best pre-
vious succinct index. We achieve O(nlglg D) bits extra space and O(tsp) time,
or O(nlglglg D) bits space and O(tsa + lglg D) time per reported document.

Our solution is based on mmphfs. As we can solve only a limited case
of rank, we cannot follow Gagie et al.’s framework [8]. Instead, we simulate
Sadakane’s method [4] using mmphfs instead of a second CSA. Our space/time
results are incomparable with those of Sadakane. Compared to the methods




Src. Extra space Extra Time Space (colors) Time (colors)
3] O(nlgn) 0(1) O(nlgn) 0(1)
[4] |CSA| + O(n) O(tsa) n/a n/a

[6] |CSA| + o(n) O(tsalg®n) n/a n/a

+Dlg 2+0(D)

(7,91 | nlgD+o(n) O(lg -2-) nlg D + o(n) O(lg -2)
8] nlg D+ O(n) O(léglgDn) nlg D+ O(n) (1;,»g1gDn)
8] nlg D+ O(n) O(lglg D) nlg D+ O(n) O(lglg D)
8] O(np%s) O(tsalglg D) nlg D+ O(nef55) O(lglg D)
Ours O(nlglg D) O(tsa) nlg D+ O(nlglg D) o(1)
Ours O(nlglglg D) O(tsa+1glg D) || nlg D+O0(nlglglg D) O(lglg D)

Table 1: Current and new results on document listing with frequencies (left side) and colored
range listing with frequencies (right side). On the left, the extra space is on top of the |CSA|
bits of the full-text index. The time complexities are in addition to tsearch, and per each of the
ndoc elements returned. They are valid for any constant € > 0. On the right we give total
space, and total time per each of the ncol results reported.

that represent directly the document array, we obtain the least space, while
the time comparison depends on tsa (e.g., there are full-text indexes where
tsp = O(lg° nlg' ¢ o) for any € > 0, yet they use O((1 + 1)nHy(T)) bits [13]).

Actually our solution is general enough to solve the colored range listing
problem, that is, finding the distinct colors (and their frequencies) of any range
in an array E[1,n] of D possible colors. Our solution is the first in achieving
optimal time (i.e., O(1) time per color reported) within succinct space (i.e.,
nlg D + no(lg D) bits). Achieving this optimal time involves solving in linear
time a particular sorting problem, which can be of independent interest.

Table 1 summarizes our results on this part.

1.2. Top-k Document Retrieval

The pioneering work of Hon et al. [6] uses a sampled suffix tree [21] of
o(n) extra bits to reduce this problem to that of accessing E[i] and computing
arbitrary frequencies (document listing with frequencies turns out to be a simpler
problem). They achieve time O(tsearch + k1g** = n) using 2|CSA| + o(n) bits.

Our second major contribution is the reduction of their time to O(tsearch +
klgklg*te n). First, we show that by choosing better the block sizes one can
reduce one lgn to lgk (in practice k is much smaller than n, and this improve-
ment applies to many previous solutions). The other lgn is removed thanks
to an improved algorithm to compute arbitrary frequencies, that reduces the
time from their O(tsa lgn) to O(tsalglgn). While both ideas are simple, their
impact on performance is large and general.

When representing the document array with support for rank operations,
arbitrary document counting is easy. Gagie et al. [8], apart from improving the
time achieved by Hon et al., gave several new space/time tradeoffs by replacing
the second |CSA|-bit space by rank-capable representations of E.



Src. Extra space Extra Time Simplif. time
[6] |CSA| +o(n) + Dlg & + O(D) O(tsalg® = n) O(1g™ = n)
8] |CSA| +o(n) + Dlg £ + O(D) | O(tsalgDlg % lg'™en) O(1g**e n)
Ours | [CSA|+o0(n) + DlgZ +O(D) | Ol(tsalgklgZ1g"n) | O(lgklg® n)
(8] nlg D + o(n) O(gDlg %Ll)gg n) 0(1g2+5 n)
[8] O(ni35) O(tsalg Dlg 3 1g°n) O(lg**< n)
Ours nlg D + o(n) O(lgklg 21g° n) O(gklg'™™ n)
Ours O(n lglglgDD ) O(tsalgklg % 1g°n) O(lgklg®™ n)
Ours O(nlglglg D) O(tsalgklg' ™= n) O(lgk1g® n)

Table 2: Current and new results on top-k retrieval, using the same conventions of Table 1.
The last column assumes tsa = O(Ig'*2 n), as in optimal-space CSAs [14].

Replacing the document array by a weak representation based on mmphfs is
not straightforward, as mmphfs do not support general ranks. Our third main
contribution is a technique that modifies Hon et al.’s sampled suffix tree [6] so
as to achieve the least space among the methods that represent the document
array, while increasing their time by an O(lgn) factor with respect to the most
space-consuming variant. The solution owes in part to the observation that
there are not too many candidates around a sampled suffix tree node to replace
its precomputed top-k documents. This idea can be useful in other scenarios.

Table 2 summarizes the state of the art and our contribution to the top-k
problem. As noted by Hon et al. [6], the bounds apply to the frequency mining
problem (list all documents with frequency over f), by running top-k queries
with k = 27 for consecutive j values. Our final contribution is to reduce the time
to report the k most important documents (i.e., they have a fixed priority) where
P appears, from O (tsearch + klg®te n) [6] to O(tsearch + kg k lgtte n). There are
also some heuristic solutions to the top-k problem using wavelet trees which,
although do not give interesting worst-case bounds, perform competitively in
practice [9, 22].

2. Range Color Listing with Frequencies

We solve the following abstract problem, whose connection with the docu-
ment listing problem with frequencies is obvious.

Definition 4 Given an array E[1,n] over D colors, the range color listing with
frequencies problem is to preprocess E so as to answer queries of the form: given
i and j, list all the ncol distinct colors in E[i, j] and their number of occurrences.

Muthukrishnan [3] solved this problem without reporting frequencies. He
builds an array F[1,n| where F[i] = max{j < ¢, E[j] = E[i]}. Then, using a
data structure that answers RMQ queries on F' (rmq(i, j) = arg min;<,<; F[r])
in constant time (e.g., Fischer’s [18] takes 2n+ o(n) bits and does not access F),
he finds the leftmost occurrences of all distinct colors in Efi, ] in time O(ncol).



For computing frequencies, Sadakane [4] finds also the rightmost occurrences
of the colors by building another RMQ structure on the array F built on the
reverse sequence E. The colors could be reported in different order when listing
their rightmost or leftmost occurrences. He does not represent F nor F, and as
a consequence needs to mark the colors found in an array V|1, D]. The rest of
Sadakane’s solution is particular of document retrieval; we instead build on it
to obtain an improved solution to the general problem.

Theorem 1 We can augment a sequence of n colors in [1, D] with a structure
using O(nlglg D) bits, so that range color listing with frequencies can be solved
in O(1) time per color reported, or using O(nlglglg D) bits and O(1glg D) time.

The theorem assumes D = O(n); otherwise a mapping to the colors actually
occurring in the sequence, using O(nlg %) + o(D) bits [16], must be added.

To achieve the result, for each color ¢ we store in a mmphf f. the positions 4
such that E[i] = ¢ (i.e., f.(i) = rank.(E,1) if E[i] = ¢). Let n. be the frequency
of color ¢ in E, then this structure occupies ) . O(n.lglg nlp) bits, which by the
log-sum inequality is O(n(lg Ho(E) + 1)) = O(nlglg D) bits. The two RMQ
data structures will add just O(n) bits. Then a query proceeds in four steps:

1. Use the RMQ on (virtual array) F to get the leftmost occurrences of the
ncol colors appearing in the interval. This step takes time O(ncol).

2. Use the RMQ on (virtual array) F to get the rightmost occurrences of the
ncol colors appearing in the interval. This step also takes time O(ncol).

3. Match the left and right occurrences of the ncol colors. This can be done
via sorting, but we show how to do it in time O(ncol).

4. For each color with leftmost and rightmost occurrences I; and r;, report
the color and its frequency f.(r;) — fc(l;) + 1 in constant time.

To avoid the sorting in step 3, we will slightly modify steps 1 and 2. We will
store V' and the following additional structures:

1. A vector RJ[1, Ig%], where each cell occupies lg D bits; R uses at most D
bits.

2. A dynamic vector @ storing triplets (c;,l;, r;) and taking O(ncol lgn) bits.

3. A dynamic vector S storing leftmost positions (¢;,1;), in O(ncollgn) bits.

4. A counter C.

Initially the bits in V and R are set to zero®, @ and S are empty, and C is
set to 1. We then run step 1, setting the bits in V' as we progress, and appending
the unique colors and their leftmost positions (¢;,1;) in array S.

We now traverse S and, for each color ¢;, compute g = |¢;/lgn]. Then, if
Rlg] = 0, we set R[g] = C and ¢ = rank;(V]glgn + 1, (g + 1) lgn],1gn), which
can be computed in constant time in the RAM model [23]. Then we append ¢

3This is done at indexing time. After a query returns the ncol results and sets those ncol
bits, we reset them to 0 one by one, leaving V' and R ready for the next query.



copies of the dummy triplet (#,#,#) at the end of vector @ and finally update
counter C' = C' + c¢. At the end of this process array @ will be of size ncol and
each distinct color in E[i, j] will have an allocated position into Q.

We now retraverse S and write each pair (¢;,[;) in the triplet Q[R[g] + p],
where p = rank,(Viglgn+1,glgn+r],r), g = |c;/lgn], and r = ¢;—glgn. So
V and R simulate pointers to array (), where we have already the information
on leftmost positions, and now are prepared to write the rightmost positions.

Now we run step 2, but instead of using V' to check if we have already
reported a color ¢;, we compute g and p as before and check whether Q[R[g] +
p] = (¢, l;, #). If the third component is a #, then we had not seen the color
before and can set the component to ;. Otherwise we have already seen it.

Now @ has the input to step 4, and step 3 is avoided. Note our working space
O(ndoclgn) bits of the query is of the same order used to store the output.

Let us now consider the case where our mmphfs use O(n.lglglg ;) bits.
By the log-sum inequality these add up to O(nlglglg D) bits. The time to
query f. is O(lglg n%) To achieve O(lglg D) worst case, we use constant-time
mmphfs when n% > Dlglg D. This implies that on those arrays we spend
O(nclglg 7+) = O(51p 18lg D) = O(n/D) bits, as it is increasing with n
and ne < 5175+ Adding over all possible colors ¢, we have at most O(n) bits.

By applying the algorithm to document retrieval, where accesses to E are
through the CSA, we have the following result.

Theorem 2 We can augment a CSA on T[1,n] containing D documents with a
data structure using O(nlglg D) bits, so that document listing with frequencies
can be solved in time O(tsa) per document reported, or one using O(nlglglg D)
bits and time O(tsa+1glg D). Thelg D in the space complexities can be replaced
by lg(H) + 1, where H =} " 1g - and ng is the length of document d.

In particular, if we use a recent CSA [24], the second variant is more appeal-
ing, since tsp dominates 1glg D.

Corollary 1 Given a concatenation T'[1,n] of D documents over alphabet [1, o],
the document listing with frequencies problem for P[l,m] can be solved us-
ing nHp(T) + o(nHp(T)) +O0(nlglglg D) bits of space and in time O(m +
ndoc 1g' ¢ n), where ndoc is the number of documents reported, for any h <
alg,n, where 0 < a <1 and € > 0 are any constants.

3. Faster Top-k Retrieval

In this section we considerably improve the time complexities of Hon et al.’s
scheme [6] for top-k retrieval. Their solution partitions the suffix array into
chunks of b = k¢ bits. A suffix tree [21] on T is built and all the suffix tree
nodes that are lowest common ancestors (Ica) of consecutive chunk endpoints
are represented in a sampled suffix tree, which contains O(n/b) nodes. At each
sampled node they store the top-k solution of its subtree.



When a pattern is mapped to the suffix array interval A[sp, ep], it is shown
that there exists a sampled node covering an area A[sp’, ep’], where both sp’ —sp
and ep—ep’ are less than b. Thus one can simply collect the k precomputed can-
didates and the (at most 2b) distinct documents mentioned in these remaining
intervals, compute their frequencies in A[sp, ep], and take the k highest frequen-
cies. By using y-fast tries [25] on the identifiers and on the frequencies, the
process takes time O(topb), where top = tsa +teount +1g1g 1 and teoynt is the time
to count an arbitrary frequency (the lglgn will be absorbed by a lg® n later).

Since k is unknown at indexing time, this structure is built for all £ powers
of 2 (i.e., lg D sampled trees), and at query time the next power of 2 is used.
By storing the top-k identifiers in increasing order [8] a node uses O(klg(D/k))
bits, and the total space is O((n/b)klg D1g(D/k)) = O((n/€)1g D1g(D/k)) bits.
This allows using b = k¢ = klg D1g(D/k)1g° n, which defines the query time.

Something that is not properly considered by Gagie et al. [8] is that if the
trees are stored using pointers, then there is a component of O((n/b)lgn) bits
for k =1, and thus ¢ must be at least lg' ™ n.

To avoid this we store the sampled tree in succinct form [26] using just 2+o0(1)
bits per node and supporting in O(1) time many operations, including lca,
preorder (whose consecutive values are used to index an array storing the top-k
candidate data on each node), and preorder ™!, For each pair of consecutive
chunk endpoints p; and p; 11 we store the preorder z; of the sampled tree node
lca(pi, pit1). As x; > x;—1, values x; + ¢ are increasing, and thus can be stored

in a structure of (n/b)lg f% +O(n/b) bits that retrieves any x; in constant time

[27]*. This space is O((n/b)lgb) = O(n%) = o(n). Now we can
find in constant time the lowest sampled node covering chunk interval [L, R] as
lea(preorder™"(z1), preorder ' (xr_1)). We will omit preorder™" for simplicity.

3.1. Lowering the 1g D Factor to lgk

The fact that we wish to answer queries for any k& < D translates into a
lg D factor in the formula for ¢, which impacts the time complexities. If we set
a limit £* on the maximum k allowed at queries, this lg D becomes lgk*. We
show now that, by carefully choosing ¢, we can convert the time to lg k.

Instead of choosing ¢ = lg Dlg(D/k)1g®n so that all the sampled suf-
fix trees have the same size, we reduce it to ¢ = lgklg(D/k)lg®n, which is
slightly increasing with k. Then the space for a given k is (n/b)klg(D/k) =
(n/0)1g(D/k) = 51g=r - Added over all the k = 27 values this gives yleb_n

i=1 7lg7n
Ig lg D
O(*£5=) = o(n).

Therefore we obtain times O(topb) = O(topklg klg(D/k)1g® n). Note this
applies also to previous solutions [8], as shown in Table 2.

4Using a constant-time rank/select implementation on their internal bitmap H [23].



8.2. Computing Arbitrary Frequencies

We additionally remove an O(lgn) factor from Hon et al.’s top-k retrieval
query time [6], while using the same asymptotic space. The following theorem
states the result building on the improved variant of Gagie et al. [8] and on
Section 3.1.

Theorem 3 Given a concatenation T[1,n] of D documents, the top-k retrieval
problem can be solved in time O(tsearch + tsaklgklg(D/k)1g® n) while using
2|CSA|+o(n) + Dlg 3 + O(D) bits of space, where tsearch is the time to find the
suffix array interval of pattern P in the CSA of T, tsa is the time to compute a
position of the suffix array or its inverse, and € > 0 is any constant.

The theorem is obtained just by noting that time teount = O(tsalgn) in Hon
et al.’s algorithm comes from a binary search for the epy such that an interval
[spd, epq] inside a local CSA, is mapped to a given interval [sp, ep] in the global
CSA. This binary search can be sped up by sampling every lg®n positions in
CSA, and storing their corresponding position in the global CSA. This sampled
array stores [ng/lg®n entries and thus takes O(ng/1gn) bits of space for each
document d of length ngy. The overall space is thus O(n/lgn) = o(n).

We store that array of increasing values in a y-fast trie [25] so that a prede-
cessor query takes O(lglgn) time. Then the binary search for ep can be done
by first querying the y-fast trie in time O(lglgn), which will delimit an inter-
val of size lg°n, and then with a binary search within that interval in time
teount = O(tsalglgn). They also need to find spy given epy, which is similar.
With the optimum-space CSA used by Hon et al. [6] this time is O(lg' ™ n), and
the overall time reduces from O(Ig**° n) per element returned, to O(lg k1g®*¢ n).
More precisely, and using a more recent CSA [24], we obtain the following result.

Corollary 2 Given a concatenation T[1,n] of D documents over alphabet [1, o],
the top-k retrieval problem for P[1,m] can be solved using 2nHp, (T)+o(nHp(T))+
O(n) bits of space and in time O(m+klg klg(D/k)1g" ¢ n), for any h < alg, n,
where 0 < a < 1 and € > 0 are any constants.

4. Using Mmphfs for Top-k Retrieval

We now use mmphfs f. as in Section 2, instead of the local CSA;’s. This
would give teount = lglg D using O(nlglglg D) bits. Then the time would be
O((tsa +1glg D +1glgn)kl) = O(tsakl), as the lglgn term is absorbed by the
lg°n in /.

The problem is that mmphfs do not give a way to compute arbitrary frequen-
cies. We could only do so if the document appeared both in A[sp, sp’ — 1] and
Alep’ + 1, ep]. In such a case we could easily find its leftmost (I;) and rightmost
(r;) occurrence in A[sp, ep] and compute the frequency as f.(r;) — fe(l;) + 1.

The candidates can be divided into four groups: (1) Appearing only inside
Alsp’, ep']; (2) appearing both in A[sp, sp’ — 1] and Alep’ + 1, ep], and possibly
in A[sp’, ep']; (3) appearing in A[sp, sp’ — 1], and possibly in A[sp’, ep’], but not



in Alep’ + 1, ep]; and (4) appearing in Alep’ + 1, ep], and possibly in A[sp’, ep'],
but not in A[sp, sp’ — 1].

The only interesting candidates of group (1) are those in the precomputed
top-k list, for which we must store the frequencies, as we will have no other way
to compute them. This raises the lg(D/k) time of Section 3 to lgn. Candidates
of group (2) are found by scanning both subintervals, finding the documents
that appear in both, and their leftmost and rightmost positions. This is done
in time O(blglgn) with y-fast tries. Then we compute their frequencies using
the corresponding mmphf. Next we show how to handle the other two groups.

4.1. Bounding the Number of Valid Candidates

We show that the number of documents that can make it to the top-k list
if they appear only to the left (or, similarly, to the right) chunk of the precom-
puted interval, is O(k\/?) This allows us to store all those potentially relevant
documents within the nodes. By storing their frequency in A[sp’, ep’], we can
complete the frequency computation in A[sp,ep’] by just traversing the area
Alsp, sp’ — 1] and increasing the frequencies of the documents found (we omit
this step on documents that have already been found in both tails, as explained).

In order for a document to be out of the top-k list, but able to make it to
the list by scanning the chunk to the left of the sampled node, its frequency
must be betwen f — b+ 1 and f, where f is the frequency of the kth most
frequent candidate stored. Therefore its frequency can be stored using O(lgb) =
O(lgk + 1glg n) bits. Moreover each document with frequency under f — ¢+ 1
must appear at least £ times in the chunk in order to have a chance, thus there
are at most b/¢ = k such nodes. The rest need only O(lg¢) bits. Therefore the
total space per node will be O(klgn+klgb+kvelgl)) = O(klgn+kvilglgn)
(note we are not storing the document identifiers of these extra candidates), and
the overall space for a given k = 27 will be O((n/b)k(lgn + v/£1glgn)). For the
sum of spaces over j to be o(n) we need that ¢ = lg k1g' ™ n for some & > 0.

To know which documents are indeed candidates (i.e., can make it to the top-
k list so we have stored their frequency inside the node) we set up a bitmap of
length b marking the rightmost occurrence of such candidates, and their position
in the array of frequencies is obtained with rank; on that bitmap (a second
bitmap distinguishes lg b-bit from lg ¢-bit candidates). As it has at most kvl
bits set, the bitmap can be stored within O(kvZ1gv?) = O(kvI1glgn) bits.
Thus we traverse A[sp, sp’ — 1] right to left. When we find a 1 in this bitmap,
this is the first time we see a relevant candidate. We compute its identity in
O(tsa) time and find its A[sp/, ep’] frequency using rank; as explained. Now we
have the data to insert it (increasing its frequency by 1) into the y-fast trie. The
next occurrences (when the bitmap has value 0) correspond to candidates that
either have already been found (and thus are already inserted in the y-fast trie)
or candidates that cannot make it to the top-k list (and thus are not present in
the y-fast trie and we must not care about them).

The missing piece is to prove that there are sufficiently few candidates.
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Lemma 1 Let topi(s,e) be k most frequent colors in an array E[s,e]. Then
there is a choice of topy(-,-) sets in case of frequency ties such that, for any b,
| Ub_, topr(s — 1 e)| < k + /2bk.

Proof. Let us call C(b) = | Ub_, topi(s — r,¢€)|. Let us call s; < s the position
where k - t new elements have made it in topy at some point, i.e., C(s — s;) =
C(0) + kt = k + kt. Let us call f,. the kth highest frequency in E[r,e]. Since
all elements not in topg(s, e) have frequency at most f = f; in El[s,e], a new
element must appear at least once in E[r,s — 1] to reach frequency f + 1 and
force us choose it for topy(r,e). Hence 51 < s — k.

Now, as k distinct elements have entered in topy(s1,e), it must hold that
fs;, = [+ 1, as we have seen k distinct elements reaching frequency f + 1.
Thus the (k+ 1)th distinct element appearing in topg(r, e) must appear at least
twice in E[r,s — 1], to jump from frequency at most f to at least f + 2. Thus
we need 2k occurrences of elements that are incompatible with the previous k
occurrences in order to have k new distinct elements, thus s, < s — 3k.

Once these new k distinct elements enter in topg (s, €), it holds that fg, >
f+2, and thus we need 3k incompatible occurrences f(gr tl;e next k occurrences,

t(t+1

and so on. Iterating the argument, it holds s; < s — ===k for all ¢ > 1.

Thus as long as s; > s — b we have t(tTH)k < b, and thus t < /2b/k. Hence
the number of new elements entering into some topg(s — r,e) for 1 < b < r is
C(b) < k(t+1) < k+ V2bk. O

In our case b = kf so the bound is C(b) = O(kv/f). We have proved the
main result. The time simplifies to O(tsearch + k1g k1g® T n) when tsp = 1g' ™ n.

Theorem 4 Given a concatenation T[1,n] of D documents, the top-k retrieval
problem can be solved in time O(tsearch + tsak1g k1g ™ n) using O(nlglglg D)
extra bits, where tsearch 1S the time to find the suffix array interval of pattern P
in the CSA of T, tsa is the time to compute a position of the suffiz array or its
inverse, and € > 0 is any constant.

Again, using a recent CSA [24], we obtain the following particular case.

Corollary 3 Given a concatenation T[1,n] of D documents over alphabet [1, o],
the top-k retrieval problem for P[1,m] can be solved using nHy, (T)+o(nHy(T))+
O(nlglglg D) bits of space and in time O(m + klgklg(D/k)1g*"*n), for any
h<alg,n, where 0 < o <1 and e > 0 are any constants.

5. Top-k Most Important Document Retrieval

A particular variant of top-k document retrieval, somewhat easier than the
one that seeks for the highest frequencies, is one where the documents have a
fixed importance or priority. An example is the PageRank value of Web pages.
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Definition 5 Given a set of strings, called documents, with an associated im-
portance value, and a string P, called the pattern, the top-k most important
retrieval problem is to list the k documents of highest importance value where
P appears.

A way to handle this problem is to sort the documents by importance, so
that document ¢ is the ith most important in the collection. Then the prob-
lem becomes that of finding the k smallest distinct values in E[sp, ep]. While
methods based on range quantile queries on wavelet trees [7] naturally report
the documents in sorted order and thus automatically solve this problem in
O(klg D) time by pruning the process after reporting k results, the situation is
not that easy for the other approaches that use potentially less space.

A solution comes from the same top-k retrieval technique of Hon et al. [6].
This time one stores the k smallest document values within each sampled node,
and traverses the tails of the interval looking for smaller document identifiers.
No frequencies need to be computed, which allows for an O(tsaklg k1g(D/k)1g® n)
time solution, e.g., O(klg k1g?*® n). This seems unimportant now that we have
reduced the complexity of the more difficult top-k retrieval problem to the same
level. Yet, we show that this particular problem can be solved faster, removing
the lg(D/k) factor.

Theorem 5 Given a concatenation T[1,n] of D documents, the top-k most
important retrieval problem can be solved in time O(tsearch +tsak 1g k1g® n) while
using |CSA| + o(n) + Dlg 5 + O(D) bits of space, where tsearch is the time to
find the suffiz array interval of pattern P in the CSA of T, tsa is the time to
compute a position of the suffix array or its inverse, and € > 0 is any constant.

For tsa = lg' ™ n, this is O(tsearch + klgklg!te n) time. More precisely [24]:

Corollary 4 Given a concatenation T[1,n] of D documents over alphabet [1, o],
the top-k most important retrieval problem for P[1,m] can be solved using
nHy,(T) + o(nHy(T)) + O(n) bits of space and in time O(m + klgklg' " n),
for any h < alg,n, where 0 < a <1 and € > 0 are any constants.

The result of Hon et al. [6] is achieved by using chunks of b = k¢ positions for
¢ =1g*T n (for the more refined complexity we use ¢ = lg klg(D/k)1g® n). Our
idea is to further divide those chunks into lg(D/k) buckets of size b’ = klg klg® n.
For each chunk we build a small local sampled suffix tree. A query will then
span at most one global node, two local nodes, and two tail buckets.

Consider the endpoints p; ... p, of the buckets inside a given chunk, and call
v = lca(py, pr) the lowest sampled global suffix tree node that covers the chunk.
Just as for the global scheme, find in the suffix tree the lca nodes of each pair
of consecutive endpoints, lca(p;, pi+1). All those lca nodes are below v or are v.

There are overall O(n/b’) local sampled nodes. Moreover, if some node
u = lea(p;, pi+1) covers the whole chunk [p1, p,], then it must be an ancestor of
v = lca(p1, pr), but since it is also a descendant of v, we have u = v. That is,
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the local sampled suffix tree nodes (that are not already global sampled suffix
tree nodes) cannot cover a chunk and hence span less than 2b positions.

Instead of storing the top-k document identifiers using O(klg(D/k)) bits,
for these local sampled nodes we will store the positions of some occurrence
of those identifiers within the local sampled node, sorted by increasing posi-
tion. The identifier must be obtained with an access to that position, which
will not change the complexity. Since local positions span less than 2b, they
require O(klg(b/k)) = O(klgl) = O(klglgn) bits. The tree topology it-
self will require 2 4+ o(1) bits per node, as for the global tree. The total
space for a given k = 27 is O((n/V)klglgn) = O(nl;illgg?n), which added
over all k = 27 values gives o(n) bits overall. We also must store a local
node identifier y; = preorder(lca(p;,pi+1)) for each bucket, which requires
O((n/b')1gb) = O(n'ELHEEL) — O(4EEL), which added over all k = 27 values
gives o(n) bits as well.

To query, we determine the interval A[sp,ep] of P and the covered chunk
[L, R], the covered bucket [I1,71 = Lb'/b] to the left of chunk L, and the covered
bucket [la = Rb' /b, r9] to the right of chunk R. Then we find the global sampled
node v = lca(xp,xr—1), and the local sampled nodes u; = lca(yi, , yr,—1) and
uz = lea(yiy, Yry—1)- If ug or ug are equal to v we discard them. Now we take
the at most 3k candidates from v, u; and wug, and also consider the elements in
E[sp,r1b’ — 1] and E[b'ls + 1,ep]. The time is O(tsa(k + b')) to extract all the
candidate identifiers, plus O(klglgn) to maintain a heap of the smallest k values
seen in the process using a y-fast trie [25]. The time adds up to O(tsaklg k1g® n).

6. Experimental Results

In this section we implement our idea for document listing with frequencies
(Section 2), in order to explore the practical potential of mmphfs. Different
practical studies on this problem [9, 22] have demonstrated that the schemes
based on the individual CSA, structures are not competitive in practice, as
they pose too much space overhead and are in addition rather slow. Thus
both articles advocate for the use of wavelet trees as the only practical tool
for document listing with frequencies (as well as top-k retrieval). Navarro et
al. [22] studied in further detail different ways to compress wavelet trees, and
came up with four different space/time tradeoffs, which are in this moment the
best structures in practice. Our experiments show that the new mmphf-based
algorithms may offer a competitive alternative in practice, not only in theory.

We use their same experimental framework [22], sharing the same collec-
tions and queries. We consider three collections of different nature: English,
symbolic, and biological sequences. They also feature widely different number
of documents, whereas the space is comparable. A brief description follows.

ClueWiki: A 131 MB sample of ClueWeb09, formed by 3,334 Web pages from
the English Wikipedia.
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Collection ‘ n ‘ D H RMQ ‘ B ‘ mmphf ‘ CSA ‘ Total

ClueWiki | 131MB 3,334 3.08 | 0.30 4.67 | 28/s | 11.13+28/s
KGS 25MB | 18,838 3.07 | 0.31 3.14 | 25/s | 9.59+25/s
Proteins 56MB | 143,244 3.07 | 0.32 3.56 | 26/s | 10.02+26/s

Table 3: Space breakdown, in bpc, of our scheme for the three collections. Value s is the
sampling step chosen to support access to the CSA cells. The total space includes two RMQ
structures, B, MMphf, and the CSA sampling.

KGS: A 25 MB collection of 18,838 sgf-formatted Go game records from year
2009 (www.u-go.net/gamerecords).

Proteins: A 56 MB collection formed by 143,244 sequences of Human and
Mouse proteins (www.ebi.ac.uk/swissprot).

Our tests ran on an Intel Core2 Duo machine, of 3Ghz, with 8GB RAM
and 6MB cache. Our code was compiled using g++ with full optimization. We
measure user times. Our queries are randomly generated intervals of length
10,000 from the suffix array and we report the time to solve the whole query.

As the global CSA we use Sadakane’s [28], downloadable from the PizzaChili
site (http://pizzachili.dcc.uchile.cl). As the global CSA search for a
pattern (to obtain sp and ep) is common to all the approaches, we do not
consider the time for this search, nor the space for that global CSA. We only
count the extra space/time required to support document retrieval once [sp, ep]
has been determined. We give the space usage in bits per text character (bpc).

For our mmphf-based method, we use a practical mmphf implementation by
Belazzougui et al. (space-optimized since its original publication [29]). We use
the RMQ implementation by Simon Gog (http://www.uni-ulm.de/in/theo/
research/sdsl). We implement the algorithm as described in Section 2, except
that we do a naive sorting of the leftmost and rightmost occurrences.

Note that the CSA is used by all the techniques to obtain sp and ep, but
in addition our method uses it to compute suffix array cell contents. To carry
out this task the CSA makes use of a further sampling, whose space cost will be
charged (only) to our data structure. This is not totally fair with us because, in
a scenario where one wants to carry out document retrieval and pattern locating
queries, we would use the same sampling structure for both activities.

Table 3 gives the space of the different substructures that make up our so-
lution. It is interesting that spaces are roughly equal and basically independent
of, say, how compressible is the collection. Note also that the space is basically
independent on the number of documents in the collection. This is in contrast
to the O(nlg D) space of wavelet-tree based solutions, and suggests that our
scheme could compare better on much larger test collections.

As for times, we note that each occurrence we report requires to compute 4
RMQ queries, 2 accesses to B and to the CSA, and 0 or 2 mmphf (this can be
zero when the leftmost and rightmost position are the same, so we know that
the frequency is 1 without invoking the mmphf). We made a first experiment
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Figure 1: Space-time performance of the different alternatives for collection ClueWiki.

replacing the CSA with a plain suffix array (where ¢sa corresponds to simply
accessing a cell). The times were 12.8 msec on ClueWiki and 18.4 msec on KGS
and Proteins. These are significantly lower than the times we will see on CSAs,
which shows that the time performance is sharply dominated by parameter s.
Due to the design of Sadakane’s CSA (and most implemented CSAs, in fact),
the time tsp is essentially linear on s. This gives our space/time tradeoff.

We compare the four wavelet tree variants [22] called WT-Plain, WT-RP,
WT-RRR, and WT-alpha, with our mmphf-based idea. In their case, space-
time tradeoffs are obtained by varying various samplings. They are stretched
to essentially the minimum space they can possibly use.

Figures 1 to 3 give the space/time results. When we compare to WT-Plain,
which is the basic wavelet tree based theoretical solution, the mmphf-based
technique makes good its theoretical promise of using less space (at least on
Proteins, where D is sufficiently large). The wavelet tree uses 12.5 to 19 bpc
depending on the number of documents in the collection. Our technique uses, in
our experiments, as little as 12 bpc. On the other hand, the time O(tsa) spent
for each document reported turns out to be, in practice, much higher than
the O(lg D) used to access the wavelet tree. The space/time tradeoff obtained
is likely to keep improving on collections with even more documents, as the
space and time of wavelet trees grow with lg D, whereas our solution has a time
independent of D and a space that depends log-logarithmically (or less) on D.

When we consider the practical improvements to compress wavelet trees
[22], however, we have that these offer more attractive tradeoffs on collections
ClueWiki and KGS, whereas on Proteins their attempt to compress has a very
limited effect. Indeed, it is not clear in which cases do these compression tech-
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Figure 2: Space-time performance of the different alternatives for collection KGS.

niques work. It has been shown that there is a (coarse) relation to the k-th
order compressibility of the collection [8], but the dependence is quite mild.
Our technique stands as a robust alternative whose performance is very
easy to predict, independently of the characteristics of the collection. On large
collections that are resilient to the known techniques to compress the wavelet
tree, the mmphf-based solution offers a relevant space/time tradeoff. Moreover,
our technique is likely to be more scalable, as explained, and its times benefit
directly from any improvement in access times to Compressed Suffix Arrays.

7. Conclusions

The space of solutions to document retrieval problems has been dominated
by two approaches: one using an individual suffix array for each document, and
another representing the array of document identifiers of all the suffixes. Both
store redundant information that poses serious space overheads, both in theory
and in practice, on top of text searching indexes.

In this paper we break this dichotomy by proposing a third approach, based
on monotone minimal perfect hash functions (mmphfs). These store less in-
formation than the document array, and consequently can be represented using
considerably less space, while retaining competitive times. Our proof-of-concept
experimental results show that this approach may also be relevant in practice.

Answering the document retrieval queries with a tool that stores less infor-
mation than document arrays (i.e., the mmphfs) poses interesting algorithmic
challenges. While some problems, like document listing with frequencies, were
straightforward to solve, problems like top-k document retrieval required much
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Figure 3: Space-time performance of the different alternatives for collection Protein.

more sophisticated ideas, which could be of interest in other scenarios. Besides,
we have given significant improvements to several of the existing approaches,
and also proposed novel solutions to other problems such as top-k most im-
portant document retrieval, and color listing with frequencies. For the latter
problem we have given the first solution with constant time and succinct space.

Moving from pattern searching to document searching represented an impor-
tant step towards bringing the compact data structures that had been successful
in indexed pattern matching closer to the interests of the Information Retrieval
community. We believe it may be time to take a further step. Our document re-
trieval problems are defined in terms of a single pattern, be it a word, a phrase,
or an arbitrary string. Most document retrieval scenarios of interest consider
the bag of words paradigm, where a set of strings is given, and we look for the
top-k documents where the combined relevance of all the words is maximized.
There are various formulas to combine relevances. Furthermore, when consid-
ering combined relevance, term frequency becomes a too simple measure, and
it must be weighted with other factors that complicate ranking algorithms.

A nice feature of our schemes is that the existing approaches to top-k re-
trieval on bag-of-words work only on natural language collections. They cannot
handle other types of texts, and queries are usually limited to words. These
approaches build on so-called inverted indexes that store the documents where
each word appears, in decreasing order of frequency (or another measure of rel-
evance), and read a prefix of the lists of the query words. Our top-k techniques
allow us to generate on the fly the sorted list of any string pattern, and there-
fore any of the existing IR algorithms can be built on them in order to handle
general string collections. In order to compete with inverted indexes on natural
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language collections, however, it is necessary to devise algorithms that are more
efficient than simulating inverted indexes. This is a very interesting challenge.
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