Indexing Text using the Ziv-Lempel Trie

Gonzalo Navarro

Dept. of Computer Science, Univ. of Chile.
Blanco Encalada 2120, Santiago, Chile. gnavarro@dcc.uchile.cl.
Partially supported by Fondecyt Grant 1-020831.

Abstract

Let a text of u characters over an alphabet of size o be compressible to n symbols by
the LZ78 or LZW algorithm. We show how to build a data structure, called the LZ-index,
based on the Ziv-Lempel trie that takes 4nlog, n(1 + o(1)) bits of space (that is, 4 times the
entropy of the text) and reports the R occurrences of a pattern of length m in worst case time
O(m3logo + (m + R)logn). We present a practical implementation of the LZ-index, which is
faster than current alternatives when we take into consideration the time to report the positions
or text contexts of the occurrences found.

1 Introduction and Related Work

A text database is a system providing fast access to a large mass of textual data. By far the most
challenging requirement is that of performing fast text searching for user-entered patterns. The
simplest (yet realistic and rather common) scenario is as follows. The text T _, is regarded as a
unique sequence of characters over an alphabet ¥ of size o, and the search pattern P;_,, as another
(short) sequence over X. Then the text search problem consists of finding all the R occurrences of
PinT.

Modern text databases have to face two opposed goals. On the one hand, they have to provide
fast access to the text. On the other, they have to use as little space as possible. The goals are
opposed because, in order to provide fast access, an index has to be built on the text. An index is a
data structure built on the text and stored in the database, hence increasing the space requirement.
In recent years there has been much research on compressed text databases, focusing on techniques
to represent the text and the index in succinct form, yet permitting efficient text searching.

Despite that there has been some work on succinct inverted indexes for natural language for a
while [30, 26] (able of finding whole words and phrases), until a short time ago it was believed that
any general index for string matching would need Q(u) space. In practice, the smallest indexes
available were the suffix arrays [20], requiring ulog, u bits to index a text of u characters, which
required ulog, o bits to be represented, so the index is in practice larger than the text (typically 4
times the text size).

Since the last decade, several attempts to reduce the space of the suffix trees [3] or arrays
have been made by Kérkkainen and Ukkonen [12, 15], Kurtz [17], Makinen [19], and Abouelhoda,

Ohlebusch and Kurtz [1], obtaining remarkable improvements, albeit no spectacular ones. More-
over, they have concentrated on the space requirement of the data structure only, needing the text
separately available.

The first achievement of a new trend started with Grossi and Vitter [9], who presented a suffix
array compression method for binary texts, which needed O(u) bits and was able to report all the

R occurrences of P in T in O (lo’gu +(R+1)log® u) time. However, they need the text as well as
the index in order to answer queries.

Following this line, Sadakane [27] presented a suffix array compression method for general
texts (not only binary) that requires u (%Ho + 8 + 3log, HU) (1 +0(1)) 4+ ology o bits, where H
is the zero-order entropy of the text. This index can search in time O(mlogu + Rlog® u) and
contains enough information to reproduce the text: any piece of text of length L is obtained in
O(L + log® u) time. This means that the index replaces the text, which can hence be deleted. This
is an opportunistic scheme, i.e., the index takes less space if the text is compressible. Yet there is
a minimum of 8u bits of space which has to be paid independently of the entropy of the text.

Ferragina and Manzini [6] presented a different approach to compress the suffix array based on

the Burrows-Wheeler transform and block sorting. They need 5uHj + O (u%) bits and
can answer queries in O(m + Rlog® u) time, where Hy is the k-th order entropy and the formula
is valid for any constant k. This scheme is also opportunistic. However, there is a large constant
o log o involved in the sublinear part which does not decrease with the entropy, and a huge additive
constant larger than 0. (In a real implementation [7] they removed these constants at the price

of a not guaranteed search time.)

Recently, Sadakane [28] has proposed a compact suffix array representation that includes longest
common prefix information, which is able to count the occurrences of P in O(m) time and of
traversing the suffix tree in O(nlog®n) time. It needs InHj 4+ O(n) bits. Its main interest lies in
its ability to handle large alphabets, where it is superior to [6].

However, there are older attempts to produce succinct indexes, by Karkkainen and Ukkonen
[14, 13]. Their main idea is to use a suffix tree that indexes only the beginnings of the blocks
produced by a Ziv-Lempel compression (see next section if not familiar with Ziv-Lempel). This
is the only index we are aware of which is based on this type of compression. In [13] they obtain

a range of space-time trade-offs. The smallest indexes need O (u (log o+ %)) bits, i.e., the same
space of the original text, and are able to answer queries in O GgﬁmZ + mlogu + %R log® u) time.
Note, however, that this index is not opportunistic, as it takes space proportional to the text, and
indeed needs the text besides the data of the index.

In this paper we propose a new index on these lines, called the LZ-index. Instead of using a
generic Ziv-Lempel algorithm, we stick to the LZ78/LZW format and its specific properties. We do
not build a suffix tree on the strings produced by the LZ78 algorithm. Rather, we use the very same
LZ78 trie that is produced during compression, plus other related structures. We borrow some ideas
from Karkkainen and Ukkonen’s work, but in our case we have to face additional complications
because the LZ78 trie has less information than the suffix tree of the blocks. As a result, our index is
smaller but has a higher search time. If we call n the number of blocks in the compressed text, then
our index takes 4n logy n(14 o(1)) bits of space and answers queries in O(m?3logo + (m + R) log n)

time. It is shown in [16, 8] that Ziv-Lempel compression asymptotically approaches Hy for any

k. Since this compressed text needs at least nlogy n bits of storage, we have that our index is
opportunistic, taking at most 4uHj, bits, for any k.

This representation, moreover, contains the information to reproduce the text. We can re-
produce a text context of length L around an occurrence found (and in fact any sequence of
blocks) in O(Llog o) time, or obtain the whole text in time O(ulog o). The index can be built in
O(ulog o) time. Finally, the time can be reduced to O(m?log o +mlogn + Rlog® n) provided we
pay O (%nlog n) space.

About at the same time and independently of us [8], Ferragina and Manzini have proposed
another idea combining compressed suffix arrays and Ziv-Lempel compression. They achieve opti-
mal O(m + R) search time at the price of O(uHj log® u) space. Moreover, this space includes two
compressed suffix arrays of the previous type [6] and their large constant terms. It is interesting
that they share, like us, several ideas of previous work on sparse suffix trees [14, 13].

What is unique in our approach is the reconstruction of the occurrences using a data structure
that does not record full suffix information but just of text substrings, thus addressing the problem
of reconstructing pattern occurrences from these pieces information.

In addition to our theoretical proposal, we have implemented our index. Some decisions are
changed in the implementation because of practical considerations. The final prototype was tested
on large natural language and DNA texts. It takes about 5 times the space needed by the com-
pressed text (which is close to our prediction 4uHj). On a 2 GHz Pentium IV machine, the index
is built at a rate of 1-2 Mb/sec (which is competitive with current technology) and uses a tem-
porary extra space similar to a suffix array construction (5 times the text size, which is large but
usual). On a 50 Mb text, a normal query takes 2 to 4 milliseconds (msecs), depending linearly on
its length, plus the time to report the R occurrences, at a rate of 600 800 per msec. Text lines can
be displayed at a rate of 14 lines per msec.

We have compared our index against existing alternatives. Although our index is much slower
to count how many occurrences are there, it is much faster to report their position or their text
context. Indeed, we show that if there are more than 300-1,400 occurrence positions to report (this
depends on the text type), then our index is faster than the others. This number goes down to
1365 if the text lines of the occurrences have to be shown. Being able of reproducing the text is
an essential feature, since all these indexes replace the text and hence our only way to see the text
is asking them to reproduce it.

This paper is organized as follows. In Section 2 we explain the Ziv-Lempel compression. In
Section 3 we present the basic ideas of our technique. Section 4 explains how to represent the data
structures we use in succint space. Section 5 gives a theoretical analysis of the data structure, in
terms of space, construction and query time. Section 6 describes the practical implementation of
the index. Section 7 compares our implementation against the most prominent alternatives. Section
8 gives our conclusions and future work directions. A shorter version of this paper appeared in [24].

2 Ziv-Lempel Compression

The general idea of Ziv-Lempel compression is to replace substrings in the text by a pointer to
a previous occurrence of them. If the pointer takes less space than the string it is replacing,
compression is obtained. Different variants over this type of compression exist, see for example [4].

We are particularly interested in the LZ78/LZW format, which we describe in depth.

The Ziv-Lempel compression algorithm of 1978 (usually named LZ78 [31]) is based on a dictio-
nary of blocks, in which we add every new block computed. At the beginning of the compression,
the dictionary contains a single block by of length 0. The current step of the compression is as
follows: if we assume that a prefix 77 _; of T" has been already compressed in a sequence of blocks
Z =by...b,, all them in the dictionary, then we look for the longest prefix of the rest of the text
Tji1..4 which is a block of the dictionary. Once we have found this block, say b, of length ¢,, we
construct a new block b, 11 = (s,Tj4¢,41), we write the pair at the end of the compressed file Z, i.e
Z =by...byby41, and we add the block to the dictionary. It is easy to see that this dictionary is
prefix-closed (i.e. any prefix of an element is also an element of the dictionary) and a natural way
to represent it is a trie.

We show in Figure 1 the compression of the text alabar a la alabarda para apalabrarla', which
will be our running example. For readability we have changed the space to underscore and have
assumed its code is larger than those of normal letters.

The first block is (0,a), and next (0,1). When we read the next a, a is already block 1 in the
dictionary, but ab is not in the dictionary. So we create a third block (1,b). We then read the next
a, a is already block 1 in the dictionary, but ar does not appear. So we create a new block (1,r),
and so on. The full compressed text is

(0,a) (0,1) (1,0) (1,7) (0,) (L,-) (2,a) (5,a) (7,b) (4,d) (6,p) (4,a) (8,p) (1,1) (3,r) (4,1) (1,9)

were we have added a terminator character “$”, smaller than any other character, to ensure that
every block corresponds to a different node.

The compression algorithm is O(u) time in the worst case and efficient in practice if the dictio-
nary is stored as a trie, which allows rapid searching of the new text prefix (for each character of
T we move once in the trie). The decompression needs to build the same dictionary (the pair that
defines the block r is read at the r-th step of the algorithm).

Many variations on LZ78 exist, which deal basically with the best way to code the pairs in the
compressed file. A particularly interesting variant is from Welch, called LZW [29]. In this case,
the extra letter (second element of the pair) is not coded, but it is taken as the first letter of the
next block (the dictionary is started with one block per letter). LZW is used by Unix’s Compress
program.

In this paper we do not consider LZW separately but just as a coding variant of LZ78. This is
because the final letter of LZ78 can be readily obtained by keeping count of the first letter of each
block (this is copied directly from the referenced block) and then looking at the first letter of the
next block.

An interesting property of this compression format is that every block represents a different text
substring. The only possible exception is the last block. We use this property in our algorithm,
and deal with the exception by adding a special character “$” (not in the alphabet) at the end of
the text. The last block will contain this character and thus will be unique too.

Another concept that is worth reminding is that a set of strings can be lexicographically sorted,
and we call the rank of a string its position in the lexicographically sorted set. Moreover, if
the set is arranged in a trie data structure, then all the strings represented in a subtree form a

YA not totally meaningful Spanish phrase, but one with nice periodicity properties!

) @ @

r a/d| | P

1s) (@) () (e) () (o) (1)

alabar a la alabarda para apalabrarla

123 4 56 7 8 9 10 11 12 13 1415 16 17
]a| I |ab| ar|_| a_] Ia|_a| Iab| ard| a_p| ara| _aﬂ) a|| abf ar|| a$

Figure 1: Ziv-Lempel trie and parse for our running example. For example, block number 10
represents string ard, which is spelled out when we move from the trie root to node labeled 10.

lexicographical interval of the universe. We remind that, in lexicographic order, ¢ < x, ax < by if
a < b, and ax < ay if z <y, for any strings x,y and characters a, b.

3 Basic Technique

We now present the basic idea to search for a pattern P; _,, in a text T; , which has been com-
pressed using the LZ78 or LZW algorithm into n + 1 blocks T = By...B,, such that By = ¢;
Vk # (, By # By (that is, no two blocks are equal); and Vk > 1, I < k,c € ¥, By = By - ¢ (that
is, every block except By is formed by a previous block plus a letter at the end).

3.1 Data Structures

We start by defining the data structures used, without caring for the exact way they are represented.
The problem of their succinct representation, and consequently the space occupancy and time
complexity, is considered in Section 4.

1. LZTrie : is the trie formed by all the blocks By ... B,. Given the properties of LZ78 com-
pression, this trie has exactly n+ 1 nodes, each one corresponding to a string. LZTrie stores

enough information so as to permit the following operations on every node x:

(a) id;(x) gives the node identifier, i.e., the number k such that x represents By;

(b) leftrank;(x) and rightrank,;(x) give the minimum and maximum lexicographical posi-
tion of the blocks represented by the nodes in the subtree rooted at x, among the set
BO e Bn;

(¢) parent;(xz) gives the tree position of the parent node of x; and

(d) child;(x,c) gives the tree position of the child of node x by character ¢, or null if no
such child exists.

Additionally, the trie must implement the operation rthy(rank), which given a rank r gives
the node representing the r-th string in By... B, in lexicographical order. Figure 2 shows
the LZTrie data structure for our running example.

X represents B(4)="ar"

leftrank(x)=6 Node(4) = x

1 rth(6)=x
(s)

a

r a/d| | p b P
© ot

child(x,’a’
(') rightrank(x)=9

B(O)=""
N123 4 56 78 9 10 11 12 13 1415 16 17
|a|I|ab]ar| | a_|la|_al| lablard|a_p| aral _ap & abl afl a$

T = B(0)B(1)...B(n) B(ﬁ; - n17

Figure 2: LZTrie data structure for our running example. The numbers over the nodes are their
rank. We show the values that correspond to node x, which represents block number 4 and is the
6th string in the set.

2. RevTrie : is the trie formed by all the reverse strings By ... B),. For this structure we do
not have the nice properties that the LZ78/LZW algorithm gives to LZTrie: there could be

internal nodes not representing any block. We need the same operations for RevI'rie than
for LZTrie, which are called id,, leftrank,, rightrank,, parent,, child, and rth,.

Figure 3 shows the RevTrie data structure for our running example.

X represents B(1)="a
rth(2)=x

X

© é OO O0OD

child(x,'r") a

| a a _
7 8 e

rightrank(x)=5

2
e
I

13 15

B(0) =™
N123 4 56 78 9 10 11 12 13 1415 16 17
|a[1]ablar| | a_|la]_a] labjard|a_p| ard _ap & abf afl a$

T /

T = B(0)B(1)...B(n) 5110 = "ard n17

Figure 3: RevTrie data structure for our running example. As we store the reversed strings, the
set is not prefix-closed and not every node corresponds to a block identifier. We show the values
that correspond to node x, which represents block number 1 and is the 2nd string in the set.

3. Node : is a mapping from block identifiers to their node in LZTrie.

4. Range : is a data structure for two-dimensional searching in the space [0...n] x [0...n].
The points stored in this structure are {(revrank(B},), rank(By11)), k € 0...n — 1}, where
revrank is the lexicographical rank in Bj...B] and rank is the lexicographical rank in
By ... B,. For each such point, the corresponding k value is stored.

Figure 4 shows the Range data structure for our running example.

3.2 Search Algorithm

Let us consider the search process now. We distinguish three types of occurrences of P in T,
depending on the block layout (see Figure 5):

(a) the occurrence lies inside a single block;

D

revrank(9) =7

rank(10) = 8

|

g —— B(9):B(10) = "lab":"ard"

)

C
9

H
N
W ~NOO 00k~ WDN PO

D

©

N
H
o

)]
w
Il
N P

H
=
w

I
'_\
a~

[y
(¢

| g
J

=
(e}

)

AN
\l

0123456 7 8 91011121314151617

Figure 4: Range data structure for our running example. For instance, the pair of consecutive
blocks 9:10 have reversed rank and rank, respectively, 7 and 8. Hence block number 9 is stored at
row 7 and column 8 of the data structure.

(b) the occurrence spans two blocks, By and By 1, such that a prefix P;_; matches a suffix of By
and the suffix P, ,, matches a prefix of Bjyy1; and

(¢) the occurrence spans three or more blocks, By, ... By, such that P; j = Byy1...Beq, P11
matches a suffix of By, and Pj ;. ,, matches a prefix of By.

Note that each possible occurrence of P lies exactly in one of the three cases above. We explain
now how each type of occurrence is found.

LZ78 block numbers
1 2 3 4 56 7
Pinsidea P spans 2 P spans 4
block blocks blocks

Figure 5: Different situations in which P can match inside 7.

3.2.1 Occurrences Lying Inside a Single Block

Given the properties of LZ78/LZW, every block By containing P is formed by a shorter block By
concatenated to a letter c. If P does not occur at the end of By, then B, contains P as well.
We want to find the shortest possible block B in the referencing chain for By that contains the
occurrence of P. This block B finishes with the string P, hence it can be easily found by searching
for P" in RevT'rie.

Hence, in order to detect all the occurrences that lie inside a single block we do as follows:

1. Search for P" in RevTrie. We arrive at a node = such that every string stored in the subtree
rooted at x represents a block ending with P.

2. Evaluate leftrank,(x) and rightrank,(z), obtaining the lexicographical interval (in the re-
versed blocks) of blocks finishing with P.

3. For every rank r € leftrank,(x)...rightrank,(x), obtain the corresponding node in LZT'rie,
y = Node(rth,.(r)). Now we have identified the nodes in the normal trie that finish with P
and have to report all their extensions, i.e., all their subtrees.

4. For every such y, traverse all the subtree rooted at y and report every node found. In this
process we can know the exact distance between the end of P and the end of the block.
Note that a single block containing several occurrences will report each of them, since we will
report a subtree that is contained in another subtree reported.

Figure 6 illustrates the first part on our running example. Assume we search for ab. We look
for ba on RevI'rie and reach the highlighted node. With leftrank and rightrank we find that the
lexicographical range corresponding to its subtree is [6...7]. For each such position we use rth, to
determine the block identifier, so as to obtain the list of identifiers of the subtree, {3,9}.

Figure 7 shows the second part of the search on our running example. For each block in the list
{3,9}, we use Node to find the corresponding node in LZT'rie, and report all the subtrees. Hence
block 3 leads us to report also block 15, while block 9 just reports itself. It is easy to deduce the
offset in the reported blocks, counting from the end: the nodes in the list have offset m to the end
of the block, their children m + 1, their grandchildren m + 2, and so on.

3.2.2 Occurrences Spanning Two Blocks

P can be split at any position, so we have to try them all. The idea is that, for every possible split,
we search for the reverse pattern prefix in RevTrie and the pattern suffix in LZTrie. Now we have
two ranges, one in the space of reversed strings (i.e., blocks finishing with the first part of P) and
one in that of the normal strings (i.e. blocks starting with the second part of P), and need to find
the pairs of blocks (k, k + 1) such that k is in the first range and k + 1 is in the second range. This
is what the range searching data structure is for. Hence the steps are:

1. Forevery : € 1...m — 1, split P in pref = P, ; and suff = Piy1._, and do the next steps.

2. Search for pref” in RevT'rie, obtaining x. Search for suff in LZTrie, obtaining y.

Search for "ab

a I a a _ a a
11
2 8 12 13 15
DIAOLONNOKE
leftrank = 6
rightrank = 7

rth(6..7) = {3,9}

\1a\zl \3ab \4ar \5_[3 a_\7la \8_a ‘9 Lal:)\l;rd \1;_p \nardlg_aﬁal 4dllsab fleaﬂll7a$

Figure 6: Reporting occurrences of type 1 of P = ab in our running example, first part.

3. Search for the range [leftrank,(x)...rightrank,(x)] x [leftranky(y)...rightrank(y)| using
the Range data structure.

4. For every pair (k,k + 1) found, report k. We know that P; is aligned at the end of Bj.

Figure 8 exemplifies the first part on our running example. Assume we search for ala (we will
find only its occurrences of type 2). We look for the suffixes a and la on LZTrie, reaching the
highlighted nodes. With leftrank and rightrank we find that their ranges are [1,9] and [13,14],
respectively.

Figure 9 shows the second part. We search for the reverse prefixes of ala, namely la and a, in
RevTrie. The nodes reached are highlighted. Their ranges are, respectively, [10,10] and [2,5].

Finally, Figure 10 shows the last part of the search. We join prefix ¢ with suffix /a, obtaining
a 2-dimensional rank range (2,13):(5,14); and prefix al with suffix a, obtaining a 2-dimensional
range (10,1):(10,9). Both ranges are searched for in Range, and all the block identifiers found are
reported. The offsets are known from the splitting point.

3.2.3 Occurrences Spanning Three Blocks or More

We need one more observation for this part. Recall that the LZ78/LZW algorithm guarantees that
every block represents a different string. Hence, there is at most one block matching P; ; for each
choice of ¢ and j. This fact severely limits the number of occurrences of this class that may exist.

The idea is, first, to identify the only possible block that matches every substring P; ;. We
store the block numbers in m arrays A;, where A; stores the blocks corresponding to F; ; for all

10

Node(3)

@ %% W @@

Report matches inside B(3), B(15) and B(9)

123 4 56 78 9 10 1 12 13 1415 16 17
|a|l|ablar|_|a|la]_a| labjard|a_p| ard] _ap & abf afl a$

Figure 7: Reporting occurrences of type 1 of P = ab in our running example, second part.

j. Then, we try to find concatenations of successive blocks By, By, etc. that match contiguous
pattern substrings. Again, there is only one candidate (namely Bjy1) to follow an occurrence of
By, in the pattern. Finally, for each maximal concatenation of blocks P; ; = By, ... B contained in
the pattern, we determine whether Bj,_; finishes with Py ;1 and By starts with Pj . _,,. If this
is the case we can report an occurrence. Note that there cannot be more than O(m?) occurrences
of this type. So the algorithm is as follows:

1. For every 1 <i < j <m, search for P; ; in LZTrie and record the node x found in C; ; = x,
as well as add (id;(x), j) to array A;. The search is made for increasing i and for each i value
we increase j. This way we perform a single search in the trie for each i. If there is no node
corresponding to F; ; we stop searching and adding entries to A;, and store null values in
C; j for j' > j. At the end of every i-turn, we sort A; by block number. Mark every C; ; as
unused.

2. For every 1 <14 < j < m, for increasing j, try to extend the match of P;_; to the right. We do
not extend to the left because this, if useful, has been done already (we mark used ranges to
avoid working on a sequence that has been tried already from the left). Let S and Sy denote
id(Cj), and find (S+1,7) in A;yq. If r exists, mark Cj11, as used, increment S and repeat
the process from j = r. Stop when the occurrence cannot be extended further (no such r is
found).

11

Search for "ala"
suffix "a"

leftrank = 1
rightrank = 9

suffix "la"
1 leftrank = 13
@ rightrank = 14

lla\zl \Sab \4ar \S_JG a_\7la \S_a \9 Iab\lgrd \l;_p \lzardla_aﬁ)lllaﬁllsabfl 6aﬂll7a\$

Figure 8: Reporting occurrences of type 2 of P = ala in our running example, first part.

()

(c)

For each maximal occurrence P; , found ending at block S such that r < m, check
whether block S + 1 starts with P,i1_,, l.e., whether leftrank,(Node(S + 1)) €
leftranky(Cri1.m) - - . rightranky(Cy41,m). Note that le ftrank,(Node(S + 1)) is the ex-
act rank of node S + 1, since every internal node is the first among the ranks of its
subtree. Note also that there cannot be an occurrence if C; 41, is null. If » < m and
block S + 1 does not start with P.11_,, then stop here and move to the next maximal
occurrence.

If ¢+ > 1, then check whether block Sy — 1 finishes with P; ; ;. For this sake, find
Node(Sy — 1) and use the parent; operation to check whether the last i — 1 nodes, read
backward, equal P , ;. If i > 1 and block Sy —1 does not finish with P, ;_1, then stop
here and move to the next maximal occurrence.

Report node Sy — 1 as the one containing the beginning of the match. We know that
P;_ is aligned at the end of this block.

Note that we have to make sure that the occurrences reported span at least 3 blocks.

Figure 11 exemplifies the first part on our running example. Assume we search for alaba. We
look for all the substrings of P and fill matrix C' and the A vectors.

Figure 12 shows the second part. We obtain the maximal occurrences from the A vectors. In
our example, we could join blocks B; to Bjs in a single maximal occurrence.

Figure 13 shows the third part of the search. We check that the maximal occurrences continue

12

reverse prefix "a"
leftrank = 2
rightrank = 5

I a a _
11 12
7 8
W/ ©E
reverse prefix "la"

leftrank = 10
rightrank = 10

123 4 56 7 8 9 10 11 12 13 14 15 16 17

\a\ I \ab\ aru a_\ Ia_a\ Iab\ ard\ a_p\ ard _aﬁ) aJI abf aﬂl a$

Figure 9: Reporting occurrences of type 2 of P = ala in our running example, second part.

appropriately to the end of the pattern. Three maximal occurrences pass the test, for example
By ...B3 = P; 4, since Node(4) is below node Cs 5.

Finally, Figure 14 shows the last part of the search. We check that the maximal occurrences
continue appropriately to the beginning of the pattern. Two occurrences pass the test and are
reported, for example By ... = P, _, since reading upwards from Node(8) we obtain P| ;.

Figure 15 depicts the whole algorithm. Occurrences are reported in the format (k,offset),
where k is the identifier of the block where the occurrence starts and off set is the distance between
the beginning of the occurrence and the end of the block.

If we want to show the text surrounding an occurrence (k,off set), we just go to LZTrie using
Node(k) and use the parent; pointers to obtain the characters of the block in reverse order. If the
occurrence spans more than one block, we do the same for blocks k 4+ 1, k 4+ 2 and so on until the
whole pattern is shown. We also can show larger block numbers as well as blocks k — 1, k — 2, etc.
in order to show a larger text context around the occurrence. Indeed, we can recover the whole
text by repeating this process for k € 0...n

4 A Succinct Index Representation

We show now how the data structures used in the algorithm can be implemented using little space.

Let us first consider the tries. Munro and Raman [22] show that it is possible to store a binary
tree of N nodes using 2N +o(N) bits such that the operations parent(x), le ftchild(x), rightchild(x)
and subtreesize(x) can be answered in constant time. Munro et al. [23] show that, using the same

13

D

w

D

'-A
N
© 0 ~NO O b~ WNPFEP O

'S
=
S)

[e)}
w
B
N P

H
Iy
w

I
=
IS

g
=
&)}

o
B

=
o]

&

\%)
0123456 7 8 91011121314151617

=
~

Report matches starting in B(8) and B(14)

123 4 56 7 8 9 10 11 12 13 1415 16 17
\a\ I \ab\ aru aJ Ia_a\ Iab\ ard\ a_p\ ard _aﬁ) dl abf aﬂl ai

Figure 10: Reporting occurrences of type 2 of P = ala in our running example, third part.

space, the following operations can also be answered in constant time: leafrank(xz) (number of
leaves to the left of node x), leafsize(x) (number of leaves in the subtree rooted at x), le ftmost(x)
and rightmost(x) (leftmost and rightmost leaves in the subtree rooted at z).

In the same paper [23] they show that a trie can be represented using this same structure by
representing the alphabet ¥ in binary. This trie is able to point to an array of identifiers, so that
the identity of each leaf can be known. Moreover, path compressed tries (where unary paths are
compressed and a skip value is kept to indicate how many nodes have been compressed) can be
represented without any extra space cost, as long as there exists a separate representation of the
strings stored readily available to compare the portions of the pattern skipped at the compressed
paths.

We use the above representation for LZTrie as follows. We do not use path compression, but
rather convert the alphabet to binary and store the n 4 1 strings corresponding to each block, in
binary form, into LZT'rie. For reasons that are made clear soon, we prefix every binary represen-
tation with the bit “1”. So every node in the binary LZTrie will have a path of length 1 + log, o
to its real parent in the original LZT'rie, creating at most 1 4 log, o internal nodes. We make sure
that all the binary trie nodes that correspond to true nodes in the original LZTrie are leaves in
the binary trie. For this sake, we use the extra bit allocated: at every true node that happens to
be internal, we add a leaf by the bit 0, while all the other children necessarily descend by the bit 1.

Hence we end up with a binary tree of n(1 4 log, o) nodes, which can be represented using

14

Search for "alaba"

1 C(2,3)
)

A(1) = (1,1),(14,2)
13 a’{e - A(2) =(2,2),(7,3),(9.4)

536 OloIONE: Bie

A(5) = (1.5)

b |p
41 17

IO OLOOINIOLD

123 4 56 7 8 9 10 11 12 13 1415 16 17
|aI]ablar| | a_|la|_a] labjard|a_p| ard _ap d abl afl a$

Figure 11: Reporting occurrences of type 3 of P = alaba in our running example, first part.

2n(1 + logy o) + o(nlog o) bits. The identity associated to each leaf x will be id;(x). This array
of node identifiers is stored in order of increasing rank, which requires nlog, n bits, and permits
implementing rth; in constant time.

The operations parent; and child; can therefore be implemented in O(logo) time. The
remaining operations, leftrank(x) and rightrank(x), are computed in constant time using
leafrank(leftmost(x)) and leafrank(rightmost(x)), since the number of leaves to the left cor-
responds to the rank in the original trie.

For RevTrie we have up to n leaves, but there may be up to u internal nodes. We use also the
binary string representation and the trick of the extra bit to ensure that every node that represents
a block is a leaf. In this trie we do use path compression to ensure that, even after converting
the alphabet to binary, there are only n nodes to be represented. Hence, all the operations can be
implemented using only 2n + o(n) bits, plus nlogs n bits for the identifiers.

It remains to explain how we store the representation of the strings in the reverse trie, since in
order to compress paths one needs the strings readily available elsewhere. Instead of an explicit
representation, we use the same LZTrie. Assume that we are at a reverse trie y node representing
string a, and we have to consider going down to the child node . To find out which is the string b
joining y to x, we obtain, using Node(rth,(leftrank(x)) and Node(rth,(rightrank(z)), two nodes
in LZTrie. We have to go up from both nodes until we read a” (string a reversed), and then we
continue going up to the parent in LZTrie. What we read after " is b". The process finishes

15

A(1) =(1,1),(24,2)

P(1..4) = B(1)..B(3)

AQ2) = (2,2),(7,3),(9,4) P(1.2) = B(14)

P(2..3) = B(7)
P(3..3) = B(1)
A(4) = P(5..5) = B(1)

A(5) = (1.9)

123 4 56 78 9 10 11 12 13 1415 16 17
|a|I|ablar| | a]la]_a| lablard|a_p| ard _ap & abl afl a$
L | L

B(1)..B(3) = "alab" B(9) = "lab"

Figure 12: Reporting occurrences of type 3 of P = alaba in our running example, second part.

when the characters read from both nodes is different or one reaches the root of LZTrie. Note
that advancing to a child may require O(mlog o) time in RevTrie.

For the Node mapping we simply have a full array of nlog, n bits.

Finally, we need to represent the data structure for range searching, Range, where we store n
block identifiers k (representing the pair (k,k+1)). Among the plethora of data structures offering
different space-time tradeoffs for range searching [2, 13], we prefer one of minimal space requirement
by Chazelle [5]. This structure is a perfect binary tree dividing the points along one coordinate plus
a bucketed bitmap for every tree node indicating which points (ranked by the other coordinate)
belong to the left child. There are in total nlog, n bits in the bucketed bitmaps plus an array of
the point identifiers ranked by the first coordinate which represents the leaves of the tree.

This structure permits two dimensional range searching in a grid of n pairs of integers in the
range [0...n] x [0...n], answering queries in O((R + 1)logn) time, where R is the number of
occurrences reported. A newer technique for bucketed bitmaps [11, 21] needs N + o(N) bits to
represent a bitmap of length N, and permits the rank operation (now meaning number of 1’s
up to a given position) and its inverse in constant time. Using this technique, the structure of
Chazelle requires just nlogyn(1 + o(1)) bits to store all the bitmaps. Moreover, we do not need
the information at the leaves, which maps rank (in a coordinate) to block identifiers: as long as we
know that the r-th block qualifies in normal (or reverse) lexicographical order, we can use rth; (or
rth,) to obtain the identifier k£ + 1 (or k).

5 Space and Time Complexity

From the previous section it becomes clear that the total space requirement of our index is
nflogyn](4 + o(1)) bits. The tries and Node can be built in O(ulogo) time, while Range
needs O(nlogn) construction time. Since nlogn = O(ulogo) [4], the overall construction time
is O(ulog o). Let us now consider the search time of the algorithm.

16

P(1..4) = B(1)..B(3) ——> Node(4) in C(5,5) ?
6 P(2..4) = B(9) ——> Node(10) in C(5,5) ?

<7> @) P(5..5) = B(1) ——> ok

QO

r a/ d p b p
10 @p@@@@

Node(10)

\1a\2I \3ab \4ar \Sj a_\7la \s_a ‘9 Iab\lgrd ‘1;_{) \12aral13_a¢l 4dI15abb'16aﬂll7a$

L

[—

Figure 13: Reporting occurrences of type 3 of P = alaba in our running example, third part.

Finding the blocks that totally contain P requires a search in RevT'rie of cost O(m?log o).
Later, we may do an indeterminate amount of work, but for each unit of work we report a distinct
occurrence, so we cannot work more than R, the size of the result.

Finding the occurrences that span two blocks requires m searches in LZTrie and m searches in
RevTrie, for a total cost of O(m?log o), as well as m range searches requiring O(mlogn + Rlogn)
(since every distinct occurrence is reported only once).

Finally, searching for occurrences that span three blocks or more requires m searches in LZTrie
(all the C; ; for the same i are obtained with a single search), at a cost of O(m?*log o). Extending
the occurrences costs O(m?logm). To see this, consider that, for each unit of work done in the
loop of lines 27 29 in Figure 15, we mark one C cell as used and never work again on that cell.
There are O(m?) such cells. This means that we make O(m?) binary searches in the A; arrays. The
cost to sort the m arrays of size m is also O(m?logm). The final verifications to the right and to
the left cost O(1) and O(mlog o), respectively, and there may be O(m?) independent verifications.
Note that we have not included the time to search the left piece in RevT'rie, in which case the costs
would have raised to O(m?*log o). The reason is that, overall, we have to search for every reversed
substring of P, which requires O(m?) moves in RevTrie, for a total cost of O(m3log o).

Hence the total search cost to report the R occurrences of pattern Py, is O(m3 logo + (m +
R)logn). If we consider the alphabet size as constant then the algorithm is O(m? + (m + R) log n).
The existence problem can be solved in O(m?logo + mlogn) time (note that we can disregard in
this case blocks totally containing P, since these occurrences extend others of the other two types).

17

0
Node(0) — ~ Q
a

] P(1..) = B(1)..., ok
a la P@.)=B(9).. B@®) =..P1.1) 2ok
" P(5..) = B(1)..., B(0) = ... P(1..4) ? no

@ @\

p Node(8)

r a/d| | P

) @M (o)

We report matches starting in B(8) and B(1)

123 4 56 7 8 9 10 11 12 13 1415 16 17
|a|l|ablar|_|ala]_a| lablard|a_p| ard _ap & abl afl a$

L Tl I

? ?

Figure 14: Reporting occurrences of type 3 of P = alaba in our running example, fourth part.

Finally, we can uncompress and show the text of length L surrounding any occurrence reported in
O(Llog o) time, and uncompress the whole text Ty, in O(ulogo) time.
Chazelle [5] permits several space-time tradeoffs in his data structure. In particular, by paying

0] (%n log n) space, reporting time can be reduced to O(log® n). If we pay for this space complexity,

then our search time becomes O(m? log(mao) + mlogn + Rlog® n).

6 Implementation

We briefly describe in this section the implementation of our LZ-index. We focus on the most
relevant parts, especially when the theoretically appealing decisions turn out to be difficult to
apply in practice. A more detailed discussion of the implementation can be found in [25].

6.1 Balanced Parentheses and General Trees

We represent general trees using a sequence of balanced parentheses, so that each tree node is
represented by a couple of matching parentheses. Tree traversal operations are mapped to this
sequence, and we seek to support the following operations: findclose(i) finds the position of the

18

Search (P, LZTrie, RevTrie, Node, Range)

1. /* Lying inside a single block */
2. x < search for P" in RevT'rie
3. For r € leftrank,(z)...rightrank,(z) Do
4. y < Node(rth,(r))
5. For z in the subtree rooted at y Do
6. Report (idi(z), m + depth(y) — depth(z))
7. /* Spanning two blocks */
8. Foriel...m—1Do
9. x ¢ search for P/ , in RevT'rie
10. y < search for Piyq1 ,, in LZTrie
11. Search for [leftrank,(z) ... rightrank, (z)]
x[leftrank(y) ...rightrank,(y)] in Range
12. For (k,k + 1) in the result of this search Do Report (k,7)
13. /* Spanning three or more blocks */
14. Foriel...m Do
15. x 4 root node of LZTrie
16. A 0
17. For jei:...m Do
18. If z # null Then x «+ child(z, P;)
19. Ci,j — T
20. used; j < FALSE
21. If © # null Then A; + A; U (id(x),j)
22. Forjel...mDo
23. Forie€i...j Do
24. If C; ; # null AND used; ; = FALSE Then
25. So idt(Cm)
26. S« Sp—1, r+j—-1
27. While (S +1,r') € A,41 Do /* always exists the 1st time */
28. usedy41,, < TRUE
29. r«r, S« S+1
30. span < S — Sy + 1
31. If + > 1 Then span < span + 1
32. If r < m Then span < span + 1
33. If span > 3 Then
34. If Cri1,m = null OR
leftranki(Cri1,m) < leftrank:(Node(S + 1)) < rightrank;(Cy41,m) Then
35. x4 Node(Sp—1), i' +i—1
36. While i’ > 0 AND parent;(x) # null
AND z = child(parent,(z), Pi) Do
37. x < parenty(x), i i —1
38. If i' = 0 Then Report (Sq —1,i — 1)

Figure 15: The search algorithm. The value depth(y) — depth(z) is determined on the fly since we
traverse the whole subtree of z.

19

closing parenthesis that matches opening parenthesis at position i; parent(i) gives the position of
the opening parenthesis corresponding to the parent of the node represented by ¢; and several other
simpler ones.

As the solution proposed in [22, 23] to handle balanced parentheses turned out to be too
complicated, and the asymptotically vanishing terms turned out to be not so small, we opted for an
alternative implementation. It guarantees O(loglogn) average time for the operation and (almost)
guarantees bounded extra space.

Basically, the idea is that, since most trees are small, most of the parentheses sought are close
enough in the sequence and could be found after a short brute-force search. For the cases where
the answer would not be found, we store the answer directly in a hash table. Hence, only “large”
trees have their answer precomputed. In practice the hash tables pose a small space overhead.

The hash tables for the “near” parentheses could be quite large, but we store the distances
to the matching parentheses rather than the absolute positions. This reduces the number of bits
needed. Collisions are solved because, among all the potential answers that have the same excess
(number of opening minus number of closing preceding parentheses), the right answer is the closest
one. It is not necessary to store the search key in order to solve collisions.

6.2 LZTrie

Instead of converting our alphabet to binary and representing the trie as a binary tree and this in
turn as a sequence of parentheses of maximum arity 2, we choose to directly represent the trie in its
general tree form, as a sequence of parentheses. The main consequence is that, by converting the
alphabet to binary, we would pay O(log o) for any child(i,a) operation, while with a representation
as a general tree we could pay O(o), assuming we search linearly for the proper child a. In practice,
however, only the highest nodes of the trie have a significant arity, while most of them will have
much less than log, 0. On the other hand, the direct implementation as a general tree is much
simpler and requires less space.

The letters and block identifiers corresponding to each node are implemented as simple arrays
indexed by rank.

6.3 RevTrie

The reverse trie is also represented by a sequence of balanced parentheses and a sequence of block
identifiers, but this time (1) the edge between two nodes can be labeled by a string, which is not
represented; (2) we remove unary nodes that have no block identifier, but still non-unary nodes
without block identifiers remain and are represented (these will be called empty nodes). In practice
the percentage of empty nodes is minimal, and storing them simplifies matters a lot.

The only complex problem is how to implement child(i,a), because (1) edges are labeled by
full strings, and (2) we do not have any representation of these strings. This is done basically as
explained in Section 4. The process is tedious and slow, so we seek to limit it as much as possible.
On the other hand, we do not need the parent(i) operation on RevT'rie.

20

6.4 Range versus RNode

Instead of implementing the Range data structure, we opted by a reverse Node data structure,
RNode. RNode maps block identifiers to their (nonempty) nodes in RevTrie.

With RNode we could solve quite decently the same problem addressed by Range, as follows.
Say that the search for P[, in RevT'rie leads us to node i, and the search for Py _,, in LZTrie
leads us to node 7; (if any of the two nodes does not exist we know immediately that this partition
of P produces no matches?). Both for i; and 4,, we can use rank and rightrank to determine the
ranges in the arrays of block identifiers where the relevant blocks lie. Then we have two choices:

(a) For each block k + 1 in the block identifiers corresponding to LZTrie, ask whether i, is an
ancestor of RNode(k) in RevTrie (this operation is easily implemented in a parentheses
representation). If so, report block k.

(b) For each block k in the block identifiers corresponding to RevTrie, ask whether i; is an ancestor
of Node(k + 1) in LZT'rie. If so, report block k.

Since it is easy to determine which will require less work, we choose the best among both choices.
We found that the version based on RNode took 1/2 to 2/3 of the time of Range for all pattern
lengths. Moreover, RN ode is useful in other points of the search, as we see soon.

6.5 Searching

We search for every pattern substring P; ; using LZTrie, and obtain the matrix C; ; of the nodes
corresponding to each substring, if any. We also obtain a matrix of block identifiers C'id; ; corre-
sponding to each node C; ;. Matrix C'id; ; is necessary at several points, most evidently to report
occurrences of type 3.

In a second step we search for every reversed pattern prefix, P{ ;. in RevI'rie, and store it in
an array Bj;. This is necessary to report occurrences of type 1 and 2. Since searching in RevTrie
is much slower than on LZTrie, we seek to reduce this work as much as possible. The results
already obtained in Cid are useful. If we look for P{“.j and Py _j exists in LZTrie (that is, C ;
is not null), then RNode(C'id, j) directly gives us the corresponding node in RevTrie. Otherwise,
Py _; corresponds to an empty node or to a position in a string between two nodes, and cannot
be directly found with LZTrie. Still, we can reduce the search cost as follows. Let ¢ be the
minimum value such that Cj; is defined. Then RNode(C'id; ;) is the lowest nonempty ancestor of
the node we are looking for. We can reduce the work to that of searching for P/ , ;| starting from
node RNode(C'id; ;). This final partial search has to be done using the child, (node, a) operation
repeatedly (once per node arrived at).

Occurrences of type 1 and 2 are found as explained. For type 3, instead of the arrays A proposed
in the theoretical part, we opt for a hash table where all the triples (i, j,C'id; ;) are stored with
key (i,Cid; ;). Then we try to extend each match C;; by looking for (j + 1,5, Ciid; j + 1) in the
hash table, marking entries (i,j) already used by a sequence that starts before, until we cannot
extend the current entry. At this point, if the pattern spans 3 blocks or more, the sequence of

2If, in RevT'rie, we are in the middle of an edge, we can safely traverse the edge and consider the child as the
correct solution.

21

involved blocks is k... k', and the pattern area is i... ', then we check that Cj 41 ,, is an ancestor
of Node(k' + 1) in LZTrie and that B; ; is an ancestor of RNode(k — 1) in RevTrie. If all these
tests pass, we report block k£ — 1.

7 Experimental Results

To demonstrate the results in practice, we have chosen two different text collections. The
first, 7zIFF, contains 83.37 megabytes (Mb) obtained from the “ZIFF-2” disk of the TREC-
3 collection [10]. The second, DNA, contains 51.48 Mb from GenBank (Homo Sapiens DNA,
http://www.ncbi.nlm.nih.gov), with lines cut every 60 characters.

Our tests have been run on a Pentium IV processor at 2 GHz, 512 Mb of RAM and 512
kilobytes (Kb) of cache, running Linux SuSE 7.3. We compiled the code with gcc 2.95.3 using
optimization option -09. Times were obtained using 10 repetitions for indexing and 10,000 for
searching, obtaining percentual errors below 1% with 95% confidence. As we work only in main
memory, we only consider CPU times.

Our LZ-index takes 1.49 times the text size on ZIFF and 1.19 on DNA. This is 4 5 times the
size of the file compressed with Ziv-Lempel, which corroborates our space analysis. We could store
the index on disk using less space and quickly reconstruct some parts at load time, but we opt by
counting the space the index needs to operate.

We have compared our LZ-index prototype against two of the most prominent alternative
proposals. We have considered construction time and space, but our highest interest is in query
times, both for counting and for reporting the occurrences.

7.1 Other Indexes Compared

Although our index does not have any relevant space-time tuning parameter, the others do. Hence,
we tune the other indexes so as to make them take the same space of our index. The indexes chosen
are:

Ferragina and Manzini’s FM-index. This index is proposed in [6, 7]. We could not obtain
the sources of the implementation of this index from the authors. There is an executable at their
Web page, http://butirro.di.unipi.it/ ferrax/fmindex/index.html, but the interface does
not permit running massive and trustable tests, as it can search for one pattern per run. Hence,
we implemented the index ourselves. We followed rather closely the descriptions in [7] and did our
best to implement this index as efficiently as possible. Later we will give some control values to
show that our implementation is competitive against the executables given by the authors. The
main tuning parameter of this index is the sampling step for the suffix array.

Sadakane’s CSArray. We obtained from K. Sadakane his implementation of the Compressed
Suffix Array index proposed in [27]. We tried different parameter options that gave the same extra
space of our index and used those that gave best results.

22

Index Construction time Main memory space
ZIFF DNA ZIFF DNA
FM-index 4.990 5.260 5.00 5.00
CSArray 19.28 6.890 11.18 10.20
LZ-index 0.968 0.605 4.95 3.46

Table 1: Index construction requirements. Times are in seconds per Mb and space in number of

times the text size.

7.2 Comparison

Recall that we compare the three indexes such that they take the same amount of main memory to
function. Table 1 shows the time and memory requirements to build the different indexes (although
the final index space is the same, they need different space to build). As it can be seen, our index
builds much faster than the others (whose construction time involve at least the construction of a
suffix array). It also needs less memory to build.

Let us now consider search times. Figure 16 shows the overall query times under the different
“reporting levels” (just counting the occurrences, reporting their text positions, or showing their
text line). Note that we use a logarithmic scale on y.

For counting queries, the FM-index is unparalleled, taking around 1.7m usecs. The CSArray,
although slower, is still much faster than our LZ-index, taking around 5m psecs. It is clear that we
do not have a case for counting queries: our LZ-index took 112m psecs on ZIFF and 38m psecs on
DNA, 10-20 times slower than the CSArray and 20-60 times slower than the FM-index.

The FM-index, however, becomes much slower to report the positions of the occurrences found,
achieving a rate of 10-20 occurrences per msec. Our rate is close to 900-1,400 per msec. The
CSArray is faster than the FM-index at this step, reporting 100 160 occurrences per msec. In any
case, it is clear that finding the actual positions of the occurrences is costly under their schemes,
70 90 times slower for the FM-index and 9 times slower for the CSArray.

The differences favor the LZ-index even more if we ask to reproduce the lines where the oc-
currences were found. Remind that this is an essential feature, since all these indexes replace the
text and hence our only way to see the text is asking them to reproduce it. While our LZ-index is
able to show around 14 lines per msec, the FM-index and the CSArray can show only 4 6 lines per
msec.

As a conclusion, we have that our index is rather slow to count the number of occurrences, but
much faster to show their positions or their text contexts. This is rather intrinsic, because in our
index the occurrences of P are scattered all around the index, while these are all together in a suffix
array. Giving the occurrence positions and text contexts, however, is rather fast because we did
most of the work in the counting phase. We require only a fast tree traversal step per character
output. Compressed suffix arrays, on the other hand, rely on a sampled suffix array and they must
perform expensive traversals until they determine the actual suffix array values.

We claim that, for most text retrieval needs, knowing just the amount of occurrences is not
enough. Although it may be useful at the internal machinery of other more complex tasks, the

23

ZIFF: Time to count occurrences

LZ-index
FM-index
CSArray

-

—

——
L

10 20 30 40 50 60

Pattern length (m)

ZIFF: Time to report occurrence positions

LZ-index
FM-index
CSArray

T
-
—

——

10 20 30 40 50 60

Pattern length (m)

ZIFF: Time to output matching lines

LZ-index
FM-index
CSArray

T
-
—

——

10
R
[
(2]
E
o 0.1 ¢
=
@
[%2]
D> 001}
0.001
0
1000
% 100t
(8]
[
(2]
E
5] 10 ¢
£
@
[%2]
=) 1
0.1
0
10000
1000 t
7
[
g 100
Q
£
= 10 ¢
@
[%2]
-]
l,
0.1
0

Figure 16: Overall query times when counting occurrences
and to output matching lines (bottom).

alternatives.

10 20 30 40
Pattern length (m)

50 60

24

User time (msecs) User time (msecs)

User time (msecs)

DNA: Time to count occurrences

100

0.1 ¢

LZ-index ——
FM-index ——
CSArray ——

0.01

10 20 30 40 50 60
Pattern length (m)

DNA: Time to report occurrence positions

10000

1000 ¢

100 ¢

10

LZ-index ——
FM-index ——
CSArray —— |

0.1

100000

10000

1000

100

10

1

0.1

We compare our

10 20 30 40 50 60
Pattern length (m)

DNA: Time to output matching lines

LZ-index ——
FM-index ——
CSArray ——

10 20 30 40 50 60
Pattern length (m)

(top), reporting positions (middle),
LZ-index against the most relevant

bottom line is that the user wants to know where the occurrences are and most probably to see
their text context (not to speak of retrieving the whole document, not the line, containing the
occurrence).

Let us be pessimistic against the LZ-index and assume that one can build an alternative as
fast as the FM-index to search for the pattern and as fast as the CSArray to show the occurrences
(this scenario is rather realistic). It turns out that, to report the occurrences, the LZ-index would
become faster after we report 1,400 occurrences on ZIFF or 300 on DNA. If we would like to see the
lines containing the occurrences, these numbers drop to 65 on 7ZIFF and 13 on DNA. This shows
that our index becomes superior as soon as we have to show a few occurrences.

To conclude, we give some data on our tests over the executables of the FM-index provided
by the authors. These permit a coarse control over the index space by specifying the frequency of
a character whose positions will be sampled. Although we tried the highest possible frequencies,
we could not obtain indexes larger than 75.02% of the 71FF file and 109.81% of the DNA file. The
former is half the space we permit, while the latter is rather close to the correct value. The time
to count occurrences is negligible, as expected. Occurrence positions were reported at a rate that
varied a lot, but was always between 0.5 and 10 occurrences per msec. When we asked the index to
show a text context of length equivalent to an average line (43 characters on ZIFF and 61 on DNA),
it showed them at a rate of 10 to 20 per second. Even if we assume that the index on ZIFF could
double its performance by using twice the space, the figures still show that our implementation of
the FM-index is competitive against that of the original authors, when not superior by far®. The
results did not vary when we tried different memory policies offered by the index (on disk, mmaped,
in main memory).

8 Conclusions

We have presented an index for text searching based on the LZ78/LZW compression, called the
LZ-index. At the price of 4nlog, n(14 0(1)) bits, we are able to find the R occurrences of a pattern
of length m in a text of n blocks in O(m?log o + (m + R)logn) time.

We have implemented the LZ-index and compared our prototype against existing alternatives.
The results show that the L.Z-index is competitive in practice. Although it is much slower to count
how many occurrences are there, it is much faster to report their position or their text context.
Indeed, we show that if there are more than 1,400 (z1¥F) or 300 (DNA) occurrence positions to
report, or more than 65 (ZIFF) or 13 (DNA) text lines to show, the LZ-index becomes superior. In
our experiments this happened up to m < 10 (zIFF) or m < 5 (DNA) to report occurrence positions
and up to m < 20 (zIFF and DNA) to report matching lines. This includes most of the interesting
cases on natural language and several ones on genetic sequences.

Altough the slowness for counting queries is intrinsic of our index, we believe that times can be at
least improved. One clear slowdown factor is the linear search of nodes when executing child(i,a),
as the time to fill matrix C;; dominates the overall time once we exclude reporting. One choice
would be to replace it by a two-level structure, where children are grouped into /o contiguous
groups of /o nodes each, hence permitting faster access to the desired child. Another operation

3We believe that the authors have optimized their implementation for a space consumption much inferior than
that of our comparison.

25

whose improvement will benefit the overall search time is that of finding matching parentheses
(findclose() and parent()).

Other challenges that lie ahead are performing regular expression and approximate searching

using this index, working on secondary memory, and trying to compete against compressed inverted

indexes designed for natural language text. Building the index in succint space would be an
important step in this direction (see, for example, [18]).

Acknowledgements

We thank Kunihiko Sadakane for kindly giving as a prototype of his index [27].

References

1]

[10]

[11]

M. Abouelhoda, E. Ohlebusch, and S. Kurtz. Optimal exact string matching based on suffix
arrays. In Proc. 9th Intl. Symp. String Processing and Information Retrieval (SPIRE’02),
LNCS 2476, pages 31 43, 2002.

P. Agarwal and J. Erickson. Geometric range searching and its relatives. Contemporary
Mathematics, 23: Advances in Discrete and Computational Geometry:1 56, 1999.

A. Apostolico. The myriad virtues of subword trees. In Combinatorial Algorithms on Words,
NATO ISI Series, pages 85-96. Springer-Verlag, 1985.

T. Bell, J. Cleary, and 1. Witten. Tezt compression. Prentice Hall, 1990.

B. Chazelle. A functional approach to data structures and its use in multidimensional searching.
SIAM Journal on Computing, 17(3):427-462, 1988.

P. Ferragina and G. Manzini. Opportunistic data structures with applications. In Proc. /1st
IEEE Symp. Foundations of Computer Science (FOCS’00), pages 390-398, 2000.

P. Ferragina and G. Manzini. An experimental study of an opportunistic index. In Proc. 12th
ACM Symp. on Discrete Algorithms (SODA’01), pages 269 278, 2001.

P. Ferragina and G. Manzini. On compressing and indexing data. Technical Report TR-02-01,
Dipartamento di Informatica, Univ. of Pisa, 2002.

R. Grossi and J.S. Vitter. Compressed suffix arrays and suffix trees with applications to text
indexing and string matching. In Proc. 32nd ACM Symp. Theory of Computing (STOC’00),
pages 397 406, 2000.

D. Harman. Overview of the Third Text REtrieval Conference. In Proc. Third Text REtrieval
Conference (TREC-3), pages 1 19, 1995. NIST Special Publication 500-207.

G. Jacobson. Space-efficient static trees and graphs. In Proc. 30th IEEE Symp. Foundations
of Computer Science (FOCS’89), pages 549-554, 1989.

26

[12]

[13]

[14]

[19]

[20]

[21]

[22]

J. Karkkédinen. Suffix cactus: a cross between suffix tree and suffix array. In Proc. 6th Ann.
Symp. Combinatorial Pattern Matching (CPM’95), LNCS 937, pages 191-204, 1995.

J. Karkkainen. Repetition-based text indexes. PhD thesis, Dept. of Computer Science, Univer-
sity of Helsinki, Finland, 1999. Also available as Report A-1999-4, Series A.

J. Karkkainen and E. Ukkonen. Lempel-Ziv parsing and sublinear-size index structures for
string matching. In Proc. 3rd South American Workshop on String Processing (WSP’96),
pages 141-155. Carleton University Press, 1996.

J. Karkkainen and E. Ukkonen. Sparse suffix trees. In Proc. 2nd Ann. Intl. Conference on
Computing and Combinatorics (COCOON’96), LNCS 1090, 1996.

R. Kosaraju and G. Manzini. Compression of low entropy strings with Lempel-Ziv algorithms.
SIAM Journal on Computing, 29(3):893 911, 1999.

S. Kurtz. Reducing the space requirements of suffix trees. Report 98-03, Technische Kakultat,
Universitat Bielefeld, 1998.

T.-W. Lam, K. Sadakane, W.-K. Sung, and S.-M. Yiu. A space and time efficient algorithm
for constructing compressed suffix arrays. In Proc. 8th Ann. Intl. Conference on Computing
and Combinatorics (COCOON’02), pages 401 410, 2002.

V. Miékinen. Compact suffix array. In Proc. 11th Ann. Symp. Combinatorial Pattern Matching
(CPM’00), LNCS 1848, pages 305-319, 2000.

U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches. SIAM
Journal on Computing, pages 935 948, 1993.

I. Munro. Tables. In Proc. 16th Foundations of Software Technology and Theoretical Computer
Science (FSTTCS’96), LNCS 1180, pages 37 42, 1996.

I. Munro and V. Raman. Succint representation of balanced parentheses, static trees and
planar graphs. In Proc. 38th IEEE Symp. Foundations of Computer Science (FOCS’97),
pages 118 126, 1997.

I. Munro, V. Raman, and S. Rao. Space efficient suffix trees. Journal of Algorithms, pages
205 222, 2001.

G. Navarro. Indexing text using the Ziv-Lempel trie. In Proc. 9th Intl. Symp. String Processing
and Information Retrieval (SPIRE’02), LNCS 2476, pages 325-336, 2002.

G. Navarro. The LZ-index: A text index based on the Ziv-Lempel trie. Technical Report
TR/DCC-2003-1, Dept. of Computer Science, Univ. of Chile, January 2003.

G. Navarro, E. Moura, M. Neubert, N. Ziviani, and R. Baeza-Yates. Adding compression to
block addressing inverted indexes. Information Retrieval, 3(1):49 77, 2000.

27

[27]

[28]

[29]

[30]

31]

K. Sadakane. Compressed text databases with efficient query algorithms based on the com-
pressed suffix array. In Proc. 11th Intl. Symp. Algorithms and Computation (ISAAC’00),
LNCS 1969, pages 410 421, 2000.

K. Sadakane. Succint representations of lcp information and improvements in the compressed
suffix arrays. In Proc. 13th ACM Symp. on Discrete Algorithms (SODA’02), pages 225-232,
2002.

T. Welch. A technique for high performance data compression. IEEE Computer Magazine,
17(6):8 19, June 1984.

I. Witten, A. Moffat, and T. Bell. Managing Gigabytes. Morgan Kaufmann Publishers, New
York, second edition, 1999.

J. Ziv and A. Lempel. Compression of individual sequences via variable length coding. IEEFE
Trans. on Information Theory, 24:530-536, 1978.

28

