
The Longest Common Extension Problem

Revisited and Applications to Approximate

String Searching∗

Lucian Ilie1†‡ Gonzalo Navarro2§

Liviu Tinta1

1Department of Computer Science, University of Western Ontario

N6A 5B7, London, Ontario, CANADA

2Department of Computer Science, University of Chile

Blanco Encalada 2120, Santiago, CHILE

August 11, 2010

Abstract

The Longest Common Extension (LCE) problem considers a string s

and computes, for each pair (i, j), the longest substring of s that starts
at both i and j. It appears as a subproblem in many fundamental string
problems and can be solved by linear-time preprocessing of the string that
allows (worst-case) constant-time computation for each pair. The two
known approaches use powerful algorithms: either constant-time compu-
tation of the Lowest Common Ancestor in trees or constant-time compu-
tation of Range Minimum Queries in arrays. We show here that, from
practical point of view, such complicated approaches are not needed. We
give two very simple algorithms for this problem that require no prepro-
cessing. The first is 5 times faster than the best previous algorithms on
the average whereas the second is faster on virtually all inputs. As an
application, we modify the Landau-Vishkin algorithm for approximate
matching to use our simplest LCE algorithm. The obtained algorithm is
13 to 20 times faster than the original. We compare it with the more
widely used Ukkonen’s cutoff algorithm and show that it behaves better
for a significant range of error thresholds.

∗A preliminary version of this paper has been presented at SPIRE’09; see [8].
†Research supported in part by NSERC.
‡Corresponding author; e-mail: ilie@csd.uwo.ca
§Research supported in part by Millennium Institute for Cell Dynamics and Biotechnology

(ICDB), Grant ICM P05-001-F, Mideplan, Chile

1

1 Introduction

The longest common extension (LCE) problem takes as input a string s and
many pairs (i, j) and computes, for each pair (i, j), the longest substring of
s that occurs both starting at position i and at j in s. That is, the longest
common prefix of the suffixes of s that start at positions i and j, respectively.
Sometimes the problem receives two strings as input, s and t, and is required
to compute, for each pair (i, j), the longest common prefix of the ith suffix of
s and jth suffix of t. This reduces to the previous problem by considering the
string s$t, where $ is a letter that does not appear in s and t.

The LCE problem appears as a subproblem in many fundamental string
problems, such as k-mismatch problem and k-difference global alignment [14,
20, 15], computation of (exact or approximate) tandem repeats [16, 6, 13], or
computing palindromes and matching with wild cards [5]. Very efficient algo-
rithms are obtained and it is not clear how to solve those problems without
employing LCE solutions.

The LCE problem can be optimally solved by linear-time preprocessing of
the string s so that the answer for each pair (i, j) can be computed in constant
time. Two powerful algorithms are employed to achieve this bound. The first is
the constant-time computation of the Lowest Common Ancestor in trees (with
linear-time preprocessing) [7, 23, 2, 1]. When applied to the suffix tree [5] of
the string s, it easily yields the solution for the LCE problem. The second uses
constant-time computation of Range Minimum Queries (RMQ) in arrays (with
linear-time preprocessing) [2, 1, 19, 4]. Applied to the LCP array of s (that
is part of the suffix array data structure of s, see Section 2), this gives again
a solution of the LCE problem. The RMQ-based solution is more efficient in
practice [4].

In this paper we look at the LCE problem from a practical point of view. Our
aim is to provide simple and efficient algorithms. As it is often the case, the best
worst-case algorithms need not be the fastest in practice. Indeed, already [4]
considered a simplified algorithm that resolves each (i, j) pair in O(log n) time
(with linear-time preprocessing). This algorithm performs the best in practice.

Our starting point is the observation that, on the average, the LCE values
are very small. We give the precise limit of this average, for a given alphabet
size, when the string length goes to infinity. An important consequence is that
the algorithm that directly compares the suffixes starting at positions i and j is
optimal on the average and significantly faster in practice, on the average, than
all previous ones. It needs only the string s; no preprocessing.

The practically fastest algorithm to date computes RMQ on the longest
common prefix array (see Section 2). The LCE value for two positions i and j
is smaller when the distance between the positions corresponding to i and j in
the suffix array is larger. For the vast majority of pairs, our algorithm described
above is the fastest. When they are very close, there is another algorithm —
direct computation of range minimum — that is the best. Combining the two
and using the superior speed of the cache memory produces an algorithm that,
while still very simple (no preprocessing required; it uses only the existing LCP

2

array), is the fastest on virtually all inputs.
Next we test the behavior of our algorithm in real applications. The approx-

imate string searching algorithm of Landau-Vishkin [15] is using heavily LCE
computations. When the current best LCE algorithm is replaced by our simplest
one, the obtained algorithm runs 13 to 20 times faster in practice. We compare
the obtained algorithm with the more widely used Ukkonen’s cutoff algorithm
[25] and show that it is faster for a significant range of error thresholds.

The paper is organized as follows. Section 2 contains the basic definitions
including the LCE problem with its current solutions. The average LCE is pre-
cisely computed in Section 3 and a linear-time algorithm computing the average
LCE for a given file is given in Section 4. Our fastest-on-average algorithm is
given in Section 5 where extensive comparison with previous fastest algorithms
is provided. The approach on the (practical) worst case starts in Section 6 with
several approximations on the maximum LCE. The combined algorithm that is
the fastest in practice is given in Section 7, together with the corresponding ex-
periments. Section 8 contains the application to approximate string searching.
We briefly recall the idea of Landau and Vishkin and then present experimental
comparison results. The comparison with Ukkonen’s algorithm is presented in
Section 9. We summarize our achievements in the Conclusions section.

2 Basic definitions

Let A be an alphabet with card(A) = ℓ ≥ 2. Let s ∈ A∗ be a string of
length |s| = n. For any 1 ≤ i ≤ n, the ith letter of s is s[i] and s[i . . j] =
s[i]s[i + 1] · · · s[j]. In this notation s = s[1 . . n]. Let also sufi denote the suffix
s[i . . n] of s. For 1 ≤ i 6= j ≤ n, the length of the longest common prefix of the
strings sufi and sufj is called the longest common extension of the two suffixes,
denoted by LCEs[i, j]. When s is understood, it will be omitted.

Assuming a total order on the alphabet A, the suffix array of s, [17], denoted
SA, gives the suffixes of s sorted increasingly in lexicographical order, that is,
sufSA[1] < sufSA[2] < · · · < sufSA[n]. The suffix array of the string abbababba

is shown in the second column of Fig. 1. The suffix array is often used in
combination with another array, the longest common prefix (LCP) array that
gives the length of the longest common prefix between consecutive suffixes of
SA, that is, LCP[i] = LCE[SA[i − 1], SA[i]]; see the fourth column of Fig. 1 for
an example. By definition, LCP[1] = 0.

The suffix array of a string of length n over an integer alphabet can be
computed in O(n) time by any of the algorithms in [9, 11, 12, 22]. The longest
common prefix array can be computed also in O(n) time by the algorithm of
[10].

The LCE problem is: given a string s and a set of pairs (i, j), compute
LCE(i, j) for each pair. It can be solved by preprocessing the string s in linear
time so that each LCE(i, j) is computed in constant time. The first solution
uses constant-time computation of the Lowest Common Ancestor [7, 23, 2, 1]
applied to the suffix tree; see an example in Figure 1. The second, more effi-

3

i SA[i] suffSA[i] LCP[i]
1 9 a 0
2 4 ababba 1
3 6 abba 2
4 1 abbababba 4
5 8 ba 0
6 3 bababba 2
7 5 babba 3
8 7 bba 1
9 2 bbababba 3

a

1

9

4
6

8

3

5

7

2

a

b

a
b

b
a

a
b

b
a
b
b
a

b

a b
a

b

b

a
b

a
b

b
a
b
b
a

LCA(2,3)

Figure 1: The SA and LCP arrays (left) and the suffix tree (right) for the
string abbababba. We have LCE(2, 3) = RMQLCP(SA

−1[3] + 1, SA−1[2]) =
RMQLCP(7, 9) = 1; this is also the depth |b| of the node LCA(3, 2) in the suffix
tree.

cient, uses constant-time computation of Range Minimum Queries (RMQ) in
arrays [2, 1, 19, 4] applied to the LCP array. In general, we have LCE(i, j) =
RMQLCP(SA

−1[i] + 1, SA−1[j]). Note the need for the inverse suffix array SA−1;
an example is shown in Figure 1.

We shall denote the LCE algorithm of [4] based on constant-time RMQ com-
putation by RMQconst. The practically most efficient algorithm of [4] computes
each LCE(i, j) in (suboptimal) O(log n) time; it will be denoted by RMQlog.

3 Average LCE

We shall assume throughout the paper that the letters of the alphabet A are
independent and identically distributed. The starting point of our approach is
the observation that most LCE values are very small. The main result of this
section estimates the average value of the LCE over all strings of a given length
n, that is,

Avg LCE(n, ℓ) =
1

ℓn

∑

s∈An

(1
(

n
2

)

∑

1≤i<j≤n

LCEs(i, j)
)

Theorem 1 (i) For any ℓ ≥ 2, lim
n→∞

Avg LCE(n, ℓ) =
1

ℓ− 1
.

(ii) For any n ≥ 2 and ℓ ≥ 2, Avg LCE(n, ℓ) <
1

ℓ− 1
.

Proof. Reorganizing the formula for Avg LCE(n, ℓ) gives

Avg LCE(n, ℓ) =
2

n(n− 1)ℓn

n−1
∑

k=1

k
∑

1≤i<j≤n−k+1

card({s | LCEs(i, j) = k})

4

(i) For fixed k, i, j, denote Kk,i,j = {s | LCEs(i, j) = k}. We compute the
cardinality of Kk,i,j . Recall that, in any string s ∈ Kk,i,j , we have s[i . . i+ k −
1] = s[j . . j + k − 1].

(i.1) Assume first that j ≤ n − k. If also j − i ≥ k, then there are ℓk

possibilities for the strings letters contained in the substrings s[i . . i+k−1] and
s[j . . j+k−1]. The letters right after those, s[i+k] and s[j+k], can be chosen in
ℓ(ℓ−1) different ways as they must be different. There are ℓn−2(k+1) possibilities
to choose the remaining letters of s. In total we obtain card(Kk,i,j) = ℓn−k−1(ℓ−
1).

Now, if j − i < k, then s[i . . i + k − 1] = xpx′, with |x| = j − i, x′ a prefix
of x, and p ≥ 1. The letters contained in the substrings s[i . . i + k − 1] and
s[j . . j + k − 1] are completely determined by x which can be any string out
of ℓj−i possibilities. The letter in position j + k can be chosen in ℓ − 1 ways,
since it has to be different from s[i + k]. The remaining letters can be chosen
in ℓn−(k+j−i+1) ways. In total, card(Kk,i,j) = ℓn−k−1(ℓ− 1).

(i.2) Assume next j = n − k + 1. We no longer need the condition that
s[i + k] 6= s[j + k], as above, since s[j + k] is undefined. Therefore, by a
reasoning similar to the one above, card(Kk,i,j) = ℓn−k.

There are
(

n−k
2

)

pairs (i, j) verifying (i.1) above and n− k that verify (i.2).
Consequently, we obtain (i) as follows:

Avg LCE(n, ℓ) =
2

n(n− 1)ℓn

n−1
∑

k=1

k

((

n− k

2

)

ℓn−k−1(ℓ− 1) + (n− k)ℓn−k

)

=
2

n(n− 1)ℓn

n−1
∑

k=1

(n− k)

((

k

2

)

ℓk−1(ℓ − 1) + kℓk
)

=
1

n(n− 1)ℓn

n−1
∑

k=1

(n− k)
(

k(k + 1)ℓk − k(k − 1)ℓk−1
)

=
1

n(n− 1)ℓn

(

n(n− 1)ℓn−1 +

n−1
∑

k=1

k(k − 1)ℓk−1
)

=
n

n− 1

1

ℓ− 1
−

1

n− 1

ℓ+ 1

(ℓ− 1)2
+

1

n(n− 1)

2ℓ(ℓn − 1)

ℓn(ℓ− 1)3

n→∞
−→

1

ℓ− 1
.

(ii) Using the second last line of the above calculation, we obtain:

Avg LCE(n, ℓ) <
n

n− 1

1

ℓ− 1
−

1

n− 1

ℓ + 1

(ℓ− 1)2
+

1

n(n− 1)

2ℓ

(ℓ− 1)3

=
1

ℓ− 1
+

2(n+ ℓ)− 2nℓ

n(n− 1)(ℓ− 1)3

≤
1

ℓ− 1
.

�

5

4 Average LCE for a fixed text in linear time

Due to the size of ℓ for usual texts, the expected value for the average LCE is
quite low. However, we assumed an uniform distribution of letters which does
not happen in practice. We compute in this section the average LCE for the
text files in the Canterbury1, Manzini2, and Pizza&Chili3 corpora, as well as
for some random files we generated.

For a file of length n, naively computing the average LCE would require
the computation of quadratically many LCE values. We give an algorithm that

computes it in linear time. For a string of length n, there are n(n−1)
2 LCE values,

since LCE[i, i] is undefined and LCE[i, j] = LCE[j, i]. Figure 2(i) gives the LCE

matrix for the string abbababba. In order to be able to compute the average in
linear time, we reorder first the rows and columns according to the permutation
given by the SA array; see Figure 2(ii). The matrix is symmetric before the
permutation and remains so after, therefore we consider only the top half (in
black). The main diagonal is undefined but the one immediately above it is the
LCP array (without the first, useless, position). The element in position (i, j) in
the permuted matrix contains the minimum value of LCP[i . . j]. Therefore, the
upper half of the matrix can be partitioned into rectangles containing elements
of the same value and which have a corner on the LCP diagonal. The sides
of the rectangle containing the ith element of the LCP diagonal are equal to
the distances from the ith element of LCP to the closest previous (next, resp.)
smaller element (or to the end of the array, if such an element does not exist);
two such rectangles are shaded in Figure 2(ii).

1 2 3 4 5 6 7 8 9

1 0 0 2 0 4 0 0 1

2 0 1 0 1 0 3 1 0

3 0 1 0 3 0 1 2 0

4 2 0 0 0 2 0 0 1

5 0 1 3 0 0 1 2 0

6 4 0 0 2 0 0 0 1

7 0 3 1 0 1 0 1 0

8 0 1 2 0 2 0 1 0

9 1 0 0 1 0 1 0 0

9 4 6 1 8 3 5 7 2

9 1 1 1 0 0 0 0 0

4 1 2 2 0 0 0 0 0

6 1 2 4 0 0 0 0 0

1 1 2 4 0 0 0 0 0

8 0 0 0 0 2 2 1 1

3 0 0 0 0 2 3 1 1

5 0 0 0 0 2 3 1 1

7 0 0 0 0 1 1 1 3

2 0 0 0 0 1 1 1 3

(i) (ii)

Figure 2: (i) The LCE matrix corresponding to the string abbababba and (ii) the
same matrix where the rows and columns are permuted according to the array
SA = (9, 4, 6, 1, 8, 3, 5, 7, 2). The longest diagonal is the array (1, 2, 4, 0, 2, 3, 1, 3),
that is, LCP without the first element. Each shaded block contains elements of
the same value as the one on the LCP diagonal.

Therefore, the sum of all LCE values can be computed by a single pass
through the LCP array with an additional stack that enables computation of the
rectangle sizes. The algorithm is shown in Figure 3. The stack contains pairs of

1http://corpus.canterbury.ac.nz/
2http://web.unipmn.it/~manzini/lightweight/corpus/
3http://pizzachili.dcc.uchile.cl/

6

the form (LCP[i+1], i). In order to treat all elements in the same way, we push
at the beginning the pair (0, 0) and at the end the pair (LCP[n+1] = 0, n). The
algorithm runs in linear time because each element is pushed onto the stack and
popped out of the stack only once.

ComputeAvgLCE(s)

1. LCP[n+ 1]← 0
2. sum← 0; S ⇐ ∅; push((0, 0),S)
3. for i from 1 to n do

4. if (LCP[i+ 1] ≥ top(S)1) then
5. push((LCP[i+ 1], i),S)
6. else

7. while (LCP[i+ 1] < top(S)1) do
8. (x1, x2)← pop(S)
9. sum← sum + x1(i − x2)(x2 − top(S)2)

10. return
2

n(n−1) sum

Figure 3: Computing the average LCE for a given text in linear time;
top(S)i, i ∈ {1, 2}, refers to the ith element of the pair top(S).

We used the ComputeAvgLCE algorithm for the files in Table 1. For small
files our LCE algorithms are far better than any other ones, so we discuss only
the five largest files in Canterbury corpus. (The other corpora contain only
large files.) The results are shown in the fifth column of Table 1. While the
LCE averages are higher than expected according to Theorem 1, they are still
small (at most 1).

5 An average-case optimal algorithm for LCE

This result in Theorem 1 has an important implication for our purpose, that is,
no sophisticated algorithms are necessary for computing LCEs. By Theorem 1,
direct comparison of the two suffixes requires, on the average, ℓ

ℓ−1 comparisons.
Therefore our DirectComp algorithm (see Figure 4) is optimal on the average.

DirectComp(s, i, j)

1. t← 0
2. while

(

(s[i+ t] = s[j + t]) and (j + t ≤ n)
)

do

3. t← t+ 1
4. return t

Figure 4: Computing LCE by direct comparison.

We tested the DirectComp algorithm on the files in Table 1, and compared it
with RMQconst and RMQlog; the results are shown in the last three columns. All
tests were done on a Sun Fire V440 Server, using one UltraSPARC IIIi processor

7

at 1593MHz, 1MB L2 Cache, 4GB RAM, running SunOS 5.10. The programs
were compiled using gcc 3.4.3 with options -O3 -fomit-frame-pointer. One
million random (i, j) pairs were generated and all three algorithms were run on
those. Each experiment was repeated three times and the average times are
shown. The preprocessing times for RMQconst and RMQlog were not counted.

File size alph. Avg LCE max LCE RMQconst RMQlog DirectComp

book1 0.7 82 0.0736 104 1.34 1.11 0.07
kennedy.xls 1 256 0.3946 18 1.37 1.17 0.11
E.coli 4.4 4 0.3371 2815 1.43 1.12 0.21

C
a
n
te
rb
u
ry

bible.txt 3.9 63 0.0915 551 1.28 1.00 0.21
world192.txt 2.3 93 0.0693 543 1.41 1.21 0.20

chr22.dna1 33 4 0.3419 1777 1.46 1.17 0.20

M
a
n
zi
n
i

etext99 100 146 0.0732 286352 1.53 1.20 0.21
howto 38 197 0.0909 70720 1.51 1.20 0.21
jdk13c 66 113 0.0444 37334 1.44 1.16 0.22
rctail96 109 93 0.0692 26597 1.50 1.21 0.22
rfc 111 120 0.2140 3445 1.50 1.21 0.21
sprot34.dat 105 66 0.0860 7373 1.49 1.20 0.22
w3c2 99 256 0.0341 990053 1.50 1.22 0.21

sources 201 230 0.0497 307871 — — 0.20
pitches 53 133 0.0420 25178 1.63 1.28 0.20
proteins 1129 27 0.0625 647051 — — 0.20

P
iz
za
&
C
h
il
i

DNA 385 16 0.3500 1378596 — — 0.21
English 2108 239 0.0753 4735603 — — 0.22
XML 282 96 0.0538 1084 — — 0.20

rand 100 2 100 2 1.0000 52 1.51 1.23 0.29
rand 100 4 100 4 0.3333 26 1.52 1.22 0.27

ra
n
d
o
m rand 100 20 100 20 0.0526 11 1.48 1.23 0.28

rand 1000 2 1000 2 1.0000 55 — — 0.31
rand 1000 4 1000 4 0.3333 29 — — 0.30
rand 1000 20 1000 20 0.0526 13 — — 0.30

Table 1: Files from Canterbury (five largest ones), Manzini, and Pizza&Chili
corpora and some randomly generated with various sizes and number of letters.
The first six columns contain, in order: file source, file name, size (in megabytes),
alphabet size, average LCE, maximum LCE. The last three contain the average
running times for solving the LCE problem using RMQconst, RMQlog, and Di-

rectComp, resp., given in microseconds per input pair. DirectComp is roughly
6 times faster. Also, the first two algorithms require the SA−1 and LCP arrays
and further preprocessing, whereas our algorithm uses only the text without
any preprocessing. The first two algorithms ran out of memory for files larger
than 160MB.

Our algorithm is roughly 5 times faster than RMQlog, the previous fastest

1For the file chr22.dna the stretches of unknown bases, NN...N, were not considered in all
LCE computations, consistent with any use of this file.

8

algorithm. Recall here that the preprocessing times of RMQconst and RMQlog

have not been considered. (Our comparison between RMQconst and RMQlog

gives results similar to [4].) Due to the additional space needed (for a file of size
n, more than 16n bytes are needed, in addition to 8n bytes for the LCP and
SA−1 arrays), the RMQ-based algorithms could not handle files large than 160
MB (see also Table 2).

6 Maximum LCE

As seen in the previous section, our DirectComp algorithm performs signifi-
cantly better than the best ones to date on the average. However, when counting
the expected number of operations performed by each algorithm, the difference
should be even bigger. That is due to the lower speed of RAM compared to
cache memory. Most of the time is spent on accessing the large arrays. We turn
this property into our advantage by trying to do better not only on the average
but also in the worst case.

In this section we prove a number of results that help us get an idea of how
large the maximum LCE is expected to be as well as an estimate on how many
“large” LCE values are expected. Denoting max LCE(s) = max

i,j
LCEs(i, j), we

have the following theorem:

Theorem 2 For any n ≥ 2 and ℓ ≥ 2, we have

(i) For any s ∈ An, max LCE(s) > logℓ(n)− 2.

(ii) There exists an s ∈ An such that max LCE(s) < logℓ(n).

(iii) The average maximum LCE, Avg max LCE(n, ℓ), satisfies

logℓ(n)− 2 ≤ Avg max LCE(n, ℓ) ≤ 2 logℓ(n) .

(iv) The average number of pairs (i, j) with LCE(i, j) ≥ logℓ(n) is less than
n/2.

(v) The average number of pairs (i, j) with LCE(i, j) ≥ 2 logℓ(n) is less than
1/2.

Proof. (i) Consider a string s ∈ Anand put k = max LCE(s). That means
any two substrings of length k + 1 of s are different. Since s has n − k such
substrings, it must be that n− k ≤ ℓk+1. From this (i) follows.

(ii) We use de Bruijn strings [3]. For a given ℓ and k, a de Bruijn string
has all strings of length k as substrings and minimum length n = ℓk + k − 1.
Therefore max LCE(s) = k− 1 as all substrings of length k are different and (ii)
follows.

(iii) The first inequality follows immediately from (i). For the second, con-
sider a string s such that max LCE(s) ≥ k. This means there is a position i
such that s[i . . i + k − 1] appears twice in s. The number of such strings is at

9

most (n− k + 1)ℓn−k since the factor s[i . . i + k − 1] is completely determined
by its second occurrence even in the case when the two occurrences overlap.
Therefore, bounding the max LCE of all these strings by the maximum possible
value n− 1 and the remaining ones by k − 1, we obtain

Avg max LCE(n, ℓ) =
1

ℓn

∑

s∈An

max LCE(s)

≤
1

ℓn

(

(n− 1)(n− k + 1)ℓn−k + (k − 1)(ℓn − (n− k + 1)ℓn−k)
)

= k − 1 +
1

ℓk
(n− k)(n− k + 1) .

For k = 2 logℓ(n), this gives the second inequality.
(iv) We make a reasoning similar to the one in the proof of Theorem 1(i).

Denoting the average we are looking for by Avg LCElog(n, ℓ), we have

Avg LCElog(n, ℓ) =
1

ℓn

∑

s∈An

card({(i, j) | LCEs(i, j) ≥ logℓ(n)})

=
1

ℓn

n−1
∑

k=⌈log
ℓ
(n)⌉

∑

1≤i<j≤n−k+1

card({s | LCEs(i, j) = k})

=
1

ℓn

n−⌈log
ℓ
(n)⌉

∑

k=1

((

k

2

)

ℓk−1(ℓ− 1) + kℓk
)

=
1

2ℓn

n−⌈log
ℓ
(n)⌉

∑

k=1

(

k(k + 1)ℓk − (k − 1)kℓk−1
)

=
1

2ℓn
(n− ⌈logℓ(n)⌉)(n− ⌈logℓ(n)⌉+ 1)ℓn−⌈log

ℓ
(n)⌉

<
n2

2ℓ⌈logℓ
(n)⌉
≤

n

2
.

(v) The reasoning is the same as the one for (iv) except that ⌈logℓ(n)⌉ is
replaced by ⌈2 logℓ(n)⌉ which gives the bound 1/2. �

The conclusion of this section is that most LCE values are expected to be
small and therefore our DirectComp algorithm performs better for most pairs.
For the remaining few, we look for a different solution in the next section. The
maximum LCE can be much larger than expected (see the sixth column of
Table 1) but our solution avoids the large LCE values.

7 The worst case

The RMQ-based algorithms are better for a very small fraction of the input (i, j)
pairs, namely those for which the difference between SA−1[i] and SA−1[j] is very
small, as that usually implies large LCE[i, j] value. But, for such cases, there
is another, very simple, algorithm, already considered by [4], that performs the
best. It requires no preprocessing. Instead, it computes directly the minimum

10

DirectMin(LCP, i, j)

1. low ← min(SA−1[i], SA−1[j])

2. high← max(SA−1[i], SA−1[j])
3. t← LCP[low + 1]
4. for k from low + 2 to high do

5. if LCP[k] < t then t← LCP[k]
6. return t

Figure 5: Direct computation of the range minimum.

of the values LCP[SA−1[i] + 1 . .SA−1[j]]. This algorithm, called DirectMin, is
described below.

Table 2 contains a summary of the memory and preprocessing requirements
for each of the four algorithms: RMQconst, RMQlog, DirectMin, and Direct-

Comp. The first two require the SA−1 array to compute the corresponding
positions in the LCP array and the data structures necessary for the constant-
(logarithmic-, resp.) time computation of the RMQ values. DirectMin requires
SA−1 and LCP for the same reason but no additional space. DirectComps needs
only the text.

Algorithm RMQconst RMQlog DirectMin DirectComp

Preprocessing RMQ data structures, SA−1, LCP SA−1, LCP —

Memory (bytes) 24n+ 8n n

Table 2: Preprocessing and memory requirements for a file of size n; we assume
an integer is represented on 4 bytes.

We tested the performance of all four algorithms discussed for the files in
Table 1. We run them on pairs at a given distance, step = | SA−1[j]−SA−1[i]|,
in the suffix array, represented on the abscissa in logarithmic scale; the ordinate
gives the time in microseconds. All pairs at a given distance have been con-
sidered for each computation. The results are given in Figures 6-8. Again, all
preprocessing times have been discarded.

8 Landau-Vishkin algorithm

An important application of LCE algorithms is to approximate string search.
Landau and Vishkin [15] adapted an idea of Ukkonen [24] to obtain an algorithm
that searches for occurrences that have no more than k differences in a text of
length n in time O(kn). We recall briefly the idea. Consider the pattern p of
length m, the text t of length n and build the well-known dynamic programming
matrix for searching for occurrences of p in t. The one for p = codes, t =
coincidence is shown in Figure 9(i).

11

 0

 0.5

 1

 1.5

 2

 2.5

 0 2 4 6 8 10 12 14 16 18 20

T
im

e(
us

)

log(Step)

DirectComp
RMQconst

RMQlog
DirectMin

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25

T
im

e(
us

)

log(Step)

DirectComp
RMQconst

RMQlog
DirectMin

Figure 6: The files book1 (left) and E.coli (right). The behavior of Direct-

Min, RMQconst, and RMQlog for the other three files from Canterbury corpus is
similar; the curve of DirectComp (green) is in-between the two cases shown.
(For files of size less than 1MB, DirectComp is the best on all inputs.)

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25

T
im

e(
us

)

log(Step)

DirectComp
RMQconst

RMQlog
DirectMin

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25 30

T
im

e(
us

)

log(Step)

DirectComp
RMQconst

RMQlog
DirectMin

Figure 7: The files chr22.dna (left) and jdk13c (right). The behavior of Di-

rectMin, RMQconst, and RMQlog for the other other files in Manzini corpus
(and pitches from Pizza&Chile) is similar; the curve of DirectComp is in-
between the two cases shown. The file jdk13c is the only one where the com-
bination DirectComp-DirectMin is slightly slower than RMQlog on a very
small interval.

A d-path in the DP matrix is a path that starts in row 0 and specifies a total
of d mismatches and indels. Diagonal i is the diagonal containing cells for which
the difference between the column and row index is i.

A d-path is farthest reaching in diagonal i if it ends on diagonal i and its end
has a higher row index than any other d-path. Any farthest reaching k-path
that reaches row m specifies the end of an occurrence of p with k errors. In
Figure 9(i), the diagonals 3 and 4 contain end points of 2-paths that reach the
last row. They correspond to the occurrences cide and ciden of the pattern with
2 errors.

Landau-Vishkin algorithm computes the ends of all farthest reaching k-
paths. To compute the end of the farthest reaching d-path in diagonal i, one
considers the farthest reaching of the following three paths. First, the farthest

12

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25 30

T
im

e(
us

)

log(Step)

DirectComp
RMQconst

RMQlog
DirectMin

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30

T
im

e(
us

)

log(Step)

DirectComp_english
DirectComp_proteins

DirectComp_rand_1000_2

Figure 8: The file rand 100 2 (left; the behavior on the other two random files
of the same size is similar) and the three largest files, rand 1000 2, English
and proteins (right); only DirectComp can handle those. The performance
is impressive; only at distance 2 some of the times are higher; such a case would
be very easily handled by DirectMin given enough space for the SA−1 and
LCP arrays.

c o i n c i d e n c e

0 0 0 0 0 0 0 0 0 0 0 0
c 1 0 1 1 1 0 1 1 1 1 0 1
o 2 1 0 1 2 1 1 2 2 2 1 1
d 3 2 1 1 2 2 2 1 2 3 2 2
e 4 3 2 2 2 3 3 2 1 2 3 2
s 5 4 3 3 3 3 4 3 2 2 3 3

-2 -1 0 1 2 3 4 5 6 7 8 9 10 11

0 2 0 0 0 1 0 0 0 0 1 0 0

1 3 3 2 1 2 4 1 1 1 2 2 1 0

2 4 4 4 3 3 5 5 4 2 4 3 2 1 0

(i) (ii)

Figure 9: (i) Dynamic programming matrix for searching for the pattern codes

in the text coincidence. The ends of the farthest reaching 2-paths are underlined.
(ii) The rows containing the ends of the farthest reaching d-paths, 0 ≤ d ≤ 2.

reaching (d− 1)-path in diagonal i− 1 (say it ends in row j) is extended by an
insertion in t and then an LCE between positions i+ j in t and j in p. Similarly,
the farthest reaching (d − 1)-paths in diagonals i and i + 1 are extended by a
deletion/mismatch followed by an LCE. This way, all ends of d-paths are com-
puted from ends of (d− 1)-paths. Since each LCE can be computed in constant
time, the whole algorithm requires time O(kn). These ends are computed in
Figure 9(ii) for 0 ≤ d ≤ 2.

In our algorithm the constant-time LCE algorithm is replaced by the newly
introduced DirectComp; the original algorithm is denoted by LV whereas ours
is LVdc. Here, as opposed to the LCE case, preprocessing for constant time
LCE is part of the algorithm and is counted. First, Table 3 gives the memory
and preprocessing requirements for the two algorithms.

We compared the two algorithms on two files for various pattern and error
sizes, on the same machine as in Section 5. The results are shown in Figures 10-
12. For each file, half of the patterns were randomly picked from the text

13

Algorithm LV LVdc

Preprocessing SA, SA−1, LCP, RMQ data structures, —

Memory (bytes) 28n+ 5n

Table 3: Preprocessing and memory requirements for a file of size n; we assume
an integer is represented on 4 bytes.

(and the corresponding number of errors were randomly introduced) whereas
the other half were randomly generated over the alphabet of the text. Our
algorithm is 13 to 20 times faster. For a fixed text, the time was affected only
by the number of errors and not the size or type of pattern.

File chr22 from Manzini, size 32MB

pat. source pat. length errors LV LVdc

10 3 206 13
20 6 333 23

ra
n
d
.
p
ic
k

fr
o
m

te
x
t

50 20 970 74
100 20 959 74

1000 20 946 73

10 3 201 12
20 6 340 23

ra
n
d
.
g
en

.
ov

er
a
lp
h
.

50 20 952 73
100 20 944 73

1000 20 944 73

Figure 10: Comparison between the original Landau-Vishkin algorithm and
ours for the file chr22 from Manzini corpus. We used the algorithm of Manzini-
Ferragina [18] for computing the suffix array, the one of Kasai et al. [10] for the
longest common prefix array, and the algorithm of Fischer and Heun [4] for the
RMQ-based computation of LCE.

9 Modified Landau-Vishkin versus Ukkonen’s cut-

off

We compared experimentally the improved Landau-Vishkin algorithm (LVdc)
with the more widely used Ukkonen’s cutoff algorithm [25]. The latter is O(kn)
on average and rather practical among the classical algorithms. The former,
instead, guarantees O(kn) worst-case. The Landau-Vishkin algorithm has al-
ways been regarded as an impractical algorithm [21]. With the improved LCE
algorithm, a competitive algorithm, LVdc, is obtained. Notice that, due to
Theorem 1, LVdc is O(kn) time on the average.

Our machine is an Intel Core2 Duo, each of the two cores containing a 3 GHz
processor with 6 MB cache, and 8 GB RAM. It runs Gnu Linux 2.6.24-24-server.

14

Prefix of file English from Pizza&Chili, size 50MB

pat. source pat. length errors LV LVdc

10 3 344 18
20 6 572 34

ra
n
d
.
p
ic
k

fr
o
m

te
x
t

50 20 1557 106
100 20 1536 106

1000 20 1546 104

10 3 353 18
20 6 562 33

ra
n
d
.
g
en

.
ov

er
a
lp
h
.

50 20 1497 105
100 20 1497 105

1000 20 1481 104

Figure 11: Comparison between the original Landau-Vishkin algorithm and ours
for the prefix of 50MB of the file English from Pizza&Chili corpus.

Prefix of file English from Pizza&Chili, size 750MB

pat. source pat. length errors LV LVdc

text 1000 20 — 1592

rand. gen. 1000 20 — 1574

Figure 12: The times for running our program on a prefix of 750MB of the
file English from Pizza&Chili corpus. The original Landau-Vishkin algorithm
cannot run on files larger than 140MB.

The compiler is Gnu gcc using full optimization, and the experiments ran with-
out any other significant process competing for the CPU. We measure user
times.

We have used 100MB of different text types from Pizza&Chili: Proteins,
DNA, MIDI pitches, English, C/Java source code, and XML text. Each data
point is the average over 100 searches for a pattern randomly chosen from the
text, which yields a standard deviation for the estimator (usually well) below
2% of the mean. Because the search times turned out to be largely independent
on m, we fix m = 50 and give the results for increasing k values.

Figure 13 shows the results. As it can be seen, LVdc is faster than Ukkonen’s
for low k values, which are usually the most interesting ones for approximate
string matching. At some turnover point (usually around k = 5–15, growing for
larger alphabets) the result reverses and Ukkonen’s becomes faster, yet never for
much more than 10%. For low k, instead, LVdc can be up to twice as fast. This
shows that the technique of computing the longest common prefix by brute
force is indeed practical, and it yields to improving a widely used algorithm
for approximate string matching (especially for verification of short text areas
pointed out by a faster filtration algorithm).

15

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12 14 16 18 20

m
ill

se
co

nd
s

pe
r

M
B

k

m = 50, Proteins

LV
Ukk

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120

 1 2 3 4 5 6 7 8 9 10

m
ill

is
ec

on
ds

 p
er

 M
B

k

m = 50, DNA

LV
Ukk

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 3 4 5 6 7 8 9 10

m
ill

se
co

nd
s

pe
r

M
B

k

m = 50, Pitches

LV
Ukk

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12 14 16 18 20

m
ill

is
ec

on
ds

 p
er

 M
B

k

m = 50, English

LV
Ukk

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12 14 16 18 20

m
ill

is
ec

on
ds

 p
er

 M
B

k

m = 50, Sources

LV
Ukk

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20 25

m
ill

is
ec

on
ds

 p
er

 M
B

k

m = 50, XML

LV
Ukk

Figure 13: Time comparison between the Landau-Vishkin algorithm with the
fast LCE algorithm, LVdc (LV in the figure) and the classical Ukonnen’s cutoff
algorithm (Ukk in the figure).

10 Conclusions

We gave very simple algorithms for the LCE problem that are the best in prac-
tice with respect to both time and space. When the pairs are randomly dis-
tributed, DirectComp should be used as it is approximately 5 times faster on
the average than the current fastest algorithm. If the performance on every
single input matters, then the combination DirectComp-DirectMin should
be used. Only DirectComp can handle very large files and the performance on
those is very good.

In order to test the efficiency of our new algorithms, we presented an appli-
cation to approximate string searching. Landau-Vishkin algorithm uses heavily
LCE algorithms. When those were replaced by our DirectComp, the obtained
algorithm runs 13 to 20 times faster, is much simpler, and uses much less space.

Our improvement turns Landau-Vishkin’s algorithm from an impractical
algorithm to a practical one. We compared it with Ukkonen’s cutoff algorithm
and proved it to be faster for a significant range of error thresholds.

Acknowledgements

The statistics of the large files were computed on SHARCNET (www.sharcnet.ca).

References

[1] M.A. Bender and M. Farach-Colton, The LCA problem revisited, in Proc. of
LATIN’00, Lecture Notes in Comput. Sci. 1776, Springer, 2000, 88 - 94.

16

[2] O. Berkman and U. Vishkin, Recursive star-tree parallel data structure,
SIAM J. Comput. 22 (1993) 221 – 242.

[3] N.G. de Bruijn, A combinatorial problem, Nederl. Akad. Wetensch. Proc.
49 (1946) 758 – 764.

[4] J. Fischer and V. Heun, Theoretical and Practical Improvements on the
RMQ-Problem, with Applications to LCA and LCE, in: M. Lewenstein and
G. Valiente (Eds.), Proc. of CPM’06, Lecture Notes in Comput. Sci. 4009,
Springer-Verlag Berlin Heidelberg 2006, 36 - 48.

[5] D. Gusfield, Algorithms on Strings, Trees, and Sequences. Computer Sci-
ence and Computational Biology, Cambridge Univ. Press, 1997.

[6] D. Gusfield and J. Stoye, Linear time algorithm for finding and representing
all tandem repeats in a string, J. Comput. Syst. Sci. 69 (2004) 525 - 546.

[7] D. Harel and R.E. Tarjan, Fast algorithms for finding nearest common
ancestors, SIAM J. Comput. 13 (1984) 338 - 355.

[8] L. Ilie and L. Tinta, Practical algorithms for the longest common extension
problem, in: J. Karlgren, J. Tarhio, and H. Hyyr (eds.), Proc. of SPIRE’09,
Lecture Notes in Comput. Sci. 5721, Springer, 2009, 302 – 309.

[9] J. Kärkkäinen and P. Sanders, Simple linear work suffix array construc-
tion, in Proc. of ICALP’03, Lecture Notes in Comput. Sci. 2719, Springer-
Verlag, Berlin, Heidelberg, 2003, 943 - 955.

[10] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park, Linear-time
longest-common-prefix computation in suffix arrays and its applications,
Proc. of CPM’01, Lecture Notes in Comput. Sci. 2089, Springer-Verlag,
Berlin, 2001, 181 - 192.

[11] D.K. Kim, J.S. Sim, H. Park, and K. Park, Constructing suffix arrays in
linear time. J. Discrete Algorithms 3(2-4) (2005) 126 - 142.

[12] P. Ko and S. Aluru, Space efficient linear time construction of suffix arrays,
J. Discrete Algorithms 3(2-4) (2005) 143 - 156.

[13] G. Landau, J.P. Schmidt, and D. Sokol, An algorithm for approximate
tandem repeats, J. Comput. Biol. 8 (2001) 1 - 18.

[14] G. Landau and U. Vishkin, Introducing efficient parallelism into approx-
imate string matching and a new serial algorithm, in Proc. of STOC’86,
ACM Press, 1986, 220 - 230.

[15] G. Landau and U. Vishkin, Fast parallel and serial approximate string
matching, J. Algorithms 10 (1989) 157 - 169. (Preliminary version in ACM
STOC 86.)

17

[16] M. Main and R.J. Lorentz, An O(n log n) algorithm for finding all repeti-
tions in a string, J. Algorithms 5 (1984) 422 - 432.

[17] U. Manber and G. Myers, Suffix arrays: a new method for on-line search,
SIAM J. Comput. 22(5) (1993) 935 – 948.

[18] G. Manzini and P. Ferragina, Engineering a lightweight suffix array con-
struction algorithm, Algorithmica 40(1) (2004) 33 – 50.

[19] R. de C. Miranda and M. Ayala-Rincon, A Modification of the Landau-
Vishkin algorithm computing longest common extensions via suffix arrays,
Proc. of BSB’05, Lecture Notes in Comput. Sci. 3594, Springer, Berlin,
2005, 1611-3349.

[20] G. Myers, An O(nd) difference algorithm and its variations, Algorithmica
1 (1986) 251 - 266.

[21] G. Navarro, A guided tour to approximate string matching, ACM Comput-
ing Surveys 33(1) (2001) 31 – 88.

[22] G. Nong, S. Zhang, W. Chan, Linear time suffix array construction using D-
critical substrings, Proc. of CPM’09, Lecture Notes in Comput. Sci. 5577,
Springer, 2009, 54 – 67.

[23] B. Schieber and U. Vishkin, On finding lowest common ancestors: Simpli-
fication and parallelization, SIAM J. Comput. 17 (1988) 1253 - 1262.

[24] E. Ukkonen, Algorithms for approximate string matching, Inform. and
Control 64 (1985) 100 - 118. (Preliminary version in Proceedings of the In-
ternational Conference Foundations of Computation Theory, Lecture Notes
in Comput. Sci. 158, 1983).

[25] E. Ukkonen, Finding approximate patterns in strings, J. Algorithms 6

(1985) 132 – 137.

18

