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Abstract

We consider the problems of (1) longest common subsequence (LCS) of two given
strings in the case where the first may be shifted by some constant (that is, trans-
posed) to match the second, and (2) transposition-invariant text searching using
indel distance. These problems have applications in music comparison and retrieval.
We introduce two novel techniques to solve these problems efficiently. The first is
based on the branch and bound method, the second on bit-parallelism. Our branch
and bound algorithm computes the longest common transposition-invariant subse-
quence (LCTS) in time O((m2+log log σ) log σ) in the best case and O((m2+log σ)σ)
in the worst case, where m and σ, respectively, are the length of the strings and the
size of the alphabet. On the other hand, we show that the same problem can be
solved by using bit-parallelism and thus obtain a speedup of O(w/ log m) over the
classical algorithms, where the computer word has w bits. The advantage of this
latter algorithm over the present bit-parallel ones is that it allows the use of more
complex distances, including general integer weights. Since our branch and bound
method is very flexible, it can be further improved by combining it with other effi-
cient algorithms such as our novel bit-parallel algorithm. We experiment on several
combination possibilities and discuss which are the best settings for each of those
combinations. Our algorithms are easily extended to other musically relevant cases,
such as δ-matching and polyphony (where there are several parallel texts to be con-
sidered). We also show how our bit-parallel algorithm is adapted to text searching
and illustrate its effectiveness in complex cases where the only known competing
method is the use of brute force.
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1 Introduction

Combinatorial pattern matching, with its many application domains, have
been an active research field for several decades already. One of the latest
such domains is comparing and retrieving symbolically encoded music. In-
deed, music can be encoded as sequences of symbols, that is, as strings. At
a rudimentary level, this is done by taking into account exclusively the order
of the starting times of the musical events (that is, the note ons) together
with their pitch information (or frequency, that is, the perceived height of the
musical event). On a more complicated level, one can use several distinct at-
tributes for each of the events (see for example [2,9]). Most of the interesting
musical attributes used in such symbolic representations are directly available,
for example, in the commonly used MIDI format [15].

Calculating the longest common subsequence (LCS) of two (or more) given
strings is one of the fundamental problems in string matching. Let A =
a1, . . . , am and B = b1, . . . , bn be two strings over some finite alphabet. A
subsequence of either string is obtained by deleting zero, or more characters
from it. A LCS of A and B, L = lcs(A, B), is such that L is a subsequence of
both A and B, and its length is maximal. In the corresponding indel-distance
search problem, given a pattern P = p1, . . . , pm and text T = t1, . . . , tn, the
task is to find whether there are substrings of T such that P can be obtained
from them by performing at most k character deletions or insertions. We will
define these two problems more precisely and show their intrinsic connection
in Section 2. Let us now discuss the problem framework in terms of comput-
ing LCS. It should be understood, however, that the following claims are valid
also when solving the corresponding search problem. In what follows, assume
m ≤ n without loss of generality (this is also the case in text searching).

An algorithm solving LCS would be appropriate for matching music because
music contains various kinds of decorations, such as grace notes or ornamen-
tations. By comparing the length of the music strings to the length of the
obtained LCS, one gets a useful measure of the essential similarity of the two
strings, which happens to be more robust than alternative approaches such as
edit distance (where substitutions of characters are permitted in addition to
insertions and deletions). 3

However, there are special features intrinsic to music that are not taken into ac-
count in general string matching techniques. The main feature is that western
people tend to listen to music analytically by observing the intervals between
the consecutive pitch values more than the actual pitch values themselves: A
melody performed in two distinct pitch levels is perceived the same regard-

3 Another possibility to this end would be to use the geometric approach [17,19].
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less if its performed in a lower or higher level of pitches. This leads to the
concept of transposition invariance. Let the alphabet be comprised of integer
values: Σ = {0 . . . σ}, and L + c denote a constant adding to every charac-
ter of string L, that is, L + c = l1 + c, l2 + c, . . . , lp + c. A longest common
transposition invariant subsequence (LCTS), denoted L = lcts(A, B), is such
that L is a subsequence of A, L + c is a subsequence of B (for some constant
c, −σ ≤ c ≤ σ), and its length is maximal.

The second important feature is that music may be polyphonic, which means
that there are several events occurring simultaneously. Given a set T of h
strings (each representing a musical line or voice) of the form T g = tg1, . . . , t

g
n,

g ∈ {1 . . . h}, a character of P can match any tgj at text position j. Thirdly,
in music matching it is often useful to allow some tolerance for the matching
pairs. One way to this end is via the so-called δ-matching [3]: A = a1, . . . , am

is said to δ-match B = b1, . . . , bm if ai ∈ [bi−δ, bi+δ] for all i = 1, . . . , m. A
more sophisticated alternative is to introduce the possibility of substituting
bi by ai, at a cost which is proportional to |bi − ai|. This is called a weighted
distance because the substitution costs (or weights) are variable.

The are a few studies on LCTS in the current literature. Plain (not trans-
posed) LCS can be computed by using dynamic programming in O(mn) time.
A naive way to compute LCTS is to compute LCS for all the possible 2σ + 1
transpositions, in overall time O(σmn) [13]. In [4], Crochemore et al. intro-
duced a bit-parallel algorithm that computes LCS in O(mn/w) time, where
w denotes the size of the computer word in bits. Their algorithm can be run
for every transposition to obtain O(σmn/w) time. Mäkinen et al. [14] intro-
duced a sparse dynamic programming algorithm for the LCTS problem that
works in time O(mn log log m), and a more practical version that works in
time O(mn log m).

Polyphony and δ-matching are straightforward features to include in all these
approaches. With regard to substitutions, Myers’ bit-parallel algorithm [16,8]
could be used instead of [4] to allow for them in O(σmn/w) time. If general
substitution weights are to be handled, Bergeron et al.’s algorithm [1] can
be used. If we give weight λ to insertions and deletions (so as to have, in
comparison, smaller integer substitution costs), then this algorithm gives an
O(σmnλ log(λ)/w) time solution.

In this paper we introduce another bit-parallel algorithm which is specifically
aimed at the LCTS problem. Unlike Crochemore et al.’s adapted algorithm,
ours solves several transposition instances in a single computation. Our al-
gorithm turns out to be more flexible: In addition to dealing with transpo-
sitions, polyphony and δ-matching, we can deal with general weights such
as the aforementioned |bi − ai|. The cost of this flexibility is mild: Our time
complexity is O(σmn log(m)/w), which represents a speedup of Ω(w/ logm)
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over the naive algorithm. Although the bit-parallel algorithm [4] yields bet-
ter complexity, it cannot deal with general weights. The competing algorithm
for this extended case [1] has better complexity for long enough patterns,
where log m = Ω(λ log λ). Actually, our experimental results show that our
bit-parallel algorithm is the fastest existing choice for m ≤ 30.

Moreover, we introduce another novel approach to solve LCTS, which is based
on the branch and bound technique to search for the optimal transposition.
In the worst case the algorithm runs in time O((mn + log σ)σ), which is not
much worse than the naive solution. In the best case, however, it can be as
good as O((mn + log log σ) log σ). Moreover, the technique can be combined
with any of the aforementioned algorithms to obtain a faster solution. Our
experimental results show that this algorithm is the fastest when comparing
long sequences (m ≥ 120).

The aforementioned algorithms [4,14,16,8,1] are rather easily adapted to text
searching. This is also the case for our novel bit-parallel algorithm, but unfor-
tunately not for the branch and bound technique.

The paper is organized as follows. In the next section, we introduce the ap-
propriate basics of the string matching framework and define the problems
considered . Then, in Section 3, we show how to compute LCTS by using the
branch and bound technique. Section 4 introduces our novel bit-parallel algo-
rithm and show how it can be used to speed up both the naive and the branch
and bound algorithms. Sections 5 and 6 deal with the text searching prob-
lem and introduce our novel bit-parallel algorithm for this task. In Section 7
we show the results of our comprehensive experiments before concluding the
paper in Section 8.

2 Preliminaries

Let us start this section with a brief introduction to string combinatorics. Let
Σ be a finite set of symbols, called an alphabet. Then any A = (a1, a2, . . . , am)
where each ai is a symbol in Σ, is a string over Σ. Usually we write A =
a1, . . . , am. The length of A is |A| = m. The string of length 0 is called the
empty string and denoted ǫ. The set of strings of length i over Σ is denoted by
Σi, and the set of all strings over Σ by Σ∗. If a string A is of the form A = βαγ,
where α, β, γ ∈ Σ∗, we say that α is a factor (substring) of A. Furthermore,
β is called a prefix of A, and γ a suffix of A. A string A′ is a subsequence
of A if it can be obtained from A by deleting zero or more symbols, that is,
A′ = ai1 , ai2, . . . , aim , where i1 . . . im is an increasing sequence of indices in A.

To define a distance between strings over Σ∗, one should first fix the set of local
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transformations (editing operations) T ⊆ Σ∗ × Σ∗ and a non-negative valued
cost function W that gives for each transformation t in T a cost W (t). Each
t in T is a pair of strings t = (α, β). Regarding such a t as a rewriting rule
suggests a notation for t, α→ β (α is replaced by β within a string containing
α), which we will use below. For convenience, if α → β 6∈ T , then we assume
W (α→ β) =∞.

The definition of a distance is based on the concept of a trace, which gives a
correspondence between two strings. Formally, a trace between two strings A
and B over Σ∗, is formed by splitting A and B into equally many factors:

τ = (α1, α2, . . . , αp; β1, β2, . . . , βp),

where A = α1, α2, . . . , αp, and B = β1, β2, . . . , βp, and each αi, βi (but not
both) may be an empty string over Σ. Thus, string B can be obtained from
A by steps α1 → β1, α2 → β2, . . . , αp → βp.

The cost of the trace τ is W (τ) = W (α1 → β1) + . . . + W (αp → βp). The
distance between A and B, denoted DT ,W (A, B), is defined as the minimum
cost over all possible traces.

The general definition above induces, the following well-known distance mea-
sures. In unit-cost edit distance (or Levenshtein distance), DL(A, B), the al-
lowed local transformations are of the forms a → b (substitution), a → ǫ
(deletion), and ǫ → a (insertion), where a, b ∈ Σ. The costs are given as
W (a → a) = 0 for all a, W (a → b) = 1 for all a 6= b, and W (a → ǫ) =
W (ǫ → a) = 1 for all a. In Hamming distance, DH(A, B), the only allowed
local transformations are of form a → b where a and b are any members of
Σ, with cost W (a → a) = 0 and W (a → b) = 1, for a 6= b. Finally, the
indel distance, DID(A, B), permits only insertions and deletions. That is, the
allowed transformations are a → a, a → ǫ (deletion), and ǫ → a (insertion),
where a ∈ Σ, with costs W (a→ a) = 0 and W (a → ǫ) = W (ǫ → a) = 1, for
all a.

It is well known [6] that the straightforward computation of these distances
is carried out by evaluating an appropriate recurrence relation by using dy-
namic programming, where the distances between the prefixes of A and B are
tabulated. Each cell dij of a distance table (dij) stores the distance between
a1, . . . , ai and b1, . . . , bj (0 ≤ i ≤ m, 0 ≤ j ≤ n) and (dij) is evaluated by
proceeding row-by-row or column-by-column using the given recurrence. For
instance, the following recurrence corresponds to DID(A, B):

di,0 = i; d0,j = j;

dij = if ai = bj then di−1,j−1 else min(di−1,j + 1, di,j−1 + 1).

Finally, dm,n gives the distance, in this case DID(A, B). The framework is
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straightforwardly adapted to the problem of searching for occurrences of P
in T : The first row of the table (dij) is initialized with zero values (d0,j = 0
for 0 ≤ j ≤ n) and instead of observing just the value of the bottom-right
corner dm,n, any value dm,j not exceeding a given threshold k indicates an
approximate occurrence of P ending at position j in T .

Naturally, we can use non unit-cost distances as well. For instance, the follow-
ing recurrence uses weighted edit distance that makes a distinction according
to the amount of the local distortion, as advocated in the Introduction:

EDi,0 = i× λ; ED0,j = j × λ (1)

EDi,j = min(|ai − bj |+ EDi−1,j−1, λ + EDi−1,j , λ + EDi,j−1).

Here λ is an application-dependent constant used to weight indel operations.

The dual case of DID(A, B) is the calculation of the longest common subse-
quence of two strings A and B, or lcs(A, B) for short. The length of lcs(A, B),
denoted by LCS(A, B), is computed by the recurrence:

LCSi,0 = 0; LCS0,j = 0;

LCSi,j = if ai = bj then 1 + LCSi−1,j−1 (2)

else max(LCSi−1,j, LCSi,j−1).

so that LCS(A, B) = LCS|A|,|B|.

The well-known relation between LCS(A, B) and DID(A, B) is as follows (see

for example [5,6]): LCS(A, B) = |A|+|B|−DID(A,B)
2

.

2.1 Problems under Consideration

Let us now define the required concepts within the framework given above.
Given an integer alphabet Σ = {0 . . . σ}, the following recurrence calculates
LCS(A, B) for any given transposition c, where −σ ≤ c ≤ σ:

LCSc
i,0 = 0; LCSc

0,j = 0;

LCSc
i,j = if ai + c = bj then 1 + LCSc

i−1,j−1 (3)

else max(LCSc
i−1,j, LCSc

i,j−1).

The calculation of δ-LCSc(A, B) is analogous to that of Recurrence (3), but
instead of observing whether ai + c = bj holds, one should observe the truth
of the relation bj − δ ≤ ai + c ≤ bj + δ.
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Definition 1 (LCTS) Let A and B be strings over an integer alphabet Σ =
{0 . . . σ}. The length of the longest common transposition invariant subse-
quence of A and B, denoted LCTS(A, B), is:

LCTS(A, B) = max
c∈{−σ...σ}

LCSc(A, B).

Analogously to Definition 1, one may also define the length of the longest
common transposition invariant δ-matching subsequence as follows:

δ-LCTS(A, B) = max
c∈{−σ...σ}

δ-LCSc(A, B).

The naive computation of LCTS and its variants requires O(σ|A||B|) time,
as we have to compute the LCSc matrix for every transposition c.

As stated above, the string matching framework can be adapted to the text
searching problem. Let k be the given error threshold value and P be the
pattern to be searched for in polyphonic text T g = tg1, . . . , t

g
n, g ∈ {1 . . . h}.

P has a c-transposed, k-approximate indel-occurrence in T ending at position
j, if in the recurrence

M c
i,0 = i; M c

0,j = 0; (4)

M c
ij = if pi + c ∈ {tgj , 1 ≤ g ≤ h} then M c

i−1,j−1

else min(M c
i−1,j + 1, M c

i,j−1 + 1),

it holds that M c
m,j ≤ k where 1 ≤ j ≤ n.

Matching pattern P against polyphinc text T is known as multi-track string
matching [12]. The naive solution to this search problem takes O(hσmn) time.

Definition 2 (TIMTKI-occurrence) Let P be a pattern string to be matched
against a polyphonic (multi-track) text string T , both of which are sequences
over the integer alphabet Σ = {0 . . . σ}. P is said to have a transposition-
invariant multi-track k-approximate indel-occurrence (TIMKTI-occurrence)
in T ending at j, if M c

m,j ≤ k for some c such that −σ ≤ c ≤ σ.

A δ-matching TIMKTI-occurrence is defined in the obvious way.

3 A Branch and Bound Algorithm

Let X denote a subset of transpositions and LCSX(A, B) be such that ai

and bj match whenever bj − ai ∈ X. It is easy to see that LCSX(A, B) ≥
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maxc∈X LCSc(A, B): Any common subsequence between A + c and B is con-
sidered in the maximum LCSX(A, B). Hence, LCSX(A, B) may not be the
actual maximum LCSc(A, B) for c ∈ X, but it gives an upper bound.

Our aim is to find the maximum LCSc(A, B) value by successive approxi-
mations, restricting the subsets X where the optimum c belongs. Our algo-
rithm is inspired in a nearest-neighbor search algorithm for spatial and metric
databases [7].

3.1 Binary Hierarchy LCTS

We form a binary tree whose nodes have the form [τ, τ ′] and represent the
range of transpositions X = {τ . . . τ ′}. The root is [−σ, σ]. The leaves have
the form [c, c]. Every internal node [τ, τ ′] has two children [τ, ⌊(τ + τ ′)/2⌋] and
[⌊(τ + τ ′)/2⌋+ 1, τ ′].

The hierarchy is used to upper bound the LCSc(A, B) values. For every node
[τ, τ ′] of the tree, if we compute LCS [τ,τ ′](A, B), the result is an upper bound
to LCSc(A, B) for any τ ≤ c ≤ τ ′. Moreover, LCSX(A, B) is easily computed
in O(|A||B|) time if X = {τ . . . τ ′} is a continuous range of values:

LCS
[τ,τ ′]
i,0 = 0; LCS

[τ,τ ′]
0,j = 0; (5)

LCS
[τ,τ ′]
i,j = if τ ≤ bj − ai ≤ τ ′ then 1 + LCS

[τ,τ ′]
i−1,j−1

else max(LCS
[τ,τ ′]
i−1,j , LCS

[τ,τ ′]
i,j−1).

We already know that the LCS value of the root is min(|A|, |B|), since every
pair of characters match. The idea is now to compute its two children, and
continue with the most promising one (higher LCSX upper bound). For this
most promising one, we compute its two children, and so on. At any moment,
we have a set of subtrees to consider, each one with its own upper bound on
the leaves it contains. That set of subtrees to be considered is maintained in a
max-priority queue. At every step of the algorithm, we take the most promising
subtree, compute its two children, and add them to the set of subtrees under
consideration. If the most promising subtree turns out to be a leaf node [c, c],
then the upper bound value is indeed the exact LCSc value. At this point we
can stop the process, because all the upper bounds of the remaining subtrees
are smaller than or equal to the actual LCSc value we have obtained. So we
are sure of having obtained the highest value.

Fig. 1 gives an example for two strings A, B of lengths |A| = |B| = 20 when
σ = 50. With a naive algorithm we would need to compute 101 O(mn) tables.

8



For our example, only 24 such tables are computed. Each node represents
the LCSX(A, B) for some interval X. For example, the root has value 20 be-
cause LCS [−50,50] = 20. We start with the computation of LCS [−50,0] = 14
and LCS [1,50] = 14. They have the same value so we pick up either of the
two. We choose LCS [−50,0] (note that in Fig. 1 the numbers next to the node
give the processing order of the algorithm) and compute LCS [−50,−25] = 6
and LCS [−24,0] = 14. Now we need to pick up the node with the highest
value among those not already considered, in this case LCS [1,50]. Recall that
this process is implemented by using a max-priority queue. We keep repeat-
ing this procedure until we reach a leaf. In this example we stop at leaf
LCS [−3,−3] = LCS−3 = 8 and we can be sure that transposition −3 gives
the best alignment. The correctness of our algorithm can be verified by ob-
serving that all remaining nodes (nodes without a cross) have values of 8 at
most.
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Fig. 1. Example of the BinaryHierarchyLCTS computation for |A| = |B| = 20 and
σ = 50. The nodes with a cross were considered during the computation.

Fig. 2 shows the algorithm. Our priority queue stores pairs of the form ([τ, τ ′], val)
and permits extracting the elements in decreasing val order with ExtractMax.
It is initialized empty and we insert new elements using Insert.

Analysis. We have a best case of log(2σ + 1) = O(log σ) iterations and a
worst case of 2(2σ + 1) − 1 = 4σ + 1 = O(σ) until we obtain the first leaf
element. Our priority queue, which performs operations in logarithmic time,
contains O(log σ) elements in the best case and O(σ) in the worst case. Hence,
recalling that |A| = m and |B| = n, m ≤ n, every iteration of the algorithm
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BinaryHierarchyLCTS (A, B, σ)
1. Init(Q)
2. [τ, τ ′]← [−σ, σ]
3. While τ 6= τ ′ Do
4. θ ← ⌊(τ + τ ′)/2⌋
5. Insert(Q, ([τ, θ],ComputeSetLCS(A, B, τ, θ)))
6. Insert(Q, ([θ + 1, τ ′],ComputeSetLCS(A, B, θ + 1, τ ′)))
7. ([τ, τ ′], lcts)← ExtractMax(Q)
8. Return lcts

Fig. 2. Branch and bound algorithm to compute LCTS(A,B). ComputeSetLCS
(A,B, τ, τ ′) computes LCS[τ,τ ′](A,B) as described in Recurrence (5).

takes O(mn + log log σ) at best and O(mn + log σ) at worst. This gives an
overall best case complexity of O((mn+log log σ) log σ) and O((mn+log σ)σ)
for the worst case. The worst case is as bad as the naive algorithm (but not
worse) for mn = Ω(log σ), which is the case in practice.

In any case, notice that the cost of our algorithm is O(mnf(σ)). This is favor-
able, for large mn, compared to alternative algorithms such as the O(mn log m)
one [14], which is independent of σ but whose cost grows faster than O(mn).
In Section 7 we show experimentally that our algorithm is better for large
m ≥ 150.

3.2 Higher Arities

Naturally, the branch and bound technique is directly applicable to higher
arities as well. Instead of using a binary hierarchy tree, we use a κ-ary tree,
for some integer κ > 2. In this case, every tree node works O(κmn) time to
produce κ children that are inserted in the priority queue. On one hand, this
increases the processing cost per tree node. On the other, it reduces the tree
depth and it might find the right interval faster.

In Section 4.2 we will consider combining the branch and bound algorithm
with a bit-parallel algorithm that can perform several LCTS computations in
parallel. In that case it becomes natural to adjust the branching factor κ to
how many LCTS calculations can be carried out in parallel, so that processing
each internal node will cost O(mn).

Analysis. We follow the binary case: The tree has depth O(logκ σ) but pro-
cessing each internal node costs O(κmn). Since processing an internal node
produces κ children, we can consider that generating each tree node (when
processing its parent) costs O(mn), including the leaves.
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In the best case we follow a single root to leaf path, generating O(κ logκ σ)
nodes that are also inserted in the priority queue. The total cost is O((mn +
log(κ logκ σ))κ logκ σ). This is worse than in the binary case κ = 2. In the
worst case we traverse all the σκ/(κ − 1) tree nodes. The total cost is thus
O((mn + log(σκ/(κ− 1)))σκ/(κ− 1)). This improves as κ grows.

Overall, it is not clear which is the best κ value, so we determine it experi-
mentally in Section 7. We find that low κ values such as 3 and 4 are as good
as κ = 2, but never significantly better.

4 Speeding Up with Bit-Parallelism

In this section we show how bit-parallelism can be used to speed up the com-
putation of the LCTS between strings A and B. Bit-parallelism is a technique
to pack several values in a single computer word and to manage to update
them all simultaneously, hence speeding up the computations of an algorithm.
We will first apply bit-parallelism to speed up the naive LCTS computation,
and later to the branch and bound technique.

We will use the following notation to describe bit-parallel algorithms. The
number of bits in the computer word will be denoted by w (typically w = 32
or 64). In general we will manipulate bit masks, which are sequences of bits
of length up to w. The bitwise and operation between bit masks M1 and
M2 will be denoted “M1 & M2”, the bitwise or as “M1 | M2”, and the bit
complementation as “∼ M1”. By “M1 << i” we denote the operation of
shifting all bits of M1 to the left by i positions, where the bits that fall outside
the bit mask are discarded and the new bits that enter are zero. Similarly,
“M1 >> i” shifts the bits to the right. We can perform arithmetic operations,
such as addition, subtraction and multiplication, over the bit masks, thus
treating them as numbers. We can also compare their numerical values. When
carrying out those operations, remind that the most significant bit is at the
left. We use exponentiation to denote repetition of bits, such as 031 = 0001.
Also, we write [x]ℓ to denote the integer x represented in ℓ bits (with x < 2ℓ).

4.1 Speeding Up the Brute-Force Algorithm

The simplest technique to compute LCTS(A, B) is to compute LCSc(A, B)
for all c, and choose the maximum. This requires a triple iteration to com-
pute LCSc

i,j for every i ∈ 0 . . . |A|, j ∈ 0 . . . |B|, and c ∈ −σ . . . σ, which
takes O(σmn) time. Our idea is to compute LCSc(A, B) for several c values
simultaneously, in principle iterating only over i and j. Fig. 3 illustrates.
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Fig. 3. General scheme to compute LCTS(A,B) using bit-parallelism. We work
individually on every (ai, bj) pair, but solve several transpositions simultaneously.

The first question is how many c values can we compute in parallel, that
is, how many LCSc

i,j numbers can we store in a computer word of w bits.
Since all LCSc

i,j values are in the range {0 . . .min(|A|, |B|)}, we need ℓ =
⌈log(min(|A|, |B|)+1)⌉ bits to store each value. For reasons that will be made
clear soon, we will in fact need ℓ + 1 bits per value, and hence we will be able
to store κ = ⌊w/(ℓ + 1)⌋ values in a single computer word. All our bit masks
will be of length κ(ℓ + 1) ≤ w. Our bit masks will also be seen as sequences
of κ fields. The r-th field is formed by the bits (r − 1)(ℓ + 1) + 1 . . . r(ℓ + 1).

This means that we can compute for κ values of c simultaneously. Therefore,
we divide the process of computing LCSc(A, B) for every c ∈ −σ . . . σ into
⌈(2σ+1)/κ⌉ separate bit-parallel computations, each for κ contiguous c values.
From now on, let us focus on the bit-parallel computation of LCSc(A, B) for
one such contiguous range, c ∈ {τ . . . τ + κ− 1} for some τ . We will compute
bit masks LCTSi,j, for 0 ≤ i ≤ |A| and 0 ≤ j ≤ |B|, holding all the LCSc

i,j

values in the current c range. That is,

LCTSi,j = 0[LCSτ+κ−1
i,j ]ℓ 0[LCSτ+κ−2

i,j ]ℓ . . . 0[LCSτ+1
i,j ]ℓ 0[LCSτ

i,j]ℓ .

Eq. (3) has an if-then-else structure. For a given c, if ai + c = bj , then we have
to use value 1+LCSc

i−1,j−1, otherwise we have to use max(LCSc
i,j−1, LCSc

i−1,j).
Note that the distinguished value c = bj − ai may or may not be in our range
τ . . . τ + κ− 1. To simulate this if-then-else in the bit-parallel computation of
LCTSi,j, we build a bit mask E holding κ fields of ℓ+1 bits each, corresponding
to the c values in the current range. Those fields in E usually contain 0ℓ+1,
except for the one corresponding to c = bj − ai (if present), which contains
1ℓ+1. The definition of E follows. The way to use it will be made clear soon.

12



E = if τ ≤ bj − ai < τ + κ (6)

then 0(τ+κ−1−(bj−ai))(ℓ+1) 1(ℓ+1) 0(bj−ai−τ)(ℓ+1)

else 0κ(ℓ+1) .

Now, we need to build two bit masks corresponding to the two choices to
assign value to LCSc

i,j. The first corresponds to 1 + LCSc
i,j. Its bit-parallel

version is easy to compute:

LCTSi,j + (0ℓ1)κ = 0[LCSτ+κ−1
i,j + 1]ℓ . . . 0[LCSτ

i,j + 1]ℓ .

The second choice corresponds to value max(LCSc
i,j−1, LCSc

i−1,j). Its bit-parallel
version is Max(LCTSi,j−1, LCTSi−1,j), where Max() is defined as:

Max(0[xκ]ℓ . . . 0[x1]ℓ, 0[yκ]ℓ . . . 0[y1]ℓ)

= 0[max(xκ, yκ)]ℓ . . . 0[max(x1, y1)]ℓ ,

that is, Max() takes the field-wise maxima of the two bit masks. Given func-
tion Max(), value LCTSi,j is computed as

LCTSi,j = (E & (LCTSi−1,j−1 + (0ℓ1)κ))

| (∼ E & Max(LCTSi,j−1, LCTSi−1,j)) .

To see that the above formula is correct, consider its r-th field, corresponding
to LCSc

i,j for c = τ +r−1. If c = bj−ai, then r = c−τ +1 = (bj−ai)−τ +1,
and the r-th field in E is 1ℓ (see Eq. (6)). Thus, the above formula correctly
assigns value LCSc

i−1,j−1 +1 to LCSc
i,j . If, on the other hand, c 6= bj−ai, then

the r-th field in E is 0ℓ+1. Thus, the above formula correctly assigns value
max(LCSc

i,j−1, LCSc
i−1,j) to LCSc

i,j .

The only missing piece is the computation of Max(X, Y ). This is where we
need the (ℓ + 1)-th (highest) bit of the fields, always in zero. This solution is
from [18] and we repeat it here for completeness. A bit mask J = (10ℓ)κ will
be precomputed. Then, to compute Max(X, Y ), start with F ← ((X | J) −
Y ) & J . Note that the r-th field of X | J is 1[xr]ℓ, which is always larger
than 0[yr]ℓ, so the subtraction never overflows from one field to the next.
Now, if xr ≥ yr, then 1[xr]ℓ − 0[yr]ℓ = 1[xr − yr]ℓ, otherwise 1[xr]ℓ − 0[yr]ℓ =
0[2ℓ+xr−yr]ℓ. If we and the result of (X | J)−Y with J , only the highest bits
of the fields survive. That is, the r-th field of F is 10ℓ if xr ≥ yr, otherwise
it is 00ℓ. We now compute F ← F − (F >> ℓ), so that the r-th bit of F
will be 10ℓ − 0ℓ1 = 01ℓ if xr ≥ yr, and 00ℓ − 00ℓ = 00ℓ otherwise. At this
point, F plays the role of our E mask for the condition “xr ≥ yr”. Therefore,
it is clear that Max(X, Y ) = (F & X) | (∼ F & Y ). Also, we easily obtain
Min(X, Y ) = (F & Y ) | (∼ F & X) in the same manner. Fig. 4 gives the
code, and Fig. 5 an example.
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Max (X, Y, ℓ, κ)
1. J ← (10ℓ)κ

2. F ← ((X | J)− Y ) & J
3. F ← F − (F >> ℓ)
4. Return (F & X) | (∼ F & Y )

Min (X, Y, ℓ, κ)
1. J ← (10ℓ)κ

2. F ← ((X | J)− Y ) & J
3. F ← F − (F >> ℓ)
4. Return (F & Y ) | (∼ F & X)

Fig. 4. Bit-parallel computation of field-wise maximum and minimum. J is actually
precomputed.

X = 0 000 0 001 0 010
Y = 0 001 0 001 0 001
J = 1 000 1 000 1 000

X | J = 1 000 1 001 1 010
(X | J)− Y = 0 111 1 000 1 001

((X | J)− Y ) & J = 0 000 1 000 1 000 → F
F >> 3 = 0 000 0 001 0 001

F − (F >> 3) = 0 000 0 111 0 111 → F
∼ F = 1 111 1 000 1 000

F & X = 0 000 0 001 0 010
∼ F & Y = 0 001 0 000 0 000

(F & X) | (∼ F & Y ) = 0 001 0 001 0 010 → Max()

Fig. 5. Example of the computation of Max([0][1][2], [1][1][1]) = [1][1][2] with ℓ = 3.

Fig. 6 shows RangeLCTS, the LCTS algorithm for a range of counters τ . . . τ +
κ− 1. We have done some optimizations to the conceptual formulas exposed
above.

Using RangeLCTS, algorithm BitParallelLCTS (also in Fig. 6) traverses all
the c ∈ −σ . . . σ transpositions and computes LCTS(A, B) as the maximum
LCTSc(A, B). For this last maximization, the resulting LCTS is stored in a
bit mask V , whose fields are examined one by one to find the maximum LCSc.

Fig. 7 shows a partial example of the computation of LCTS(2 3, 2 1 2 3),
considering transpositions τ . . . τ + κ− 1 = −1 . . . 1, with ℓ = 3.

It is possible to adapt this algorithm to compute δ-LCTS(A, B), where we
assume that two characters match if their difference does not exceed δ. This
is arranged at no extra cost by considering that there is a match whenever
bj − ai − δ ≤ c ≤ bj − ai + δ. The only change needed in our algorithm is in
lines 6–7 of RangeLCTS, which should become:

low ← max(τ, bj − ai − δ)
high← min(τ + κ− 1, bj − ai + δ)
If low ≤ high Then

E ← 0(τ+κ−1−high)(ℓ+1) 1(high−low+1)(ℓ +1)0(low−τ)(ℓ+1)
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RangeLCTS (A, B, τ, κ, ℓ)
1. For i ∈ 0 . . . |A| Do
2. For j ∈ 0 . . . |B| Do
3. If i = 0 ∨ j = 0 Then LCTSi,j ← 0κ(ℓ+1)

4. Else
5. M ←Max(LCTSi−1,j , LCTSi,j−1, ℓ, κ)
6. If τ ≤ bj − ai < τ + κ Then
7. E ← 0(τ+κ−1−(bj−ai))(ℓ+1) 1(ℓ+1) 0(bj−ai−τ)(ℓ+1)

8. LCTSi,j ← (E & (LCSi−1,j−1 + (0ℓ1)κ)) | (∼ E & M)
9. Else LCTSi,j ←M
10. Return LCTS|A|,|B|

BitParallelLCTS (A, B, σ)
1. ℓ← ⌈log(min(|A|, |B|) + 1)⌉
2. κ← ⌊w/(ℓ + 1)⌋
3. τ ← −σ
4. lcts← 0
5. While τ ≤ σ Do
6. V ← RangeLCTS(A, B, τ, κ, ℓ)
7. For c ∈ τ . . .min(τ + κ− 1, σ − 1) Do
8. lcts← max(lcts, V & 0(κ−1)(ℓ+1)01ℓ)
9. V ← V >> (ℓ + 1)
10. τ ← τ + κ
11. Return lcts

Fig. 6. Computing LCTS(A,B) using bit-parallelism. All constant bit masks are
precomputed.

Analysis. Let us now analyze the algorithm and compare against other al-
ternatives. BitParallelLCTS performs ⌈(2σ+1)/κ⌉ invocations of RangeLCTS
plus a minimization over 2σ + 1 values. In turn, RangeLCTS takes O(|A||B|)
time. Since κ = Θ(w/ logmin(|A|, |B|)), the time complexity of the algorithm
is O(σ|A||B| log(min(|A|, |B|))/w). If |A| = m, |B| = n, m ≤ n, the algorithm
is O(σmn log(m)/w) time, which represents a speedup of Θ(w/ logm) over
the naive O(σmn) time algorithm.

Our complexity is worse than O(mn log log m), obtained in [14]. However, in
practice, an O(mn log m) variant presented in the same paper works better
for moderate m values. Compared to that variant, we pay O(σ/w) more time,
so our algorithm should be better with longer computer words and smaller
alphabets. Hence the comparison depends on the machine (w) and the ap-
plication (σ), as well as on the implementation-dependent constants of each
algorithm. In Section 7 we compare both algorithms for the MIDI application
with σ + 1 = 128 pitch values, showing that our algorithm wins for small

15



b1 b2 b3 b4

2 1 2 3

a1 2 [0][1][0] [0][1][1] [0][1][1] [1][1][1]

a2 3 [0][1][1] [0][1][1] [0][1][2] [1][2][2]

τ = −1, κ = 3, ℓ = 3, A = 2 3, B = 2 1 2 3

E = 0 000 1 111 0 000 (c = b4 − a2 = 0, τ ≤ c < τ + κ)

LCTS1,3 = 0 000 0 001 0 001 (= [0][1][1])

+ 0 001 0 001 0 001 (+(0ℓ1)κ)

= 0 001 0 010 0 010 (= [1][2][2])

&E = 0 000 0 010 0 000 (v1)

M = 0 001 0 001 0 010 (Max(LCTS2,3, LCTS1,4) = [1][1][2]

= Max([0][1][2], [1][1][1]), Fig. 5)

& ∼ E = 0 001 0 000 0 010 (v2)

LCTS2,4 = 0 001 0 010 0 010 (= v1 | v2 = [1][2][2])

Fig. 7. Example of the computation of LCTS(2 3, 2 1 2 3) considering transposi-
tions −1, 0, 1 with ℓ = 3. Bit masks are written [x][y][z] for simplicity, where z
corresponds to transposition −1, y to 0 and x for 1. We focus on the computation
of the last cell.

m ≤ 30. The algorithm [14] can also be extended to compute δ-LCTS(A, B),
but its cost raises to O(δmn log log m), while ours stays the same.

On the other hand, the O(mn/w) bit-parallel algorithm of [4] can be run 2σ+1
times, for each transposition, to compute LCTS(A, B) in O(σmn/w) time. In
this case, our complexity is worse by an O(log m) factor, and our algorithm is
indeed slower for large m ≥ 85, as seen in Section 7. For smaller m, however,
our algorithm is better because the algorithm of [4] performs actually m⌈n/w⌉
steps, which is larger than mn/w. The algorithm [4] can easily be extended
to compute δ-LCTS(A, B) at the same cost.

4.2 Speeding Up the Branch and Bound Algorithm

In Section 3 we have shown how the transposition c yielding the longest
LCSc(A, B) = LCTS(A, B) can be searched for better than by brute force.
We considered mostly a binary partition of the space of possible transposi-
tions, where for each transposition range τ . . . τ ′ we computed an upper bound
LCS [τ,τ ′](A, B) ≥ LCSc(A, B) for any τ ≤ c ≤ τ ′. We also considered the
possibility of a higher arity tree, with the tradeoff of finer-grained ranges but
higher cost to generate them.
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By using bit-parallelism, we can generate a κ-ary tree at the cost of a sin-
gle (bit-parallel) LCTS computation per internal tree node processed. Re-
currence (5) can be converted into a bit-parallel LCTS computation for all
the κ partitions of the current range. That is, if the current tree node corre-
sponds to range τ . . . τ ′, then we can compute LCS [τ,τ+θ−1], LCS [τ+θ,τ+2θ−1],
. . ., LCS [τ+(κ−1)θ,τ ′], where θ = ⌈(τ ′ − τ + 1)/κ⌉, all in one shot. That is,

LCTS
[τ,τ ′]
i,j = 0[LCS

[τ,τ+θ−1]
i,j ]ℓ 0[LCS

[τ+θ,τ+2θ−1]
i,j ]ℓ . . . 0[LCS

[τ+(κ−1)θ,τ ′]
i,j ]ℓ .

Fig. 8 depicts the computation for our previous binary hierarchy example
(Fig. 1). We assume w = 32 and m = 20, so ℓ = κ = 5. That means that
we use a 5-ary tree and that the children of a given node can be computed
by using mn operations instead of 5mn, which represents a speedup of 5 over
BinaryHierarchyLCTS algorithm. This is why, for this instance, we only per-
form 6 O(mn) table computations instead of 24 with BinaryHierarchyLCTS,
26 with BitParallelLCTS, and 101 with the naive algorithm. The algorithm
stops at leaf [−3,−3] with LCS−3(A, B) = 8. Note that all remaining nodes
are valued 8 at most.
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Fig. 8. Example of κ-ary bit-parallel LCTS computation for |A| = |B| = 20, σ = 50,
w = 32, ℓ = 5 and κ = 5. The nodes with a cross were considered during the
computation.

For the bit-parallel computation of LCTS
[τ,τ ′]
i,j , we only need to modify the

definition of E (Eq. (6)) so that it considers to which interval bj − ai belongs.
That is, if τ ≤ bj − ai < τ + θ, then it belongs to the first interval; if τ + θ ≤
bj − ai ≤ τ + 2θ, then it belongs to the second interval; and so on. Hence, we
have to put 1ℓ in E at the r-th field, where r = 1 + ⌊(bj − ai − τ)/θ⌋. This is

E = if τ ≤ bj − ai ≤ τ ′
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then 0(κ−1−⌊(bj−ai−τ)/θ⌋)(ℓ+1) 1(ℓ+1) 0⌊(bj−ai−τ)/θ⌋(ℓ+1)

else 0κ(ℓ+1) .

Fig. 9 gives the pseudocode of the algorithm. T-aryNode computes all the
children of an internal tree node in one shot, and returns them in an LCTS
bit mask. T-aryHierarchyLCTS manages the priority queue of tree nodes and
finishes as soon as the first leaf is extracted.

T-aryNode (A, B, τ, τ ′, κ, ℓ, θ)
1. For i ∈ 0 . . . |A| Do
2. For j ∈ 0 . . . |B| Do
3. If i = 0 ∨ j = 0 Then LCTSi,j ← 0κ(ℓ+1)

4. Else
5. If τ ≤ bj − ai ≤ τ ′ Then
6. E ← 0(κ−1−⌊(bj−ai−τ)/θ⌋)(ℓ+1) 1(ℓ+1) 0⌊(bj−ai−τ)/θ⌋(ℓ+1)

7. Else E ← 0κ(ℓ+1)

8. LCTSi,j ← (E & (LCTSi−1,j−1 + (0ℓ1)κ))
| (∼ E & Max(LCTSi−1,j, LCTSi,j−1, ℓ, κ)

9. Return LCTS|A|,|B|

T-aryHierarchyLCTS (A, B, σ)
1. Init(Q)
2. ℓ← ⌈log(min(|A|, |B|) + 1)⌉
3. κ← ⌊w/(ℓ + 1)⌋
4. [τ, τ ′]← [−σ, σ]
5. While τ 6= τ ′ Do
6. θ ← ⌈(τ ′ − τ + 1)/κ⌉
7. V ← T-aryNode(A, B, τ, τ ′, κ, ℓ, θ)
8. For r ∈ 0 . . . κ− 1 Do
9. v ← V & 0(κ−1)(ℓ+1)01ℓ

10. If r = κ− 1 Then t← τ ′ Else t← τ + (r + 1)θ − 1
11. Insert(Q, ([τ + rθ, t], v))
12. V ← V >> (ℓ + 1)
13. ([τ, τ ′], lcts)← ExtractMax(Q)
14. Return lcts

Fig. 9. Bit-Parallel branch and bound algorithm to compute LCTS(A,B).

Analysis. The analysis of the algorithm closely follows that of Section 3.2.
The tree is κ-ary but we pay O(mn) instead of O(κmn) to process each node.
Our best case turns out to be O((mn + κ log(κ logκ σ)) logκ σ) and our worst
case O((mn + κ log σ)σ/(κ− 1)), where κ = Θ(w/ logm).

This is obviously better than the result of Section 3.2. As shown in Section 7,
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this version is better than the non-bit-parallel approach for small m. However,
at that point, the plain bit-parallel algorithm of Section 4.1 is equally good.

5 Text Searching

Up to now we have considered the computation of the longest common subse-
quence (or its dual, the indel distance) between two sequences. This permits
comparing them as a whole and is useful for some applications. In this section
we focus on the search problem, where we need to point out the substrings
of a long string T1...n (the text) with small distance (at most k) to a short
string P1...m (the pattern). Moreover, the long string has in general h tracks
T 1 . . . T h, and of course we aim at transposition invariant matching. The exact
formulation of the search problem was given in Section 2.

Let us express Recurrence (4) more operationally. Instead of filling a matrix we
will compute one column of it at a time. In order to compute column j we only
need column j−1. Therefore, our first column is Dc

0...m = M c
0...m,0 and then, at

the j-th step of the algorithm, we compute the new column Dc ′
0...m = M c

0...m,j

by using the current column Dc
0...m = M c

0...m,j−1. Then Dc ′ becomes Dc, and
if Dc

m ≤ k for some c, we report an approximate occurrence of P ending at
text position j. Under this notation, Recurrence (4) becomes

Dc ′
i = if Pi + c ∈ {T 1

j . . . T h
j } then Dc

i−1 else 1 + min(Dc ′
i−1, D

c
i ), (7)

where always Dc
0 = Dc ′

0 = 0, and we report every text position j such that
minc∈−σ...σ Dc ′

m ≤ k.

We note that the branch and bound mechanisms developed in Sections 3
and 4.2 cannot be efficiently applied to this scenario. The reason is that
Recurrence (4) manages to compute the smallest indel distance between P
and Tj′...j , simultaneously for every j′ (in this paragraph we consider a sin-
gle text for simplicity). That is, M c

i,j = minj′≤j Dc
ID(P1...i, Tj′...j). If we are

interested in error threshold k, then the relevant j′ values are in the range
j − m − k + 1 . . . j − m + k + 1. The branch and bound mechanism, which
can only compute indel distance between two strings, would need to perform
2k+1 computations per text position, namely Dc

ID(P, Tj′...j) for j−m−k+1 ≤
j′ ≤ j −m + k + 1, in order to find minc∈−σ...σ M c

m,j . This would render it not
competitive. Note that the computations performed for position j − 1 do not
necessarily serve to compute for position j, since the backtracking can go by
different branches and need different c ranges than those computed for j − 1.

On the other hand, the bit-parallel technique we developed in Section 4.1
can be efficiently extended to text searching. We analyze in the sequel the
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necessary changes to bit-parallelize Eq. (7) instead of Eq. (3).

First, polyphony, that is, the fact that there are h text tracks T 1 . . . T h, is dealt
with by extending the definition of mask E (Eq. (6)) such that it contains 1ℓ+1

in every field corresponding to any transposition in the set {T g
j −Pi, 1 ≤ g ≤

h}. To be precise, let us call E(bj − ai) the definition of Eq. (6). Then, our E
mask is defined as

E = E(T 1
j − Pi) | E(T 2

j − Pi) | . . . | E(T h
j − Pi) .

Second, we observe that min() is used instead of the max() of Eq. (3), and
that the “+1” is at a different place. Both changes are easily addressed.

Additionally, we note that, when a Dc
i value is larger than k, all we need to

know is that it is larger than k, so we store k + 1 for those values in order to
represent smaller numbers. Once we achieve this, the number of bits needed
by a Dc

i cell is reduced to ℓ = ⌈log(k + 2)⌉ and our bit-parallel speedup will
increase.

Enforcing the k +1 limit is only necessary when we add 1 in the “else” clause
of Recurrence (7). Since Dc ′

i−1 or Dc
i can already by k + 1, adding 1 to them

overflows to k + 2. A simple solution is to rewrite the minimization of the
“else” clause to 1 + min(Dc ′

i−1, D
c
i , k), which ensures that overflows cannot

occur.

To summarize, if we let DTi be the bit-parallel version of Dc
i , that is

DTi = 0[Dτ+κ−1
i ]ℓ 0[Dτ+κ−2

i ] . . . 0[Dτ+1
i ]ℓ 0[Dτ

i ]ℓ ,

then the recurrence for DTi is as follows:

DT ′
i = (E & DTi−1)

| (∼ E & ((0ℓ1)κ + Min(Min(DT ′
i−1, DTi), (0[k]ℓ)

κ))) ,

and we report the current text position whenever DT ′
m 6= (0[k + 1]ℓ)

κ, that is,
when some cell at row m is not k + 1 (hence it is smaller than k + 1).

Fig. 10 shows RangeIDSearch, which searches for a range of transpositions
that fit in a computer word. The general algorithm, IDSearch, simply applies
the former procedure to successive ranges. Note that we do not use two arrays
DT and DT ′, but rather overwrite a single array DT , managing to maintain
the previous DTi−1 value in oldD and the new DTi value in newD. Observe
also the initialization of DT , where we set Dc

i = i for 0 ≤ i ≤ k and Dc
i = k+1

otherwise.

Analysis. The algorithm is O(hσmn log(k)/w) time, which represents a speedup
of O(w/ log k) over the classical solution. Note that we could use ℓ = ⌈log(m+
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RangeIDSearch (P, T 1 . . . T h, k, τ, κ, ℓ)
1. K ← (0[k]ℓ)

κ

2. For i ∈ 0 . . . k Do DTi ← (0[i]ℓ)
κ

3. For i ∈ k + 1 . . . |P | Do DTi ← (0[k + 1]ℓ)
κ

4. For j ∈ 1 . . . |T | Do
5. oldD ← 0κ(ℓ+1)

6. For i ∈ 1 . . . |P | Do
7. E ← 0κ(ℓ+1)

8. For g ∈ 1 . . . h Do
9. If τ ≤ T g

j − Pi < τ + κ Then

10. E ← E | 0(τ+κ−1−(T g

j
−Pi))(ℓ+1) 1(ℓ+1) 0((T g

j
−Pi)−τ)(ℓ+1)

11. newD ← (E & oldD)
| (∼ E & ((0ℓ1)κ + Min(Min(DTi−1, DTi, ℓ, κ), K, ℓ, κ)))

12. oldD ← DTi, DTi ← newD
13. If newD 6= (0[k + 1]ℓ)

κ Then Report an occurrence ending at j

IDSearch (P, T 1 . . . T h, k, σ)
1. ℓ← ⌈log(k + 2)⌉
2. κ← ⌊w/(ℓ + 1)⌋
3. τ ← −σ
4. While τ ≤ σ Do
5. RangeIDSearch(P, T 1 . . . T h, k, τ, κ, ℓ)
6. τ ← τ + κ

Fig. 10. Searching polyphonic text with indel distance allowing any transposition.
Constant bit masks are precomputed.

1)⌉, thus removing the possibility of overflows in cell values. This reduces the
degree of parallelization in exchange of removing one application of Min in
line 11 of RangeIDSearch.

On the other hand, the algorithms of [14] and [4] can be easily extended to
deal with polyphonic text searching, at O(hmn log log m) and O(hσmn/w)
cost, respectively. Therefore, the complexity comparisons done at the end of
Section 4.1, both in theory and in practice, hold for text searching too.

6 More General Distance Functions

The distinguishing feature of our approach, compared to other bit-parallel
algorithms used for transposition invariant string matching, is that they ap-
ply bit-parallelism along a different dimension of the cube in Fig. 3. Ours is
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the only algorithm that packs different transpositions in the bit masks and
computes the cells one by one. This gives us extra flexibility, because we can
handle complex recurrences among cells as long as we can do several similar
operations in parallel, without any dependence between the values computed
in the same computer word.

As explained in the Introduction, a weighted edit distance where the cost to
convert a note into another is proportional to the absolute difference among
the notes is of interest in music retrieval. In this section we demonstrate the
flexibility of our approach by addressing the computation of the weighted edit
distance detailed in Eq. (1). The only alternative algorithm for this task [1]
yields O(mnλ log(λ)/w) time.

What follows is the search version for a given transposition c in polyphonic
text, bounded by k + 1 as we did in Section 5.

Dc ′
i = min( min

g∈1...h
|Pi + c− T g

j |+ Dc
i−1, λ + Dc ′

i−1, λ + Dc
i , k + 1). (8)

The main challenge is to compute |Pi + c − T g
j | in bit-parallel for a set of

consecutive c values. For a sequence of transpositions c = −σ, −σ+1, . . ., the
values |Pi+c−T g

j | form a decreasing sequence that reaches zero at c = T g
j −Pi.

Thereafter the values start to increase (see Fig. 11). When the transposition
range −σ . . . σ is split into consecutive ranges τ . . . τ +κ−1, depending on the
range, the values |Pi + c − T g

j | form a decreasing, increasing, or decreasing-
then-increasing sequence.

d
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d
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d
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d
p-1

d
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d
p+3

d
p+4

0
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Fig. 11. The values for successive transpositions first decrease (until c = p = T g
j −Pi),

then increase.

For brevity, we will use [x] to denote 0[x]ℓ in this discussion. An increasing
sequence of the form It = [t + κ − 1] . . . [t + 1] [t], t ≥ 0, is obtained simply
as It = (0ℓ1)κ−1[t] × (0ℓ1)κ. To see this, view the multiplication as operating
two numbers written in base 2ℓ+1, hence each field is a digit. If Z = X × Y ,
where X = [xκ] . . . [x1], Y = [yκ] . . . [y1], and Z = [zκ] . . . [z1], then zr =
∑r

s=1 xs · yr−s+1. In our case, x1 = t, and all others xi and yj are 1. Thus
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zr = t + r − 1 as desired. We could even accommodate substitution costs of
the form |ai − bj |/q for integer q by multiplying by (0q(ℓ+1)−11)κ instead of
(0ℓ1)κ.

A decreasing sequence Dt = [t − κ + 1] . . . [t − 1] [t] is obtained simply as
Dt = [t]κ − I0, as its r-th field will have value t− r + 1. Finally, a decreasing-
then-increasing sequence DIt = [κ−t−1] [κ−t−2] . . . [2] [1] [0] [1] . . . [t−1] [t]
is obtained as DIt = (I0 << t(ℓ+1)) | (Dκ >> (κ−t)(ℓ+1)), by concatenating
an increasing and a decreasing sequence.

A secondary challenge we face is to ensure that we never surpass k+1 in the Di

values. This is more difficult than in Section 5 since the increments are not only
by 1. We choose to compute the full values and then take the minimum with
k+1, as suggested by Recurrence (8). However the intermediate values can be
larger. We obviously may assume that λ ≤ k, thus the terms corresponding
to insertion and deletion are bounded by 2k + 1. We will also keep the first
term of Recurrence (8) below 2k + 2. Thus we will need ⌈log(2k + 3)⌉ bits for
our counters.

For the latter purpose, we need to ensure that our increasing and/or decreasing
sequences are bounded by k+1. A version of It where all the values are bounded
by r is obtained as Ir

t = (It & 0(κ−(r−t))(ℓ+1)1(r−t)(ℓ+1)) | ([r]κ−(r−t)0(r−t)(ℓ+1)).
Decreasing sequences are similarly bounded to Dr

t . The bounded version of
DI is obtained by using Ir and Dr instead of I and D. Fig. 12 gives the code
to build these sequences.

Fig. 13 shows the search algorithm using this general distance function. Most
of the comments made for the algorithm of Fig. 10 apply. The main change,
apart of course of the initialization in lines 3–4 and the recurrence in line 16,
is the form to compute E. Each character T g

j produces a sequence (increasing,
decreasing, or decreasing-then-increasing). In E we take the pointwise minima
over those sequences.

Analysis. It is clear that the algorithm runs in O(hσmn log(k)/w) time. The
competing algorithm [1] can be adapted to run in O(hσmnλ log(λ)/w) time
for this problem. Our complexity is better whenever log k = O(λ logλ), which
is the case in practice for short strings.

7 Experiments

We concentrate our experimental study on all the known LCTS variants. Four
sets of experiments were carried out. The first experiment aims at determining
the best branching factor for our hierarchical algorithm of Section 3. Once this
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I (t, r, κ, ℓ)
1. If r ≤ t Then Return (0[r]ℓ)

κ

2. It ← ((0ℓ1)κ−1 0[t]ℓ)× (0ℓ1)κ

3. Return (It & 0(κ−(r−t))(ℓ+1)1(r−t)(ℓ+1)) | (0[r]ℓ+1)
κ−(r−t)0(r−t)(ℓ+1)

D (t, r, κ, ℓ)
1. If r ≥ t Then r ← t
2. Dr ← (0[r]ℓ)

κ − (0ℓ1)κ−10ℓ+1 × (0ℓ1)κ

3. Return (Dr << (t− r)(ℓ + 1)) | 0(κ−(t−r))(ℓ+1)(0[r]ℓ)
(t−r)(ℓ+1)

DI (t, r, κ, ℓ)
1. I ← I(0, r, κ− 1, ℓ)
2. D ← D(κ, r, κ, ℓ)
3. Return (I << t(ℓ + 1)) | (D >> (κ− t)(ℓ + 1))

Fig. 12. Bit-parallel codes for increasing, decreasing, and decreasing-increasing se-
quences. Constant masks are precomputed. We also precompute all masks that
depend on r, since in the main algorithm r = k + 1 always holds.

is determined, our second experiment compares classical algorithms, that is,
those algorithms that do not make use of bit-parallelism. The third experiment
shows how the different bit-parallel algorithms perform in practice. In the final
experiment we seek to determine the best algorithm overall, both for LCTS
computation and for text searching.

The alphabet used was ASCII of size 128, to emulate the MIDI format. Strings
of length 20–2500 were randomly generated (we assume n = m for all cases), to
account for different cases of interest in music retrieval. Each experiment was
repeated 100 times and the median is reported in order to reduce estimator
variance. All experiments were conducted on a 900 MHz Pentium machine
with 256MB of RAM and w = 32 bits. All codes were compiled at the highest
optimization level.

We compare eight different algorithms, which are summarized in Table 1. The
SDP and YBP code were obtained directly from the authors, while all other
codes are our own implementations.

7.1 Classical Algorithms

The first experiment was to try different arities for TBB (see Table 1). As
it can be seen in Fig. 14, arities 3 and 4 usually give the best performance,
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RangeEDSearch (P, T 1 . . . T h, k, τ, κ, ℓ)
1. Kp1← (0[k + 1]ℓ)

κ

2. L← (0[λ]ℓ)
κ

3. For i ∈ 0 . . . ⌊k/λ⌋ Do Di ← (0[i · λ]ℓ)
κ

4. For i ∈ ⌊k/λ⌋+ 1 . . . |P | Do Di ← Kp1
5. For j ∈ 1 . . . |T | Do
6. oldD ← 0
7. For i ∈ 1 . . . |P | Do
8. E ← Kp1
9. For g ∈ 1 . . . h Do
10. If T g

j − Pi ≤ τ Then // Increasing sequence
11. E ′ ← I(τ − (T g

j − Pi), k + 1, κ, ℓ)
12. Else If T g

j − Pi ≥ τ + κ Then // Decreasing sequence
13. E ′ ← D((T g

j − Pi)− τ, k + 1, κ, ℓ)
14. Else E ′ ← DI((T g

j − Pi)− τ, k + 1, κ, ℓ)
15. E ← Min(E, E ′, ℓ, κ)
16. newD ←Min(Min(E + oldD, Min(Di−1, Di, ℓ, κ) + L, ℓ, κ),

Kp1, ℓ, κ)
17. oldD ← Di, Di ← newD
18. If newD 6= Kp1 Then Report an occurrence ending at j

EDSearch (P, T 1 . . . T h, k, σ)
1. ℓ← ⌈log(2k + 3)⌉
2. κ← ⌊w/(ℓ + 1)⌋
3. c← −σ
4. While c ≤ σ Do
5. RangeEDSearch(P, T 1 . . . T h, k, c, κ, ℓ)
6. c← c + κ

Fig. 13. Searching polyphonic text with weighted edit distance allowing any trans-
position. Constant masks are precomputed.

arity 3 being never much worse than the optimum. So for the rest of the
experiments we use 3BB as the representative of the TBB family. We note
that this conclusion probably depends on the type of text considered, so it
could change for non-random text.

We observed that, in general, performance measures for hierarchical algorithms
suffer from considerable variance. To get reliable results we took the measure-
ment for 100 different inputs and used the median rather than the mean.

The experiment comparing different classical algorithms to compute LCTS
was run for codes 1–4 (see Table 1). The results are shown in Fig. 15-A. For
small sizes the best algorithm is SPD, but for larger sizes (more than 150) our
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No. Algorithm Category Search? ShortName Source

1 Classical Dynamic Programming Classical Yes CDP [13]
2 Sparse Dynamic Programming Classical Yes SDP [14]
3 Binary Branch and Bound Classical No BBB Sec 3.1
4 T-ary Branch and Bound Classical No TBB Sec 3.2

5 Bit-Parallel in Y-Dimension Bit-Parallel Yes YBP [4]
6 Bit-Parallel in Z-Dimension Bit-Parallel Yes ZBP Sec 4.1
7 3+5 Bit-Parallel No BBBYBP Sec 3+[4]
8 4+6 Bit-Parallel No TBBZBP Sec 4.2

Table 1
Summary of the codes used for the experiments.

0

200

400

600

500 1000 1500 2000 2500

n

time
(ms)

3BB 
4BB 
5BB 
8BB 

10BB 
12BB 
14BB 
16BB 

Fig. 14. Finding best arity for TBB.

hierarchical algorithms BBB (binary hierarchy) and 3BB (ternary hierarchy)
were faster.

This coincides with the algorithm complexities. SPD is O(mn log m) time,
while BBB and TBB are O(mnf(σ)). Therefore SPD suffers more than our
algorithms from an increase in m. On the other hand, for larger alphabets,
SPD should beat BBB/TBB for larger m values, and vice versa for smaller
alphabets. In these experiments we have considered only the MIDI application
where σ = 128.

Note also that the cost of all branch and bound algorithms actually decreases
up to length 200 and then starts to grow again (actually BBB/3BB is worse
than CDP up to length 100). This is because the number of tree nodes pro-
cessed decreases as the string lengths grow. The reason is that the LCS of
longer strings gives finer grained information and hence permits finding the
right transposition faster. For long enough strings, of course, the O(mn) cost
to compute each tree node takes over.
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Fig. 15. Comparison of LCTS algorithms. Left hand side graphs are for small
(20–100, plot inside the graph) and large (500–2500) lengths. Right hand size graphs
are for intermediate (100–500) lengths.

7.2 Bit-Parallel Algorithms

Our next experiment studies the effects that bit-parallelism has over classical
algorithms. We consider two types of bit-parallel algorithms: without hierarchy
(codes 5 and 6 in Table 1) and with hierarchy (codes 7 and 8 in Table 1).
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For the former, we compared YBP and ZBP. YBP uses the bit-parallel al-
gorithm by Crochemore et al. [4] to compute each possible LCSc value in
isolation. ZBP uses bit-parallelism to compute several LCSc values together.
Fig. 15-B shows that ZBP is faster for string sizes smaller than 80, but slower
for longer strings. This is because, the bigger the input, the more bits are
needed to store each cell value, and therefore more words are required by
ZBP. In complexity terms, The YBP approach is O(σmn/w) time while ZBP
is O(σmn log(m)/w), hence it worsens faster with m.

The other two bit-parallel algorithms we implemented were BBBYBP and TB-
BZBP. In BBBYBP(TBBZBP) we use YBP(ZBP) instead of CDP to compute
each node in BBB(TBB). As can be seen in Fig. 15-B, BBBYBP is never rel-
evant. This is probably because we cannot precompute the match table for
LCSX(A, B) as efficiently as that for LCSc(A, B), so BBBYBP is never bet-
ter than YBP. TBBZBP, on the other hand, is much better than ZBP for long
strings, and it is clearly the fastest choice up to length 600 or so. At that point
its O(logm) extra cost compared to YBP becomes noticeable and YBP wins.

7.3 Overall Comparison

Fig. 15-C shows how all algorithms compare to each other. It can be seen
that ZBP is the fastest for short sequences (length up to 30), where its bit-
parallelism is highest. From moderate length strings (length from 30 to 120),
SDP is clearly the best choice. For longer strings (length from 120 to 230),
TBBZBP dominates. Finally, for large strings (longer than 230), BBB/3BB
is the fastest, closely followed by YBP. All those length ranges turn out to be
relevant for different problems in music-related applications.

These results also permit figuring out what text search costs would be. If we
exclude hierarchical schemes, we have that ZBP is the best to search for short
patterns (m ≤ 30), SDP for medium-length patterns (m ≤ 160), and YBP for
long patterns (m > 160). For small k, ZBP can be adapted as in Section 5 to
have a speedup of O(w/ logk) instead of O(w/ logm). However, in practice,
the resulting code is more complex, so it is not clear how advantageous that
would be. Algorithms SDP and YBP, on the other hand, do not benefit at all
from a lower k value.

Other factors that would affect the performance are the length w of the com-
puter word and the alphabet size σ. On a w = 64 bit machine, ZBP, TBBZBP
and YBP performances would double, although for YBP this would be notice-
able only for m > 32. On the other hand, an increase in σ (for a different ap-
plication) proportionally affects ZBP and YBP performance, while BBB/3BB
costs are expected to grow slower, and SDP remains essentially unaffected.
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8 Conclusions

In this paper we have focused on string matching problems that have appli-
cations in music comparison and retrieval. Three specific features typical to
music retrieval, not taken into account in conventional string pattern match-
ing, are (a) approximate searching permitting missing, extra, and distorted
notes, (b) transposition invariance to allow matching a sequence that appears
in a different scale, and (c) handling polyphonic music.

We have introduced two classes of algorithms to cope with this problem. The
first one uses branch and bound over the set of possible transpositions in order
to find the optimal one without trying them all. The second family uses bit-
parallelism to compare strings under several different transpositions in one
shot. The ideas can also be combined to obtain other new algorithms.

We have shown experimentally that our algorithms are competitive with the
best existing choices. In particular, our bit-parallel algorithm turns out to be
the fastest to handle short strings (of length up to 30), which covers many
interesting cases of music comparison, and especially, searching for music pas-
sages over long music files. Our branch and bound algorithms, on the other
hand, turn out to be the best to compare long strings (longer than 120), which
covers other cases of music comparison, especially those related to global com-
parison of musical pieces.

References

[1] A. Bergeron and S. Hamel. Vector algorithms for approximate string matching.
International Journal of Foundations of Computer Science, 13(1):53–65, 2002.

[2] E. Cambouropoulos. A general pitch interval representation: Theory and
applications. Journal of New Music Research, 25:231–251, 1996.

[3] M. Crochemore, C. S. Iliopoulos, G. Navarro, and Y. Pinzon. A bit-parallel
suffix automaton approach for (δ, γ)-matching in music retrieval. In Proc.
10th International Symposium on String Processing and Information Retrieval
(SPIRE’03), volume 2857 of Lecture Notes in Computer Sience, pages 211–223.
Springer-Verlag, 2003.

[4] M. Crochemore, C.S. Iliopoulos, Y.J. Pinzon, and J.F. Reid. A fast and
practical bit-vector algorithm for the longest common subsequence problem.
Information Processing Letters, 80(6):279–285, 2001.

[5] M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press,
1994.

29



[6] D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science
and Computational Biology. Cambridge University Press, 1997.

[7] G. Hjaltason and H. Samet. Distance browsing in spatial databases. ACM
Transactions on Database Systems, 24(2):265–318, 1999.
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[14] V. Mäkinen, G. Navarro, and E. Ukkonen. Algorithms for transposition
invariant string matching. In Proc. 20th Int’l Symp. on Theoretical Aspects
of Computer Science (STACS’03), volume 2607 of Lecture Notes in Computer
Science, pages 191–202, 2003.

[15] MIDI Manufacturers Association, Los Angeles, California. The Complete
Detailed MIDI 1.0 Specification, 1996.

[16] G. Myers. A fast bit-vector algorithm for approximate string matching based
on dynamic programming. Journal of the ACM, 46(3):395–415, 1999.

[17] E. Ukkonen, K. Lemström, and V. Mäkinen. Sweepline the music! In Computer
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