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lAbstra
tWe present a solution to the problem of regular expression sear
hing on 
ompressed text.The format we 
hoose is the Ziv-Lempel family, spe
i�
ally the LZ78 and LZW variants. Givena text of length u 
ompressed into length n, and a pattern of length m, we report all the Ro

urren
es of the pattern in the text in O(2m +mn+Rm logm) worst 
ase time. On averagethis drops to O(m2 + (n + Rm) logm) or O(m2 + n + Ru=n) for most regular expressions.This is the �rst nontrivial result for this problem. The experimental results show that our
ompressed sear
h algorithm needs half the time ne
essary for de
ompression plus sear
hing,whi
h is 
urrently the only alternative.1 Introdu
tionThe need to sear
h for regular expressions arises in many text-based appli
ations, su
h as textretrieval, text editing and 
omputational biology, to name a few. A regular expression is a gener-alized pattern 
omposed of (i) basi
 strings, (ii) union, 
on
atenation and Kleene 
losure of otherregular expressions [1℄. The problem of regular expression sear
hing is quite old and has re
eived
ontinuous attention sin
e the sixties.A parti
ularly interesting 
ase of text sear
hing arises when the text is 
ompressed. Text
ompression [5℄ exploits the redundan
ies of the text to represent it using less spa
e. There aremany di�erent 
ompression s
hemes, among whi
h the Ziv-Lempel family [35, 36℄ is one of thebest in pra
ti
e be
ause of its good 
ompression ratios 
ombined with eÆ
ient 
ompression andde
ompression times. The 
ompressed mat
hing problem 
onsists of sear
hing for a pattern on a
ompressed text without de
ompressing it. Its main goal is to sear
h the 
ompressed text fasterthan the trivial approa
h of de
ompressing it and then sear
hing.This problem is important in pra
ti
e. Today's textual databases are an ex
ellent exampleof appli
ations where both problems are 
ru
ial: the texts should be kept 
ompressed to savespa
e and I/O time, and they should be eÆ
iently sear
hed. Surprisingly, these two 
ombinedrequirements are not easy to a
hieve together: The only solution before the 90's was to pro
essqueries by de
ompressing the texts and then sear
hing them.�Partially supported by Fonde
yt grant 1-020831. 1



Sin
e then, a lot of resear
h has been 
ondu
ted on the problem. A wealth of solutions havebeen proposed to deal with simple, multiple and, very re
ently, approximate 
ompressed patternmat
hing. Regular expression sear
hing on 
ompressed text seems to be the last goal that stillde�es the existen
e of any nontrivial solution.This is the problem we solve in this paper: we present the �rst solution for 
ompressed regularexpression sear
hing. The format we 
hoose is the Ziv-Lempel family, fo
using in the LZ78 andLZW variants [36, 33℄. Given a text of length u 
ompressed into length n, we are able to �nd the Ro

urren
es of a regular expression of length m in O(2m+mn+Rm logm) worst 
ase time, needingO(2m +mn) spa
e. We also propose two modi�
ations that a
hieve O(m2 + (n + Rm) logm) orO(m2 + n + Ru=n) average 
ase time and, respe
tively, O(m + n logm) or O(m + n) spa
e, for\admissible" regular expressions, that is, those whose automaton runs out of a
tive states afterreading O(1) text 
hara
ters, on average. These results are a
hieved using bit-parallelism and arevalid for short enough patterns, otherwise the sear
h times have to be multiplied by dm=we, wherew is the number of bits in the 
omputer word.We have implemented our algorithm on LZW and 
ompared it against the best existing algo-rithms on un
ompressed text, showing that we 
an sear
h the 
ompressed text twi
e as fast as thena��ve approa
h of de
ompressing and then sear
hing.A preliminary version of this paper appeared in [22℄.2 Basi
 Con
epts2.1 Strings, Regular Expressions and AutomataWe give a very basi
 introdu
tion to the subje
t. For more details see, for example, [1℄.Given an alphabet (�nite set of symbols) � of size �, a string is a sequen
e of elements of �,
alled 
hara
ters. The length of a string S is denoted jSj, and the unique string of length zero isdenoted ". Given a string S we use Si:::j to denote the string obtained by taking from the i-th tothe j-th 
hara
ters of S. The �rst position of a string is 1.A language is a �nite or in�nite set of strings. In parti
ular, the language �� denotes the set ofall the strings over alphabet �.A regular expression is a string on the set of symbols �[f "; j ; � ; � ; (; ) g, whi
h is re
ursivelyde�ned as a simple string on ��, ( E1 ), (E1 � E2), (E1 j E2), and (E1�), where E1 and E2 arein turn regular expressions. By the length of a regular expression we mean the total number ofelements of � it 
ontains, disregarding the other operators.A regular expression E denotes a language L(E) as follows. Simple strings denote a singletonformed by that string; L((E1)) = L(E); L(E1 � E2) = L(E1) � L(E2) (i.e., any string formedby 
on
atenating a string in L(E1) with a string in L(E2)); L(E1 j E2) = L(E1) [ L(E2); andL(E1�) = Si�0 L(E1)i, where L0 = f"g and Li+1 = L � Li. This last operation is 
alled the Kleene
losure.An automaton is a graph where the arrows are labeled with elements of � [ f"g. The latterare 
alled "-transitions. One state is 
alled initial and zero or more states are 
alled �nal. Anautomaton re
ognizes a string x 2 �� if there is a path from the initial to a �nal state su
h that the
on
atenation of the labels of the arrows traversed is x. The language re
ognized by an automatonis the set of strings it re
ognizes. 2



Given a string x, we say that a given state i of the automaton is a
tive after reading x if x labelsa path from the initial state to state i. An automaton is a deterministi
 �nite automaton (DFA) ifno more than one state 
an be a
tive for a given string x. Otherwise it is a nondeterministi
 �niteautomaton (NFA).There is a standard way to 
onvert an NFA to a DFA that re
ognizes the same language.If the NFA has m states, the DFA may have up to 2m states. Basi
ally, every 
ombination ofa
tive/ina
tive NFA states be
omes a single DFA state.Given a regular expression E, there are several te
hniques to produ
e an NFA that re
ognizesL(E). The most 
lassi
al is Thompson's [30℄. Given an expression of length m, this methodprodu
es an NFA of at most 2m states and 4m edges. A less popular one is Glushkov's [9℄, whi
hprodu
es an NFA of exa
tly m+1 states but O(m2) edges. To �x ideas we will assume in this paperthat we build NFAs using the version of Glushkov's algorithm popularized by Berry and Sethi [6℄.The problem of sear
hing for a regular expression E in a given text string T is that of �ndingall the text substrings that belong to L(E). These are 
alled o

urren
es. For simpli
ity, we reportthe text positions where the o

urren
es �nish in the text, that is, fjxyj; T = xyz; y 2 L(E)g.Those positions are 
alled mat
hes.In order to use an automaton for text sear
hing, we add a self-loop at the initial state, whi
h
an be followed by any 
hara
ter. Hen
e the initial state is always a
tive. We feed the automatonwith the 
hara
ters of the text, and every time it rea
hes a �nal state we report a mat
h. Sin
ethe initial state is always a
tive, it dete
ts o

urren
es starting anywhere in the text.2.2 Bit-Parallelism and Bit MasksBit-parallelism is a te
hnique to 
ode many elements in the bits of a single 
omputer word andmanage to update all them in a single operation.A bit mask is just a sequen
e of bits stored in one or several 
ontiguous 
omputer words. Thenumber of bits of the 
omputer word is w. Bit masks are used in this paper to represent sets ofNFA states, so they will hold m + 1 bits and hen
e will need d(m + 1)=we 
omputer words to berepresented. Several set operations 
an be done via 
lassi
al arithmeti
al and logi
al operations, in
onstant time when the bit masks �t in a single 
omputer word (and in time O(m=w) otherwise).Some of them are A [ B, A \ B, A (
omplement), A = B (equality test), A  B (
opy), a 2 A.Another operation we will need to perform in 
onstant time is to sele
t any element of a set. This
an be a
hieved by \bit magi
", whi
h means pre
omputing the table storing the position of, say,the highest bit for ea
h possible bit mask of length m+ 1. This table needs O(2m) spa
e.For 
larity we will write the bit masks as sets of states instead of sequen
es of bits, and theiroperations as set operations.2.3 The Ziv-Lempel Compression Formats LZ78 and LZWThe general idea of Ziv-Lempel 
ompression is to repla
e substrings in the text by a pointer toa previous o

urren
e of them. If the pointer takes less spa
e than the string it is repla
ing,
ompression is obtained. Di�erent variants over this type of 
ompression exist, see for example [5℄.We are parti
ularly interested in the LZ78/LZW format, whi
h we des
ribe in depth.3



The Ziv-Lempel 
ompression algorithm of 1978 (usually named LZ78 [36℄) is based on a di
tio-nary of blo
ks, to whi
h we add every new blo
k 
omputed. At the beginning of the 
ompression,the di
tionary 
ontains a single blo
k b0 of length 0. The 
urrent step of the 
ompression is asfollows: If we assume that a pre�x T1:::j of T has been already 
ompressed in a sequen
e of blo
ksZ = b1 : : : br, all them in the di
tionary, then we look for the longest pre�x of the rest of the textTj+1:::u that is a blo
k of the di
tionary. On
e we have found this blo
k, say bs of length `s, we
onstru
t a new blo
k br+1 = (s; Tj+`s+1), we write the pair at the end of the 
ompressed �le Z, i.eZ = b1 : : : brbr+1, and we add the blo
k to the di
tionary. It is easy to see that this di
tionary ispre�x-
losed (i.e., any pre�x of an element is also an element of the di
tionary) and a natural wayto represent it is a trie. This is 
alled the Ziv-Lempel trie. Every blo
k 
orresponds to a node inthis trie.We give as an example the 
ompression of the string ananas in Figure 1. The �rst blo
k is(0; a), and next (0; n). When we read the next a, a is already blo
k 1 in the di
tionary, but an isnot in the di
tionary. So we 
reate a third blo
k (1; n). We then read the next a, whi
h is alreadyblo
k 1 in the di
tionary, but as does not appear. So we 
reate a new blo
k (1; s).
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Figure 1: Compression of the string ananas with the algorithm LZ78.So the 
ompressed text is a sequen
e of blo
k des
riptions Z = b1b2 : : : bn. Ea
h blo
k brrepresents a substring Br of T , su
h that B1 : : : Bn = T . Moreover, ea
h blo
k br = (bs; a) isformed by the 
on
atenation of a previously seen blo
k bs and an expli
it letter a. We say that brreferen
es bs, and will write ref(br) = bs. The referen
ing 
hain that starts in br is de�ned as thesequen
e br; ref(br); ref(ref(br); : : : ; b0. In this sequen
e, the lengths of the blo
ks de
rease by1 until they rea
h zero, whi
h 
orresponds to the empty string represented by the blo
k b0.In terms of the Ziv-Lempel trie, blo
k b0 
orresponds to the root and every node referen
es itsparent. Following a referen
ing 
hain is equivalent to following a path towards the root.The LZ78 
ompression algorithm is O(u) time in the worst 
ase and eÆ
ient in pra
ti
e ifthe di
tionary is stored as a trie, whi
h allows rapid sear
hing for the new text pre�x (for ea
h
hara
ter of T we move on
e in the trie). The de
ompression needs to build the same di
tionary(the pair that de�nes blo
k br is read at the r-th step of the algorithm), although this time anarray implementation is preferable to the trie. Compared to LZ77, 
ompression is rather fast butde
ompression is slow.Many variations on LZ78 exist, whi
h deal basi
ally with the best way to 
ode the pairs in the
ompressed �le, or with the best way to 
ope with limited memory for 
ompression. A parti
ularly4



interesting variant is due to Wel
h, 
alled LZW [33℄. In this 
ase, the extra letter (se
ond elementof the pair) is not 
oded, but impli
itly taken as the �rst letter of the next blo
k (the di
tionary isinitialized with one blo
k per letter). LZW is used by the Unix program Compress.In this paper we do not 
onsider LZW separately but just as a 
oding variant of LZ78. This isbe
ause the �nal letter of LZ78 
an be readily obtained by keeping 
ount of the �rst letter of ea
hblo
k (this is 
opied dire
tly from the referen
ed blo
k) and then looking at the �rst letter of thenext blo
k.3 Related Work3.1 Regular Expression Sear
hingThe traditional te
hnique [30℄ to sear
h for a regular expression of length m in a text of length uis to 
onvert the expression into an NFA with O(m) nodes, add the self-loop at the initial state,and then sear
h the text using the automaton at O(mu) worst 
ase time. The 
ost 
omes from thefa
t that O(m) states of the NFA may be a
tive at ea
h step, and therefore all may need to beupdated. Thompson [30℄ shows how to perform all the updates in O(m) time.A more eÆ
ient 
hoi
e [1℄ is to 
onvert the NFA into a DFA prior to sear
hing. Sin
e the DFAhas only one a
tive state at a time, it permits sear
hing the text at O(u) 
ost, whi
h is worst-
ase optimal. The 
ost of this approa
h is that the DFA may have O(2m) states, whi
h implies aprepro
essing 
ost and extra spa
e of O(�2m) for the table D that, given the 
urrent DFA stateand text 
hara
ter, delivers the next DFA state.An easy way to obtain a DFA from an NFA is via bit-parallelism: The ve
tor of a
tive andina
tive states is stored as a bit mask. Instead of (ala Thompson) examining the a
tive states oneby one, the whole 
omputer word is used to index a table that, given the 
urrent text 
hara
ter,provides the new set of a
tive states (another 
omputer word). This 
an be 
onsidered either asa bit-parallel simulation of an NFA, or as an implementation of a DFA (where the identi�er ofea
h deterministi
 state is the bit mask as a whole). This idea has been used several times, underThompson's [34℄ and Glushkov's [27℄ 
onstru
tions.By using di�erent properties of the 
onstru
tions, both manage to implement the transitionfun
tion D using O(2m) spa
e (a
tually, the Thompson-based version [34℄ may need O(22m) states).In both 
ases, if the table is too big, it 
an be horizontally split into two or more tables [34℄. Forexample, a table of size 2m 
an be split into 2 subtables of size 2m=2. We need to a

ess two tablesfor a transition but need only the square root of the spa
e.Some te
hniques have been proposed to obtain a tradeo� between NFAs and DFAs. In [19℄a four-russians approa
h is presented that obtains O(mu= log u) worst-
ase time and extra spa
e.The idea is to divide the syntax tree of the regular expression into \modules", whi
h are subtreesof a reasonable size. Those subtrees are implemented as DFAs and are thereafter 
onsidered as leafnodes in the syntax tree. The pro
ess 
ontinues with this redu
ed tree until a single �nal moduleis obtained, so the result is an NFA of DFAs.The ideas presented up to now aim at a good implementation of the automaton, but they mustinspe
t all the text 
hara
ters. Other proposals try to skip some text 
hara
ters, as it is usualfor simple pattern mat
hing. For example, in [32℄ they present an algorithm that determines theminimum length of a string mat
hing the regular expression and forms a trie with all the pre�xes5



of that length of strings mat
hing the regular expression. A multipattern sear
h algorithm likeCommentz-Walter [7℄ is run over those pre�xes as a �lter to dete
t text areas where a 
ompleteo

urren
e may start. Those areas are then veri�ed with a 
lassi
al algorithm. Another te
hniqueof this kind is used in Gnu Grep, whi
h extra
ts a set of strings that must appear in any o

urren
e.These strings are sear
hed for and the areas where they appear are 
he
ked for 
omplete o

urren
esusing a lazy deterministi
 automaton (i.e., built on the 
y).The most re
ent development, also in this line, is [24℄. They invert the arrows of the DFA andmake all states initial and the initial state �nal. The result is an automaton that re
ognizes all thereverse pre�xes of strings mat
hing the regular expression. The idea is in this sense similar to thatof [32℄, but takes less spa
e. The sear
h method is also di�erent: instead of a Boyer-Moore likealgorithm, it is based on BNDM [26℄.3.2 Compressed Pattern Mat
hingThe 
ompressed mat
hing problem was �rst de�ned in the work of Amir and Benson [2℄ as the taskof performing string mat
hing in a 
ompressed text without de
ompressing it. Given a text T , a
orresponding 
ompressed string Z = z1 : : : zn, and a pattern P , the 
ompressed mat
hing problem
onsists in �nding all o

urren
es of P in T , using only P and Z. A na��ve algorithm, whi
h �rstde
ompresses the string Z and then performs standard string mat
hing, takes time O(m+ u). Anoptimal algorithm takes worst-
ase time O(m + n + R), where R is the number of mat
hes (notethat it 
ould be that R = u > n).Two di�erent approa
hes exist to sear
h 
ompressed text. The �rst one is rather pra
ti
al.EÆ
ient solutions based on Hu�man 
oding [10℄ on words have been presented by Moura et al.[18℄, but they need the text to 
ontain natural language and be large (say, 10 Mb or more).Moreover, they allow only sear
hing for whole words and phrases. There are also other pra
ti
alad-ho
 methods [15℄, but the 
ompression they obtain is poor. Moreover, in these 
ompressionformats n = �(u), so the speedups 
an only be measured in pra
ti
al terms.The se
ond line of resear
h 
onsiders Ziv-Lempel 
ompression, whi
h is based on �nding repe-titions in the text and repla
ing them with referen
es to similar strings previously appeared. LZ77[35℄ is able to referen
e any substring of the text already pro
essed, while LZ78 [36℄ and LZW [33℄referen
e only a single previous referen
e plus a new letter that is added.String mat
hing in Ziv-Lempel 
ompressed texts is mu
h more 
omplex, sin
e the pattern 
anappear in di�erent forms a
ross the 
ompressed text. The �rst algorithm for exa
t sear
hing isfrom 1994, by Amir, Benson and Fara
h [3℄, who sear
h LZ78 
ompressed texts needing time andspa
e O(m2 + n).The only sear
h te
hnique for LZ77 is by Fara
h and Thorup [8℄, a randomized algorithm todetermine in time O(m+ n log2(u=n)) whether a pattern is present or not in the text.An extension of the �rst work [3℄ to multipattern sear
hing was presented by Kida et al. [13℄,together with the �rst experimental results in this area. They a
hieve O(m2 + n) time and spa
e,although this time m is the total length of all the patterns.New pra
ti
al results were presented by Navarro and RaÆnot [25℄, who proposed a generals
heme to sear
h Ziv-Lempel 
ompressed texts (simple and extended patterns) and spe
ializedit for the parti
ular 
ases of LZ77, LZ78 and a new variant proposed that was 
ompetitive and
onvenient for sear
h purposes. A similar result, restri
ted to the LZW format, was independently6



found and presented by Kida et al. [14℄. The same group generalized the existing algorithms andni
ely uni�ed the 
on
epts in a general framework [12℄. Re
ently, Navarro and Tarhio [28℄ presenteda new, faster, algorithm based on Boyer-Moore.Approximate string mat
hing on 
ompressed text aims at �nding the pattern where a limitednumber of di�eren
es between the pattern and its o

urren
es are permitted. The problem, advo-
ated in 1992 [2℄, was solved for Hu�man 
oding of words [18℄, but the solution is limited to sear
hfor a whole word and retrieve whole words that are similar. The �rst true solutions appeared veryre
ently, by K�arkk�ainen et al. [11℄, Matsumoto et al. [16℄ and Navarro et al. [23℄.4 A Sear
h AlgorithmWe present now our approa
h for regular expression sear
hing on a text Z = b1 : : : bn, whi
h isexpressed by the LZ78 algorithm as a sequen
e of n blo
ks. Our goal is to �nd the last positions inT of the regular expression o

urren
es, using Z instead of T .Our approa
h is to modify the DFA algorithm based on bit-parallelism [27℄, whi
h is designedto pro
ess T 
hara
ter by 
hara
ter, so that it pro
esses T blo
k by blo
k using the fa
t thatblo
ks are built from previous blo
ks and expli
it 
hara
ters. Sin
e we assume that Glushkov's
onstru
tion is used, the NFA has m + 1 states. So we start by building the DFA in O(2m) timeand spa
e. Re
all that the state identi�ers of the DFA are exa
tly the bit masks that represent the
orresponding sets of a
tive NFA states.We assume that the states of our automaton are numbered 0 : : : m, being 0 the initial state. We
all F the bit mask of �nal states and the transition fun
tion is D : bitmasks � � ! bitmasks(whi
h, as explained, it is implemented using O(2m) spa
e).The general me
hanism of the sear
h is as follows: we read the blo
ks br one by one. For ea
hnew blo
k b read, representing a string B, and where we have already pro
essed T1:::j, we updatethe state of the sear
h so that after working on the blo
k we have pro
essed T1:::j+jBj = T1:::jB. Topro
ess ea
h blo
k, three steps are 
arried out: (1) its des
ription is 
omputed and stored, (2) theo

urren
es ending inside the blo
k B are reported, and (3) the state of the sear
h is updated.Say that blo
k b represents the text substring B. Then the des
ription of b is formed by� a number len(b) = jBj, its length;� a blo
k number ref(b), the referen
ed blo
k;� a ve
tor tr0:::m(b) of bit masks, where tri gives the states of the NFA that be
ome a
tive afterreading B if only the i-th state of the NFA is a
tive at the beginning;� a ve
tor mat0:::m(b) of blo
k numbers, where mati(b) gives the �rst (i.e., longest) blo
k b0 inthe referen
ing 
hain of b su
h that tri(b0)\F 6= ;, or ? if there is no su
h blo
k. This is, the�rst blo
k in the referen
ing 
hain where state i produ
es a mat
h at the end of the blo
k.The state of the sear
h, in turn, 
onsists of two elements:� the last text position 
onsidered, j (initially 0);� a bit mask S of m + 1 bits, that indi
ates whi
h states are a
tive after pro
essing T1:::j .Initially, S has only its initial state a
tive, S = f0g.7



As we show next, the total 
ost to �nd all the mat
hes with this s
heme is O(2m+mn+Rm logm)in the worst 
ase. The �rst term 
orresponds to building the DFA from the NFA, the se
ond to
omputing blo
k des
riptions and updating the sear
h state, and the last to report the o

urren
es.The existen
e problem is solved in time O(2m +mn). The spa
e requirement is O(2m +mn). Forexpressions longer than w, the time is O((2m +mn)dm=we+Rm logm).4.1 Computing Blo
k Des
riptionsWe show how to 
ompute the des
ription of a new blo
k b0 = (b; a) that represents B0 = Ba, whereB is the string represented by the referen
ed blo
k b and a is an expli
it 
hara
ter. An initial blo
kb0 represents the string ", and its des
ription is: len(b0) = 0; tri(b0) = fig; mati(b0) =?. We givenow the update formulas for B0 = Ba.� len(b0)  len(b) + 1.� ref(b0)  b.� tri(b0)  D(tri(b); a).� mati(b0)  if tri(b0) \ F 6= ; then b0 else mati(b).For ea
h blo
k, we have to update all the 
ells of tr and mat, so we pay O(mn) time (re
allthat bit-parallelism permits performing set operations in 
onstant time). The spa
e required forthe blo
k des
riptions is O(mn) as well.4.2 Reporting Mat
hes and Updating the Sear
h StateIfmati(b) 6= 0 for some i 2 S, then there are mat
hes to report inside the new blo
k B0. In fa
t, theremay be more than one mat
h, and mati(b) gives us only the last mat
h in the blo
k. The previousone 
an be obtained by 
onsidering mati(ref(mati(b0))), and so on. All the mat
hes produ
ed bystate i in B0 are obtained in reverse order by 
onsidering the sequen
emati(b); mati(ref(mati(b0)));: : : until it gives ?. If B0 starts at text position j, then we have to report the text positionsj + len(mati(b0))� 1; j + len(mati(ref(mati(b0)))) � 1; : : :However, there may be more than one state in S that produ
es mat
hes inside B0. For ea
hsu
h i we 
an retrieve the mat
hes in reverse order, but we have to merge the positions reported bythe di�erent states in S. Moreover, the same mat
h may be reported by several states in S. EvenO(m) states 
an parti
ipate. A priority queue 
an be used to obtain ea
h position in O(logm)time. If there are R o

urren
es overall, then in the worst 
ase ea
h o

urren
e 
an be reported mtimes (rea
hed from ea
h state), whi
h gives a total 
ost of O(Rm logm).Finally, we update S in O(m) time per blo
k using S  [i2S tri(b0).5 A Faster Algorithm on AverageAlthough we have presented the best worst-
ase algorithm we 
ould devise, several improvements
an be made to its average 
ase performan
e. 8



5.1 A
tive StatesLet us de�ne a
t(b) as the set of NFA states that, if a
tive at the beginning of blo
k b, yield ana
tive state after pro
essing b. This set will turn out to be helpful in redu
ing unne
essary work.To the blo
k des
ription of Se
tion 4 we add a new bit mask:� a bit mask a
t(b) = [ fi; tri(b) 6= ;g, whi
h indi
ates the states of the NFA that may yieldany a
tive state after pro
essing b.For the initial blo
k, this is de�ned as a
t(b0) = f0 : : : mg. For subsequent blo
ks b0 = (b; a),a
t(b0) is 
omputed as follows:� a
t(b0)  fi 2 a
t(b); tri(b0) 6= ;g.Note that we need to 
onsider only the states already in a
t(b) in order to de�ne a
t(b0). Thise�e
t extends over other elements that require updating: (i) tri(b0) needs to be 
omputed only forthose i 2 a
t(b0), sin
e otherwise we know it is empty; and the set of a
tive states S 
an be updatedusing the formula S  [i2S\a
t(b0) tri(b0) sin
e, again, the other tri(b0) values are empty sets.Ex
ept for mat, all the 
omputation of the blo
k des
ription is proportional to the size of a
t:tri(b0), a
t(b0) need only work on the states of a
t(b), and S only on the states of a
t(b0). In orderto extra
t the a
tive bits of a
t in 
onstant time we resort to bit magi
.The main point is that, on average, ja
t(b)j = O(1), that is, the number of states of theautomaton that 
an survive after pro
essing a blo
k is 
onstant. We prove in the Appendix thatthis holds under very general assumptions and for \admissible" regular expressions (i.e., those whoseautomata run out of a
tive states after pro
essing O(1) text 
hara
ters, on average). Admissibleregular expressions are those of most interest for sear
hing, as unadmissible ones report too manymat
hes.Therefore, the average time to 
ompute the blo
k des
riptions is O(n) for admissible regularexpressions. The ex
eption is the mat ve
tor, whi
h we 
onsider in the next se
tions.5.2 Updating the mat Ve
torWe need a me
hanism to update mat fast. Note that the number of blo
ks where mati(b) 6=? isnot ne
essarily o(n), sin
e on
e a blo
k b has mati(b) 6=?, the same is true for all its des
endantsin the Ziv-Lempel trie.However, it is still true that just O(1) values of mat(b) 
hange in mat(b0), where ref(b0) = b,sin
e mat 
hanges only on those fi; tri(b0) \ F 6= ;g � a
t(b0), and ja
t(b0)j = O(1).Hen
e, we do not represent a newmat ve
tor for ea
h blo
k, but only its di�eren
es with respe
tto the referen
ed blo
k. This must be done su
h that (i) the mat ve
tor of the referen
ed blo
k isnot altered, as it may have to be used for other trie des
endants; and (ii) we are able to �nd matifast for any i.A solution is to represent mat as a 
omplete tree (i.e., perfe
tly balan
ed) that will alwayshave m + 1 nodes and asso
iate the keys f0 : : : mg to their value mati. This permits obtaining inO(logm) time the value mati. We start with a 
omplete tree, and later need only to modify thevalues asso
iated to tree keys, but never add or remove keys (otherwise an AVL would have been9



a good 
hoi
e). When a new value has to be asso
iated to a key in the tree of the referen
ed blo
kin order to obtain the tree of the referen
ing blo
k, we �nd the key in the old tree and 
reate of
opy of the path from the root to the key. Then we 
hange the value asso
iated to the new nodeholding the key. Ex
ept when the new nodes are involved, the 
reated path points to the samenodes where the old paths points, hen
e sharing part of the tree. The new root 
orresponds tothe modi�ed tree of the new blo
k. The 
ost of ea
h su
h modi�
ation is O(logm). We have toperform this operation O(1) times on average per blo
k, yielding O(n logm) time.Figure 2 illustrates the idea. This kind of te
hnique is usual when implementing the logi
alstru
ture of WORM (write on
e read many) devi
es, in order to re
e
t the modi�
ations of theuser on a medium that does not permit alterations.
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Figure 2: Changing node 5 to 5' in a read-only tree.5.3 An Alternative for Small RIn most interesting 
ases the size R of the result is extremely small. This enables us to use a mu
hlighter me
hanism to keep tra
k of the mat
hes in ex
hange for a more 
ostly mat
h reportingpro
edure.Instead of representing mat, we store for ea
h blo
k two bit masks ffin and fin. The �rstindi
ates whi
h states, if a
tive before pro
essing b, produ
e a mat
h exa
tly at the end of theblo
k. The se
ond does the same but permits the mat
h anywhere inside the blo
k. In both 
asesit is ne
essary to have read at least one 
hara
ter of the blo
k before looking for mat
hes.In the beginning we have ffin(b0) = fin(b0) = ;. Given b0 = (b; a), we 
ompute ffin(b0) andfin(b0) as follows:� ffin(b0)  fi 2 a
t(b0); tri(b0) \ F 6= ;g.� fin(b0)  fin(b) [ ffin(b0).Reporting the o

urren
es is now done as follows. The mask fin(b0) tells us whether there areany o

urren
es to report depending on the a
tive states at the beginning of the blo
k. Therefore,10



our �rst a
tion is to 
ompute S \ fin(b0), whi
h tells us whi
h of the 
urrently a
tive states willprodu
e o

urren
es inside B0. If this set turns out to be empty, we 
an skip the pro
ess of reportingmat
hes.If S \ fin(b0) 6= ;, then we will have to report mat
hes inside the blo
k. We 
onsider the blo
ksb in the referen
ing 
hain of b0. As long as fin(b) \ S 6= ;, we report blo
k the �nal position ofblo
k b if ffin(b) \ S 6= ; and go to the referen
ed blo
k, b  ref(b). The �nal position of blo
kb is j + len(b)� 1 if b0 starts at text position j.The me
hanism is similar to the one used with mat, but this time we do not have a dire
t linkto the previous blo
k that has a mat
h at the end. We just know that, if fin(b)\S 6= ;, then thereare still more mat
hes to report, and that, in parti
ular, if ffin(b) \ S 6= ;, we have to report b.We have to traverse the referen
ing 
hain one blo
k by one.On average, we 
an 
onsider that every mat
h reported makes us traverse 
hara
ter by 
hara
tera 
onstant fra
tion of its blo
k. In ex
hange, we need O(1) time per blo
k to 
ompute ffin. Thisgives O(n + Ru=n) sear
h time, instead of the previous O((n + Rm) logm) (prepro
essing 
ostsex
luded).5.4 Lowering Spa
e and Prepro
essing CostsIn the Appendix we also show that jtri(b)j = O(1) on average for admissible regular expressions.This shows another possible improvement.We have 
hosen a DFA representation of our automaton that needs O(2m) spa
e and prepro-
essing time. Instead, an NFA representation would require O(m2). The problem with the NFA isthat, in order to build tri(b0) for b0 = (b; a), we need to make the union of the NFA states rea
hablevia 
hara
ter a from ea
h state in tr(b). This has a worst 
ase of O(m), yielding O(m2) worst 
asesear
h time to update a blo
k. However, on average this drops to O(1) sin
e only O(1) states ihave tri(b) 6= ; (be
ause ja
t(b)j = O(1)) and ea
h su
h tri(b) has 
onstant size.In parti
ular, we do not need to represent a
t as a bit mask but 
an simply enumerate its states.This removes the need of the exponential spa
e for the bit magi
.Therefore, we have obtained average 
omplexity O(m2+(n+Rm) logm) or O(m2+n+Ru=n),depending on whether we use mat or ffin=fin to handle the mat
hes. The spa
e requirementsare lowered as well. The NFA requires only O(m) spa
e. The blo
k des
riptions take O(n) spa
ebe
ause there are only O(1) nonempty tri masks. With respe
t to the mat trees, we have thatthere are on average O(1) modi�
ations per blo
k and ea
h 
reates O(logm) new nodes, so thespa
e required for mat is on average O(n logm). Hen
e the total spa
e is O(m+n logm) if we usemat, and O(m+ n) if we use ffin=fin.6 An ExampleIn this se
tion we show a toy example to illustrate how the algorithm works. We sear
h for aregular expression in the text "ananas and". Figure 3 shows the NFA with the 
orrespondingstate numbers, the LZ78 blo
ks of the text, the LZ78 trie, and the evolution of the variables alongthe sear
h pro
ess. We show all the variables mentioned, although in no version of the algorithmall them are used simultaneously. 11



2

da n a

5

a
n

s
’ ’

Σ

0 1 n

3

aa s n

60 1 2 3 4

(0,a) (0,n) (1,n) (1,s) (0,’ ’) (3,d)

0

1 2 5

3 4

6

a n ’ ’

n s

d0 = " 1 = (0; a) = a 2 = (0; n) = n 3 = (1; n) = an 4 = (1; s) = as 5 = (0;' ') =' ' 6 = (3; d) = andlen(") = 0 len(a) = 1 len(n) = 1 len(an) = 2 len(as) = 2 len(' ') = 0 len(and) = 3ref(") =? ref(a) = 0 ref(n) = 0 ref(an) = 1 ref(as) = 1 ref(' ') = 1 ref(and) = 3tr0(") = f0g tr0(a) = f0; 1g tr0(n) = f0g tr0(an) = f0; 2g tr0(as) = f0; 3g tr0(' ') = f0g tr0(and) = f0gtr1(") = f1g tr1(a) = ; tr1(n) = f2g tr1(an) = ; tr1(as) = ; tr1(' ') = ; tr1(and) = ;tr2(") = f2g tr2(a) = ; tr2(n) = ; tr2(an) = ; tr2(as) = ; tr2(' ') = ; tr2(and) = ;tr3(") = f3g tr3(a) = ; tr3(n) = ; tr3(an) = ; tr3(as) = ; tr3(' ') = f0g tr3(and) = ;mat0(") =? mat0(a) =? mat0(n) =? mat0(an) = 3 mat0(as) =? mat0(' ') =? mat0(and) = 3mat1(") =? mat1(a) =? mat1(n) = 2 mat1(an) =? mat1(as) =? mat1(' ') =? mat1(and) =?mat2(") =? mat2(a) =? mat2(n) =? mat2(an) =? mat2(as) =? mat2(' ') =? mat2(and) =?mat3(") =? mat3(a) =? mat3(n) =? mat3(an) =? mat3(as) =? mat3(' ') =? mat3(and) =?act(") = f0; 1; 2; 3g act(a) = f0g act(n) = f0; 1g act(an) = f0g act(as) = f0g act(' ') = f0; 3g act(and) = f0gfin(") = ; fin(a) = ; fin(n) = f1g fin(an) = f0g fin(as) = ; fin(' ') = ; fin(and) = f0gffin(") = ; ffin(a) = ; ffin(n) = f1g ffin(an) = f0g ffin(as) = ; ffin(' ') = ; ffin(and) = ;j = 0 j = 1 j = 2 j = 4 j = 6 j = 7 j = 10S = f0g S = f0; 1g S = f0; 2g S = f0; 2g S = f0; 3g S = f0g S = f0gReport at 1 Report at 3 Report at 9

Figure3:Anexampleofthesear
hpro
ess.
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7 Approximate String Mat
hingApproximate string mat
hing on 
ompressed text aims at �nding a pattern string of length m inthe text where a limited number, 0 < k < m, of di�eren
es between the pattern and its o

urren
esare permitted. A \di�eren
e" is a 
hara
ter insertion, deletion, or substitution.The �rst true solutions to 
ompressed approximate string mat
hing appeared very re
ently[11, 16, 23℄. We disregard the latter be
ause it is an engineering solution without a 
omplexityanalysis. The �rst solution [11℄ gives worst-
ase time O(mkn+R) and average 
ase time O(k2n+min(mkn;m2(m�)k)+R), where � is the alphabet size. The se
ond solution [16℄ gives O(mk3n=w)worst 
ase time for the existen
e problem.It is interesting to noti
e that any solution for 
ompressed regular expression sear
hing implies asolution for 
ompressed approximate string mat
hing, as the latter 
an be expressed as the outputof an automaton [20℄. Consider the NFA for k = 2 di�eren
es shown in Figure 4. Every rowdenotes the number of di�eren
es seen (the �rst row zero, the se
ond row one, et
.). Every 
olumnrepresents mat
hing a pattern pre�x. Horizontal arrows represent mat
hing a 
hara
ter (i.e., ifthe pattern and text 
hara
ters mat
h, we advan
e in the pattern and in the text). All the othersin
rement the number of di�eren
es (move to the next row): verti
al arrows insert a 
hara
ter inthe pattern (we advan
e in the text but not in the pattern), solid diagonal arrows substitute a
hara
ter (we advan
e in the text and pattern), and dashed diagonal arrows delete a 
hara
ter ofthe pattern (they are "-transitions, sin
e we advan
e in the pattern without advan
ing in the text).The initial self-loop allows a mat
h to start anywhere in the text. The automaton signals (the endof) a mat
h whenever a rightmost state is a
tive.
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Figure 4: An NFA for approximate string mat
hing of the pattern "ananas" with two di�eren
es.We now 
onsider whi
h would be the behavior of our present algorithm over the automaton forapproximate string mat
hing.Let us forget for a se
ond that the top left state has a self-loop. Ex
ept for this arrow, theautomaton is 
y
le-free. Take any state (i; j), at row i 2 0 : : : k and 
olumn j 2 0 : : : m. It 
annota
tivate any state after pro
essing a string longer than (k � i) + (m � j). Let us pessimisti
allyassume that it will a
tivate states after pro
essing every string of up to that length. This meansthat state (i; j) will be part of a
t for O(�(k�i)+(m�j)) di�erent blo
ks. Adding up over every (i; j)13



gives us O(�m+k), whi
h is the total size of a
t over all the possible blo
ks.State (0; 0), on the other hand, is part of a
t in every blo
k. Therefore, the total size of the seta
t over all the n blo
ks is upper bounded by O(�m+k + n).To determine the 
ost of an update operation we must 
onsider how we implement the D()fun
tion. A na��ve deterministi
 table implementation requires O(2mk) spa
e. We prefer a bit-parallel te
hnique that 
omputes D(), in O(mk=w) time [34℄. No exponential prepro
essing orstorage are involved.Therefore the existen
e problem 
an be solved using a
t in worst 
ase timeO((�m+k+n)(mk=w)).This 
ompares favorably against the O(mk3n=w) 
omplexity of [16℄ for m + k � log� n, that is,when the text is long enough 
ompared to the pattern.Let us now fo
us on how to report all the mat
hes. Every o

urren
e 
an be reported mk times.However, many of those are redundant: It is not hard to show that, if a given state (i; j) is a
tive,then all the states (i + r; j) are a
tive too, and any o

urren
e produ
ed by state (i + r; j) is alsoprodu
ed by state (i; j), for all r > 0. So we 
an 
onsider only the highest a
tive states of ea
h
olumn and we will have all the relevant mat
hes. This gives us only O(m) states to 
onsider, andhen
e the worst 
ase time to report the o

urren
es is O(Rm logm).The problem, however, is how to maintain mat. Using the same analysis as for a
t, the totalnumber of mat 
ells that 
hange is O(�m+k+n). On blo
ks shorter than m+k we use the balan
edtree me
hanism of Se
tion 5.2 and obtain O(�m+k logm) time. On longer blo
ks, only state (0; 0)
an 
hange in mat, what 
an be tra
ked in O(1) time and spa
e.Therefore the total sear
h time is in the worst 
ase O(�m+k(mk=w+logm)+nmk=w+Rm logm)if we want to report all the mat
hes. This 
ompares favorably against the O(mkn + R) time of[11℄: we are better for m + k � log� n. (We are disregarding the uninteresting 
ase of very largeR = 
(kn= logm)).Hen
e, we are always better when m + k � log� n in the worst 
ase. Let us now 
onsider theaverage 
ase.It is well known [20℄, that if we a
tivate state (i; j), the e�e
t will last on average for O(k � i)text positions, instead of the worst 
ase of (k � i) + (m � j). If we add up over every (i; j),we get that the total size of a
t is O(m�O(k) + n). Using ffin, this gives an average sear
htime of O((m�
k + n)(mk=w) + Ru=n) for some 
 > 1, whi
h 
ompares favorably against theO(k2n+min(mkn;m2(m�)k) + R) time of [11℄ roughly for the 
ase 
k � log� n and k=m > 1=w.This means large enough n (although mu
h less than that required for the worst 
ase) and not verysmall k=m ratio.8 Experimental ResultsWe have implemented our algorithm in order to determine its pra
ti
al value. We 
hose to usethe LZW format by modifying the 
ode of Unix's un
ompress, so our 
ode is able to sear
h �les
ompressed with 
ompress (.Z). This implies some small 
hanges in the design, but the algorithmis essentially the same. We have used bit-parallelism [27℄ with a single table (no horizontal parti-tioning). Finally, we have 
hosen to use the ffin=fin masks instead of representing mat.We ran our experiments on an Intel Pentium III ma
hine of 550 MHz and 64 Mb of RAM.We have 
ompressed 10 Mb of Wall Street Journal arti
les, whi
h gets 
ompressed to 42% of its14



original size with 
ompress. We measure user time, as system time was negligible. Ea
h data pointhas been obtained by repeating the experiment 10 times, whi
h yielded a relative error below 2%with 95% 
on�den
e.In the absen
e of other algorithms for 
ompressed regular expression sear
hing, we have 
om-pared our algorithm against the na��ve approa
h of de
ompressing and sear
hing. The text needed3.58 se
onds to be de
ompressed with un
ompress. After de
ompression, we run two di�erentsear
h algorithms. A �rst one, DFA, uses a bit-parallel DFA to pro
ess the text [27℄. This isinteresting be
ause it is the algorithm we are modifying to work on 
ompressed text. A se
ond one,the software nrgrep [21℄, uses a 
hara
ter skipping te
hnique for sear
hing [24, 27℄, whi
h is mu
hfaster. In any 
ase, the time to de
ompress is an order of magnitude higher than that to sear
h theun
ompressed text, so the sear
h algorithm used does not signi�
antly a�e
t the results.A major problem when presenting experiments on regular expressions is that there is not a
on
ept of a \random" regular expression, so it is not possible to sear
h for, say, 1,000 randompatterns. La
king su
h a good 
hoi
e, we sele
ted a set of 7 patterns to illustrate di�erent interesting
ases. The patterns are given in Table 1, together with some parameters and the obtained sear
htimes. We use the normal operators to denote regular expressions plus some extensions, su
h as"[a-z℄" = (ajbj
j:::jz) and "." = all the 
hara
ters. Note that the 7th pattern is not \admissible"and the sear
h time gets a�e
ted (we show the average number of a
tive bits to stress that fa
t).No. Pattern m R ja
tj Ours Un
ompress Un
ompress+ Nrgrep + DFA1 Ameri
an|Canadian 17 1801 1.011 1.81 3.75 3.852 Amer[a-z℄*
an 9 1500 1.612 1.79 3.67 3.743 Amer[a-z℄*
an|Can[a-z℄*ian 16 1801 2.213 2.23 3.73 3.874 Ame(i|(r|i)*)
an 10 1500 1.010 1.62 3.70 3.725 Am[a-z℄*ri[a-z℄*an 9 1504 2.196 1.88 3.68 3.726 (Am|Ca)(er|na)(i
|di)an 15 1801 1.014 1.70 3.70 3.757 Am.*er.*i
.*an 12 92945 7.091 2.74 3.68 3.74Table 1: The patterns used on Wall Street Journal arti
les and the sear
h times in se
onds.As the table shows, we 
an a
tually improve over the de
ompression of the text followed bythe appli
ation of any sear
h algorithm (indeed, just the de
ompression takes mu
h more time). Inpra
ti
al terms, we 
an sear
h the original �le at about 4{5 Mb/se
. This is about half the timene
essary for de
ompression plus sear
hing with the best algorithm.We have used 
ompress be
ause it is the format we are dealing with. In some s
enarios, LZWis the preferred format be
ause it maximizes 
ompression (e.g., it 
ompresses DNA better thanLZ77). However, we may prefer a de
ompress plus sear
h approa
h under the LZ77 format, whi
hde
ompresses faster. For example, Gnu gzip needs 2.07 se
onds for de
ompression in our ma
hine.If we 
ompare our sear
h algorithm on LZW against de
ompressing on LZ77 plus sear
hing, we arestill 20% faster.
15



9 Con
lusionsWe have presented the �rst solution to the open problem of regular expression sear
hing on Ziv-Lempel 
ompressed text. Our algorithm 
an �nd the R o

urren
es of a regular expression oflength m over a text of size u 
ompressed by LZ78 or LZW into size n in O(2m +mn+Rm logm)worst-
ase time and, for most regular expressions, O(m2 + (n+Rm) logm) or O(m2 + n+Ru=n)average 
ase time. This gives also a new 
ompetitive algorithm for 
ompressed approximate stringmat
hing. We have shown that the algorithm is of pra
ti
al interest, as we are able to sear
h
ompressed text twi
e as fast as de
ompressing plus sear
hing.An interesting question is whether we 
an improve the sear
h time using 
hara
ter skippingte
hniques [32, 24℄. The �rst would have to be 
ombined with multipattern sear
h te
hniques onLZ78/LZW [13℄. For the se
ond type of sear
h (BNDM [24℄), there is no existing algorithm on
ompressed text yet. We are also pursuing on extending these ideas to other 
ompression formats,su
h as a Ziv-Lempel variant where the new blo
k is the 
on
atenation of the previous and the
urrent one [17℄. The existen
e problem seems to require O(m2n) time for this format.Referen
es[1℄ A. Aho, R. Sethi, and J. Ullman. Compilers: Prin
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ien
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Let us now 
onsider that we initialize our NFA with just state i a
tive and that we ba
ktra
k onthe LZ78 trie, entering into all possible bran
hes and feeding the automaton with the 
orresponding
hara
ter. We stop when the automaton runs out of a
tive states.The total amount of trie nodes rea
hed in this pro
ess is exa
tly the amount of text blo
ks bwhose i-th bit in a
t(b) is a
tive, that is, the blo
ks su
h that, if we start with state i a
tive, we�nish the blo
k with some a
tive state. Hen
e the total amount of states in a
t over all the blo
ksof the text 
orresponds to the sum of trie nodes rea
hed when starting the NFA initialized withevery possible state i.As shown by Baeza-Yates and Gonnet [4℄, the 
ost of ba
ktra
king on a trie of n nodes witha regular expression is O(polylog(n)n�), where 0 � � < 1 depends on the stru
ture of the regularexpression. This result applies only to random tries over a uniformly distributed alphabet and foran arbitrary regular expression that has no outgoing edges from �nal states. We remark that the
hara
ter probabilities on the LZ78 trie are more uniform than on the text, so even on biased textthe uniform model is not so bad an approximation. In any 
ase the result 
an probably be extendedto biased 
ases.Despite being suggestive, the previous result 
annot be immediately applied to our 
ase. First,it is not meaningful to 
onsider su
h a random text in a 
ompression s
enario, sin
e in this 
ase
ompression would be impossible. Even a s
enario where the text follows a biased Bernoulli orMarkov model 
an be restri
tive. Se
ond, our DFAs 
an perfe
tly have outgoing transitions fromthe �nal states. On the other hand, we 
annot a�ord an arbitrary text and pattern simultaneouslybe
ause it will be always possible to design a text tailored to the pattern that rea
hes the worst
ase. Hen
e, we 
onsider the most general s
enario that we 
onsider reasonable to fa
e:De�nition. Our arbitrariness assumption states that text and pattern are arbitrary but indepen-dent, in the sense that there is zero 
orrelation between text substrings and substrings of stringsgenerated by the regular expression. Formally, if T is the text and E the regular expression, thenfor any string x,Pr(x = Ti:::i+jxj�1 = 9y; z; yxz 2 L(E)) = Pr(x = Ti:::i+jxj�1) 2The arbitrariness assumption permits us extending our analysis to any text and pattern, underthe 
ondition that the text 
annot be espe
ially designed for the pattern. Our se
ond step is toset a reasonable 
ondition over the pattern. The number of strings of length ` a

epted by anautomaton is [31℄ N(`) = Xj �j!j̀ = O(
`)where the sum is �nitary and �j and !j are 
onstants. The result is simple to obtain with generatingfun
tions [29℄: For ea
h state i the fun
tion fi(z) 
ounts the number of strings of ea
h length that
an be generated from state i of the DFA, so if edges labeled a1 : : : ak rea
h states i1 : : : ik from iwe have fi(z) = z(fi1(z)+ : : :+fik(z)+1 � [i �nal℄), whi
h leads to a system of equations formed bypolynomials and possibly fra
tions of the form 1=(1 � z). The solution to the system is a rationalfun
tion, that is, a quotient between polynomials P (z)=Q(z), whi
h 
orresponds to a sequen
e ofthe form Pj �j!j̀. This gives us a tool to de�ne what are admissible states.19



De�nition. An NFA state i is admissible if the number of strings of length ` re
ognized from statei is at most 
`, for some 
 < �, for any ` � 1. 2If a state i is admissible and the arbitrariness assumption holds then, if we initialize the NFAwith only state i a
tive and feed the NFA with 
hara
ters from a random text substring, thenthe automaton runs out of a
tive states after reading O(1) 
hara
ters. The reason is that theautomaton re
ognizes 
` strings of length `, out of the �` possibilities. Sin
e text and patternare un
orrelated, the probability that the automaton re
ognizes the sele
ted text substring after `iterations is O((
=�)`) = O(�`), where we have de�ned � = 
=� < 1. Hen
e the expe
ted amountof steps until the automaton runs out of a
tive states is P`>=0 �` = 1=(1 � �) = O(1).Let us 
onsider a perfe
tly balan
ed trie of n nodes obtained from the text, of height h = log� n.If we start an automaton at the root of the trie, it will rea
h O(
`) nodes at the trie level `. Thismeans that the total number of nodes traversed isO �
h� = O �
log� n� = O �nlog� 
� = O �n��for � < 1. So in this parti
ular 
ase we repeat the result that exists for random tries, whi
h is notsurprising. Let us now 
onsider the LZ78 trie of an arbitrary text, whi
h has f(`) nodes at depth`, where hX̀=0 f(`) = n and f(0) = 1; f(`� 1) � f(`) � �`By the arbitrariness assumption, those f(`) strings 
annot have 
orrelation with the pattern, sothe traversal of the trie tou
hes �`f(`) of those nodes at level `. Therefore the total number ofnodes traversed is C = hX̀=0�`f(`)Let us now start with an arbitrary trie and try to modify it in order to in
rease the number oftraversed nodes while keeping the same total number of nodes n. Let us move a node from leveli to level j. The new 
ost is C 0 = C � �i + �j . Clearly we in
rease the 
ost by moving nodesupward. This means that the worst possible trie is the perfe
tly balan
ed one, where all nodesare as 
lose to the root as possible. On the other hand, LZ78 tries obtained from texts tend to bequite balan
ed, so the worst and average 
ase are quite 
lose anyway. As an example of the otherextreme, 
onsider a LZ78 trie with maximum unbalan
ing (e.g., for the text au). In this 
ase thetotal number of nodes traversed is O(1).So we have that, under the arbitrariness assumption, the total number of trie nodes traversedby an NFA initialized at an admissible state i is O(n�i ) for some �i < 1. Unadmissible states, onthe other hand, rea
h all the O(n) nodes.The total number of a
tive states in a
t is the sum, over all the states i of the NFA, of the trienodes rea
hed when ba
ktra
king with the NFA initialized with state i a
tive. This isO �n�0 + n�1 + : : : + n�m�Note that, given the self-loop at state 0, we have �0 = 1, that is, state 0 is unadmissible. Onlynow we are in position to de�ne whi
h are the regular expressions to whi
h our result applies.20



De�nition: A regular expression is admissible if its Glushkov's NFA has O(1) unadmissiblestates. 2If a regular expression is admissible, then only O(1) NFA nodes rea
h all the trie nodes, whilethe rest rea
h only O(n�), where � = maxf�i; �i < 1gTherefore, in an admissible regular expression the total number of elements in a
t a
ross all theblo
ks is O �n + mn�� = O(n)where we made the last simpli�
ation 
onsidering that m = O(n1��), whi
h is weaker than usualassumptions and true in pra
ti
e. Therefore, we have proved that, under mild restri
tions (mu
hmore general than the usual randomness assumption), the amortized number of a
tive states in thea
t masks is O(1).Unadmissible regular expressions are those that basi
ally mat
h all the strings of every length,for example, a(ajb)�a over the alphabet fa; bgmat
hes 2`=4 = �(2`) strings of length `. Although wehave used Glushkov 
onstru
tion to �x ideas when de�ning what an admissible regular expressionis, being admissible is likely to be independent on how the NFA is produ
ed.We fo
us now on the size of the tri(b) sets for admissible regular expressions. Let us 
onsiderthe text substring B 
orresponding to a blo
k b.We �rst 
onsider the O(1) unadmissible states, whi
h are always a
tive, and 
ompute how manyadmissible states 
an they a
tivate. At ea
h step, those states may a
tivate O(�) admissible states,but given the arbitrariness assumption, the probability of ea
h su
h admissible state being a
tive `steps later is O(�`). While pro
essing B1::jBj, the unadmissible states are always a
tive, so at theend of the pro
essing we have PjBj`=0 ��` = O(1) a
tive states overall (the term �` 
orresponds tothe point where we were pro
essing Bk�`).We 
onsider now that the O(m) admissible states 
ould have been a
tive in the beginning.In this 
ase the probability of yielding an a
tive state after pro
essing B is O(�jBj). Hen
e theytotalize O(m�jBj) a
tive states. As before, the worst trie is the most balan
ed one, in whi
h 
asethere are �jBj blo
ks of lengths 0 to h = log� n. The total number of a
tive states adds uphX̀=0�`m�` = O(m
h) = O �mn��Hen
e, we have in total O(n+mn�) = O(n) a
tive bits in the tri sets, where the n 
omes fromthe O(1) states a
tivated from the unadmissible state and the mn� from the admissible states.
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