
Indexing Text using the Ziv-Lempel TrieGonzalo NavarroDept. of Computer S
ien
e, Univ. of Chile.Blan
o En
alada 2120, Santiago, Chile. gnavarro�d

.u
hile.
l.Partially supported by Fonde
yt Grant 1-020831.Abstra
tLet a text of u
hara
ters over an alphabet of size � be
ompressible to n symbols bythe LZ78 or LZW algorithm. We show how to build a data stru
ture,
alled the LZ-index,based on the Ziv-Lempel trie that takes 4n log2 n(1 + o(1)) bits of spa
e (that is, 4 times theentropy of the text) and reports the R o

urren
es of a pattern of length m in worst
ase timeO(m3 log� + (m+ R) logn). We present a pra
ti
al implementation of the LZ-index, whi
h isfaster than
urrent alternatives when we take into
onsideration the time to report the positionsor text
ontexts of the o

urren
es found.1 Introdu
tion and Related WorkA text database is a system providing fast a

ess to a large mass of textual data. By far the most
hallenging requirement is that of performing fast text sear
hing for user-entered patterns. Thesimplest (yet realisti
 and rather
ommon) s
enario is as follows. The text T1:::u is regarded as aunique sequen
e of
hara
ters over an alphabet � of size �, and the sear
h pattern P1:::m as another(short) sequen
e over �. Then the text sear
h problem
onsists of �nding all the R o

urren
es ofP in T .Modern text databases have to fa
e two opposed goals. On the one hand, they have to providefast a

ess to the text. On the other, they have to use as little spa
e as possible. The goals areopposed be
ause, in order to provide fast a

ess, an index has to be built on the text. An index is adata stru
ture built on the text and stored in the database, hen
e in
reasing the spa
e requirement.In re
ent years there has been mu
h resear
h on
ompressed text databases, fo
using on te
hniquesto represent the text and the index in su

in
t form, yet permitting eÆ
ient text sear
hing.Despite that there has been some work on su

in
t inverted indexes for natural language for awhile [30, 26℄ (able of �nding whole words and phrases), until a short time ago it was believed thatany general index for string mat
hing would need
(u) spa
e. In pra
ti
e, the smallest indexesavailable were the suÆx arrays [20℄, requiring u log2 u bits to index a text of u
hara
ters, whi
hrequired u log2 � bits to be represented, so the index is in pra
ti
e larger than the text (typi
ally 4times the text size).Sin
e the last de
ade, several attempts to redu
e the spa
e of the suÆx trees [3℄ or arrayshave been made by K�arkk�ainen and Ukkonen [12, 15℄, Kurtz [17℄, M�akinen [19℄, and Abouelhoda,1

Ohlebus
h and Kurtz [1℄, obtaining remarkable improvements, albeit no spe
ta
ular ones. More-over, they have
on
entrated on the spa
e requirement of the data stru
ture only, needing the textseparately available.The �rst a
hievement of a new trend started with Grossi and Vitter [9℄, who presented a suÆxarray
ompression method for binary texts, whi
h needed O(u) bits and was able to report all theR o

urren
es of P in T in O � mlog u + (R+ 1) log" u� time. However, they need the text as well asthe index in order to answer queries.Following this line, Sadakane [27℄ presented a suÆx array
ompression method for generaltexts (not only binary) that requires u �1"H0 + 8 + 3 log2H0� (1 + o(1)) + � log2 � bits, where H0is the zero-order entropy of the text. This index
an sear
h in time O(m log u + R log" u) and
ontains enough information to reprodu
e the text: any pie
e of text of length L is obtained inO(L+ log" u) time. This means that the index repla
es the text, whi
h
an hen
e be deleted. Thisis an opportunisti
 s
heme, i.e., the index takes less spa
e if the text is
ompressible. Yet there isa minimum of 8u bits of spa
e whi
h has to be paid independently of the entropy of the text.Ferragina and Manzini [6℄ presented a di�erent approa
h to
ompress the suÆx array based onthe Burrows-Wheeler transform and blo
k sorting. They need 5uHk +O �u log log u+� log �log u � bits and
an answer queries in O(m + R log" u) time, where Hk is the k-th order entropy and the formulais valid for any
onstant k. This s
heme is also opportunisti
. However, there is a large
onstant� log � involved in the sublinear part whi
h does not de
rease with the entropy, and a huge additive
onstant larger than ��. (In a real implementation [7℄ they removed these
onstants at the pri
eof a not guaranteed sear
h time.)Re
ently, Sadakane [28℄ has proposed a
ompa
t suÆx array representation that in
ludes longest
ommon pre�x information, whi
h is able to
ount the o

urren
es of P in O(m) time and oftraversing the suÆx tree in O(n log" n) time. It needs 1"nH1 + O(n) bits. Its main interest lies inits ability to handle large alphabets, where it is superior to [6℄.However, there are older attempts to produ
e su

in
t indexes, by K�arkk�ainen and Ukkonen[14, 13℄. Their main idea is to use a suÆx tree that indexes only the beginnings of the blo
ksprodu
ed by a Ziv-Lempel
ompression (see next se
tion if not familiar with Ziv-Lempel). Thisis the only index we are aware of whi
h is based on this type of
ompression. In [13℄ they obtaina range of spa
e-time trade-o�s. The smallest indexes need O �u �log � + 1"�� bits, i.e., the samespa
e of the original text, and are able to answer queries in O � log�logum2 +m log u+ 1"R log" u� time.Note, however, that this index is not opportunisti
, as it takes spa
e proportional to the text, andindeed needs the text besides the data of the index.In this paper we propose a new index on these lines,
alled the LZ-index. Instead of using ageneri
 Ziv-Lempel algorithm, we sti
k to the LZ78/LZW format and its spe
i�
 properties. We donot build a suÆx tree on the strings produ
ed by the LZ78 algorithm. Rather, we use the very sameLZ78 trie that is produ
ed during
ompression, plus other related stru
tures. We borrow some ideasfrom K�arkk�ainen and Ukkonen's work, but in our
ase we have to fa
e additional
ompli
ationsbe
ause the LZ78 trie has less information than the suÆx tree of the blo
ks. As a result, our index issmaller but has a higher sear
h time. If we
all n the number of blo
ks in the
ompressed text, thenour index takes 4n log2 n(1+ o(1)) bits of spa
e and answers queries in O(m3 log �+(m+R) log n)time. It is shown in [16, 8℄ that Ziv-Lempel
ompression asymptoti
ally approa
hes Hk for any2

k. Sin
e this
ompressed text needs at least n log2 n bits of storage, we have that our index isopportunisti
, taking at most 4uHk bits, for any k.This representation, moreover,
ontains the information to reprodu
e the text. We
an re-produ
e a text
ontext of length L around an o

urren
e found (and in fa
t any sequen
e ofblo
ks) in O(L log �) time, or obtain the whole text in time O(u log �). The index
an be built inO(u log �) time. Finally, the time
an be redu
ed to O(m3 log � +m log n+R log" n) provided wepay O �1"n log n� spa
e.About at the same time and independently of us [8℄, Ferragina and Manzini have proposedanother idea
ombining
ompressed suÆx arrays and Ziv-Lempel
ompression. They a
hieve opti-mal O(m+ R) sear
h time at the pri
e of O(uHk log" u) spa
e. Moreover, this spa
e in
ludes two
ompressed suÆx arrays of the previous type [6℄ and their large
onstant terms. It is interestingthat they share, like us, several ideas of previous work on sparse suÆx trees [14, 13℄.What is unique in our approa
h is the re
onstru
tion of the o

urren
es using a data stru
turethat does not re
ord full suÆx information but just of text substrings, thus addressing the problemof re
onstru
ting pattern o

urren
es from these pie
es information.In addition to our theoreti
al proposal, we have implemented our index. Some de
isions are
hanged in the implementation be
ause of pra
ti
al
onsiderations. The �nal prototype was testedon large natural language and DNA texts. It takes about 5 times the spa
e needed by the
om-pressed text (whi
h is
lose to our predi
tion 4uHk). On a 2 GHz Pentium IV ma
hine, the indexis built at a rate of 1{2 Mb/se
 (whi
h is
ompetitive with
urrent te
hnology) and uses a tem-porary extra spa
e similar to a suÆx array
onstru
tion (5 times the text size, whi
h is large butusual). On a 50 Mb text, a normal query takes 2 to 4 millise
onds (mse
s), depending linearly onits length, plus the time to report the R o

urren
es, at a rate of 600{800 per mse
. Text lines
anbe displayed at a rate of 14 lines per mse
.We have
ompared our index against existing alternatives. Although our index is mu
h slowerto
ount how many o

urren
es are there, it is mu
h faster to report their position or their text
ontext. Indeed, we show that if there are more than 300{1,400 o

urren
e positions to report (thisdepends on the text type), then our index is faster than the others. This number goes down to13{65 if the text lines of the o

urren
es have to be shown. Being able of reprodu
ing the text isan essential feature, sin
e all these indexes repla
e the text and hen
e our only way to see the textis asking them to reprodu
e it.This paper is organized as follows. In Se
tion 2 we explain the Ziv-Lempel
ompression. InSe
tion 3 we present the basi
 ideas of our te
hnique. Se
tion 4 explains how to represent the datastru
tures we use in su

int spa
e. Se
tion 5 gives a theoreti
al analysis of the data stru
ture, interms of spa
e,
onstru
tion and query time. Se
tion 6 des
ribes the pra
ti
al implementation ofthe index. Se
tion 7
ompares our implementation against the most prominent alternatives. Se
tion8 gives our
on
lusions and future work dire
tions. A shorter version of this paper appeared in [24℄.2 Ziv-Lempel CompressionThe general idea of Ziv-Lempel
ompression is to repla
e substrings in the text by a pointer toa previous o

urren
e of them. If the pointer takes less spa
e than the string it is repla
ing,
ompression is obtained. Di�erent variants over this type of
ompression exist, see for example [4℄.3

We are parti
ularly interested in the LZ78/LZW format, whi
h we des
ribe in depth.The Ziv-Lempel
ompression algorithm of 1978 (usually named LZ78 [31℄) is based on a di
tio-nary of blo
ks, in whi
h we add every new blo
k
omputed. At the beginning of the
ompression,the di
tionary
ontains a single blo
k b0 of length 0. The
urrent step of the
ompression is asfollows: if we assume that a pre�x T1:::j of T has been already
ompressed in a sequen
e of blo
ksZ = b1 : : : br, all them in the di
tionary, then we look for the longest pre�x of the rest of the textTj+1:::u whi
h is a blo
k of the di
tionary. On
e we have found this blo
k, say bs of length `s, we
onstru
t a new blo
k br+1 = (s; Tj+`s+1), we write the pair at the end of the
ompressed �le Z, i.eZ = b1 : : : brbr+1, and we add the blo
k to the di
tionary. It is easy to see that this di
tionary ispre�x-
losed (i.e. any pre�x of an element is also an element of the di
tionary) and a natural wayto represent it is a trie.We show in Figure 1 the
ompression of the text alabar a la alabarda para apalabrarla1 , whi
hwill be our running example. For readability we have
hanged the spa
e to unders
ore and haveassumed its
ode is larger than those of normal letters.The �rst blo
k is (0; a), and next (0; l). When we read the next a, a is already blo
k 1 in thedi
tionary, but ab is not in the di
tionary. So we
reate a third blo
k (1; b). We then read the nexta, a is already blo
k 1 in the di
tionary, but ar does not appear. So we
reate a new blo
k (1; r),and so on. The full
ompressed text is(0; a) (0; l) (1; b) (1; r) (0;) (1;) (2; a) (5; a) (7; b) (4; d) (6; p) (4; a) (8; p) (1; l) (3; r) (4; l) (1; $)were we have added a terminator
hara
ter \$", smaller than any other
hara
ter, to ensure thatevery blo
k
orresponds to a di�erent node.The
ompression algorithm is O(u) time in the worst
ase and eÆ
ient in pra
ti
e if the di
tio-nary is stored as a trie, whi
h allows rapid sear
hing of the new text pre�x (for ea
h
hara
ter ofT we move on
e in the trie). The de
ompression needs to build the same di
tionary (the pair thatde�nes the blo
k r is read at the r-th step of the algorithm).Many variations on LZ78 exist, whi
h deal basi
ally with the best way to
ode the pairs in the
ompressed �le. A parti
ularly interesting variant is from Wel
h,
alled LZW [29℄. In this
ase,the extra letter (se
ond element of the pair) is not
oded, but it is taken as the �rst letter of thenext blo
k (the di
tionary is started with one blo
k per letter). LZW is used by Unix's Compressprogram.In this paper we do not
onsider LZW separately but just as a
oding variant of LZ78. This isbe
ause the �nal letter of LZ78
an be readily obtained by keeping
ount of the �rst letter of ea
hblo
k (this is
opied dire
tly from the referen
ed blo
k) and then looking at the �rst letter of thenext blo
k.An interesting property of this
ompression format is that every blo
k represents a di�erent textsubstring. The only possible ex
eption is the last blo
k. We use this property in our algorithm,and deal with the ex
eption by adding a spe
ial
hara
ter \$" (not in the alphabet) at the end ofthe text. The last blo
k will
ontain this
hara
ter and thus will be unique too.Another
on
ept that is worth reminding is that a set of strings
an be lexi
ographi
ally sorted,and we
all the rank of a string its position in the lexi
ographi
ally sorted set. Moreover, ifthe set is arranged in a trie data stru
ture, then all the strings represented in a subtree form a1A not totally meaningful Spanish phrase, but one with ni
e periodi
ity properties!4

a

d l bp

a

alabar a la alabarda para apalabrarla

a l ab ar _ a_ lab_ala ard a_p ara _ap al abr arl a$

0

1

17 764

52

8

139111012 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

p

a

15

r a

3 14

l

b$ l r _

_

Figure 1: Ziv-Lempel trie and parse for our running example. For example, blo
k number 10represents string ard, whi
h is spelled out when we move from the trie root to node labeled 10.lexi
ographi
al interval of the universe. We remind that, in lexi
ographi
 order, " � x, ax � by ifa < b, and ax � ay if x � y, for any strings x; y and
hara
ters a; b.3 Basi
 Te
hniqueWe now present the basi
 idea to sear
h for a pattern P1:::m in a text T1:::u whi
h has been
om-pressed using the LZ78 or LZW algorithm into n + 1 blo
ks T = B0 : : : Bn, su
h that B0 = ";8k 6= `; Bk 6= B` (that is, no two blo
ks are equal); and 8k � 1; 9` < k;
 2 �; Bk = B` �
 (thatis, every blo
k ex
ept B0 is formed by a previous blo
k plus a letter at the end).3.1 Data Stru
turesWe start by de�ning the data stru
tures used, without
aring for the exa
t way they are represented.The problem of their su

in
t representation, and
onsequently the spa
e o

upan
y and time
omplexity, is
onsidered in Se
tion 4.1. LZTrie : is the trie formed by all the blo
ks B0 : : : Bn. Given the properties of LZ78
om-pression, this trie has exa
tly n+1 nodes, ea
h one
orresponding to a string. LZTrie stores5

enough information so as to permit the following operations on every node x:(a) idt(x) gives the node identi�er, i.e., the number k su
h that x represents Bk;(b) leftrankt(x) and rightrankt(x) give the minimum and maximum lexi
ographi
al posi-tion of the blo
ks represented by the nodes in the subtree rooted at x, among the setB0 : : : Bn;(
) parentt(x) gives the tree position of the parent node of x; and(d)
hildt(x;
) gives the tree position of the
hild of node x by
hara
ter
, or null if nosu
h
hild exists.Additionally, the trie must implement the operation rtht(rank), whi
h given a rank r givesthe node representing the r-th string in B0 : : : Bn in lexi
ographi
al order. Figure 2 showsthe LZTrie data stru
ture for our running example.
rth(6)=x

Node(4) = x

x represents B(4)="ar"

a

d l bp

a

a l ab ar _ a_ lab_ala ard a_p ara _ap al abr arl a$

0

1

17 764

52

8

139111012 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

p

a

15

r a

3 14

l

b$ l r _

_

B(10) = "ard" n = 17T = B(0)B(1)...B(n)

B(0) = ""

x

id(x)=4

0

1

2 3

4

5 6

7 8 9

10

11

12

13

14

15

16

17

leftrank(x)=6

rightrank(x)=9

parent(x)

child(x,’a’)

Figure 2: LZTrie data stru
ture for our running example. The numbers over the nodes are theirrank. We show the values that
orrespond to node x, whi
h represents blo
k number 4 and is the6th string in the set.2. RevTrie : is the trie formed by all the reverse strings Br0 : : : Brn. For this stru
ture we donot have the ni
e properties that the LZ78/LZW algorithm gives to LZTrie: there
ould be6

internal nodes not representing any blo
k. We need the same operations for RevTrie thanfor LZTrie, whi
h are
alled idr, leftrankr, rightrankr, parentr,
hildr and rthr.Figure 3 shows the RevTrie data stru
ture for our running example.

a l ab ar _ a_ lab_ala ard a_p ara _ap al abr arl a$
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

B(10) = "ard" n = 17T = B(0)B(1)...B(n)

B(0) = ""

11

0
0

2
dba$ l

2

10

p r _

1
9 16

5

7

a

17
1

r _l
3 5

12
4

a

8

8

r

a

7

a

l

6
3

9 10

14

a r

16

a _

11

a_a
12 13

13

a b

14
4

a

15
15

a

17
6

x

parent(x)

leftrank(x)=2

rightrank(x)=5

id(x)=1

child(x,’r’)

x represents B(1)="a"

rth(2)=x

Figure 3: RevTrie data stru
ture for our running example. As we store the reversed strings, theset is not pre�x-
losed and not every node
orresponds to a blo
k identi�er. We show the valuesthat
orrespond to node x, whi
h represents blo
k number 1 and is the 2nd string in the set.3. Node : is a mapping from blo
k identi�ers to their node in LZTrie.4. Range : is a data stru
ture for two-dimensional sear
hing in the spa
e [0 : : : n℄ � [0 : : : n℄.The points stored in this stru
ture are f(revrank(Brk); rank(Bk+1)); k 2 0 : : : n� 1g, whererevrank is the lexi
ographi
al rank in Br0 : : : Brn and rank is the lexi
ographi
al rank inB0 : : : Bn. For ea
h su
h point, the
orresponding k value is stored.Figure 4 shows the Range data stru
ture for our running example.3.2 Sear
h AlgorithmLet us
onsider the sear
h pro
ess now. We distinguish three types of o

urren
es of P in T ,depending on the blo
k layout (see Figure 5):(a) the o

urren
e lies inside a single blo
k; 7

17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1716

0

1

2

3

4

5
6

7

8

9
10

11

12

13

14

15

16

B(9):B(10) = "lab":"ard"

revrank(9) = 7

rank(10) = 8

Figure 4: Range data stru
ture for our running example. For instan
e, the pair of
onse
utiveblo
ks 9:10 have reversed rank and rank, respe
tively, 7 and 8. Hen
e blo
k number 9 is stored atrow 7 and
olumn 8 of the data stru
ture.(b) the o

urren
e spans two blo
ks, Bk and Bk+1, su
h that a pre�x P1:::i mat
hes a suÆx of Bkand the suÆx Pi+1:::m mat
hes a pre�x of Bk+1; and(
) the o

urren
e spans three or more blo
ks, Bk : : : B`, su
h that Pi:::j = Bk+1 : : : B`�1, P1:::i�1mat
hes a suÆx of Bk and Pj+1:::m mat
hes a pre�x of B`.Note that ea
h possible o

urren
e of P lies exa
tly in one of the three
ases above. We explainnow how ea
h type of o

urren
e is found.
1 2 3 4 5 6 7

LZ78 block numbers

P inside a
block

P spans 2
blocks

P spans 4
blocksFigure 5: Di�erent situations in whi
h P
an mat
h inside T .

8

3.2.1 O

urren
es Lying Inside a Single Blo
kGiven the properties of LZ78/LZW, every blo
k Bk
ontaining P is formed by a shorter blo
k B`
on
atenated to a letter
. If P does not o

ur at the end of Bk, then B`
ontains P as well.We want to �nd the shortest possible blo
k B in the referen
ing
hain for Bk that
ontains theo

urren
e of P . This blo
k B �nishes with the string P , hen
e it
an be easily found by sear
hingfor P r in RevTrie.Hen
e, in order to dete
t all the o

urren
es that lie inside a single blo
k we do as follows:1. Sear
h for P r in RevTrie. We arrive at a node x su
h that every string stored in the subtreerooted at x represents a blo
k ending with P .2. Evaluate leftrankr(x) and rightrankr(x), obtaining the lexi
ographi
al interval (in the re-versed blo
ks) of blo
ks �nishing with P .3. For every rank r 2 leftrankr(x) : : : rightrankr(x), obtain the
orresponding node in LZTrie,y = Node(rthr(r)). Now we have identi�ed the nodes in the normal trie that �nish with Pand have to report all their extensions, i.e., all their subtrees.4. For every su
h y, traverse all the subtree rooted at y and report every node found. In thispro
ess we
an know the exa
t distan
e between the end of P and the end of the blo
k.Note that a single blo
k
ontaining several o

urren
es will report ea
h of them, sin
e we willreport a subtree that is
ontained in another subtree reported.Figure 6 illustrates the �rst part on our running example. Assume we sear
h for ab. We lookfor ba on RevTrie and rea
h the highlighted node. With leftrank and rightrank we �nd that thelexi
ographi
al range
orresponding to its subtree is [6 : : : 7℄. For ea
h su
h position we use rthr todetermine the blo
k identi�er, so as to obtain the list of identi�ers of the subtree, f3; 9g.Figure 7 shows the se
ond part of the sear
h on our running example. For ea
h blo
k in the listf3; 9g, we use Node to �nd the
orresponding node in LZTrie, and report all the subtrees. Hen
eblo
k 3 leads us to report also blo
k 15, while blo
k 9 just reports itself. It is easy to dedu
e theo�set in the reported blo
ks,
ounting from the end: the nodes in the list have o�set m to the endof the blo
k, their
hildren m+ 1, their grand
hildren m+ 2, and so on.3.2.2 O

urren
es Spanning Two Blo
ksP
an be split at any position, so we have to try them all. The idea is that, for every possible split,we sear
h for the reverse pattern pre�x in RevTrie and the pattern suÆx in LZTrie. Now we havetwo ranges, one in the spa
e of reversed strings (i.e., blo
ks �nishing with the �rst part of P) andone in that of the normal strings (i.e. blo
ks starting with the se
ond part of P), and need to �ndthe pairs of blo
ks (k; k+1) su
h that k is in the �rst range and k+1 is in the se
ond range. Thisis what the range sear
hing data stru
ture is for. Hen
e the steps are:1. For every i 2 1 : : : m� 1, split P in pref = P1:::i and suff = Pi+1:::m and do the next steps.2. Sear
h for pref r in RevTrie, obtaining x. Sear
h for suff in LZTrie, obtaining y.9

a l ab ar _ a_ lab_ala ard a_p ara _ap al abr arl a$
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

11

0
0

2
dba$ l

2

10

p r _

1
9 16

5

7

a

17
1

r _l
3 5

12
4

a

8

8

r

a

7

a

l

6
3

9 10

14

a r

16

a _

11

a_a
12 13

13

a b

14
4

a

15
15

a

17
6

leftrank = 6
rightrank = 7
rth(6..7) = {3,9}

Search for "ab"

Figure 6: Reporting o

urren
es of type 1 of P = ab in our running example, �rst part.3. Sear
h for the range [leftrankr(x) : : : rightrankr(x)℄� [leftrankt(y) : : : rightrankt(y)℄ usingthe Range data stru
ture.4. For every pair (k; k + 1) found, report k. We know that Pi is aligned at the end of Bk.Figure 8 exempli�es the �rst part on our running example. Assume we sear
h for ala (we will�nd only its o

urren
es of type 2). We look for the suÆxes a and la on LZTrie, rea
hing thehighlighted nodes. With leftrank and rightrank we �nd that their ranges are [1,9℄ and [13,14℄,respe
tively.Figure 9 shows the se
ond part. We sear
h for the reverse pre�xes of ala, namely la and a, inRevTrie. The nodes rea
hed are highlighted. Their ranges are, respe
tively, [10,10℄ and [2,5℄.Finally, Figure 10 shows the last part of the sear
h. We join pre�x a with suÆx la, obtaininga 2-dimensional rank range (2,13):(5,14); and pre�x al with suÆx a, obtaining a 2-dimensionalrange (10,1):(10,9). Both ranges are sear
hed for in Range, and all the blo
k identi�ers found arereported. The o�sets are known from the splitting point.3.2.3 O

urren
es Spanning Three Blo
ks or MoreWe need one more observation for this part. Re
all that the LZ78/LZW algorithm guarantees thatevery blo
k represents a di�erent string. Hen
e, there is at most one blo
k mat
hing Pi:::j for ea
h
hoi
e of i and j. This fa
t severely limits the number of o

urren
es of this
lass that may exist.The idea is, �rst, to identify the only possible blo
k that mat
hes every substring Pi:::j . Westore the blo
k numbers in m arrays Ai, where Ai stores the blo
ks
orresponding to Pi:::j for all10

a

d l bp

a

a l ab ar _ a_ lab_ala ard a_p ara _ap al abr arl a$

0

1

17 764

52

8

139111012 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

p

a

15

r a

3 14

l

b$ l r _

_

0

1

2 3

4

5 6

7 8 9

10

11

12

13

14

15

16

17
Node(3)

Node(9)

Report matches inside B(3), B(15) and B(9)

Figure 7: Reporting o

urren
es of type 1 of P = ab in our running example, se
ond part.j. Then, we try to �nd
on
atenations of su

essive blo
ks Bk, Bk+1, et
. that mat
h
ontiguouspattern substrings. Again, there is only one
andidate (namely Bk+1) to follow an o

urren
e ofBk in the pattern. Finally, for ea
h maximal
on
atenation of blo
ks Pi:::j = Bk : : : B`
ontained inthe pattern, we determine whether Bk�1 �nishes with P1:::i�1 and B`+1 starts with Pj+1:::m. If thisis the
ase we
an report an o

urren
e. Note that there
annot be more than O(m2) o

urren
esof this type. So the algorithm is as follows:1. For every 1 � i � j � m, sear
h for Pi:::j in LZTrie and re
ord the node x found in Ci;j = x,as well as add (idt(x); j) to array Ai. The sear
h is made for in
reasing i and for ea
h i valuewe in
rease j. This way we perform a single sear
h in the trie for ea
h i. If there is no node
orresponding to Pi:::j we stop sear
hing and adding entries to Ai, and store null values inCi;j0 for j0 � j. At the end of every i-turn, we sort Ai by blo
k number. Mark every Ci;j asunused.2. For every 1 � i � j < m, for in
reasing j, try to extend the mat
h of Pi:::j to the right. We donot extend to the left be
ause this, if useful, has been done already (we mark used ranges toavoid working on a sequen
e that has been tried already from the left). Let S and S0 denoteidt(Ci;j), and �nd (S+1; r) in Aj+1. If r exists, mark Cj+1;r as used, in
rement S and repeatthe pro
ess from j = r. Stop when the o

urren
e
annot be extended further (no su
h r isfound). 11

a

d l bp

a

a l ab ar _ a_ lab_ala ard a_p ara _ap al abr arl a$

0

1

17 764

52

8

139111012 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

p

a

15

r a

3 14

l

b$ l r _

_

0

1

2 3

4

5 6

7 8 9

10

11

12

13

14

15

16

17

suffix "la"

rightrank = 14

leftrank = 1
rightrank = 9

leftrank = 13

suffix "a"
Search for "ala"

Figure 8: Reporting o

urren
es of type 2 of P = ala in our running example, �rst part.(a) For ea
h maximal o

urren
e Pi:::r found ending at blo
k S su
h that r < m,
he
kwhether blo
k S + 1 starts with Pr+1:::m, i.e., whether leftrankt(Node(S + 1)) 2leftrankt(Cr+1;m) : : : rightrankt(Cr+1;m). Note that leftrankt(Node(S + 1)) is the ex-a
t rank of node S + 1, sin
e every internal node is the �rst among the ranks of itssubtree. Note also that there
annot be an o

urren
e if Cr+1;m is null. If r < m andblo
k S + 1 does not start with Pr+1:::m, then stop here and move to the next maximalo

urren
e.(b) If i > 1, then
he
k whether blo
k S0 � 1 �nishes with P1:::i�1. For this sake, �ndNode(S0 � 1) and use the parentt operation to
he
k whether the last i� 1 nodes, readba
kward, equal P r1:::i�1. If i > 1 and blo
k S0�1 does not �nish with P1:::i�1, then stophere and move to the next maximal o

urren
e.(
) Report node S0 � 1 as the one
ontaining the beginning of the mat
h. We know thatPi�1 is aligned at the end of this blo
k.Note that we have to make sure that the o

urren
es reported span at least 3 blo
ks.Figure 11 exempli�es the �rst part on our running example. Assume we sear
h for alaba. Welook for all the substrings of P and �ll matrix C and the A ve
tors.Figure 12 shows the se
ond part. We obtain the maximal o

urren
es from the A ve
tors. Inour example, we
ould join blo
ks B1 to B3 in a single maximal o

urren
e.Figure 13 shows the third part of the sear
h. We
he
k that the maximal o

urren
es
ontinue12

a l ab ar _ a_ lab_ala ard a_p ara _ap al abr arl a$
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

11

0
0

2
dba$ l

10

p r _

1
9 16

5

7

a

17
1

r _l
3 5

12
4

a

8

8

r

a

7

a

l

6
3

9 10

14

a r

16

a _

11

a_a
12 13

13

a b

14
4

a

15
15

a

17
6

2

reverse prefix "a"
leftrank = 2
rightrank = 5

reverse prefix "la"
leftrank = 10
rightrank = 10

Figure 9: Reporting o

urren
es of type 2 of P = ala in our running example, se
ond part.appropriately to the end of the pattern. Three maximal o

urren
es pass the test, for exampleB1 : : : B3 = P1:::4, sin
e Node(4) is below node C5;5.Finally, Figure 14 shows the last part of the sear
h. We
he
k that the maximal o

urren
es
ontinue appropriately to the beginning of the pattern. Two o

urren
es pass the test and arereported, for example B9 : : : = P2:::, sin
e reading upwards from Node(8) we obtain P r1:::1.Figure 15 depi
ts the whole algorithm. O

urren
es are reported in the format (k; offset),where k is the identi�er of the blo
k where the o

urren
e starts and offset is the distan
e betweenthe beginning of the o

urren
e and the end of the blo
k.If we want to show the text surrounding an o

urren
e (k; offset), we just go to LZTrie usingNode(k) and use the parentt pointers to obtain the
hara
ters of the blo
k in reverse order. If theo

urren
e spans more than one blo
k, we do the same for blo
ks k + 1, k + 2 and so on until thewhole pattern is shown. We also
an show larger blo
k numbers as well as blo
ks k� 1, k� 2, et
.in order to show a larger text
ontext around the o

urren
e. Indeed, we
an re
over the wholetext by repeating this pro
ess for k 2 0 : : : n.4 A Su

in
t Index RepresentationWe show now how the data stru
tures used in the algorithm
an be implemented using little spa
e.Let us �rst
onsider the tries. Munro and Raman [22℄ show that it is possible to store a binarytree of N nodes using 2N+o(N) bits su
h that the operations parent(x), left
hild(x), right
hild(x)and subtreesize(x)
an be answered in
onstant time. Munro et al. [23℄ show that, using the same13

17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1716

0

1

2

3

4

5
6

7

8

9
10

11

12

13

14

15

16

a l ab ar _ a_ lab_ala ard a_p ara _ap al abr arl a$
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Report matches starting in B(8) and B(14)

Figure 10: Reporting o

urren
es of type 2 of P = ala in our running example, third part.spa
e, the following operations
an also be answered in
onstant time: leafrank(x) (number ofleaves to the left of node x), leafsize(x) (number of leaves in the subtree rooted at x), leftmost(x)and rightmost(x) (leftmost and rightmost leaves in the subtree rooted at x).In the same paper [23℄ they show that a trie
an be represented using this same stru
ture byrepresenting the alphabet � in binary. This trie is able to point to an array of identi�ers, so thatthe identity of ea
h leaf
an be known. Moreover, path
ompressed tries (where unary paths are
ompressed and a skip value is kept to indi
ate how many nodes have been
ompressed)
an berepresented without any extra spa
e
ost, as long as there exists a separate representation of thestrings stored readily available to
ompare the portions of the pattern skipped at the
ompressedpaths.We use the above representation for LZTrie as follows. We do not use path
ompression, butrather
onvert the alphabet to binary and store the n+ 1 strings
orresponding to ea
h blo
k, inbinary form, into LZTrie. For reasons that are made
lear soon, we pre�x every binary represen-tation with the bit \1". So every node in the binary LZTrie will have a path of length 1 + log2 �to its real parent in the original LZTrie,
reating at most 1 + log2 � internal nodes. We make surethat all the binary trie nodes that
orrespond to true nodes in the original LZTrie are leaves inthe binary trie. For this sake, we use the extra bit allo
ated: at every true node that happens tobe internal, we add a leaf by the bit 0, while all the other
hildren ne
essarily des
end by the bit 1.Hen
e we end up with a binary tree of n(1 + log2 �) nodes, whi
h
an be represented using14

a

d l bp

a

a l ab ar _ a_ lab_ala ard a_p ara _ap al abr arl a$

0

1

17 764

52

8

139111012 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

p

a

15

r a

3 14

l

b$ l r _

_

0

1

2 3

4

5 6

7 8 9

10

11

12

13

14

15

16

17

Search for "alaba"

A(1) = (1,1),(14,2)
A(2) = (2,2),(7,3),(9,4)
A(3) = (1,3),(3,4)
A(4) =
A(5) = (1,5)

C(2,3)

Figure 11: Reporting o

urren
es of type 3 of P = alaba in our running example, �rst part.2n(1 + log2 �) + o(n log �) bits. The identity asso
iated to ea
h leaf x will be idt(x). This arrayof node identi�ers is stored in order of in
reasing rank, whi
h requires n log2 n bits, and permitsimplementing rtht in
onstant time.The operations parentt and
hildt
an therefore be implemented in O(log �) time. Theremaining operations, leftrank(x) and rightrank(x), are
omputed in
onstant time usingleafrank(leftmost(x)) and leafrank(rightmost(x)), sin
e the number of leaves to the left
or-responds to the rank in the original trie.For RevTrie we have up to n leaves, but there may be up to u internal nodes. We use also thebinary string representation and the tri
k of the extra bit to ensure that every node that representsa blo
k is a leaf. In this trie we do use path
ompression to ensure that, even after
onvertingthe alphabet to binary, there are only n nodes to be represented. Hen
e, all the operations
an beimplemented using only 2n+ o(n) bits, plus n log2 n bits for the identi�ers.It remains to explain how we store the representation of the strings in the reverse trie, sin
e inorder to
ompress paths one needs the strings readily available elsewhere. Instead of an expli
itrepresentation, we use the same LZTrie. Assume that we are at a reverse trie y node representingstring a, and we have to
onsider going down to the
hild node x. To �nd out whi
h is the string bjoining y to x, we obtain, using Node(rthr(leftrank(x)) and Node(rthr(rightrank(x)), two nodesin LZTrie. We have to go up from both nodes until we read ar (string a reversed), and then we
ontinue going up to the parent in LZTrie. What we read after ar is br. The pro
ess �nishes15

a l ab ar _ a_ lab_ala ard a_p ara _ap al abr arl a$
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

A(1) = (1,1),(14,2)

A(2) = (2,2),(7,3),(9,4)

A(3) = (1,3),(3,4)

A(4) =

A(5) = (1,5)

P(1..4) = B(1)..B(3)
P(1..2) = B(14)
P(2..3) = B(7)
P(2..4) = B(9)
P(3..3) = B(1)
P(5..5) = B(1)

B(1)..B(3) = "alab" B(9) = "lab"Figure 12: Reporting o

urren
es of type 3 of P = alaba in our running example, se
ond part.when the
hara
ters read from both nodes is di�erent or one rea
hes the root of LZTrie. Notethat advan
ing to a
hild may require O(m log �) time in RevTrie.For the Node mapping we simply have a full array of n log2 n bits.Finally, we need to represent the data stru
ture for range sear
hing, Range, where we store nblo
k identi�ers k (representing the pair (k; k+1)). Among the plethora of data stru
tures o�eringdi�erent spa
e-time tradeo�s for range sear
hing [2, 13℄, we prefer one of minimal spa
e requirementby Chazelle [5℄. This stru
ture is a perfe
t binary tree dividing the points along one
oordinate plusa bu
keted bitmap for every tree node indi
ating whi
h points (ranked by the other
oordinate)belong to the left
hild. There are in total n log2 n bits in the bu
keted bitmaps plus an array ofthe point identi�ers ranked by the �rst
oordinate whi
h represents the leaves of the tree.This stru
ture permits two dimensional range sear
hing in a grid of n pairs of integers in therange [0 : : : n℄ � [0 : : : n℄, answering queries in O((R + 1) log n) time, where R is the number ofo

urren
es reported. A newer te
hnique for bu
keted bitmaps [11, 21℄ needs N + o(N) bits torepresent a bitmap of length N , and permits the rank operation (now meaning number of 1'sup to a given position) and its inverse in
onstant time. Using this te
hnique, the stru
ture ofChazelle requires just n log2 n(1 + o(1)) bits to store all the bitmaps. Moreover, we do not needthe information at the leaves, whi
h maps rank (in a
oordinate) to blo
k identi�ers: as long as weknow that the r-th blo
k quali�es in normal (or reverse) lexi
ographi
al order, we
an use rtht (orrthr) to obtain the identi�er k + 1 (or k).5 Spa
e and Time ComplexityFrom the previous se
tion it be
omes
lear that the total spa
e requirement of our index isndlog2 ne(4 + o(1)) bits. The tries and Node
an be built in O(u log �) time, while Rangeneeds O(n log n)
onstru
tion time. Sin
e n log n = O(u log �) [4℄, the overall
onstru
tion timeis O(u log �). Let us now
onsider the sear
h time of the algorithm.16

a

d l bp

a

a l ab ar _ a_ lab_ala ard a_p ara _ap al abr arl a$

0

1

17 764

52

8

139111012 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

p

a

15

r a

3 14

l

b$ l r _

_

0

1

2 3

4

5 6

7 8 9

10

11

12

13

14

15

16

17

P(5..5) = B(1) −−> ok

C(5,5)

Node(4)

P(1..4) = B(1)..B(3) −−> Node(4) in C(5,5) ?
P(2..4) = B(9) −−> Node(10) in C(5,5) ?

Node(10)

Figure 13: Reporting o

urren
es of type 3 of P = alaba in our running example, third part.Finding the blo
ks that totally
ontain P requires a sear
h in RevTrie of
ost O(m2 log �).Later, we may do an indeterminate amount of work, but for ea
h unit of work we report a distin
to

urren
e, so we
annot work more than R, the size of the result.Finding the o

urren
es that span two blo
ks requires m sear
hes in LZTrie and m sear
hes inRevTrie, for a total
ost of O(m3 log �), as well as m range sear
hes requiring O(m log n+R log n)(sin
e every distin
t o

urren
e is reported only on
e).Finally, sear
hing for o

urren
es that span three blo
ks or more requiresm sear
hes in LZTrie(all the Ci;j for the same i are obtained with a single sear
h), at a
ost of O(m2 log �). Extendingthe o

urren
es
osts O(m2 logm). To see this,
onsider that, for ea
h unit of work done in theloop of lines 27{29 in Figure 15, we mark one C
ell as used and never work again on that
ell.There are O(m2) su
h
ells. This means that we make O(m2) binary sear
hes in the Ai arrays. The
ost to sort the m arrays of size m is also O(m2 logm). The �nal veri�
ations to the right and tothe left
ost O(1) and O(m log �), respe
tively, and there may be O(m2) independent veri�
ations.Note that we have not in
luded the time to sear
h the left pie
e in RevTrie, in whi
h
ase the
ostswould have raised to O(m4 log �). The reason is that, overall, we have to sear
h for every reversedsubstring of P , whi
h requires O(m2) moves in RevTrie, for a total
ost of O(m3 log �).Hen
e the total sear
h
ost to report the R o

urren
es of pattern P1:::m is O(m3 log � + (m+R) log n). If we
onsider the alphabet size as
onstant then the algorithm is O(m3+(m+R) log n).The existen
e problem
an be solved in O(m3 log � +m log n) time (note that we
an disregard inthis
ase blo
ks totally
ontaining P , sin
e these o

urren
es extend others of the other two types).17

a

d l bp

a

a l ab ar _ a_ lab_ala ard a_p ara _ap al abr arl a$

0

1

17 764

52

8

139111012 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

p

a

15

r a

3 14

l

b$ l r _

_

0

1

2 3

4

5 6

7 8 9

10

11

12

13

14

15

16

17

Node(0)

Node(8)

P(1..) = B(1)..., ok
P(2..) = B(9)..., B(8) = ... P(1..1) ? ok
P(5..) = B(1)..., B(0) = ... P(1..4) ? no

We report matches starting in B(8) and B(1)

Figure 14: Reporting o

urren
es of type 3 of P = alaba in our running example, fourth part.Finally, we
an un
ompress and show the text of length L surrounding any o

urren
e reported inO(L log �) time, and un
ompress the whole text T1:::u in O(u log �) time.Chazelle [5℄ permits several spa
e-time tradeo�s in his data stru
ture. In parti
ular, by payingO �1"n log n� spa
e, reporting time
an be redu
ed to O(log" n). If we pay for this spa
e
omplexity,then our sear
h time be
omes O(m2 log(m�) +m log n+R log" n).6 ImplementationWe brie
y des
ribe in this se
tion the implementation of our LZ-index. We fo
us on the mostrelevant parts, espe
ially when the theoreti
ally appealing de
isions turn out to be diÆ
ult toapply in pra
ti
e. A more detailed dis
ussion of the implementation
an be found in [25℄.6.1 Balan
ed Parentheses and General TreesWe represent general trees using a sequen
e of balan
ed parentheses, so that ea
h tree node isrepresented by a
ouple of mat
hing parentheses. Tree traversal operations are mapped to thissequen
e, and we seek to support the following operations: find
lose(i) �nds the position of the18

Sear
h (P1:::m, LZTrie, RevTrie, Node, Range)1. /* Lying inside a single blo
k */2. x sear
h for P r in RevTrie3. For r 2 leftrankr(x) : : : rightrankr(x) Do4. y Node(rthr(r))5. For z in the subtree rooted at y Do6. Report (idt(z);m+ depth(y)� depth(z))7. /* Spanning two blo
ks */8. For i 2 1 : : :m� 1 Do9. x sear
h for P r1:::i in RevTrie10. y sear
h for Pi+1:::m in LZTrie11. Sear
h for [leftrankr(x) : : : rightrankr(x)℄�[leftrankt(y) : : : rightrankt(y)℄ in Range12. For (k; k + 1) in the result of this sear
h Do Report (k; i)13. /* Spanning three or more blo
ks */14. For i 2 1 : : :m Do15. x root node of LZTrie16. Ai ;17. For j 2 i : : :m Do18. If x 6= null Then x
hildt(x; Pj)19. Ci;j x20. usedi;j false21. If x 6= null Then Ai Ai [(idt(x); j)22. For j 2 1 : : :m Do23. For i 2 i : : : j Do24. If Ci;j 6= null and usedi;j = false Then25. S0 idt(Ci;j)26. S S0 � 1; r j � 127. While (S + 1; r0) 2 Ar+1 Do /* always exists the 1st time */28. usedr+1;r0 true29. r r0; S S + 130. span S � S0 + 131. If i > 1 Then span span+ 132. If r < m Then span span+ 133. If span � 3 Then34. If Cr+1;m = null orleftrankt(Cr+1;m) � leftrankt(Node(S + 1)) � rightrankt(Cr+1;m) Then35. x Node(S0 � 1); i0 i� 136. While i0 > 0 and parentt(x) 6= nulland x =
hild(parentt(x); Pi0) Do37. x parentt(x); i0 i0 � 138. If i0 = 0 Then Report (S0 � 1; i� 1)Figure 15: The sear
h algorithm. The value depth(y)� depth(z) is determined on the
y sin
e wetraverse the whole subtree of z. 19

losing parenthesis that mat
hes opening parenthesis at position i; parent(i) gives the position ofthe opening parenthesis
orresponding to the parent of the node represented by i; and several othersimpler ones.As the solution proposed in [22, 23℄ to handle balan
ed parentheses turned out to be too
ompli
ated, and the asymptoti
ally vanishing terms turned out to be not so small, we opted for analternative implementation. It guarantees O(log log n) average time for the operation and (almost)guarantees bounded extra spa
e.Basi
ally, the idea is that, sin
e most trees are small, most of the parentheses sought are
loseenough in the sequen
e and
ould be found after a short brute-for
e sear
h. For the
ases wherethe answer would not be found, we store the answer dire
tly in a hash table. Hen
e, only \large"trees have their answer pre
omputed. In pra
ti
e the hash tables pose a small spa
e overhead.The hash tables for the \near" parentheses
ould be quite large, but we store the distan
esto the mat
hing parentheses rather than the absolute positions. This redu
es the number of bitsneeded. Collisions are solved be
ause, among all the potential answers that have the same ex
ess(number of opening minus number of
losing pre
eding parentheses), the right answer is the
losestone. It is not ne
essary to store the sear
h key in order to solve
ollisions.6.2 LZTrieInstead of
onverting our alphabet to binary and representing the trie as a binary tree and this inturn as a sequen
e of parentheses of maximum arity 2, we
hoose to dire
tly represent the trie in itsgeneral tree form, as a sequen
e of parentheses. The main
onsequen
e is that, by
onverting thealphabet to binary, we would pay O(log �) for any
hild(i; a) operation, while with a representationas a general tree we
ould pay O(�), assuming we sear
h linearly for the proper
hild a. In pra
ti
e,however, only the highest nodes of the trie have a signi�
ant arity, while most of them will havemu
h less than log2 �. On the other hand, the dire
t implementation as a general tree is mu
hsimpler and requires less spa
e.The letters and blo
k identi�ers
orresponding to ea
h node are implemented as simple arraysindexed by rank.6.3 RevTrieThe reverse trie is also represented by a sequen
e of balan
ed parentheses and a sequen
e of blo
kidenti�ers, but this time (1) the edge between two nodes
an be labeled by a string, whi
h is notrepresented; (2) we remove unary nodes that have no blo
k identi�er, but still non-unary nodeswithout blo
k identi�ers remain and are represented (these will be
alled empty nodes). In pra
ti
ethe per
entage of empty nodes is minimal, and storing them simpli�es matters a lot.The only
omplex problem is how to implement
hild(i; a), be
ause (1) edges are labeled byfull strings, and (2) we do not have any representation of these strings. This is done basi
ally asexplained in Se
tion 4. The pro
ess is tedious and slow, so we seek to limit it as mu
h as possible.On the other hand, we do not need the parent(i) operation on RevTrie.
20

6.4 Range versus RNodeInstead of implementing the Range data stru
ture, we opted by a reverse Node data stru
ture,RNode. RNode maps blo
k identi�ers to their (nonempty) nodes in RevTrie.With RNode we
ould solve quite de
ently the same problem addressed by Range, as follows.Say that the sear
h for P r1:::i in RevTrie leads us to node ir and the sear
h for Pi+1:::m in LZTrieleads us to node it (if any of the two nodes does not exist we know immediately that this partitionof P produ
es no mat
hes2). Both for it and ir, we
an use rank and rightrank to determine theranges in the arrays of blo
k identi�ers where the relevant blo
ks lie. Then we have two
hoi
es:(a) For ea
h blo
k k + 1 in the blo
k identi�ers
orresponding to LZTrie, ask whether ir is anan
estor of RNode(k) in RevTrie (this operation is easily implemented in a parenthesesrepresentation). If so, report blo
k k.(b) For ea
h blo
k k in the blo
k identi�ers
orresponding to RevTrie, ask whether it is an an
estorof Node(k + 1) in LZTrie. If so, report blo
k k.Sin
e it is easy to determine whi
h will require less work, we
hoose the best among both
hoi
es.We found that the version based on RNode took 1=2 to 2=3 of the time of Range for all patternlengths. Moreover, RNode is useful in other points of the sear
h, as we see soon.6.5 Sear
hingWe sear
h for every pattern substring Pi:::j using LZTrie, and obtain the matrix Ci;j of the nodes
orresponding to ea
h substring, if any. We also obtain a matrix of blo
k identi�ers Cidi;j
orre-sponding to ea
h node Ci;j. Matrix Cidi;j is ne
essary at several points, most evidently to reporto

urren
es of type 3.In a se
ond step we sear
h for every reversed pattern pre�x, P r1:::j, in RevTrie, and store it inan array Bj . This is ne
essary to report o

urren
es of type 1 and 2. Sin
e sear
hing in RevTrieis mu
h slower than on LZTrie, we seek to redu
e this work as mu
h as possible. The resultsalready obtained in Cid are useful. If we look for P r1:::j and P1:::j exists in LZTrie (that is, C1;jis not null), then RNode(Cid1;j) dire
tly gives us the
orresponding node in RevTrie. Otherwise,P r1:::j
orresponds to an empty node or to a position in a string between two nodes, and
annotbe dire
tly found with LZTrie. Still, we
an redu
e the sear
h
ost as follows. Let i be theminimum value su
h that Ci;j is de�ned. Then RNode(Cidi;j) is the lowest nonempty an
estor ofthe node we are looking for. We
an redu
e the work to that of sear
hing for P r1:::i�1 starting fromnode RNode(Cidi;j). This �nal partial sear
h has to be done using the
hildr(node; a) operationrepeatedly (on
e per node arrived at).O

urren
es of type 1 and 2 are found as explained. For type 3, instead of the arrays A proposedin the theoreti
al part, we opt for a hash table where all the triples (i; j; Cidi;j) are stored withkey (i; Cidi;j). Then we try to extend ea
h mat
h Ci;j by looking for (j + 1; j0; Cidi;j + 1) in thehash table, marking entries (i; j) already used by a sequen
e that starts before, until we
annotextend the
urrent entry. At this point, if the pattern spans 3 blo
ks or more, the sequen
e of2If, in RevTrie, we are in the middle of an edge, we
an safely traverse the edge and
onsider the
hild as the
orre
t solution. 21

involved blo
ks is k : : : k0, and the pattern area is i : : : j0, then we
he
k that Cj0+1;m is an an
estorof Node(k0 + 1) in LZTrie and that Bi�1 is an an
estor of RNode(k � 1) in RevTrie. If all thesetests pass, we report blo
k k � 1.7 Experimental ResultsTo demonstrate the results in pra
ti
e, we have
hosen two di�erent text
olle
tions. The�rst, ziff,
ontains 83.37 megabytes (Mb) obtained from the \ZIFF-2" disk of the TREC-3
olle
tion [10℄. The se
ond, dna,
ontains 51.48 Mb from GenBank (Homo Sapiens DNA,http://www.n
bi.nlm.nih.gov), with lines
ut every 60
hara
ters.Our tests have been run on a Pentium IV pro
essor at 2 GHz, 512 Mb of RAM and 512kilobytes (Kb) of
a
he, running Linux SuSE 7.3. We
ompiled the
ode with g

 2.95.3 usingoptimization option -O9. Times were obtained using 10 repetitions for indexing and 10,000 forsear
hing, obtaining per
entual errors below 1% with 95%
on�den
e. As we work only in mainmemory, we only
onsider CPU times.Our LZ-index takes 1.49 times the text size on ziff and 1.19 on dna. This is 4{5 times thesize of the �le
ompressed with Ziv-Lempel, whi
h
orroborates our spa
e analysis. We
ould storethe index on disk using less spa
e and qui
kly re
onstru
t some parts at load time, but we opt by
ounting the spa
e the index needs to operate.We have
ompared our LZ-index prototype against two of the most prominent alternativeproposals. We have
onsidered
onstru
tion time and spa
e, but our highest interest is in querytimes, both for
ounting and for reporting the o

urren
es.7.1 Other Indexes ComparedAlthough our index does not have any relevant spa
e-time tuning parameter, the others do. Hen
e,we tune the other indexes so as to make them take the same spa
e of our index. The indexes
hosenare:Ferragina and Manzini's FM-index. This index is proposed in [6, 7℄. We
ould not obtainthe sour
es of the implementation of this index from the authors. There is an exe
utable at theirWeb page, http://butirro.di.unipi.it/ ferrax/fmindex/index.html, but the interfa
e doesnot permit running massive and trustable tests, as it
an sear
h for one pattern per run. Hen
e,we implemented the index ourselves. We followed rather
losely the des
riptions in [7℄ and did ourbest to implement this index as eÆ
iently as possible. Later we will give some
ontrol values toshow that our implementation is
ompetitive against the exe
utables given by the authors. Themain tuning parameter of this index is the sampling step for the suÆx array.Sadakane's CSArray. We obtained from K. Sadakane his implementation of the CompressedSuÆx Array index proposed in [27℄. We tried di�erent parameter options that gave the same extraspa
e of our index and used those that gave best results.
22

Index Constru
tion time Main memory spa
eziff dna ziff dnaFM-index 4.990 5.260 5.00 5.00CSArray 19.28 6.890 11.18 10.20LZ-index 0.968 0.605 4.95 3.46Table 1: Index
onstru
tion requirements. Times are in se
onds per Mb and spa
e in number oftimes the text size.7.2 ComparisonRe
all that we
ompare the three indexes su
h that they take the same amount of main memory tofun
tion. Table 1 shows the time and memory requirements to build the di�erent indexes (althoughthe �nal index spa
e is the same, they need di�erent spa
e to build). As it
an be seen, our indexbuilds mu
h faster than the others (whose
onstru
tion time involve at least the
onstru
tion of asuÆx array). It also needs less memory to build.Let us now
onsider sear
h times. Figure 16 shows the overall query times under the di�erent\reporting levels" (just
ounting the o

urren
es, reporting their text positions, or showing theirtext line). Note that we use a logarithmi
 s
ale on y.For
ounting queries, the FM-index is unparalleled, taking around 1:7m �se
s. The CSArray,although slower, is still mu
h faster than our LZ-index, taking around 5m �se
s. It is
lear that wedo not have a
ase for
ounting queries: our LZ-index took 112m �se
s on ziff and 38m �se
s ondna, 10{20 times slower than the CSArray and 20{60 times slower than the FM-index.The FM-index, however, be
omes mu
h slower to report the positions of the o

urren
es found,a
hieving a rate of 10{20 o

urren
es per mse
. Our rate is
lose to 900{1,400 per mse
. TheCSArray is faster than the FM-index at this step, reporting 100{160 o

urren
es per mse
. In any
ase, it is
lear that �nding the a
tual positions of the o

urren
es is
ostly under their s
hemes,70{90 times slower for the FM-index and 9 times slower for the CSArray.The di�eren
es favor the LZ-index even more if we ask to reprodu
e the lines where the o
-
urren
es were found. Remind that this is an essential feature, sin
e all these indexes repla
e thetext and hen
e our only way to see the text is asking them to reprodu
e it. While our LZ-index isable to show around 14 lines per mse
, the FM-index and the CSArray
an show only 4{6 lines permse
.As a
on
lusion, we have that our index is rather slow to
ount the number of o

urren
es, butmu
h faster to show their positions or their text
ontexts. This is rather intrinsi
, be
ause in ourindex the o

urren
es of P are s
attered all around the index, while these are all together in a suÆxarray. Giving the o

urren
e positions and text
ontexts, however, is rather fast be
ause we didmost of the work in the
ounting phase. We require only a fast tree traversal step per
hara
teroutput. Compressed suÆx arrays, on the other hand, rely on a sampled suÆx array and they mustperform expensive traversals until they determine the a
tual suÆx array values.We
laim that, for most text retrieval needs, knowing just the amount of o

urren
es is notenough. Although it may be useful at the internal ma
hinery of other more
omplex tasks, the23

0.001

0.01

0.1

1

10

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

ZIFF: Time to count occurrences

LZ-index
FM-index
CSArray

0.01

0.1

1

10

100

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

DNA: Time to count occurrences

LZ-index
FM-index
CSArray

0.1

1

10

100

1000

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

ZIFF: Time to report occurrence positions

LZ-index
FM-index
CSArray

0.1

1

10

100

1000

10000

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

DNA: Time to report occurrence positions

LZ-index
FM-index
CSArray

0.1

1

10

100

1000

10000

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

ZIFF: Time to output matching lines

LZ-index
FM-index
CSArray

0.1

1

10

100

1000

10000

100000

0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
cs

)

Pattern length (m)

DNA: Time to output matching lines

LZ-index
FM-index
CSArray

Figure 16: Overall query times when
ounting o

urren
es (top), reporting positions (middle),and to output mat
hing lines (bottom). We
ompare our LZ-index against the most relevantalternatives.
24

bottom line is that the user wants to know where the o

urren
es are and most probably to seetheir text
ontext (not to speak of retrieving the whole do
ument, not the line,
ontaining theo

urren
e).Let us be pessimisti
 against the LZ-index and assume that one
an build an alternative asfast as the FM-index to sear
h for the pattern and as fast as the CSArray to show the o

urren
es(this s
enario is rather realisti
). It turns out that, to report the o

urren
es, the LZ-index wouldbe
ome faster after we report 1,400 o

urren
es on ziff or 300 on dna. If we would like to see thelines
ontaining the o

urren
es, these numbers drop to 65 on ziff and 13 on dna. This showsthat our index be
omes superior as soon as we have to show a few o

urren
es.To
on
lude, we give some data on our tests over the exe
utables of the FM-index providedby the authors. These permit a
oarse
ontrol over the index spa
e by spe
ifying the frequen
y ofa
hara
ter whose positions will be sampled. Although we tried the highest possible frequen
ies,we
ould not obtain indexes larger than 75.02% of the ziff �le and 109.81% of the dna �le. Theformer is half the spa
e we permit, while the latter is rather
lose to the
orre
t value. The timeto
ount o

urren
es is negligible, as expe
ted. O

urren
e positions were reported at a rate thatvaried a lot, but was always between 0.5 and 10 o

urren
es per mse
. When we asked the index toshow a text
ontext of length equivalent to an average line (43
hara
ters on ziff and 61 on dna),it showed them at a rate of 10 to 20 per se
ond. Even if we assume that the index on ziff
oulddouble its performan
e by using twi
e the spa
e, the �gures still show that our implementation ofthe FM-index is
ompetitive against that of the original authors, when not superior by far3. Theresults did not vary when we tried di�erent memory poli
ies o�ered by the index (on disk, mmaped,in main memory).8 Con
lusionsWe have presented an index for text sear
hing based on the LZ78/LZW
ompression,
alled theLZ-index. At the pri
e of 4n log2 n(1+o(1)) bits, we are able to �nd the R o

urren
es of a patternof length m in a text of n blo
ks in O(m3 log � + (m+R) log n) time.We have implemented the LZ-index and
ompared our prototype against existing alternatives.The results show that the LZ-index is
ompetitive in pra
ti
e. Although it is mu
h slower to
ounthow many o

urren
es are there, it is mu
h faster to report their position or their text
ontext.Indeed, we show that if there are more than 1,400 (ziff) or 300 (dna) o

urren
e positions toreport, or more than 65 (ziff) or 13 (dna) text lines to show, the LZ-index be
omes superior. Inour experiments this happened up to m � 10 (ziff) or m � 5 (dna) to report o

urren
e positionsand up to m � 20 (ziff and dna) to report mat
hing lines. This in
ludes most of the interesting
ases on natural language and several ones on geneti
 sequen
es.Altough the slowness for
ounting queries is intrinsi
 of our index, we believe that times
an be atleast improved. One
lear slowdown fa
tor is the linear sear
h of nodes when exe
uting
hild(i; a),as the time to �ll matrix Ci;j dominates the overall time on
e we ex
lude reporting. One
hoi
ewould be to repla
e it by a two-level stru
ture, where
hildren are grouped into p�
ontiguousgroups of p� nodes ea
h, hen
e permitting faster a

ess to the desired
hild. Another operation3We believe that the authors have optimized their implementation for a spa
e
onsumption mu
h inferior thanthat of our
omparison. 25

whose improvement will bene�t the overall sear
h time is that of �nding mat
hing parentheses(find
lose() and parent()).Other
hallenges that lie ahead are performing regular expression and approximate sear
hingusing this index, working on se
ondary memory, and trying to
ompete against
ompressed invertedindexes designed for natural language text. Building the index in su

int spa
e would be animportant step in this dire
tion (see, for example, [18℄).A
knowledgementsWe thank Kunihiko Sadakane for kindly giving as a prototype of his index [27℄.Referen
es[1℄ M. Abouelhoda, E. Ohlebus
h, and S. Kurtz. Optimal exa
t string mat
hing based on suÆxarrays. In Pro
. 9th Intl. Symp. String Pro
essing and Information Retrieval (SPIRE'02),LNCS 2476, pages 31{43, 2002.[2℄ P. Agarwal and J. Eri
kson. Geometri
 range sear
hing and its relatives. ContemporaryMathemati
s, 23: Advan
es in Dis
rete and Computational Geometry:1{56, 1999.[3℄ A. Apostoli
o. The myriad virtues of subword trees. In Combinatorial Algorithms on Words,NATO ISI Series, pages 85{96. Springer-Verlag, 1985.[4℄ T. Bell, J. Cleary, and I. Witten. Text
ompression. Prenti
e Hall, 1990.[5℄ B. Chazelle. A fun
tional approa
h to data stru
tures and its use in multidimensional sear
hing.SIAM Journal on Computing, 17(3):427{462, 1988.[6℄ P. Ferragina and G. Manzini. Opportunisti
 data stru
tures with appli
ations. In Pro
. 41stIEEE Symp. Foundations of Computer S
ien
e (FOCS'00), pages 390{398, 2000.[7℄ P. Ferragina and G. Manzini. An experimental study of an opportunisti
 index. In Pro
. 12thACM Symp. on Dis
rete Algorithms (SODA'01), pages 269{278, 2001.[8℄ P. Ferragina and G. Manzini. On
ompressing and indexing data. Te
hni
al Report TR-02-01,Dipartamento di Informati
a, Univ. of Pisa, 2002.[9℄ R. Grossi and J.S. Vitter. Compressed suÆx arrays and suÆx trees with appli
ations to textindexing and string mat
hing. In Pro
. 32nd ACM Symp. Theory of Computing (STOC'00),pages 397{406, 2000.[10℄ D. Harman. Overview of the Third Text REtrieval Conferen
e. In Pro
. Third Text REtrievalConferen
e (TREC-3), pages 1{19, 1995. NIST Spe
ial Publi
ation 500-207.[11℄ G. Ja
obson. Spa
e-eÆ
ient stati
 trees and graphs. In Pro
. 30th IEEE Symp. Foundationsof Computer S
ien
e (FOCS'89), pages 549{554, 1989.26

[12℄ J. K�arkk�ainen. SuÆx
a
tus: a
ross between suÆx tree and suÆx array. In Pro
. 6th Ann.Symp. Combinatorial Pattern Mat
hing (CPM'95), LNCS 937, pages 191{204, 1995.[13℄ J. K�arkk�ainen. Repetition-based text indexes. PhD thesis, Dept. of Computer S
ien
e, Univer-sity of Helsinki, Finland, 1999. Also available as Report A-1999-4, Series A.[14℄ J. K�arkk�ainen and E. Ukkonen. Lempel-Ziv parsing and sublinear-size index stru
tures forstring mat
hing. In Pro
. 3rd South Ameri
an Workshop on String Pro
essing (WSP'96),pages 141{155. Carleton University Press, 1996.[15℄ J. K�arkk�ainen and E. Ukkonen. Sparse suÆx trees. In Pro
. 2nd Ann. Intl. Conferen
e onComputing and Combinatori
s (COCOON'96), LNCS 1090, 1996.[16℄ R. Kosaraju and G. Manzini. Compression of low entropy strings with Lempel-Ziv algorithms.SIAM Journal on Computing, 29(3):893{911, 1999.[17℄ S. Kurtz. Redu
ing the spa
e requirements of suÆx trees. Report 98-03, Te
hnis
he Kakult�at,Universit�at Bielefeld, 1998.[18℄ T.-W. Lam, K. Sadakane, W.-K. Sung, and S.-M. Yiu. A spa
e and time eÆ
ient algorithmfor
onstru
ting
ompressed suÆx arrays. In Pro
. 8th Ann. Intl. Conferen
e on Computingand Combinatori
s (COCOON'02), pages 401{410, 2002.[19℄ V. M�akinen. Compa
t suÆx array. In Pro
. 11th Ann. Symp. Combinatorial Pattern Mat
hing(CPM'00), LNCS 1848, pages 305{319, 2000.[20℄ U. Manber and G. Myers. SuÆx arrays: a new method for on-line string sear
hes. SIAMJournal on Computing, pages 935{948, 1993.[21℄ I. Munro. Tables. In Pro
. 16th Foundations of Software Te
hnology and Theoreti
al ComputerS
ien
e (FSTTCS'96), LNCS 1180, pages 37{42, 1996.[22℄ I. Munro and V. Raman. Su

int representation of balan
ed parentheses, stati
 trees andplanar graphs. In Pro
. 38th IEEE Symp. Foundations of Computer S
ien
e (FOCS'97),pages 118{126, 1997.[23℄ I. Munro, V. Raman, and S. Rao. Spa
e eÆ
ient suÆx trees. Journal of Algorithms, pages205{222, 2001.[24℄ G. Navarro. Indexing text using the Ziv-Lempel trie. In Pro
. 9th Intl. Symp. String Pro
essingand Information Retrieval (SPIRE'02), LNCS 2476, pages 325{336, 2002.[25℄ G. Navarro. The LZ-index: A text index based on the Ziv-Lempel trie. Te
hni
al ReportTR/DCC-2003-1, Dept. of Computer S
ien
e, Univ. of Chile, January 2003.[26℄ G. Navarro, E. Moura, M. Neubert, N. Ziviani, and R. Baeza-Yates. Adding
ompression toblo
k addressing inverted indexes. Information Retrieval, 3(1):49{77, 2000.27

[27℄ K. Sadakane. Compressed text databases with eÆ
ient query algorithms based on the
om-pressed suÆx array. In Pro
. 11th Intl. Symp. Algorithms and Computation (ISAAC'00),LNCS 1969, pages 410{421, 2000.[28℄ K. Sadakane. Su

int representations of l
p information and improvements in the
ompressedsuÆx arrays. In Pro
. 13th ACM Symp. on Dis
rete Algorithms (SODA'02), pages 225{232,2002.[29℄ T. Wel
h. A te
hnique for high performan
e data
ompression. IEEE Computer Magazine,17(6):8{19, June 1984.[30℄ I. Witten, A. Mo�at, and T. Bell. Managing Gigabytes. Morgan Kaufmann Publishers, NewYork, se
ond edition, 1999.[31℄ J. Ziv and A. Lempel. Compression of individual sequen
es via variable length
oding. IEEETrans. on Information Theory, 24:530{536, 1978.

28

