
Pra
ti
al and Flexible Pattern Mat
hingover Ziv-Lempel Compressed Text �Gonzalo Navarroy Mathieu RaÆnotzAbstra
tWe address the problem of string mat
hing on Ziv-Lempel
ompressed text. The goal is to sear
ha pattern in a text without un
ompressing it. This is a highly relevant issue to keep
ompressed textdatabases where eÆ
ient sear
hing is still possible. We develop a general te
hnique for string mat
hingwhen the text
omes as a sequen
e of blo
ks. This abstra
ts the essential features of Ziv-Lempel
om-pression. We then apply the s
heme to ea
h parti
ular type of
ompression. We present an algorithmto �nd all the mat
hes of a pattern in a text
ompressed using LZ77. When we apply our s
heme toLZ78, we obtain a mu
h more eÆ
ient sear
h algorithm, whi
h is faster than un
ompressing the text andthen sear
hing on it. Finally, we propose a new hybrid
ompression s
heme whi
h is between LZ77 andLZ78, being in pra
ti
e as good to
ompress as LZ77 and as fast to sear
h in as LZ78. We show alsohow to sear
h some extended patterns on Ziv-Lempel
ompressed text, su
h as
lasses of
hara
ters andapproximate string mat
hing.1 Introdu
tionString mat
hing is one of the most pervasive problems in
omputer s
ien
e, with appli
ations in virtuallyevery area. It is also one of the oldest and ri
hest area of development. The string mat
hing problem is:given a pattern P = p1:::pm and a text T = t1:::tu, both sequen
es of symbols over a �nite alphabet � of size�, �nd all the o

urren
es of P in T . There are many algorithms to solve this problem, from
lassi
al to veryre
ent [20, 9, 4, 14, 33, 10, 29℄. The
omplexity of this problem is O(u) in the worst
ase and O(u log(m)=m)on average, where u = jT j and m = jP j, and there exist variants of [9, 10℄ whi
h a
hieve this
omplexity. Inpra
ti
e, however, [33, 29℄ are the fastest algorithms in most
ases.Another old and ri
h area in
omputer s
ien
e is text
ompression. Its aim is to exploit the redundan
iesof the text to redu
e its spa
e usage. There are many di�erent
ompression s
hemes [6℄, among whi
h theZiv-Lempel family [38, 39℄ is one of the most
ommonly used in pra
ti
e be
ause of their good
ompressionratios (that is, the size of the
ompressed �le as a per
entage of that of the un
ompressed �le)
ombinedwith eÆ
ient
ompression and de
ompression times. Other
ompression s
hemes are Hu�man
oding [15℄and arithmeti

oding [35℄, among others.Today's textual databases are an ex
ellent example of appli
ations where both problems are
ru
ial:the texts should be kept
ompressed to save spa
e and I/O time, and they should be eÆ
iently sear
hed.Surprisingly, these two
ombined requirements are not easy to a
hieve together, as the only solution beforethe 90's was to pro
ess queries by un
ompressing the texts and then sear
hing into them.The
ompressed mat
hing problem was �rst de�ned by Amir and Benson [1℄ as the task of performingstring mat
hing in a
ompressed text without de
ompressing it. Given a text T , a
orresponding
ompressedstring Z = z1 : : : zn, and a pattern P , the
ompressed mat
hing problem
onsists in �nding all o

urren
esof P in T , using only P and Z. A naive algorithm, whi
h �rst de
ompresses the string Z and then performsstandard string mat
hing, takes time O(u + m). An optimal algorithm takes worst-
ase time O(n + m),where n = jZj. In [2℄, a new
riterion,
alled extra spa
e, for evaluating
ompressed mat
hing algorithms,�Partially supported by ECOS/Coni
yt Proje
t C99E04.yDept. of Computer S
ien
e, University of Chile. Blan
o En
alada 2120, Santiago, Chile. gnavarro�d

.u
hile.
l.Partially supported by Fonde
yt grant 1-020831.zEquipe G�enome et Informatique, Tour Evry 2, 523, pla
e des terrasses de l'Agora, 91034 Evry, Fran
e.raffinot�genopole.
nrs.fr. 1

was introdu
ed. A

ording to the extra spa
e
riterion, algorithms should use at most O(n) extra spa
e,optimally O(m) in addition to the n-length
ompressed �le.We de�ne now a variation where we are required to report all the mat
hing positions. That is, given Pand Z, report all the jxj su
h that T = xPy. The optimal algorithm for this problem takes O(m + n + R)time, where R is the number of mat
hes.Two di�erent approa
hes have emerged in the last years to
ombine
ompression and sear
hing in textualdatabases. A �rst one is strongly oriented to natural language texts, whi
h are assumed to be
omposed ofwords whi
h follow some statisti
al rules. The basi
 idea is to
ompress the text using Hu�man, where thewords instead of the
hara
ters are taken as the symbols [8, 25℄. As Hu�man assigns a �xed
ode to ea
hsymbol, sear
hing a given string is a matter of
ompressing it and sear
hing it in the
ompressed text usinga
lassi
al string mat
hing algorithm with minor modi�
ations [27, 26℄. Despite its simpli
ity, this approa
his very e�e
tive on natural language text, with better
ompression ratios than those of the Ziv-Lempelfamily, and sear
h time whi
h is between 2 and 8 times faster than the fastest algorithms for standard stringmat
hing over the un
ompressed text. They are also able to sear
h for
omplex patterns (su
h as regularexpressions) and allow errors in the mat
hes, provided that words are mat
hed against words. The averagesear
h time for a simple pattern is
lose to O(m + n log(u=n)=(u=n)). The extra spa
e is O(pu), whi
h isthe same spa
e ne
essary to de
ompress the text. A weakness of this s
heme is that it does not work wellon small texts (say, less than 10 Mb), sin
e in that
ase the vo
abulary is almost as big as the text itself.Also, it
an be applied only to natural language texts.Another pra
ti
al approa
h is an ad-ho
 te
hnique [21℄, whi
h however obtains
ompression ratios ofnear 70% (against 30% to 40% of Ziv-Lempel algorithms) and relies on the ASCII en
oding. A more elegantgeneralization [32℄ is based on byte-pair en
oding and a
hieves similar sear
h times and
ompression ratios
lose to those of
lassi
al Hu�man.The se
ond line of resear
h
onsiders Ziv-Lempel
ompression, whi
h is based on �nding repetitions inthe text and repla
ing them with referen
es to similar strings previously appeared. LZ77 is able to referen
eany substring of the text already pro
essed, while LZ78 referen
es only a single previous referen
e plus anew letter that is added. In both
ases, the referen
ed text to be found is normally limited by a windowwhi
h pre
edes the
urrent text position.String mat
hing in Ziv-Lempel
ompressed texts is mu
h more
omplex, sin
e the pattern
an appear indi�erent forms a
ross the
ompressed text. In [2℄ a
ompressed mat
hing algorithm for LZ78 is presented,whi
h works in time and spa
e O(m2+n). For LZ77, the only result is [12℄, whi
h is a randomized algorithmto determine in time O(m + n log2(u=n)) whether a pattern is present or not in an LZ77-
ompressed text,but they do not �nd all the pattern o

urren
es. More pra
ti
al approa
hes to this problem have appearedin [30, 19℄ based on bit-parallelism and in [31℄ based on Boyer-Moore.On the other hand, little has been done for sear
hing
exible patterns on
ompressed text. Very re
ently,two solutions for approximate pattern mat
hing have been proposed [16, 23℄, although their main value istheoreti
al. Simpler
apabilities, su
h as permitting
lasses of
hara
ters and allowing repla
ements, havenot yet re
eived mu
h attention.In this paper, an extended version of [30℄, we aim at eÆ
ient algorithms for
exible string mat
hing on Ziv-Lempel
ompressed texts. We present new theoreti
al developments but also give pra
ti
al implementationsand experiments on our algorithms.Our approa
h is pra
ti
al and relies on bit-parallelism. Bit-parallelism [3, 36℄ is a general te
hnique totake advantage of the fa
t that the
omputer operates in parallel over all the bits of the ma
hine word, sothat if a pro
ess is so simple that it
an be expressed with bit operations we
an perform many of thosesteps in a single operation of the pro
essor. If we
all w the length in bits of the ma
hine word (typi
ally 32or 64), then the possible speedups are up to O(w).Our main results are:� We develop a general te
hnique for string mat
hing on a text whi
h is given as a sequen
e of blo
ks.This abstra
ts the essential features of Ziv-Lempel
ompressed texts and is the basis for the algorithms2

whi
h run over spe
i�
 members of the family.� We apply the te
hnique to the LZ78
ompression s
heme. The result is an algorithm whi
h turns outto be a pra
ti
al implementation of the theoreti
al proposal of [2℄. This algorithm is O(ndm=we+R)time in the worst and average
ase (O(n + R) on short patterns), and is in pra
ti
e twi
e as fast asde
ompressing and sear
hing.� We apply our te
hnique to LZ77-
ompressed texts. The result is an algorithm to sear
h under this
ompression s
heme (re
all that [12℄
annot �nd all the o

urren
es of the pattern). The algorithm,however, is O(u) time at best. In pra
ti
e, the algorithm is slower than un
ompressing the text andsear
hing it with a
lassi
al algorithm.� We propose LZ-Blo
ks, a hybrid
ompression s
heme whi
h is between LZ77 and LZ78, whi
h keepssome of the good features of LZ77 and whi
h
an be sear
hed in O(min(u; n logm) + ndm=we + R)time on average (and O(min(u;mn) + ndm=we+ R) in the worst
ase). In pra
ti
e, the
ompressioneÆ
ien
y is similar to LZ77 and the sear
h time is similar to LZ78.� We show how to sear
h some extended patterns in a sequen
e of blo
ks, su
h as how to allow
lassesof
hara
ters or approximate string mat
hing, the last one being an open problem advo
ated in [2℄.In all
ases our prepro
essing
ost is O((� +m)dm=we) and our extra spa
e is O(ndm=we + R), almostthe same ne
essary to de
ompress the text.2 String Mat
hing on Blo
ksWe des
ribe now a general te
hnique for string mat
hing when the text is presented as a sequen
e of atomi
strings (here
alled \blo
ks") instead of a sequen
e of
hara
ters. This te
hnique is the basis for all thedi�erent sear
hing algorithms on Ziv-Lempel
ompressed text, whi
h are des
ribed in the next se
tions. Tosimplify the notation, we number pattern positions starting at zero.Our general assumption is that the blo
ks either have just one letter (that we
an a

ess dire
tly) orare formed by a
on
atenation of previously seen blo
ks. We des
ribe an online algorithm where we pro
essthe text blo
k by blo
k. At any moment of the sear
h we denote T 0 the text already pro
essed (of jT 0j
hara
ters). When we �nish the sear
h, T 0 = T , i.e. the original text.The method works as follows. We pro
ess the blo
ks one by one. For ea
h new blo
k B, we
ompute ades
ription for B whi
h has all the information of the blo
k whi
h is relevant for the sear
h. This des
riptionis denoted D(B) = (L;O; S; P;M), where� L = jBj, that is, the length of B in
hara
ters;� O = O�s(B) = the length in
hara
ters of the text we had pro
essed when B appeared;� S = Su�(B) = all the pattern positions whi
h either start a
omplete o

urren
e of B inside thepattern, or start a proper pattern suÆx whi
h mat
hes with a pre�x of B. Formally,Su�(B) = fjxj; 9y; P = xByg [fjxj; 9y; z; jxj > 0 ^ jzj > 0 ^ P = xz ^ B = zyg ;� P = Pref(B) = all the pattern positions whi
h either follow a
omplete o

urren
e of B inside thepattern, or follow a proper pattern pre�x whi
h mat
hes with a suÆx of B. Formally,Pref(B) = fjxBj; 9y; P = xBy ^ jyj > 0g [fjzj; 9y; z; jzj > 0 ^ jyj > 0 ^ P = zy ^ B = xz g ;3

� M = Mat
hes(B) = all the blo
k positions where the pattern o

urs (; if jBj < jP j). Formally,Mat
hes(B) = fjxj; 9y; B = xPyg :Figure 1 illustrates these
on
epts.
������
������
������

������
������
������

�������������������
�������������������
�������������������
�������������������

��������������������������������������
�������������������
�������������������
�������������������
�������������������

��������������������
��������������������
��������������������
��������������������

�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������

S

P ������
������
������

������
������
������

����
����
����
��������

����
����
���������

�����
�����
�������������

����
����
����
��������

����
����
��������

����
����
����

S S S S

P PFigure 1: Pre�xes (P) and suÆxes (S) for a long and a short blo
k. The pattern has the diagonal tilingand the possible blo
ks have a bar tiling. The suÆxes (dotted lines) and pre�xes (dashed lines) are patternpositions. Pre�xes are marked after the position where they �nish, suÆxes are marked at the position theystart.The des
ription D(B) of a new blo
k B is obtained in two forms: (a) the blo
k is an expli
it letter andthen we obtain the des
ription dire
tly, or (b) the blo
k is a
on
atenation of other blo
ks previously known,and we obtain its des
ription by operating on the des
riptions of the previous blo
ks.On
e the des
ription of the new blo
k is
omputed, we use that des
ription to update the state of thesear
h. This
on
ludes the pro
essing of the blo
k and we move to the next one. The state of the sear
h
ontains the mat
hes that have already o

urred and the potential mat
hes in progress, that is,� Res(T 0) = the text positions that mat
hed up to now, formallyRes(T 0) = fjxj; 9y; T 0 = xPyg ;� A
tive(T 0) = the set of positions following the pattern pre�xes whi
h mat
h a suÆx of the
urrenttext. Formally, A
tive(T 0) = fjxj; 9y; z jxj > 0 ^ jyj > 0 ^ P = xy ^ T 0 = zxg :Hen
e, when we
omplete the text pro
essing and T 0 is not a text pre�x anymore but the whole text,Res(T) is our answer. The initial state of the sear
h is T 0 = �, and Res(�) = A
tive(�) = ;.We have de�ned already the information we keep, and
onsider now how to
ompute that information.For the formulas that follow, we de�ne some auxiliary fun
tions, namely� Lefti(X) = fx� i; x 2 Xg [fm� i;m� i+1; : : : ;m� 1g, whi
h re
eives a set of Su�() positionsnot smaller than i, subtra
ts i to all them and then adds new pattern positions �lling the hole left bythe shift.� Righti(X) = fx+ i; x 2 Xg [f1; 2; : : : ; ig, whi
h does the same for Pref() positions, in the otherdire
tion.� Addi(X) = fi+ x; x 2 Xg, whi
h adds i to all the elements of the set.� Subtri(X) = fi� x; x 2 Xg, whi
h subtra
ts all the elements of the set from i.4

2.1 Des
ription of a LetterThe base
ase of our s
heme is to obtain the des
ription of a blo
k whi
h is a letter a. The following isobtained by dire
t appli
ation of the general formulas.� jBj = 1� O�s(B) = jT 0j� Su�(B) = fjxj; 9y; P = xayg� Pref(B) = fjxaj; 9y; P = xay ^ jyj > 0g� Mat
hes(B) = if P = a then f0g else ;2.2 Con
atenating Two Blo
ksAssume that our blo
k B is de�ned as the
on
atenation of one or more previous blo
ks. If only one previousblo
k B0 is referen
ed, we just
opy its de�nition. We show now how to
on
atenate two blo
ks, sin
e the
ase of more than two blo
ks is a simple iteration over this pro
edure. We are given two blo
ks B1 and B2,and we have to obtain the des
ription for their
on
atenation D(B) = D(B1B2) = D(B1) � D(B2) (wherewe de�ne � as the
on
atenation of blo
k des
riptions). The formulas are as follows� jBj = jB1j+ jB2j� O�s(B) = jT 0j� Su�(B) = Su�(B1) \ LeftjB1j(Su�(B2))� Pref(B) = Pref(B2) \ RightjB2j(Pref(B1))� Mat
hes(B) = Mat
hes(B1) [AddjB1j(Mat
hes(B2))[(SubtrjB1j(Pref(B1) \ Su�(B2)) \ f0; 1; 2; : : : ; jBj �mg)We explain now the rationale for the formulas (see Figure 2). The �rst two are immediate. For Su�(B),note that Su�(B1B2)
onsiders that either a pre�x of B1 may be a suÆx of P or B1 may be
ompletelyinside P followed by a pre�x of B2 mat
hing the a suÆx of P . That is, if the number i belongs to Su�(B1B2)then either� i � m� jB1j, that is, a pre�x of B1B2 is a suÆx of P . Noti
e that in this
ase also a pre�x of B1 is asuÆx of P . Sin
e LeftjB1j will add all these positions, they will appear in the result if and only if theyare present in Su�(B1), whi
h is
orre
t.� i < m� jB1j, that is, B1 appears inside P and is immediately followed by an o

urren
e of B2 (whi
h
an be a
omplete o

urren
e or share a pre�x with the pattern suÆx). If we subtra
t jB1j to theelements in Su�(B2), then we are interested in the positions whi
h also appear in Su�(B1) (whi
h sin
ei < m� jB1j
an only
orrespond to
omplete o

urren
es of B1).The rationale for Pref() is analogous to Su�(). For Mat
hes(B), there are three parts. The �rst one isthe mat
hes whi
h are inside B1, and the se
ond one is the same for B2 (displa
ed sin
e now B2
omes afterB1 in B). The third one a

ounts for mat
hes that appear only when B1 and B2 are
on
atenated. If apre�x of the pattern is at the end of B1, and the
orresponding suÆx is at the beginning of B2, then we havethe pattern in B1B2. The Subtr
onverts pattern to blo
k positions and the �nal set whi
h is interse
tedwith the results ensures that we have really pre�xes and suÆxes instead of substrings of the blo
ks.5

������������������������
������������������������
������������������������

������������������������
������������������������
������������������������

���������������
���������������
���������������
���������������

��������������
��������������
��������������
��������������

��

��������������
��������������
��������������
��������������

���������������
���������������
���������������
���������������

P S S S

B1 B2

B1 B2

B1 B2

Figure 2: SuÆxes of the
on
atenation of two blo
ks. It is possible that the result involves only B1 (rightmostpair) or that it involves both. In this
ase B1 is
ompletely inside the pattern and B2 may or may not betotally inside (leftmost and middle pairs, respe
tively).2.3 Updating the Sear
h StateWe want now to update the state of our sear
h by pro
essing a new blo
k B whose des
ription has justbeen
omputed. The formulas to obtain the new Res(T 0B) and A
tive(T 0B) values from the old Res(T 0)and A
tive(T 0) ones are� A
tive(T 0B) = RightjBj(A
tive(T 0)) \ Pref(B)� Res(T 0B) = Res(T 0) [AddjT 0j(Mat
hes(B)) [SubtrjT 0j(A
tive(T 0) \ Su�(B) \ fm� jBj;m� jBj+ 1; : : : ;m� 1g)The new A
tive(T 0B) value
onsiders that, sin
e a new blo
k B has been added to T 0, the pattern pre�xesthat are suÆxes of T 0B are those that are already suÆxes of B (i.e. Pref(B)), or those whi
h are suÆxesof T 0 and are followed by B in the pattern. As before, Right does the tri
k of
onsidering both
ases in asingle formula.The new value Res(T 0B) adds to Res(T 0) not only the mat
hes whi
h are
ompletely inside B, but alsothose whi
h appear when T 0 is
on
atenated to B. For this sake, we
onsider pattern pre�xes whi
h aresuÆxes of T 0 (i.e. A
tive(T 0)), and whi
h are followed by the
orresponding pattern suÆx in B. The �nalinterse
tion ensures that the
omplete pattern has appeared. Figure 3 illustrates.
������
������
������

������
������
������

������
������
������

������
������
������

�������
�������
�������
�������

�����������
�����������
�����������

�����������
�����������
�����������

P

B

P

P

PP

T’

������
������
������
������

������
������
������

������
������
������

������������������
������������������
������������������
������������������

�����������
�����������
�����������

�����������
�����������
�����������

P S

B

P P

T’

Figure 3: Updating the state of the sear
h. In the �rst
ase we illustrate the updating of A
tive(T 0) (a shortblo
k is added). In the se
ond
ase we show how the mat
hes are updated (when a long blo
k is added). Ingeneral both updates are ne
essary.2.4 Extended PatternsWe show now how to handle some extended patterns in this paradigm. A �rst alternative, whi
h is easilyimplemented using bit-parallelism (see next se
tion) is to allow
lasses of
hara
ters, i.e. the pattern atposition i mat
hes not just one letter but a set of letters. The pattern
an then be seen as a sequen
e ofsets of
hara
ters P =
1 : : :
m,
i � �. This is easily implemented by modifying our equations for a singleletter a, so that instead of P = xay we require P = xAy ^ a 2 A.6

Approximate sear
hing
an also be performed in this s
enario. In this
ase we allow that the patterndoes not mat
h exa
tly but up to k errors. An alternative de�nition is that we want all the text segmentst su
h that dist(t; P) � k, where dist(a; b) gives the minimum number of operations (errors) to perform onP or t to transform one into the other. There are many
hoi
es to de�ne what is an error, but the most
ommonly used are: allow substitutions (Hamming distan
e) or allow substitutions, insertions, and deletions(Levenshtein distan
e). If we want to sear
h all the pattern o

urren
es with up to 0 < k < m substitutionerrors, we keep for ea
h blo
k and ea
h i 2 0::k a des
ription Di(B). It represents all the blo
k informationwhen the mat
hes are allowed to
ontain up to i errors. There is a di�erent sear
h state for ea
h i (i.e.A
tivei(T 0)), representing that a pattern pre�x mat
hes a text suÆx with up to i errors. Res(T 0) is the samefor any i, and keeps tra
k of the mat
hes allowing k errors.We write Prefi(B) and Su�i(B) when we refer to Di(B), while the other
omponents are independenton i. Mat
hes(B) refers to the mat
hes allowing up to k errors whi
h o

urred
ompletely inside the blo
k.GivenD(B) = (L;O; S; P;M) andD(B0) = (L;O; S0; P 0;M) we de�neD(B) [D(B0) = (L;O; S[S0; P[P 0;M) as their union. With this notation we
an express the
on
atenation of two blo
ksDi(B) = Di(B1B2),allowing i errors: Di(B) = i[j=0Dj(B1) �Di�j(B2)(where we re
all that � represents the
on
atenation of des
riptions). The reason for this formula is as follows:imagine that we sear
h with k = 2 errors. Then, we
an pair a pre�x that mat
hed with zero errors with asuÆx that mat
hed with two errors, or a pre�x that mat
hed with one error with a suÆx that mat
hed withone error, or a pre�x that mat
hed with two errors with a suÆx that mat
hed with zero errors. In general,the sum of errors between pre�x and suÆx must be k. This is easily generalized if we are interested in i � kerrors.To update the A
tivei(T 0) values we use a similar idea, i.e.A
tivei(T 0B) = i[j=0RightjBj(A
tivej(T 0)) \ Prefi�j(B)where the rationale is the same as before: we mat
h with i errors if we already mat
hed a pattern pre�xwith j errors and the blo
k starts with the
orresponding pattern suÆx mat
hed with i� j errors. Figure 4illustrates.
Pattern prefix Pattern suffix

0 errors

1 error

0 errors

1 error

2 errors2 errorsFigure 4: Updating A
tive(T 0) when 2 errors are allowed.The Res(T 0) value is interested only in k errors:Res(T 0B) = Res(T 0) [AddjT 0j(Mat
hes(B))[SubtrjT 0j(A
tivek(T 0) \ Su�k(B) \ fm� jBj;m� jBj+ 1; : : : ;m� 1g)while however the other A
tivei(T 0) values are ne
essary to maintain A
tivek(T 0).The values for an individual letter a is also modi�ed:7

� Su�i(B) = f0; 1; 2; : : : ;m� 1g� Prefi(B) = f1; 2; 3; : : : ;m� 1g� Mat
hes(B) = if (m = k + 1 ^ 9x; y P = xay) then f0g else ;Noti
e that if k > 0 (i.e. our
ase of interest), then a single letter mat
hes at any pattern position. Onthe other hand, the pattern mat
hes inside the letter only if we
an delete all its letters and leave a singleone whi
h is equal to a (the
ase of deleting all the letters is not
onsidered be
ause it implies m = k, whi
his a trivial problem).The
ase of the Levenshtein distan
e is more
ompli
ated, be
ause the mat
hes may not have the samelength. In this
ase we need to store, instead of initial and �nal positions of mat
hes (Prefi(B) and Su�i(B)),the segments of the pattern that mat
h with i errors or less. We de�neSegmi(B) = f(i; j); dist(Pi::j�1; B) � kginstead of Prefi(B) and Su�i(B). For blo
k
on
atenation, instead of interse
ting pre�xes of B1 with suÆxesof B2, we
onsider the segments of B1 immediately followed by segments of B2 and take their
on
atenation.We do not work out the details be
ause, as explained in the next se
tion, we do not have an eÆ
ientimplementation (the naive implementation is O(m2k2n) if we perform O(n) blo
k
on
atenations).3 A Bit-Parallel ImplementationUntil now, we have de�ned our algorithms in terms of sets of pattern positions. We present now a verywell-suited implementation paradigm whi
h allows to
onvert the previous algorithms into eÆ
ient imple-mentations.We use the te
hnique
alled bit-parallelism [3, 36℄. This te
hnique takes advantage of the fa
t that thepro
essor works in parallel on all the bits of the
omputer word. We
all w the number of bits of the
omputerword, whi
h is 32 or 64 in
urrent ar
hite
tures. If one is able to map the elements of a set onto bits, andto express the operations to perform on them by using only the operators provided by the pro
essor (whi
hare rather limited, i.e. bit shifts, masking, et
.), then one
an e�e
tively parallelize the work on the set,obtaining speedups of up to O(w) over the original algorithm.Our aim is to represent a set of pattern positions (whi
h is a subset of f0 : : :m� 1g) as a bit mask of mbits. The i-th bit of the bit mask will be 1 (and said to be \a
tive") if and only if position i�1 belongs to therepresented set. When writing down bit masks, the �rst bit position is the rightmost one, and exponentiationis used to denote bit repetition, e.g., 031 means 0001, where only the �rst bit is a
tive. We speak of bitmasks of length m even if m > w, in whi
h
ase we would a
tually need dm=we a
tual
omputer registers torepresent the bit mask.To write down the operations done on bit masks, we use a C-like syntax: \j" is the bitwise-or of two bitmasks, and represents set union; \&" is the bitwise-and of two bit masks, and represents set interse
tion;\<< `" is a bit shift operation whi
h assigns the i-th bit to the (i+ `)-th, setting the �rst ` bits to zero; and\>> `" does the same in the other dire
tion.The sets Pref(B), Su�(B), and A
tive(T 0) will be represented as bit masks. For blo
ks of one letter awe have Su�(B) = S[a℄ and Pref(B) = (S[a℄ << 1), where S is a pre
omputed bit mask table su
h that, forany a 2 �, the i-th bit of S[a℄ is a
tive if and only if Pi = a.The formulas to
on
atenate blo
ks are dire
tly translated by noti
ing that:� Left`(X) is
omputed as (X >> `) j 1i0m�i.� Right`(X) is
omputed as (X << `) j 0m�i�11i0.� X [Y is
omputed as X j Y . 8

� X \ Y is
omputed as X & Y .For example, the formula to update Pref(B) in Se
tion 2.2 is
omputed asPref(B) = Pref(B2) & ((Pref(B1) << `) j 0m�i�11i0)Hen
e, all those operations on sets are performed in O(1) time if m � w, and O(m=w) time in general.In pra
ti
al text sear
hing we
an assume m = O(w).On the other hand, the sets Res(T 0) and Mat
hes(B) are expli
itly stored in an array. However, it is notdiÆ
ult to see that the total amount of work to handle them is O(R), where R is the number of o

urren
esof the pattern in the text. The
ost
annot be o(R) if we report all the o

urren
es.Hen
e, if f(n)
on
atenations are performed along all the pro
ess, our total sear
h
ost is O(f(n) + R).The value of f(n) depends on the
ompression algorithm. We have also to add a prepro
essing
ost to buildthe S[℄ table, whi
h is O((� +m)dm=we).The bit-parallel paradigm allows to seamlessly expand the type of patterns we are able to sear
h. Sin
ethe T table is the only
onne
tion between the pattern and the sear
h, we
an for instan
e allow having
lassesof
hara
ters, that is, ea
h pattern position mat
hes with a set of
hara
ters instead of just one
hara
ter.To a
hieve this, just set the i-th bit of S[a℄ to \mat
h" for any a 2 Pi. Other extended patterns
onsideredin [36℄, su
h as regular expressions, are not easily adapted to this s
heme. It is also possible to handle errorsin the mat
hes, su
h as repla
ement errors [4℄ (at O(m log(k)=w)
ost per
hara
ter) or insertions, deletionsand repla
ements at O(mk=w) [36, 5℄ or even O(m=w) [28℄
ost per
hara
ter. The implementation of ourte
hnique to handle mismat
hes is O(k2f(n) + R)
ost, while the extension for Levenshtein distan
e is noteasily implemented.In all
ases, the spa
e
omplexity of our algorithms is O(ndm=we + R), sin
e we need to store thedes
riptions of the blo
ks already seen and the mat
hes found. Noti
e that this n refers in fa
t to the sizeof the
ompression window, and the R to the mat
hes present in that window only.Finally, we
onsider the pra
ti
al problem of un
ompressing a neighborhood of the o

urren
es. Inpra
ti
e it is undesirable that we just give the text positions mat
hing the pattern. It is mu
h better toun
ompress and show a neighborhood of the mat
h. This neighborhood
an be de�ned as the line holdingthe o

urren
e, the re
ord (delimited by some given pattern), a �xed number of
hara
ters, et
.Assume that we �nd a pattern o

urren
e in the
ompressed text and want to show a neighborhood of theo

urren
e. Sin
e we have sear
hed up to that point, we have the information to de
ompress the surroundingblo
ks forward and ba
kward, until from the plain text obtained we determine that the neighborhood hasbeen de
ompressed. To de
ompress a blo
k we have two
ases: (a) the blo
k is a letter, in whi
h
asewe deliver the letter, (b) the blo
k is a
on
atenation of other blo
ks, in whi
h
ase we de
ompress ea
hof those blo
ks in turn. This pro
ess takes O(N) time at most (where N is the size of the de
ompressedneighborhood), sin
e at ea
h step we either obtain one
hara
ter of N or split the �nal text to be obtained,and it is not possible to split it more than O(N) times. This shows that it is pra
ti
al to show a part of aZiv-Lempel
ompressed �le without ne
essarily un
ompressing the whole �le.4 LZ78 Compression4.1 Compression AlgorithmThe Ziv-Lempel
ompression algorithm of 1978 (usually named LZ78 [39℄) is based on a di
tionary of blo
ks,in whi
h we add every new blo
k
omputed. At the beginning of the
ompression, the di
tionary
ontainsa single blo
k b0 of length 0. The
urrent step of the
ompression is as follows: if we assume that a pre�xt1 : : : ti of T has been already
ompressed in a sequen
e of blo
ks Z = b1 : : : b
, all them in the di
tionary,then we look for the longest pre�x of the rest of the text ti+1 : : : tu whi
h is a blo
k of the di
tionary. On
ewe found this blo
k, say bk of length lk, we
onstru
t a new blo
k b
+1 = (k; ti+lk+1), we write the pair at9

the end of the
ompressed �le Z, i.e Z = b1 : : : b
b
+1, and we add the blo
k to the di
tionary. It is easy tosee that this di
tionary is pre�x-
losed (i.e. any pre�x of an element is also an element of the di
tionary)and a natural way to represent it is a trie.We give as an example the
ompression of the word ananas in Figure 5. The �rst blo
k is (0; a), and next(0; n). When we read the next a, a is already the blo
k 1 in the di
tionary, but an is not in the di
tionary.So we
reate a third blo
k (1; n). We then read the next a, a is already the blo
k 1 in the di
tionary, but asdo not appear. So we
reate a new blo
k (1; s).
0

1

a

2

n

0

1

a

2

n

n

3

0

1

a

2

n

n

3

s

4

1

a

0

a

(0,a)

Prefix encoded

Dictionary

Compressed file

an

(0,a)(0,n)

anan

(0,a)(0,n)(1,n) (0,a)(0,n)(1,n)(1,s)

ananas

Figure 5: Compression of the word ananas with the algorithm LZ78.The
ompression algorithm is O(u) in the worst
ase and eÆ
ient in pra
ti
e if the di
tionary is stored asa trie, whi
h allows rapid sear
hing of the new text pre�x (for ea
h
hara
ter of T we move on
e in the trie).The de
ompression needs to build the same di
tionary (the pair that de�nes the blo
k
 is read at the
-thstep of the algorithm), although this time it is not
onvenient to have a trie, and an array implementationis preferable. Compared to LZ77, the
ompression is rather fast but de
ompression is slow. LZ78 is used byUnix's Compress program.Many variations on LZ78 exist, whi
h deal basi
ally with the best way to
ode the pairs in the
ompressed�le, or with the best way to update the window. A parti
ularly interesting variant is from Wel
h,
alledLZW [34℄. In this
ase, the extra letter (se
ond element of the pair) is not
oded, but it is taken as the �rstletter of the next blo
k (the di
tionary is started with one blo
k per letter). A variant over this is presentedby Miller and Wegman [24℄ (whi
h we
all LZMW), where the new blo
k is not the previous one plus the�rst letter of the new one, but simply the
on
atenation of the previous and the new one.4.2 Pattern Mat
hing in LZ78 Compressed FilesOur general algorithm for sear
hing in a sequen
e of blo
ks Z = b1 : : : bn
an be dire
tly applied if we
onsiderthe new letter added after ea
h blo
k
reated by the LZ78
ompression algorithm as a separate blo
k. Thatis, ea
h new pair (k; a) read at step
 is taken as a referen
e to a previous blo
k (bk) followed by a literalblo
k (a). Hen
e, we
ompute the des
ription of the
on
atenation of bk and a and add it as the new blo
kb
 to our di
tionary. At the same time, we update the state of the sear
h using the des
ription of b
 just
omputed. Of
ourse, in pra
ti
e we manage this one-letter blo
k in a spe
ial way, to speed-up the blo
k
on
atenation. We keep all the des
riptions of the blo
ks bk in an array whi
h is dire
tly a

essed.The algorithm we obtain is quite the same as in [2℄. The main di�eren
es are that we obtain thisalgorithm as a parti
ular
ase of a general string sear
h algorithm for text that
omes in blo
ks, that theiralgorithm is originally designed for LZW
ompression, and that we sear
h all the o

urren
es of the pattern,not only the �rst one. Moreover, we present a pra
ti
al implementation based on bit-parallelism, while [2℄ isa theoreti
al work that has not been implemented. To our knowledge ours is the �rst real implementation10

of this algorithm1. It is quite easy to adapt our algorithm to work on other variants of LZ78, su
h as LZWor LZMW. In parti
ular we
an easily adapt to di�erent window management poli
ies. The simplest one isthat when the
ompressor memory is full, the di
tionary is deleted and
ompression is restarted. Others tryto remove the least interesting blo
ks from the di
tionary, e.g. [13℄. Our sear
her
an follow the same stepsof the
ompressor along the sear
h, using the same amount of memory.4.3 AnalysisThe theoreti
al
omplexity of the pattern mat
hing algorithm is O(ndm=we+R), whi
h be
omes O(n+R)on short patterns. If n = o(u), this is faster than sear
hing in the un
ompressed text. In pra
ti
al terms,the algorithm is rather eÆ
ient sin
e no extra work apart from one blo
k
on
atenation and one update ofthe sear
h is performed per element of the
ompressed �le.Our experimental results, however (Se
tion 7), show that the algorithm takes in pra
ti
e twi
e the timeof a Shift-Or run on the un
ompressed text. This is be
ause Shift-Or is very simple, and although wepro
ess many
hara
ters of the un
ompressed text in one shot, in pra
ti
e the
ost of ea
h step is bigenough to amortize any possible gain due to
ompression. A spe
i�
 problem is the lo
ality of referen
e:the
ompressed mat
hing algorithm reads random positions in the array of blo
k de�nitions, while theun
ompressed algorithm works basi
ally in-pla
e. The
a
hing me
hanism of the
omputer largely favorsthis last approa
h.However, there is a positive result. Sear
hing the
ompressed �le with this algorithm is twi
e as fastas de
ompressing it and then sear
hing the un
ompressed �le. For this
omparison we are assuming thatthe �le is
ompressed with LZ77 (whi
h is mu
h faster than LZ78 to de
ompress) and
onsider the timeof gunzip, whi
h is an optimized de
ompression software. Hen
e, if the text
olle
tion is kept
ompressed(whi
h is de�nitely of interest) then it is mu
h faster to sear
h dire
tly the
ompressed �les.We have tried to further improve our algorithm. For instan
e, we have
reated a variant
alled Mark-LZ78. In this
ompression algorithm, we mark with a bit
ag for ea
h blo
k if the blo
k is a leaf of thedi
tionary trie or not, to avoid storing the blo
k des
ription if this blo
k is not used anymore. However, aswe show in the experiments, the performan
e does not improve.5 LZ77 Compression5.1 Compression AlgorithmThe Ziv-Lempel
ompression algorithm of 1977 (usually named LZ77 [38℄) is, in some sense, simpler thanLZ78, sin
e the basi
 idea is just to re
ognize two repeated segments of the text and to mark the se
ond asa referen
e (position in the text and length of the repeated part) to the �rst one. More formally, assumethat a pre�x t1 : : : ti of T has been already
ompressed in a sequen
e of blo
ks Z = b1 : : : b
. We look for thelongest pre�x v of ti+1 : : : tu whi
h appears already in t1 : : : titi+1 : : : ti+jvj�1. On
e we have it, say that we�nd it starting at position j � i, we add a new blo
k (j; jvj) to the
ompressed �le Z. A spe
ial
ase o

ursif v is empty, in whi
h
ase ti+1 is a new letter and we
ode it with a spe
ial blo
k (0; ti+1). With the sameexample ananas, we obtained: (0; a) nanas; (0; a)(0; n) anas; (0; a)(0; n)(1; 3) s; (0; a)(0; n)(1; 3)(0; s).Noti
e that the above de�nition allows that the referen
ed blo
k overlaps the one whi
h is being
om-pressed. Another variant avoids this for simpli
ity, i.e. v must be found in t1 : : : ti. In this
ase the
ompression of ananas be
omes: (0; a) nanas; (0; a)(0; n) anas; (0; a)(0; n)(1; 2) as; (0; a)(0; n)(1; 2)(1; 1) s;(0; a)(0; n)(1; 2)(1; 1)(0; s).Yet another variant
odes the repeated blo
k and then the letter whi
h follows it in the still un
ompressedtext. There are many other variants as well, mainly related to how to represent the pairs in the
ompressed1See, however, [19℄, in this very same
onferen
e. 11

�le and how to
ompress fast. In general, the position j is
oded as the di�eren
e i + 1� j, sin
e the lasto

urren
e of the blo
k is used and v is normally restri
ted to not appear too far away from ti.LZ77
ompresses more than LZ78, both in theory and in pra
ti
e. From a theoreti
al point of view,LZ77
an referen
e any text substring seen before, while LZ78
an only referen
e a subset of those strings.In parti
ular, the LZ77 variant that allows overlaps
an obtain a
ompressed �le of O(1) blo
ks in the best
ase, while the one not allowing overlaps obtains at most O(log u). LZ78, on the other
ase,
annot obtainless than O(pu). This is easily seen by
onsidering the best-
ase �le T = au. In pra
ti
e it is also true thatLZ77
ompresses more than LZ78. LZ77 is implemented in the Gnu gzip program.Compression is rather slow with LZ77. It is expensive in time and spa
e to �nd the longest pre�x of theun
ompressed part of the �le that appears already in the
ompressed part. In theory, the
ompression isO(u) in time and spa
e by the use of a suÆx tree or a DAWG automaton [38, 37℄. In pra
ti
e, the sear
h indone in a bu�er window and an large hash table is normally used, as in gzip. An experimental
omparison ofdi�erent te
hniques to �nd the pre�x
an be found in [7℄. The de
ompression algorithm, on the other hand,is very fast (faster than for LZ78) be
ause to de
ompress a blo
k is it just ne
essary to
opy a part of thetext and no di
tionary has to be kept.5.2 Pattern Mat
hing in LZ77 Compressed FilesOur algorithm for LZ77 is an adaptation of the general algorithm on blo
ks, with a main di�eren
e. On LZ77
ompressed �les, when we want to pro
ess a new blo
k, the situation shown in Figure 6 generally o

urs:the new blo
k referen
es a sequen
e of r
ontiguous previously pro
essed blo
ks, but it overlaps with the�rst and last one (u and v in the Figure). That is, the new blo
k does not exa
tly
orrespond to previouslypro
essed blo
ks. Therefore, we do not have all the information on the blo
ks u and v that we need to
on
atenate the blo
ks.We solve this by
omputing re
ursively the des
riptions of the two blo
ks u and v with the same method.That is, we simulate that we are ba
k in the text, where those blo
ks appeared, and
ompute their des
ription(this may trigger more re
ursive invo
ations with the same purpose). When we �nally obtain the des
riptionsof u and v, we
on
atenate all the referen
ed blo
ks to obtain the des
ription of the new blo
k. Anotherpossibility is that the new blo
k is
ompletely inside another blo
k already pro
essed, in whi
h
ase we haveto re
ursively
onsider the blo
ks that de�ne the referen
ed blo
k.
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
��
��
��

��
��
��

���
���
���

���
���
���

Blocks already computed

v New Blocku

Figure 6: Re
ursive
omputation of the des
ription of a blo
k in LZ77
ompressed �les.We explain now a te
hnique to
on
atenate the r blo
ks in low average time. Instead of
omputingPref(B) and Su�(B) of the �rst blo
k, then
on
atenating with the se
ond, then to the third, until the rblo
ks are
on
atenated, we
ompute Su�(B) from the �rst blo
k to the r-th and Pref(B) from the r-thblo
k to the �rst one. We analyze this shortly.5.3 Analysis and ImprovementsWe analyze now the many aspe
ts of our algorithm and propose some improvements.12

Blo
k
on
atenation. If we use the proposed blo
k
on
atenation te
hnique, we have that in the worst
ase only the �rst m blo
ks
an a�e
t Su�(B) and only the last m blo
ks
an a�e
t Pref(B), so the worst
ase time for
on
atenating the blo
ks be
omes O(min(u;mn)).We show now that on average only O(logm) blo
ks are pro
essed until Su�(B) be
omes stable. Ea
h newblo
k
hara
ter we pro
ess will either extend the
urrent suÆxes of the set Su�(B) or make them disappearfrom the set. Ea
h suÆx is removed from the set with probability 1 � 1=� (i.e. if the new
hara
ter blo
k
annot extend it). Before we read the blo
k
hara
ters all the m pattern positions are in Su�(B), andtherefore on average no pattern positions remain in the set after O(logm) blo
k
hara
ters are read (afterthe i-th
hara
ter is read, the pattern positions m � i to m � 1
annot be removed from the set, but theirsituation
annot
hange anyway).Even if we
onsider all blo
ks of length 1 (the worst), we work on average O(n logm) be
ause of
on
ate-nations. The same reasoning holds for Pref(B).The only part of the blo
k
on
atenation whi
h
annot skip blo
ks is the
omputation of Mat
hes(B).However, this adds up O(R) time along all the sear
h. Therefore, the total time for blo
k
on
atenation isO(min(u; n logm) +R) on average.Finding the blo
ks. We
onsider now how to �nd the indi
es of the blo
k that de�ne a text positionj. We keep an array with the blo
ks already seen. Binary sear
hing the text position among these blo
ksadds O(n logn) to the
ost. Instead, we keep a table of O(n) entries where the element i points to theblo
k where the text position biu=n
 is de�ned. By a

essing this table we dire
tly arrive at the
orre
tblo
k with an average ina

ura
y of O(u=n), and a �nal binary sear
h �nds the
orre
t position, for atotal
ost of O(n log(u=n)) (in pra
ti
e a linear sear
h is faster for the �nal part). This gives good resultsin pra
ti
e. Another alternative is that the
ompressor does not store the text position and length ofthe repeated part, but instead it gives the blo
k numbers involved and the o�sets inside u and v. Sin
ea text position needs O(log u) bits and a blo
k number plus an o�set inside the blo
k needs on averagedlog2 ne + dlog2(u=n)e = O(log u) bits, the order of
ompression ratio should not worsen. We show in theexperiments that this version of the algorithm (
alled Blo
k-LZ77) is faster than the plain version, sin
e nosear
hing of the text position is ne
essary. However,
ompression ratios worsen signi�
antly in pra
ti
e dueto round-o�s.Computing partial blo
ks. However, the really
ostly part of the algorithm is not here, but in there
ursive
omputation of the partial blo
ks u and v. If we
onsider that ea
h time we perform a re
ursive
all we \split" the original blo
k B at a new position, then it is
lear that at most jBj re
ursive
alls
an bedone until we have split it in single
hara
ters and therefore we have found the de�nition of ea
h one. Thisshows that the total
ost of the re
ursive
alls is O(u) in the worst
ase. Our experiments suggest that thisis also the average
ase, but we were not able to prove it.Consider now the
ost of the re
ursive invo
ations in the
ase where the new blo
k B is stri
tly insideits referen
ing blo
k. For instan
e, a letter whi
h repeats inside a large blo
k
ould trigger a long
hain ofre
ursive invo
ations until its real de�nition is found. In the worst
ase, we
ould have a blo
k of size swhi
h referen
es one of size s� 1, and this one referen
es another of size s� 2, and so on. We would workO(s), but the size of the text at that point is O(s2). Hen
e, at text position i we
annot work more thanpi, whi
h gives a total worst-
ase
ost of O(npu), whi
h is too high. This problem does not disappear ifthe
ompressor always stores the �rst o

urren
e of the repeated blo
k instead of the last one, be
ause wemay not point to the �rst o

urren
e when we
onsider partial blo
ks.Hen
e the total amount of work is !(u) in the worst
ase whenever n = !(pu), and we
onje
ture thatthis is also the average
ase. See the left plot of Figure 7, where we have experimented with the English textdes
ribed in Se
tion 7. Least squares �tting shows that a good model for the number of re
ursive invo
ationsper text
hara
ter is 0:177+0:1 lnu (with less than 0.5% error in the approximation). The experiment suggests13

that the algorithm is O(u log u) on average. This is, unfortunately, worse than un
ompressing and sear
hing.We present now some te
hniques to improve this situation.Improvements. A �rst improvement we tried
onsisted in storing more information than simply onedes
ription per blo
k. For instan
e, when we
ompute the des
ription for the partial blo
ks u and v (whi
hare not part of the original sequen
e of blo
ks), we
ould store instead of dis
arding them. If later anotherblo
k needs the des
ription of u and v, we have already
omputed them. Figure 7 (right plot) shows thatthe total amount of re
ursive
alls is redu
ed using this te
hnique, and we
onje
ture that in this
ase wework O(u) (least squares �tting yields a
omplexity of O(u0:99927)). These blo
ks, however,
annot be easilystored in the array of blo
ks sin
e they do not belong to the sequen
e. A hashing implementation gave badresults in pra
ti
e, that is, the
ost to add the new blo
ks outweighted the gains of having them already
omputed. This
ould
hange for longer texts, if the orders of the two algorithms are di�erent.

200 400 600 800 100012000.4
1.6
0.40.60.8
1.01.21.4 u 200 400 600 800 100012000.4

1.6
0.40.60.8
1.01.21.4 nFigure 7: Number of re
ursive invo
ations (thi
k line) and blo
k
on
atenations (thin line) per text
hara
ter,for natural language text. The left plot shows the basi
 algorithm and the right plot shows the improvementof adding the
omputed blo
ks.Another improvement, whi
h gave good pra
ti
al results, was to try to
ompute less (instead of more)information. Our aim was to avoid the re
ursive
omputation of u and v. Hen
e, instead of
omputing theirdes
riptions re
ursively, we pessimisti
ally assume that they mat
h all the pattern positions. If they are shortenough we will not have a mat
h even assuming this, and we
ould pro
ess them without a
tually obtainingtheir des
riptions. Only when we �nd a (possible) mat
h we ba
ktra
k to the point where it
ould have beenstarted and
ompute
orre
tly the involved blo
ks. For ea
h blo
k, we store whether it has been
orre
tly orpessimisti
ally
omputed. As we show in the experiments, this improves sear
h time for patterns of length15 or more in pra
ti
e. However, the method is limited sin
e we
annot skip more than m
hara
ters of Twithout having at least one
hara
ter
orre
tly
omputed, hen
e in the very best
ase we pay O(u=m) withthis speedup. We
all this algorithm Skip-LZ77 (and
ombined with Blo
k-LZ77 it yields Skip-Blo
k-LZ77).Final remarks. Even with all these improvements, the experiments show that this algorithm is mu
hslower than de
ompressing (with gunzip) and sear
hing (with Shift-Or). We believe that it is not possible inpra
ti
e to beat a de
ompress-then-sear
h approa
h. The root of this limitation lies in the need to re
ursively
ompute u and v. Another
onsequen
e of the existen
e of partial blo
ks is that, even if the
ompressor usesa window of �xed size to sele
t the strings to repeat, we need to keep in memory all the previous blo
ks, sin
eeven if they are not dire
tly referen
ed anymore, we may need to resort to them in
ase of partial blo
ks.We propose in the next se
tion a slightly di�erent
ompression s
heme whi
h gets rid of all the aspe
ts ofLZ77
ompression that degrade the sear
hing performan
e.14

We �nish this se
tion with a
ouple of
omments. First, as it is
lear from the algorithm, we do nothandle the
ase of overlapping
ompression, i.e. when the referen
ed blo
k
an overlap with the new blo
kB. Although we
ould handle it, the result is the same in
ost as if the
ompressor avoided su
h overlapping(i.e. performing many steps, where a step ends when an overlap o

urs). Se
ond, other variants of LZ77are easily a

ommodated. Finally, we noti
e that a neighborhood of size N around the o

urren
es
an beobtained using the general me
hanism at O(Npu)
ost (or, a

ording to the empiri
al results, O(N logu)
ost). This is be
ause of the
ost to �nd the de�nitions of the in
omplete blo
ks.6 LZ-Blo
ks: A New Hybrid Compression AlgorithmIt be
ame
lear in the previous se
tion that the worst part of the
ost of the LZ77 sear
h algorithm was due tothe
ost of re
ursively
omputing partial blo
ks, and of �nding the blo
k
orresponding to a text position. Wedesign a new
ompression algorithm between LZ78 and LZ77, to have multiple-blo
k
ompression (not justone blo
k like in LZ78), but also to avoid the re
ursive situation whi
h appears in sear
hing LZ77-
ompressed�les (Figure 6).We propose the following algorithm. Assume that a pre�x t1 : : : ti of T has been already
ompressed ina sequen
e of blo
k Z = b1 : : : b
. We look now for the longest pre�x v of ti+1 : : : tu whi
h is representedby a sequen
e br : : : br+h already present in the
ompressed �le. If there are many alternative
hoi
es forthe same v, we take the one with the minimum of blo
ks (to redu
e the
ost of
on
atenations). And ifstill several possibilities o

ur, we take the �rst o

urren
e (the minimum in the number of the �rst blo
k).We
ode this new blo
k by (r; h). As in LZ77, if v is empty (i.e the letter ti+1 is new), we
ode a spe
ialblo
k (0; ti+1). With the same example ananas, we obtain: (0; a) nanas; (0; a)(0; n) anas; (0; a)(0; n)(1; 1)as; (0; a)(0; n)(1; 1)(1; 0) s; (0; a)(0; n)(1; 1)(1; 0)(0; s).The main advantage of this
ompression s
heme is that it avoids the re
ursive
ase in the LZ77 patternmat
hing (Figure 6), be
ause we know already that the new blo
k
orresponds dire
tly to a
on
atenationof already pro
essed blo
ks. Moreover, we do not need to sear
h the text position in the blo
ks, sin
e we
an dire
tly a

ess the relevant blo
ks.The
ompression
an still be performed in O(u) time by using a sparse suÆx tree [17℄ where only theblo
k beginnings are inserted and when we fall out of the trie we take the last node visited whi
h
orrespondsto a blo
k ending. De
ompression is slower than for LZ77, sin
e we need to keep tra
k of the blo
ks alreadyseen to be able to retrieve the appropriate text. Finally, the
ompression ratio is in prin
iple worse than forLZ77 sin
e we are limited in the text segments that we
an use. On the other hand, the numbers to
ode aresmaller sin
e we
ode blo
k positions in O(logn) bits instead of text positions in O(log u) bits. Moreover, ifwe use a simple tri
k, the
ompression is in general better than for LZ78 sin
e we are not limited to usingjust one blo
k. The tri
k is to represent the pairs (r; 0) as (2r), and the pairs (r; h+ 1) as (2r + 1; h). Thispays o� be
ause the se
ond element of the pair is frequently zero.The sear
hing algorithm is like that of LZ77 ex
ept be
ause we do not need to sear
h for the blo
ks andwe do not have to re
ursively �nd the partial blo
ks u and v (they simply do not exist now). From theanalysis of the LZ77 pattern mat
hing algorithm we have that we work O(min(u; n logm)+ndm=we+R) onaverage and O(min(u;mn)+ndm=we+R) in the worst
ase (thanks to the improved algorithm to
on
atenateblo
ks). In pra
ti
e, this algorithm performan
e is very
lose to LZ78 pattern mat
hing. We also tried amarked version (
alled Mark-LZBlo
ks) where for ea
h blo
k a bit is stored whi
h tells whether or not theblo
k will be used again, but as for LZ78, the sear
h time does not improve in pra
ti
e.Unlike LZ77, we
an use less memory if the
ompressor restri
ts the referen
es to a window of the text.Sin
e there are no re
ursive referen
es, those blo
ks whi
h are far away in the past need not be stored sin
ethey will not be referen
ed anymore. Hen
e, as in LZ78, we need the same memory as the
ompressor. Awindow of size N
an be displayed in O(N) time. 15

7 Experimental ResultsWe show in this se
tion our empiri
al results on the behavior or our sear
h and
ompression s
hemes. We�rst study the
ompression te
hniques and later the sear
h performan
e.We use mainly two �les for the experiments. One is an English literary text (from B. Franklin) of 1.29Mb, �ltered to lower-
ase and with separators normalized. The other is the DNA
hain of \h.in
uenzae", of1.36 Mb. For
omparative purposes, we also show the results on some �les of the the Calgary Corpus2: twobooks (book*), six tro�-formatted s
ienti�
 arti
les (paper*) and three sour
e program
odes (prog*).7.1 Compression Performan
eIt is interesting to study the
ompression performan
e of the algorithms for two reasons: �rst, we proposeLZ-Blo
ks, a hybrid
ompression s
heme whi
h we have to evaluate in terms of
ompression ratios. Se
ond,our sear
h algorithms use a te
hnique to
ode the pairs whi
h speeds up sear
h time but whi
h is suboptimal:the numbers are stored in as many bytes as needed (using the highest bit to denote if there are more bytesor not).We �rst
ompare the number of bits needed to
ode a �le with LZ-Blo
ks against the same numberfor LZ77 and LZ78. We
all this approa
h \bit-
oding". This is aimed to give and idea of the expe
ted
ompression performan
e when the �le is
ompressed with a real te
hnique (su
h as Elias [11℄ or Hu�man
odes). Many other improvements are possible. A deeper study of the best te
hniques for LZ-Blo
ks isdeferred for future study.Table 1 shows the results. The \Ideal"
olumn
ounts exa
tly the bits used by ea
h number stored in the
ompressed �le, while both \Elias"
olumns
ount the number of bits needed to represent the numbers usingthese
odes3 [11℄. The letters, on the other hand, are Hu�man
oded. For English and DNA we show ina se
ond line the per
entages for di�erent variants of the
ompressors: Blo
k-LZ77, Mark-LZ78 and Mark-LZBlo
ks, respe
tively. With LZ-Blo
ks we obtain estimated
ompression ratios
omparable to LZ77. TheLZ-Blo
ks and LZ77
ompression are better than LZ78 ex
ept for DNA, where only two bits are ne
essaryto
ode a letter. Blo
k-LZ77, on the other hand,
ompresses quite badly.We now perform a pra
ti
al
omparison using our byte-
oding te
hniques against good LZ77 and LZ78
ompressors, namely gzip and Compress respe
tively. This is to show how mu
h
ompression are we loosingin order to ease the sear
hing pro
ess.Table 2 shows the
ompression ratios a
hieved. The per
entages in the se
ond row of English and DNAhave the same meaning as before. Interestingly, Compress is better than gzip on DNA, whi
h rarely happenson natural language texts. Our
ompression ratios show a penalty with respe
t to those of gzip. Our byte
ompression method is very simple, and these results show in whi
h proportion our
ompression ratios
ouldbe improved by engineering te
hniques, keeping in mind that
ompli
ating the en
oding of the numbers risksslowing down the pattern mat
hing pro
ess.7.2 Sear
h AlgorithmsWe
ompare now the sear
h time for our algorithms against the de
ompressing and sear
hing approa
h.The experiments were run on a Sun UltraSpar
-1 of 167 MHz, with 64 Mb of RAM, running Solaris 2.5.1.We
onsider user time, whi
h is within 2% of a

ura
y with 95%
on�den
e. Time is expressed in se
ondseverywhere in this se
tion.In general, sear
hing a
ompressed text has the additional advantage over the un
ompressed text that itperforms less I/O. However, this is relevant if we
ompare
ompressed versus un
ompressed sear
hing. Thisis not what we
ompare here: we
onsider that the text is always
ompressed. Hen
e, we measure the
ost2ftp://ftp.
ps
.u
algary.
a/pub/proje
ts/text.
ompression.
orpus/3Re
all that Elias-
 pre
edes the number x by its length in unary, while Elias-Æ uses Elias-
 to
ode that length that pre
edesthe number. 16

File Size Ideal Elias-
 Elias-Æ(Kb) LZ77 LZ78 LZBlo
ks LZ77 LZ78 LZBlo
ks LZ77 LZ78 LZBlo
ksEnglish 1,324 29.67% 36.15% 29.28% 59.34% 64.01% 58.57% 48.96% 52.04% 46.17%52.45% 38.01% 31.24% 104.9% 82.31% 62.48% 74.25% 54.71% 48.75%DNA 1,390 28.03% 25.30% 29.08% 56.06% 47.33% 58.18% 45.77% 37.71% 46.40%47.21% 26.77% 31.15% 94.43% 67.62% 62.30% 73.14% 39.91% 49.03%book1 751 34.10% 40.70% 35.62% 68.20% 70.83% 71.25% 41.26% 44.96% 41.50%book2 597 29.33% 40.21% 30.44% 58.66% 69.46% 60.89% 35.51% 44.41% 35.72%paper1 52 32.33% 46.20% 34.29% 64.53% 77.01% 68.59% 41.05% 51.92% 41.91%paper2 80 32.68% 43.00% 34.80% 65.27% 72.84% 69.60% 41.08% 48.28% 42.01%paper3 45 35.10% 45.50% 38.12% 70.07% 76.23% 76.24% 44.84% 51.36% 46.55%paper4 13 37.60% 47.95% 41.07% 74.74% 78.30% 82.15% 49.92% 54.81% 51.55%paper5 12 39.85% 50.79% 41.74% 79.13% 82.42% 83.49% 52.63% 57.92% 52.39%paper6 37 33.60% 47.72% 35.69% 67.03% 79.08% 71.38% 42.91% 53.72% 43.81%prog
 39 32.21% 47.99% 34.16% 64.24% 79.14% 68.32% 41.24% 53.96% 41.95%progl 70 22.45% 39.10% 23.30% 44.82% 65.83% 44.92% 28.04% 43.85% 27.65%progp 48 21.34% 40.36% 22.46% 42.54% 66.95% 46.60% 27.16% 45.33% 28.46%Table 1: Estimated
ompression ratios with three di�erent methods. For ea
h number in the
ompressed�le, if we note n the bits needed to
ode it, then Ideal
ounts only n, Elias-

ounts 2n and Elias-Æ
ountsn + 2dlog2 ne. The se
ond line (in itali
s) of English and DNA
orrespond to Blo
k-LZ77, Mark-LZ78 andMark-LZBlo
ks, respe
tively.
File gzip Compress Byte-LZ77 Byte-LZ78 Byte-LZBlo
ksEnglish 35.58% 38.90% 44.49% 54.41% 43.29%79.32% 56.20% 45.24%DNA 30.44% 27.96% 41.07% 43.17% 42.23%75.24% 44.90% 44.22%book1 40.76% 43.19% 53.21% 59.92% 53.30%book2 33.83% 41.05% 45.60% 58.55% 46.53%paper1 34.94% 47.17% 54.70% 66.17% 52.67%paper2 36.19% 43.99% 54.65% 62.02% 52.10%paper3 38.89% 47.63% 60.19% 67.92% 58.75%paper4 41.66% 52.36% 69.20% 75.71% 68.24%paper5 41.78% 55.04% 72.27% 79.47% 68.16%paper6 34.72% 49.06% 56.84% 69.33 % 54.76%prog
 33.51% 48.32% 54.97% 67.99% 51.95%progl 22.71% 37.89% 37.82% 55.30% 35.47%progp 22.77% 38.90% 35.97% 57.20% 34.20%Table 2: Compression ratios for
lassi
al
ompressors and our byte versions. The se
ond (itali
s) lines ofEnglish and DNA
orrespond to Blo
k-LZ77, Mark-LZ78 and Mark-LZBlo
ks, respe
tively.17

of sear
hing it without de
ompressing versus the
ost of de
ompressing it and then sear
hing. Clearly thelast task
an be done using an intermediate bu�er in main memory, and therefore the I/O is the same inboth
ases. Therefore, we will measure user time, whi
h ex
ludes I/O time.When we
ompare our algorithms against de
ompressing plus sear
hing, we have to bear in mind that,in this alternative, one
an use any
ompression format (not ne
essarily LZ78, whi
h happens to be thebest for dire
t sear
hing). Therefore, we have opted for gzip/gunzip, an LZ77-based optimized
ompressionsoftware that gives better
ompression and faster de
ompression when
ompared to other Ziv-Lempel based
ompressors. When
onsidering the overall de
ompress-plus-sear
h time, we add the user time of gunzip plusthat of a sear
h program run over the plain �le. In our experien
e, the user time is almost the same as thatof a spe
ialized implementation using an internal bu�er.Figure 8
ompares the marked and unmarked versions of LZ78 and LZ-Blo
ks. As it
an be seen, there isno advantage in pra
ti
e by the use of marking. Therefore, we do not further
onsider the marked versions.Another
on
lusion we take from the �gure is that the sear
her for LZ-Blo
ks is slightly faster than for LZ78on English but slower for DNA. This may be related to the good performan
e of the LZ78
ompressor onDNA.
� � � � � � �� � � � � � �Æ Æ Æ Æ Æ Æ ÆÆ Æ Æ Æ Æ Æ Æ5 305 10 15 20 25 300.15

0.23
0.150.170.190.210.23

m
� � � � � �� � � � � � �Æ Æ Æ Æ Æ ÆÆ Æ Æ Æ Æ Æ Æ5 305 10 15 20 25 300.13

0.21
0.130.150.170.190.21

mÆ LZ78Æ Mark-LZ78 � LZ-Blo
ks� Mark-LZBlo
ksFigure 8: Comparison between the marked and unmarked versions of LZ78 and LZ-Blo
ks
ompressors. Theleft plot is for English text and the right one for DNA. The y axis is the user time in se
onds for the whole�les.Figure 9
ompares all the sear
h algorithms together, as well as de
ompression (with gunzip) plus sear
htime (with Shift-Or and BNDM [29℄, a bit-parallel sear
her whi
h is the fastest in pra
ti
e together with[33℄). It
an be seen that Blo
k-LZ77 improves signi�
antly over LZ77, and that the Skip-LZ77 versionsimprove as the pattern length grows. However, all the LZ77 sear
h algorithms are not
ompetitive againstde
ompressing and sear
hing, espe
ially on DNA. On the other hand, both the LZ-Blo
ks and LZ78 sear
halgorithms are twi
e as fast as de
ompressing and sear
hing.Table 3
ompares the time to sear
h a random 10-letter pattern on English, DNA and the sele
ted �les ofthe Calgary Corpus. We
onsider the time to de
ompress with gunzip and to sear
h with Shift-Or (as seen,for m = 10 the time is very
lose to BNDM). We show the results for LZ78 and LZ-Blo
ks only, as LZ77 hasbeen shown to be mu
h inferior.
18

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �Æ Æ Æ Æ Æ Æ Æ5 305 10 15 20 25 300.0
1.6
0.00.20.40.6
0.81.01.21.4 m

� � � � � � �� � � � � � �� � � � � � �� � � � � � �5 305 10 15 20 25 302.2
3.2
2.22.42.62.8
3.0

� � � � � � �Æ Æ Æ Æ Æ Æ Æ5 305 10 15 20 25 300.0
1.0
0.00.20.40.6
0.81.0

m� LZ77� Skip-LZ77 � Blo
k-LZ77� Skip-Blo
k-LZ77 Æ LZ78� LZ-Blo
ks gunzip + Shift-Orgunzip + BNDMFigure 9: Comparison of the sear
h algorithms. The dotted line is the time taken by gunzip alone. The leftplot is for English text and the right one for DNA. The y axis is the user time in se
onds for the whole �les.8 Con
lusionsWe have fo
used in the problem of string mat
hing on Ziv-Lempel
ompressed text. This is an importantpra
ti
al problem, as it is of interest keep the texts
ompressed and at the same time being able to eÆ
ientlysear
h on them.We presented a general paradigm to sear
h in a text that is expressed as a sequen
e of blo
ks, whi
habstra
ts the main features of Ziv-Lempel
ompression. Then, we applied the te
hnique to the di�erentvariants, i.e. LZ77 and LZ78. For LZ78, we are able to sear
h in half the time of un
ompressing andsear
hing, while for LZ77 our algorithm, is mu
h slower. This motivated us to present LZ-Blo
ks, a newhybrid
ompression te
hnique whi
h allows to sear
h as fast as in LZ78 but whi
h keeps many of the featuresof LZ77
ompression, being in pra
ti
e similar in
ompression ratios.Therefore, we are able to sear
h in a
ompressed text faster than un
ompressing and then sear
hing. Ingeneral, on the other hand, sear
hing on
ompressed text at the same speed of on un
ompressed text seemsdiÆ
ult to a
hieve in pra
ti
e be
ause of a basi
 problem of lo
ality of referen
e.It is interesting to note that our algorithms are general enough to work on general
ollage systems (whi
hen
ompass LZ77), and have good performan
e on regular
ollage systems (whi
h en
ompass LZ78, LZW andLZ-Blo
ks) [18℄. This model divides the
ompression format in two parts: a di
tionary D whi
h stores the setof symbols that
an be used in the
ompressed text, and the
ompressed text S itself, whi
h is a sequen
e ofelements in D. A regular
ollage system builds D using atomi
 elements and
on
atenation of other elementsin D. As we have des
ribed our algorithms in terms of
on
atenations of blo
ks, the te
hniques immediatelygeneralize to regular
ollage systems. General
ollage systems also permit repetition and trun
ation of otherelements in D. More insights are given in [18℄ about the diÆ
ulty of sear
hing on general
ollage systems.Later work reported in [31℄ presents fast sear
hing on LZ78/LZW by using Boyer-Moore te
hniques. Still,a

ording to the experiments presented there, our approa
h is the fastest one for moderate length patterns(m � 15), whi
h is a very
ommon
ase in pra
ti
e. Moreover, their approa
h has not yet been extended to19

File gunzip Shift-Or LZ78 LZ-Blo
ksEnglish 28.80 8.90 17.24 (45.7%) 16.65 (44.2%)DNA 28.10 9.21 15.10 (40.5%) 17.27 (46.3%)book1 18.40 4.92 10.91 (46.8%) 11.42 (49.0%)book2 12.40 4.14 8.01 (48.4%) 7.78 (47.0%)paper1 1.80 1.67 1.88 (54.2%) 1.92 (55.3%)paper2 2.40 1.76 2.07 (49.8%) 2.18 (52.4%)paper3 1.80 1.60 1.73 (50.9%) 1.88 (55.3%)paper4 1.20 1.48 1.50 (56.0%) 1.59 (59.3%)paper5 0.80 1.42 1.52 (68.5%) 1.54 (69.4%)paper6 1.90 1.53 1.69 (49.3%) 1.78 (51.9%)prog
 1.50 1.55 1.73 (56.7%) 1.75 (57.4%)progl 1.90 1.72 1.88 (51.9%) 1.84 (50.8%)progp 1.20 1.62 1.74 (61.7%) 1.70 (60.3%)Table 3: Sear
h times for di�erent �les, in 1/100-th of se
onds. The per
entages indi
ate the time of the
ompressed sear
hing as a fra
tion of un
ompressing plus Shift-Or sear
hing.LZ-Blo
ks, although this seems possible as well.Some open questions left involve studying better the performan
e of LZ-Blo
ks, both in theory and inpra
ti
e (espe
ially on �nding better methods to en
ode the numbers while keeping the good sear
h times).In parti
ular, it would be interesting to
ompare it against other
ompression formats that seem to liebetween the simpli
ity of LZ78 and the
ompression eÆ
ien
y of LZ77 [24, 13, 22℄.Referen
es[1℄ A. Amir and G. Benson. EÆ
ient two-dimensional
ompressed mat
hing. In Pro
. 2nd Data CompressionConferen
e (DCC'92), pages 279{288, Mar
h 1992.[2℄ A. Amir, G. Benson, and M. Fara
h. Let sleeping �les lie: Pattern mat
hing in Z-
ompressed �les.Journal of Computer and System S
ien
es, 52(2):299{307, 1996.[3℄ R. Baeza-Yates. Text retrieval: Theory and pra
ti
e. In 12th IFIP World Computer Congress, volume I,pages 465{476. Elsevier S
ien
e, September 1992.[4℄ R. Baeza-Yates and G. Gonnet. A new approa
h to text sear
hing. Communi
ations of the ACM,35(10):74{82, O
tober 1992.[5℄ R. Baeza-Yates and G. Navarro. A faster algorithm for approximate string mat
hing. In Pro
. 7th AnnualSymp. on Combinatorial Pattern Mat
hing (CPM'96), LNCS 1075, pages 1{23. Springer-Verlag, 1996.[6℄ T. Bell, J. Cleary, and I. Witten. Text Compression. Prenti
e Hall, New Jersey, 1990.[7℄ T. Bell and D. Kulp. Longest-mat
h string sear
hing for Ziv-Lempel
ompression. Software{ Pra
ti
eand Experien
e, 23(7):757{771, July 1993.[8℄ J. Bentley, D. Sleator, R. Tarjan, and V. Wei. A lo
ally adaptive data
ompression s
heme. Communi-
ations of the ACM, 29:320{330, 1986.[9℄ R. S. Boyer and J. S. Moore. A fast string sear
hing algorithm. Communi
ations of the ACM, 20(10):762{772, 1977. 20

[10℄ A. Czumaj, Maxime Cro
hemore, L. Gasienie
, S. Jarominek, Thierry Le
roq, W. Plandowski, andW. Rytter. Speeding up two string-mat
hing algorithms. Algorithmi
a, 12:247{267, 1994.[11℄ P. Elias. Universal
odeword sets and representations of the integers. IEEE Transa
tions on InformationTheory, 21:194{203, 1975.[12℄ M. Fara
h and M. Thorup. String mat
hing in Lempel-Ziv
ompressed strings. In 27th ACM AnnualSymposium on the Theory of Computing (STOC'95), pages 703{712, 1995.[13℄ E. Fiala and D. Greene. Data
ompression with �nite windows. Communi
ations of the ACM, 32(4):490{505, 4 1989.[14℄ R. N. Horspool. Pra
ti
al fast sear
hing in strings. Software Pra
ti
e and Experien
e, 10:501{506, 1980.[15℄ D. Hu�man. A method for the
onstru
tion of minimum-redundan
y
odes. Pro
. I.R.E., 40(9):1090{1101, 1952.[16℄ J. K�arkk�ainen, G. Navarro, and E. Ukkonen. Approximate string mat
hing over Ziv-Lempel
ompressedtext. In Pro
. 11th Annual Symp. on Combinatorial Pattern Mat
hing (CPM 2000), LNCS 1848, pages195{209. Springer-Verlag, 2000.[17℄ J. K�arkk�ainen and E. Ukkonen. Sparse suÆx trees. In Pro
. 2nd Annual International Computing andCombinatori
s Conferen
 (COCOON'96), pages 219{230, 1996. LNCS 1090.[18℄ T. Kida, Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa. A unifying framework for
ompressedpattern mat
hing. In Pro
. 6th Intl. Symp. on String Pro
essing and Information Retrieval (SPIRE'99),pages 89{96. IEEE CS Press, 1999.[19℄ T. Kida, M. Takeda, A. Shinohara, and S. Arikawa. Shift-and approa
h to pattern mat
hing in LZW
ompressed text. In Pro
. 10th Annual Symp. on Combinatorial Pattern Mat
hing (CPM'99), LNCS1645, pages 1{13. Springer-Verlag, 1999.[20℄ D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt. Fast pattern mat
hing in strings. SIAM Journal onComputing, 6(1):323{350, 1977.[21℄ U. Manber. A text
ompression s
heme that allows fast sear
hing dire
tly in the
ompressed �le. ACMTransa
tions on Information Systems, 15(2):124{136, 1997.[22℄ Y. Matias, N. Rajpoot, and S.C. Sahinalp. The e�e
t of
exible parsing for dynami
 di
tionary baseddata
ompression. In Pro
. 9th Data Compression Conferen
e (DCC'99), pages 238{246, 1999.[23℄ T. Matsumoto, T. Kida, M. Takeda, A. Shinohara, and S. Arikawa. Bit-parallel approa
h to approximatestring mat
hing in
ompressed texts. In Pro
. 7th Intl. Symp. on String Pro
essing and InformationRetrieval (SPIRE 2000), pages 221{228. IEEE CS Press, 2000.[24℄ V. Miller and M. Wegman. Variations on a theme by Ziv and Lempel. In Combinatorial Algorithms onWords, volume 12 of NATO ASI Series F, pages 131{140. Springer-Verlag, 1985.[25℄ A. Mo�at. Word-based text
ompression. Software Pra
ti
e and Experien
e, 19(2):185{198, 1989.[26℄ E. Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Dire
t pattern mat
hing on
ompressed text. InPro
. 5th Intl. Symp. on String Pro
essing and Information Retrieval (SPIRE'98), pages 90{95. IEEECS Press, 1998. 21

[27℄ E. Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast sear
hing on
ompressed text allowing er-rors. In Pro
. 21st ACM Intl. Conf. on Resear
h and Development in Information Retrieval (SIGIR'98),pages 298{306. York Press, 1998.[28℄ G. Myers. A fast bit-ve
tor algorithm for approximate pattern mat
hing based on dynami
 progamming.In Pro
. 9th Annual Symp. on Combinatorial Pattern Mat
hing (CPM'98), LNCS 1448, pages 1{13.Springer-Verlag, 1998.[29℄ G. Navarro and M. RaÆnot. A bit-parallel approa
h to suÆx automata: Fast extended string mat
hing.In Pro
. 9th Annual Symp. on Combinatorial Pattern Mat
hing (CPM'98), LNCS 1448, pages 14{33.Springer-Verlag, 1998.[30℄ G. Navarro and M. RaÆnot. A general pra
ti
al approa
h to pattern mat
hing over Ziv-Lempel
om-pressed text. In Pro
. 10th Annual Symp. on Combinatorial Pattern Mat
hing (CPM'99), LNCS 1645,pages 14{36. Springer-Verlag, 1999.[31℄ G. Navarro and J. Tarhio. Boyer-Moore string mat
hing over Ziv-Lempel
ompressed text. In Pro
. 11thAnnual Symp. on Combinatorial Pattern Mat
hing (CPM 2000), LNCS 1848, pages 166{180. Springer-Verlag, 2000.[32℄ Y. Shibata, T. Matsumoto, M. Takeda, A. Shinohara, and S. Arikawa. A Boyer-Moore type algorithmfor
ompressed pattern mat
hing. In Pro
. 11th Annual Symp. on Combinatorial Pattern Mat
hing(CPM 2000), LNCS 1848, pages 181{194. Springer-Verlag, 2000.[33℄ D. Sunday. A very fast substring sear
h algorithm. Communi
ations of the ACM, 33(8):132{142, August1990.[34℄ T. A. Wel
h. A te
hnique for high performan
e data
ompression. IEEE Computer Magazine, 17(6):8{19, June 1984.[35℄ I. Witten, R. Neal, and J. Cleary. Arithmeti

oding for data
ompression. Communi
ations of theACM, 30(6):520{541, 1987.[36℄ S. Wu and U. Manber. Fast text sear
hing allowing errors. Communi
ations of the ACM, 35(10):83{91,O
tober 1992.[37℄ M. Zipstein. Data
ompression with fa
tor automata. Theor. Comput. S
i., 92(1):213{221, 1992.[38℄ J. Ziv and A. Lempel. A universal algorithm for sequential data
ompression. IEEE Trans. Inf. Theory,23:337{343, 1977.[39℄ J. Ziv and A. Lempel. Compression of individual sequen
es via variable length
oding. IEEE Trans.Inf. Theory, 24:530{536, 1978.

22

