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ABSTRACT:We focus on how to compute the edit distance (or similarigtifeen two images
and the problem of approximate string matching in two dinwns that is, to find a pattern of
sizem x m in a text of sizen x n with at mostk errors (character substitutions, insertions and
deletions). Pattern and text are matrices over an alphéleteor. We present new models and
give the first sublinear time search algorithms for the nedithe existing models.

The only existing model just considers errors along one dgimm. The associated approx-
imate search algorithms use dynamic programming and aativedy expensive@(m>n?) or
O(k?*n?)). For this model we present a filtering algorithm which agowrifying most of the
text with dynamic programming. This filter is based on omaatisional multipattern approxi-
mate searching. The average complexity of our resultingrithgn isO(n*k log,, m /m?) for
k < m(m+1)/(5log, m), which is optimal and matches the best previous result flats
only substitutions. We present other slower filtration alipons that however work for higher
error levels.

We then consider more general models to compare images. &ergrnew similarity mea-
sures and the algorithms to compute them. We then focus onfahe models, which allows
the errors to occur along any dimension, and extend it to¢neigl case where pattern and text
ared-dimensional. This edit distance can be computed{@!m>?) time andO(d!m?>?1)
space. We also present the first sublinear-time (on avesageghing algorithm (i.e. not all text
cells are inspected), which @(kn? /m*~!) time fork < (m/(d(log, (m/d))))* ™ .

Keywords Pattern matching in images, edit distance, Levenshtsiamite

1 Introduction

Approximate pattern matching is the problem of finding agrattin a text allow-

ing errors (insertions, deletions, substitutions) of eleéers. A number of important
problems related to string processing lead to algorithmagpproximate string match-
ing: text searching, pattern recognition, computationabgy, audio processing, etc.
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Approximate two dimensional pattern matching has apptioat for instance, in com-
puter vision (i.e. searching a subimage inside a large inage OCR. In three di-
mensions, the problem has applications in some types ofaaledfita (e.g. MRI brain
scans) and in biocomputing (e.g. detecting protein pagtemthe surface of three
dimensional virus reconstructions).

For one dimension this problem is well-known, and is modeisidg the edit dis-
tance. Theedit distancebetween two stringst and B, ed(A, B), is defined as the
minimum number o&dit operationghat must be carried out to make them equal. The
allowed operations are insertion, deletion and substitutif characters i or B.
The problem ofapproximate string matchinig defined as follows: given a teft of
lengthn, and a patter® of lengthm, both being sequences over an alphabhetf
sizes, find all segments (or “occurrences”) nwhose edit distance tB is at most
k, where0 < k < m. The classical solution i®(mn) time and involves dynamic
programming [32].

Krithivasan and Sitalakshmi (KS) [24] proposed a simplesasgion to two dimen-
sions. Given two images of the same size, the edit distantteeisum of the edit
distance of the corresponding row images. This definitignssfied when the images
are transmitted row by row and there are not too many commatiait errors (e.g.
photocopy images, where most errors come from the mecHardcon mechanism
along one dimension only, or images transmitted by fax)jthstnot appropriate oth-
erwise. Using this model they define an approximate seamtigm where a subim-
age of sizen x m is searched into a large image of sizex n, which they solve in
O(m?n?) time using a generalization of the classical one-dimeraialgorithm.

Using this model we improve the expected case using a filgrdhm based on
multiple one-dimensional approximate string matchingthia same vein of [14, 13,
12]. Our algorithm ha®)(n*klog, m /m?*) average-case behavior for< m(m +
1)/(5log, m), usingO(m?) space. This time matches the best known result for the
same problem allowing only substitutions and is optima] [B2ing the restriction on
k only a bit more strict. For higher error levels, we presentalgorithm with time
complexityO(n?k/(w+/a)) (wherew is the size in bits of the computer word), which
works fork < m(m + 1)(1 — e/+/o). We also show that this limit ok cannot be
improved.

However, for many other problems, the KS distance does rileictevell simple
cases of approximate matching in different settings. Fangle, we could have a
match that only has the middle row of the pattern missinghéxefinition above, the
edit distance would b&(m?) if all pattern rows are different. Intuitively, the right
answer should be at mo3tn, because onlyn characters were deleted in the pattern
andm characters are inserted at the bottom.

In this paper we extend the edit distance to two dimensidtindithe problem
just mentioned and also extending the edit distance to imafelifferent shapes.
We define different distances and give algorithms to comgheen, as well as the
associated approximate search algorithms.

Among the more general extensions that we define, we focuseirRC model,
where the errors can occur along rows or columns at any tinés model is much
more robust and useful for more applications. We extend théaltod dimensions
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and present an edit distance algorithm with time complexity!m??). We also give a
new filtering algorithm that allows quickly discarding largarts of the text that cannot
contain a match. This algorithm searches the pattern iragesimeO (kn /md-1)
for k < (m/(d(log, (m/d))))?~". After that error level the filter changes its cost but
remains better than dynamic programming#ox m?~' /(d(log, (m/d)))(¢-1/4,

This paper is organized as follows. First we discuss theclzasicepts and previous
work on pattern matching with errors and image similarityex\l we consider the
basic KS model and give new filters to speed up the search.cliv®el we introduce
new notions of similarity between two-dimensional imadegether with algorithms
to compute the edit distance. Section 5 presents how tolsagrattern in a text under
the new model. Then we extend one of the models to more dimesnsind give fast
filtering algorithms for approximate searching under thatei. Finally, we give our
conclusions. This work is an integrated and revised versi¢n, 9, 28].

2 Basics and Previous Work

We give in this section some basic concepts and review thequework in the area.
We define some terminology first. Given a one dimensionalg$iwe useS; to de-
note itsi-th character, the first one corresponding te 1. S; ; denotes the substring
starting at characterand ending at charactgy both inclusive. A character of a two-
dimensional string is addressed &$; ;, meaning the character at ravand column
Jj. Similarly, rows and columns can be extractedas . ;, andS;, ;, ;, respectively,
and even sub-matrices SUCh®S i, j, j»-

2.1 One Dimensional Approximate String Matching

The classical dynamic programming algorithm [29] to conephie edit distance be-
tween two one-dimensional strings and B of lengthm andn computes a matrix
Co..m,0..n- The valueC; ; holds the edit distance between ; and B, ;. The con-
struction algorithm is as follows

Cio <+ 1, Coj « j
CL]’ «— ifA; = B; then 01;17_7‘,] else 1 + min(Ci,qu , Cifhj-, Ciyjf])

and the distanced(A, B) is the final value of”,, ,,. The rationale of the formula is
that if A; = B; then the cost to conveH; ; into B;_; is that of convertingd; ;_;
into By, ;. Otherwise we have to make one error and select among thoéeesh
(a) convert4, ;_, into By ;_; and replaced; by B;, (b) convert4, ;_; into B;_;
and deleted;, and(c) convert4, ; into B;_;_; and insertB;.

This algorithm take®) (mn) space and time. It is easily adapted to search a pattern
P in a textT allowing up tok errors [32]. In this case we want to report all the text
positions;j such that a suffix of;. ; matchesP with at mostk errors. This time the
construction formula is

Cz’70 — 1, 007_7‘ —~ 0
Ci,j «— if P, = Tj then C,‘,,Lj,1 else1+min(C’,;,Lj,l,Ci,l_j,C’,;,j,l)
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where the only change is that a pattern of length zero matsftesno errors at any
text position. All the positiong such thatC,,, ; < k are reported. This tak&3(mn)
time. The space can be reducedx@n) by noticing that only the old and new column
of the matrix need to be stored.

This solution was later improved by a number of algorithmg.[ZOne of special
interest to this work is a filtering algorithm [34, 11, 10]. fil#ter is a fast algorithm
that can discard most of the text by checking a necessanyitcmmdAll filters have a
maximum error level up to where they are useful. This filtaisdain £ + 1 pieces.
Any occurrence with up té errors must contain one of those pieces unchanged. This
is obvious since: errors cannot alter the + 1 pieces given that the edit operations
that we consider cannot alter two pieces at the same timealgbeithm simply scans
the text using a multipattern exact search algorithm fothadl pieces. Each time a
piece is found, it uses dynamic programming over an areangtten + 2k where the
approximate occurrence can be found.

The multipattern search can be carried oubim) worst-case search time by using
an Aho-Corasick machine [1], or ifi(n/m) best-case time using Commentz-Walter
[15] or another Boyer-Moore type algorithm adapted to npaltiern search. The total
cost of verifications keeps negligiblekfm < 1/(3log, m). We callsublinear time
those algorithms that do not inspect all the text characters

On the other hand, approximate multipattern search hasrengntly been consid-
ered. In [25], hashing is used to search thousands of patierparallel, although
with only one error. In [8], extensions of [10] and [11] ar@gented based on super-
imposing automata. In [26], a counting filter is bit-parkiled to keep the state of
many searches in parallel. Most multipattern algorithnesfifters able to check for a
necessary condition on many patterns at the same time.

2.2 Two Dimensional Pattern Matching

Two dimensional exact string matching was first considere®ibd and Baker [14,
13], who obtainO(n?) worst-case time. Good average results are presented by Zhu
and Takaoka in [35]. The first good average case result is dBaéza-Yates and
Reégnier [12], who obtai®)(n? /m) time on average and(n?) in the worst case. This
was improved by Karkkainen and Ukkonen [22] who achiéM@?” log,, (m)/m?)
average case time, which is optimal.

Two-dimensional approximate string matching usually aders only substitutions
for rectangular patterns, which is much simpler than theegarcase with insertions
and deletions (because in this case, rows and/or columrisegpdttern can match
pieces of the text of different length).

If we consider matching the pattern with at méstubstitutions, one of the best re-
sults on the worst case is due to Amir and Landau [5] achiewif(g +log o)n?) time
but usingO(n?) space. A similar algorithm is presented in Crochemore aniteRy
[16]. Ranka and Heywood [31], on the other hand, solve thblproinO((k+m)n?)
time andO (kn) space. Amir and Landau also present a different algorithming in
O(n?lognloglog nlog m) time. On average, the best algorithm is due to Karkkainen
and Ukkonen [22], with its analysis and space usage imprbyefark [30]. The ex-
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pected time isO(n%klog, (m)/m?) for k < m?/(4log, m), using O(m?) space
(O(k) space on average). This time result is optimal for the exguecase. They
extend their results td dimensions achieving tim@ (dnk log,, (m)/m?).

2.3 The KS Model

Krithivasan and Sitalakshmi (KS) [24] defined the edit dis&in two dimensions as
the sum of the edit distance of the corresponding row imagssig this model they
search a subimage of size x m into a large image of size x n, in O(m?*n?) time
using a generalization of the classical one-dimensioradrghm. Krithivasan [23]
presents for the same model@m (k +log m)n?) algorithm that use® (mn) space.
Amir and Landau [5] give a(k2n?) worst case time algorithm usin@(n?) space
(note thatk can be larger tham, so this is not necessarily better than the previous
algorithms). Amir and Farach [4] also considered non-regtidar patterns achieving
O(k(k + /mlogmy/klog k)n?) time.

The KS model can in principle be extended to more than two d#ieas, but it is
less interesting because it allows errors along one of timeasions only. Amir and
Landau [5] also study this case, obtainin@én?(k(k + d))) worst case algorithm.
We do not consider the KS model far> 2.

2.4 Related Problems

Other problems related to comparing images is searchiog/ialg rotations [20, 19,
18] and scaling [3, 2] (i.e. the pattern appears in the imagedifferent size).

Another related problem is geometric matching, where we h@vwnatch a geomet-
ric figure or a set of points. In this case, the problem is in @tiooous space rather
than a discrete space and usually the Hausdorff measure (i6gd.

There are other approaches to matching images, which ayedifégrent to ours
(which belongs to what is called combinatorial pattern rmiatg). Among them we
can mention techniques used in pattern matching relatedificial intelligence (for
example image processing and neural networks [33]) andiggbs used in databases
(extracting features of the image like color histogramg)[17

3 Fast Searching under the KS Model

We present now a fast filter to search a pattern allowing smader the KS model.
Although our algorithm can be used even for patterns and t@kere each row has
a different length, for simplicity we assume that the patt€r and the textl’ are
rectangular, of sizes; x msy andn; x ny respectively (rows< columns). We use
alsoM = mi;m» andN = nin» as the size of the pattern and the text, respectively.
Sometimes (especially for the analyses) we simplify andicamm,; = m, = m and
ny =ng =n.

In the KS error model we allow errors along rows, but erronmsncet occur along
columns. This means that, for instance, a single inserémmaot move all the charac-
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ters of its column one position down, or we cannot perfagmdeletions along a row
and eliminate the row. All insertions and deletions displtee characters of the row
they occur in.

In this simple model every row is exactly where it is expedizdbe in an exact
search. That is, we can see the pattern asiafiuple of strings of lengtn,, and
each error is a one-dimensional error occurring in exactyaf the strings. Formally,

Definition: Given a patterrP (of sizem; x m») and a textI" (of sizen; x ns), we
say that the patter® occurs in the text at positiofi, j) with at mostk errors if

my
Zled(TH»rfL]..j-,Pr,]..mQ) < k
r=1

whereled(t,_;,p) = min;eq_; ed(t;. ;, p) for one-dimensional stringsandp.

Observe that in this case the problem still makes sensé for m,, although it
must holdk < mjims (since otherwise every text position matches the pattern by
performingm,ms substitutions).

The natural generalization of the classical dynamic pnognéng algorithm for
one dimension to the case of two dimensions was presenteéff|n Jts complex-
ity is O(M N), which is also a natural extension of th&mn) complexity for one-
dimensional text. This algorithm usé¥(M) extra space, which is the only state
information it needs to be started at any text position.

We begin by proving a lemma which allows us to quickly disdarde areas of the
text.

Lemma: If the pattern occurs with errors at positiorfi, j) in the text, and, ro, .75
ares different rows in the rangéto m4, then

fI:nling{led(TH”,]JUj.‘ Prf,71--m2)} < |k/s]-

Proof: Otherwise,led(Ti+r,—1.1.j, Pr,1.ms) > 1+ |k/s] > k/s for all . Just
summing up the errors in theselected rows we have strictly more thar k/s = k
errors and therefore a match is not possible.

The Lemma can be used in many ways. The simplest case is4e=sét This tells
us that if we cannot find a rowof the pattern with at most errors at text row, then
the pattern cannot occur at text rew r + 1. Therefore, we can search falt rows of
the pattern at text rown, . If we cannot find a match of any of the pattern rows with
at mostk errors, then no possible match begins at text rows;. There cannot be
a match at text row 1 because pattern naw was not found at text rown;. There
cannot be a match at text row 2 because patternmgw- 1 was not found at text row
m;. Finally, there cannot be a match at text rew because pattern row 1 was not
found at text rown; .

This shows that we can search only text rawsn;, fori = 1..|ny;/m;|. Only
in the case that we find a match of pattern rowat text position(i - m, j), we must
verify a possible match beginning at text rewm,; — r + 1. We must perform the
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lf\_/\_ AV AV AV AVATAY
NN INNNNNN n:24,m:6,k:3
I 3 T I
AV AV AV AVATAY
m AV AV AV AVATAY
lf\/\ AV AV AV AVATAY
I/_\/\_ AV AV AV AVATAY
OO OO OO OO OO0 text rows searched with
- - 1-dimensional multipattern
s NSNS,
PRV PV NV AV AT )
A [ pattern row i found
-— VAV VAV
PV PRV ATV
RARRNNRANRNNRANRRNAAN] 2 5 RARRNARANA] ) .
N VN |:| possible position of an
" approximate occurrence
[ I/_W_vl text area to verify with
Ry H H
RERRRRRRRAN NN NN AR R RRR NN NN R AR RRRR RN A NN R AR R RRRRRAA ==~ dynamic programming

FiG. 1. Example of how the algorithm works.

verification from text columg — ms — k + 1 to j, using the dynamic programming
algorithm. However, ift > m. we can start aj — 2m» + 1, since otherwise we
would pay more thamn, insertions, in which case it is cheaper to just perfonm
substitutions. This verification cost¥(mym3) = O(m?), which is formed bym,
applications of the one-dimensional algorithm in a segmétengthms.

To avoid re-verifying the same areas due to overlappindigation requirements,
we can force all verifications to be made in ascending rowradéd ascending column
order inside rows. By remembering the state of the last eerifiositions we avoid
re-verifying the same columns, this way keeping the worseaaf this algorithm at
O(m?n?) cost instead of)(m?3n?). Figure 1 shows how the algorithm works.

We have still not explained how to perform a multipatternrappnate search for
all the rows of the pattern at text rows numbefedn;. We can use any available
one-dimensional multipattern filtering algorithm. Eacklsalgorithm has a different
complexity and a maximum error level (i.é:/m ratio) up to where it works well.
For higher error levels, the filter triggers too many vertiieas, which dominate the
search time.

A problem with this approach is that,if > m- holds in our original problem, this
filtration phase will be completely ineffective (since akt positions will match all
the patterns, and all the text will be verified with dynamiogmamming). Even for
k < mo the error levek /m» can be very high for the multipattern filter we choose.

This is where the of the Lemma comes to play. We can search, instead of all text

rows of the formi - m,, all text rows of the form - [m, /2], for all patterns, with
|k/2| errors. This corresponds to= 2. If we find nothing at rows - [m, /2] and
(i4+1)-|m1/2], then no occurrence can be found at text rgivs 1) - [m, /2| + 1 to

i - |m1/2], because that occurrence has already two rows with morektftaarrors
each. In general, we can search only the text rows numberea, /s |, for all the
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patterns, with| k/s| errors. In the extreme case, we can search all text rows with
| k/m; | errors (which is always: m, and therefore filtering is in principle possible).

There is another alternative way to usavhich is to search only the firgtn, /s]
rows of the pattern witlk errors and consider the text rows of the farm, /s|. That
is, reduce the number of patterns instead of reducing tloe lexrel (the motivation for
this is that the tolerance to errors of some filters is redasetthe number of patterns
grows). This alternative, however, is not promising sinegays more times searches
of (1/s)-th of the patterns. If the search cost fopatterns i< (r), we paysC(r/s).
The aim of any multipattern matching algorithm is precistlgt C(r) < sC(r/s)
(since the worst thing that can happen is that searching fatterns costs the same
asr searches for one pattern, i@€(r) = sC(r/s)).

3.1 Average Case Analysis

Once we have selected a given one-dimensional approximatgattern search al-
gorithm to support our two-dimensional filter, two valuegloé one-dimensional al-
gorithm influence the analysis of the two-dimensional filter

e C(m, k,r), which is the cost per text character to seargbatterns of lengthn
with & errors. Notice that in our casey = my andr = m;. Hence, the cost to
search a text row with this algorithmig C (ms, k, m1).

e L(m,r), which is the value fok/m from where the one-dimensional algorithm
does not work anymore. That is, the cost of the sear¢H(is, k, r) per text char-
acter, plus the verifications. If the error level is low enbiige. k/m < L(m,r)),
the number of those verifications is so low that their costlmameglected. Oth-
erwise the cost of verifications dominates and the algorighnot useful, as it is
as costly as plain dynamic programming and our whole scheyes dot work.
Again, in our casem; = mo andr = m;.

Given a multipattern search algorithm, our search strafiegthe two-dimensional
filter is as follows. If we search withk/s | errors, it must hold

M<L(m27m1) — s=1+ {*J : (3.1)

mo mgL(mg,ml)

Since we traverse only the text rows of the farfyn, /s |, we work onO(n s/mq)
rows, and therefore our total complexity to filter the text is

N_k C(m/27 m’2L(m27 m’1)7 ml)
M L(mg,m])

O(nis/my-n2C(ma, k/s,my)) = O ( ) , (3.2)
where we recall that, has been selected so that the cost of verifications has, on ave
age, lower order and therefore we neglect verification cdste algorithm is applica-
ble when it holdss < m, i.e. for

k <ma(my + 1)L(ma, my) (3.3)

3
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since if it requires > my, this means that the error level is too high even if we search
all rows of the text§{ = mq).

We consider specific multipattern algorithms now, each oitle argivenC' and
functions. As we only reference the algorithms, we do nduite here their analysis
leading toC and L, which is done in the original papers.

- Exact Partitioning [8] can be implemented such th@tm, k,r) = O(1) (i.e. lin-
ear search time). For oud(mim3) = O(rm?) verification costs, we have
L(m,r) = 1/log,(m3r?). Therefore, using this algorithm we would select

(Ea. (3.1))

| 2m3 I
o lqkogU(mlmQ)J B ”Fk ong}

mo m

our average search cost would be (Eg. (3.2))

0 (Nklogo_mj\a;((ml,mg)> _ 0 <n2k10go_m>

and the algorithm would be applicable for < my(m; + 1)/log, (m?m3) =
m(m + 1)/(5log, m) (EQ. (3.3)).

- Superimposed Automata [8]hasL(m,r) = 1 — e/+/o (wheree = 2.718...), and
C(m,k,r) = O(mr/(cw(1—k/m))) inits best version (automaton partitioning).
Therefore, we have (Eqg. (3.1))

k k
o= ) = )
the average complexity is (Eq. (3.2))

NE_mam o (NRY (o
o (srtervm ) = 0(vm) = °()
and the algorithm is applicable far < my(mi + 1)(1 — e/\/o) = m(m +
1)(1 - ¢/v/) (Eq. (3.3)).

- Counting [26] hasL(m,r) = e~™/7 andC (m, k,r) = O(r/w logm). Therefore,
using this algorithm we would select (Eq. (3.1))

ma/o m/o
S_1+{ke J _1+{ke J}

mo m

the average search cost would be (Eqg. (3.2))

0 (Nkemz/” mllogm2> _ O<Nkem2/”logm2> _ O<n2kem/”logm,>
M w mow muw

and the algorithm would be applicable for< ms(m; + 1)e"™2/7 = m(m +
1)e—™/7 (Eq. (3.3)).
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Notice that this algorithm is asymmetric with respect to shape of the pattern,
i.e. it works better on tall patterns than on wide ones. Thibdcause its cost
formula and error level are not symmetric in termsmofandr as the previous
ones.

- One Error [25] can only search witk = 1 errors (i.e.L(m,r) = 2/m), with time
costC(m, k,r) = m. Therefore we must hawe= |k/2] + 1, which means that
we can only apply the algorithm fdr < 2m, . In this case, the complexity would

be
Nk mams _ Nkmsy _ 2
0 < 5 > = 0 < - > = O(n°k).

This algorithm is asymmetric with respect to the error levéblerates, also pre-
ferring taller rather than wider patterns.

The best algorithm on average turns out to be a hybrid. Cogrigi the best op-
tion for small patterns (i.eme "™/7/log, m > /), superimposed automata is the
best option for intermediate patterns (i.e?/log, m < w/c/log, o), and exact
partitioning is the best option for larger patterns.

As m grows, the best (and optimal) complexity is given by the éxactitioning,
O(n*klog, m /m?). However, this is true fok < m(m + 1)/(5log, m), because
otherwise the verification phase dominates. Oneel and we cannot reduce the er-
ror level by reducing (i.e. by searching on more rows), the approach most reststan
the error level is superimposed automata, which works éptom (m+1)(1—e/+/o)

(at that point its cost i€)(m?n?/(w+/a)), very close to simple dynamic program-
ming, and the verification time becomes dominant).

Moreover, we prove in [10] that i /m» > 1 — e/+/o the number of text positions
matching the pattern is high (observe tmat is the length of the strings that are
searched, i.e. the width of the pattern). Therefore, thi fonautomaton partitioning
is not just the limit of another filtering algorithm, but thei¢ limit up to where it is
possible at all to filter the text. In this sense, this filtes loptimal tolerance to errors.

We summarize our results in Figure 2, where the best algoritr each case is
presented.

4 New Models

We present in this section new models for similarity in twmdnsions. We also show
how to compute the resulting distances and give basic s@égohithms for them.

First, some notation used in this section. We consider twtargyular stringst and
B of sizesm; x ms andn; x ns, respectively. For the search problem, we repldce
by P andB by T. Given a two-dimensional strin§, we denote by.S; ;(S) the L-
shaped string consisting of the first (leftelements of theé-th row and the first (top)
i — 1 elements of thg-th column. This is related to the L-shape idea of Giancarlo
[21] used for extending suffix trees to two dimensions.
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error
level Dynamic Programming

k/m? O(n?m?)
1—e/Vo

Automaton Partitioning
2 ke
0 (w%)

—-m/o

Exact Partitioning

0 (anlogﬂm)

m2

e

Counting

0 (nzkefm/” logm)

mw

ey m
me =\ m>_ _ o pattern size

log, m logom ~ logy o

FIG. 2. The best algorithm with respect to the pattern lengthearat level.
The complexity of each algorithm is also included.

4.1 Extending the Edit Distance

We start by solving the limitation of the KS model to handldetiens or insertions

of whole rows. We introduce now th model, where each row is treated as a single
string which is compared to other rows using the one-dinmeradiedit distance, but
whole rows can be inserted and deleted as well. WelRsall= R(A1 i 1..my, B1.j.1..n5)-
Hence

Rij=min(R;_1; +m2, Rij1 +n2, Ri—1j-1 + ed(Aii.m,, Bji.n,))

where the boundary conditions aRg, = i - m» and Ry ; = j - ns, and the distance
between the two images is given Bfa,b) = Ry, n, -

In the example given in the Introduction, the distance isuced to at mos2m
instead of being)(m?) as in the KS model. Similarly, we could use columns instead
of rows, obtaining another distan€&a, b). This model is much more fair than the KS
model. Although we use rectangular images, this measurbeantended to images
where rows are connected and continuous, and that haveetiffsizes.

Generalizing this idea to insertions and deletions at tieeséme in rows and/or
columns is not as simple. Suppose that we have two subimbhgewé want to com-
pare. One alternative is to decompose the border of a sukimagws or columns.
Then we can use the following decompositions:

1. removing one row or one column from one of the subimages or
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Rows (KS) General (RC)

Fic. 3. KS and RC error models.

2. removing one row or one columnin the same side of each ag#mnd computing
the edit distance between them.

We can apply dynamic programming to find the best possiblemdposition, and call
RC the resulting model. Figure 3 shows the difference betwkerKS and the RC
model. Thatis, itRC; ; p.q = RC(A1 1.4, B1.p1.4), thenwe have thakC; ; , , is
the minimum of the following values:

(] RC’,;,L]‘,,),[, + 7, RC,;J,L,),(, + 1, RC’,;_,jvp,Lq + q, andRCi,j,p7q71 + p, which
corresponds to deleting one row or column in one sub-imdgeqost is the size
of the row or column removed); and

. Rci717j1p717q+€d(14,;11__j, Bpﬁl__q) andRci1j717p7q71+€d(A1”1;7j, Bl..p,q)a which
corresponds to replacing one row or column of a subimagediyftihe other. The
one-dimensional edit distaned() gives the optimal way to do the change.

The boundary conditions a®®Cy ¢ ; ; = RC; jo,0 = i-j. The distancRC(A, B)

is given byRC'y,, .m, .n1.ns- Figure 4 shows all these cases. This distance can also be

applied to any convex image, for example circles or othenlsrgolygons.
Nevertheless, this distance does not handle cases wheramig¢avchange at the

same time a row and a column (for example, a motivation coelgdaling). For

that we use the L-shape mentioned earlier. So, we can alsogexse the border of a

subimage using L-shapes and we can have the same extersfonsaavs or columns.

To compare two L-shapes we see them as two one-dimensiongkstThen we have

the following cases to find the minimal decomposed distance:

e Li1j1pqetitj—1andl;;, 1, 1+p+q—1whichcorrespondstoremoving
an L-shape in a subimage; and

o Li 1 1p-1,1 +ed(LS;;(A),LS,,(B))) which corresponds to comparing
two L-shapes.

The boundary conditions are the same as &ti&@ measure and the final distance is
similarly given by L(A, B) = L, ms.ny.ne- Figure 4 shows the decompositions
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FiG. 4. Decomposition used iRC (left, 6 cases) and (right, 3 cases).

associated td.. We will see later that this definition can be simplified byngsihe fact

that one row and one column are considered at the same time wsieg L-shapes.
Finally, we can have a general distanédB(A, B) that uses both decompositions

at the same timeKC and L) computing the minimal value of all possible cases. It

is easy to show thakl S(A, B) > R(A,B) > RC(A,B) > All(A, B) and that

L(A, B) > All(A, B) because each case is a subset of the next. On the other hand,

there are cases wheR'(A, B) will be less tharnl.(A, B) and vice versa. In fact, in

Figure 5 this is shown together with other examples, whech ealor is a different

symbol. The last example shows that combinig' and I. can actually lead to a

distance less than each separate case.

— AR

KS =21 R=14 KS =4 R=4 KS=9 R=9
RC =10 L=20 RC=3 L=2 RC=9 L=9
a) All = 10 b) All =2 c) All=8

FiG. 5. Three examples for our new measures.
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4.2 Computing the Distances

The definition of the above distances yields directly th@gthms to compute them:
R andC can be computed in tim@(m1nymans), RC intime O(myni;mans(min,+
man9)) andL in time O(mymaonina(ml + m2)(nl + n2)). We simplify the expo-
sition by considering thatt and B are of sizem x m, in which caseR andC cost
O(m*) time O(m?) space, whileRC andL costO(m?®) time andO(m?) space. This
is prohibitive even for small images.

We show now how to do this better. First, the space usage iy @aduced to
O(m) for R andC andO(m?) to RC and L by noticing that we only need to store
the boundary of the matrices of the dynamic programming edatjpn as they are
computed incrementally.

The computation of. can be simplified further by noticing that to compute the
best decomposition— j andp — ¢ are always constant (in fact, equalng — ns
or m; — ms, Which for squares images is 0). This is easily checked by mirsy
the recurrence formulas fdt. This means that only a quadratic number of entries
must be computed, which implies a matrix boundary of §)£e1) and a running time
of O(m*). However, this property does not hold if we use th& distance, since
differenti — j andp — ¢ values may appear as the recurrencelfds mixed with
others. Therefore, computing th! distance keep®(m?®) time.

Finally, we can also improve the computation®€ by precomputing all the edit
distance matrices between pairs of rows and pairs of colufirimt is,

Horizijpq = ed(Aii1 j, Bpi.q) Vertijp,=ed(Ar ij, Bi pg)

Note thatHoriz(i, *, p, %) is precisely the dynamic programming matrix used to
compute the one-dimensional edit distance betwéen ,,,, and B, 1..,,; and the
same happens fGert. Hence, this preprocessing consists of computing the egdit d
tances between all pairs of rows and all pairs of columnsstéorihg all the interme-
diate results. This take3(m?) time and space.

Once this is precomputed, the one-dimensional edit disaictheRC formula
can be obtained in constant time. The time to solve the renae drops t@) (m?).
Hence,RC can be computed i®(m?) time and space.

The idea of storing the boundary of the matrix can be apptigdidriz andV ert as
well, reducing the space 19(m?). A very concrete way to see this is as follows: we
select, say; as the most external variable of the iteration to fill the cas. Therefore,
we need only the values at iteratior- 1 to compute the values at iterationHence,
we do not need to store all the cells of all thth iterations, just the last one.

Horiz and Vert are therefore not precomputed completely but in coordinati
with the RC' dynamic programming computation. For example, if we uses the
most external variable, we move fram- 1 to i by computing and storing

. _ /
Horiz}, , = ed(Aiq1.j,Bpi.q), Vert; , .

= ed(AL.i,j:Bl--P,q) :

and we can see thaforiz' does not need the previous valueedfA;_1 1., Bp1.4),
while Vert' usesed(A;.;—1,j, B1.p,4) (i.€. its old values) to obtain its new values.
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Measure| Edit Distance Searching
Time | Space|| Time | Space
KS m? m m3n? m
R,C m* m m?n? | k4+m
L m* m m*n? m
RC m?* m? m*n? m?
All mS m3 mbn? m3

TABLE 1: Time and space complexity for computing different disesand searching
in two dimensions.

These optimizations allow us to handle patterns of readersabe (say up té0 x
50). Table 1 summarizes the space and time complexity obtddrexdl the measures,
including K'S. We can see that our measures need only one order of magnitrge
time with respect td{.S, using the same space, exceptfiar and All.

5 Searching Algorithms for the New Models

We consider now the problem of searching a pattern of sizex m in a text of
sizen; x ny (sometimes simplified ton = my = my andn = n; = ny). To
define the search problem using the new measures, we nee@difysphat is a
match. Our working definition is that a match is a submatrithef text of the form
T; i+mi—1,j.j+ms—1. Thatis, there is a subrectangle in the text of the same shfape
P whose edit distance tB is at mostk.

One would also like to consider different definitions, foamgple allowing the pat-
tern to match a subtext of different shape. For exampl®, &#ppears irl" with one
row inserted, our definition considers tifaappears witl2m, errors, while one could
argue that the pattern matches a subtext of Gize+ 1) x m4 with only m, errors.
We do not use this definition because we have not devised a ggadh algorithm
for it. For instance, trying to extend the edit distancehmdtraightforward way [28]
leads to an asymmetric search problem, where for exampleeii®€ distance the
matches can extend with arbitrary shape in their upper didbdeders but have to
finish sharply at the bottom and right borders.

The straightforward technique to search a patfrim a textT is by considering
all the O(n?) text positions as the possible origins of a match and apgplthe edit
distance algorithm to the corresponding text rectangleis Shmply multiplies by
n? all the complexities given in Table 1 to compute the editatise (even for KS).
However (as shown in the same Table), this can be done betenie cases.

For R, we can precompute the one-dimensional distance betwesn gatern
row and each horizontal text segment of length. This takesO(m2mininy) =
O(m?*n?) time. Once this is precomputed th distance at each position can be
solved inO(m?) time, so the total time keegg(m?n?). Of course not all th® (mn?)
values have to be stored at any time. Just those relevarg tuthent pattern position
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in the text are kept, so that the new needed values are cochpntthe fly and those
that are no more necessary are discarded. Hence, the eatt@ispnlyO (k) because
at each possible alignment each row can be displaced olhky/in | rows, and there-
fore there are only)(k/m) relevant text rows for each of the pattern rows. The
total space requirementd(m + k) because the computation Bfneeds)(m) space

anyway. The same can be done with thelistance.

The same technique can be applied®6', but in this case the total time remains
O(m*n?), because this is the cost of the recurrence even when thdioremsional
edit distances cogp(1).

The next two subsections focus on fast average time filtarthBonew measures.
They use the same filter used for the KS distance, with a fewifinations.

5.1 A Filter for the R and C Distances

The filter used in Section 3 can also be applied toRh@nd, rotating the problem, to
the C') distance to obtain a fast algorithm on average. At mégin. | insertions or
deletions of rows can occur in a match witterrors. Therefore, if we check for all
pattern rows in at least= 1+ | k/m+ | rows of the text candidate area, we cannot miss
a match. Thes value used in Section 3 always satisfies this becdse,, m;) < 1
in Eqg. (3.1).

We only change the verification phase (each potential angadfby the filter must
be verified using the)(m?) worst case edit distance algorithm described in Sec-
tion 4.2) by usingR (or C) to compute the distance in a fixed area. The performance
depends on which multipattern search algorithm we use. €sedsymptotic perfor-
mance is given by Exact Partitioning, which yiel@$n>k log, (m)/m) search time
for k < m(m + 1)/(6log, m). This expected time is optimal [22].

5.2 A Filter for the RC Distance

The techniques presented in Section 3 can be adapted, wdhditnensional case, to
the RC distance function. In the KS definition, a single ecauld alter only a single
row, while in the RC distance it can add one error to every idawever, there cannot
be more thark errors in any row.

We can therefore use a multipattern search for all the pattevs at the text rows of
the formi-m. Each time a row is found with errors, the whole pattern is verified in a
neighborhood of the occurrence. This corresponds to thescasl in the Lemma of
Section 3. However, this time we cannot use a lakgerreduce the number of errors.
The reason is that in that case the total number of errors gralbmows was limited
by &, while now we can haveé errors in each row. Hence, we are limited to the case
k < m for this filter. On the other hand, our verification costi¢m*) instead of
O(m?) as in KS.

The analysis of the multipattern search algorithms appliethis case is easy to
derive. Using the samé€'(m, k,r) and L(m,r) terminology of Section 3, we have
that the complexity of this algorithm is?/m C(m, k,m) and it is applicable for
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k/m < L(m,m). Albeit we can use again many different search algorithnespaly
show Exact Partitioning, which has the best asymptotic derily. This multipattern
algorithm hasC'(m, k,m) = O(1) and, for ourO(m*) verification costsL(m, m) =
1/(61og, (m)).

The resulting algorithm is thu®(n? /m) time overall. This is faster than the fil-
ters developed in the next section for an arbitrary numbelimensions (which for
d = 2 yield O(kn?/m)). However, it is less tolerant to errors, since it can be tdised
k < m/(6log, m) instead ofk < m/(2log, m), which is the limit of the multidi-
mensional filter ford = 2.

6 Extending the RC Model to More Dimensions

We concentrate now oRC, which can be nicely extended to the multidimensional
case. We consider thatandB ared dimensional matrices ofi? cells. We call from
now oned,() the RC edit distance generalized tbdimensions. We show that it can
be computed i) (d!m?) time andO(m??~!) space.

A (2d)-dimensional matrixRC' is computed ¢ dimensions forA andd dimen-
sions forB), and theed() of the two-dimensional formula (Section 4.1) is replaced
by ed,_,. If the values okd,; ; are not precomputed then we haWém??—1) space
(by using the trick of selecting one variable as the mostraglén the iteration) plus
the space needed to computg,_; (only one at a time is computed). This gives the
recurrence

Si =m, Spg=m""+ S,

which yieldsO(m??~") space. The time, on the other hand, involves toiilt cells,
where each cell performs a minimum o&i elements (i.e. insertion, deletion and
edy_1 In d dimensions). This makes it necessary to compltienes the function
edq—1(). Thatis

T =m?, Ty =m?3d+ m*>*dT,_,
which yieldsO(d!m¢+1)). This matches thé(m®) result for two dimensions of
Section 4.2.

However, as before, this can be done better. We may precenafiuhe necessary
values ofed; (). Along each one of thd dimensions, we take all the? (i, p)
possible combinations of values of the selected dimensiché&nd B, and compute
edq—1() between thed — 1)-dimensional objects which result from restricting the
selected dimension tin A and top in B. Once this is done, thel,;_, computations
can be taken as constants in the formuladyf(). The time cost is now

T, =m?, T, = m?>3d + dm?T;_,
which yieldsO(d!m??) time (this matches the improveéd(m*) for two dimensions).
This is a big improvement over the naive algorithm. The spacgiirements are,
however, higher. We have to store, for th@limensional object?? cells plus the
precomputed values, along each dimension, of athtAeombinations ofi, p) values
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for that dimension, and all the space for the lower dimersiasulting for each pair
(i,p). Thatis
S1 = m, Sy = m24 + dm25[171

which yields

. 1 1 1 . .
Sd = d!mZd <F =+ 5 + ...+ E) S d!mZde = O(d'mZd)

and we can use the trick of the external variable to redusedrt) (d!m2?—1).

The time to search a pattern of siz€ in a text of sizen? is therefore) (d!m?n?).
Our aim is to reduce this time. We first show a better worse@dgorithm and later
develop a filter that is fast on average. For this filter, wednist to return to the
simpler problem of multidimensional exact searching.

6.1 Faster Computation of Limited RC Distances

We saw that computing the edit distance requités>?) time using the previous
algorithm. We show now that a restricted version of the probtan be solved better:
given k, we want to determine which is the edit distance provided iti mostk,
otherwise we just want to know that it is larger than We show how to do this in
O(dk?m) time.

This serves two purposes: first, we can use it to solve thergepmblem: if D is
the edit distance between twedimensional cubes of size?, then it can be computed
in O(dD*m) time. This is better than the naive algorithm if the cubesyaiite similar,
i.e. if D = o(m?'/?). This is done by using the restricted algorithm foe= 0, 1,
2, 4, 8... until the exact distance is reached or surpasséd blie complexity of the
sum of runs is that of the last run, wheile/2| < D < k and thereforé = ©(D).

A second use of the algorithm is for searching: we comparthaltext positions
but are only interested in the limited problem, hence olragim search algorithm of
O(dk*mn?) time. This is better than the naive algorithnkit= o(m?—1/?).

So we concentrate on the algorithm for restricked’he key idea is that, if we are
limited in the maximum edit distance we want to find, we do ne¢ahto compare
all the (d — 1) dimensional objects, since some are too far away to competisa
difference in sizes wittk insertions. We give a complete argument for two dimensions
and then show a simpler generalizatior/tdimensions.

6.1.1 Two Dimensions

We consider which subrectanglels ;1. ; and B, , 1., are so different that they
need not be compared becausasertions are not sufficient to compensate for the
difference in sizes. We consider fixééndp so thati < p, and study the relevarnt
andq. The case > pis symmetric. For fixed < p there are two different cases:
j < qandj > q (see Figure 6).

In the first case, the subrectangle 4fis totally contained in that oB, and the
difference in areas igq — ij, which must satisfyq — ij < k. For fixedi andp, this
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FiIG. 6. The two possible relations between squares fomp.

defines a straight line in thig, j) coordinate space, whose extremes(ar, 0) and

(k/(p —1),k/(p—1)). Inthe second case, we have that the rectangles overlap and
the difference in areas i — i)q + (j — ¢)i, which again cannot be larger than

This defines another straight line with extrentég(p — i), k/(p — i)) and(0, k/i).
Figure 7 illustrates.

ki Kki(p-i) ] K/i ]

kip ) kip )
1>q 1>q

Kpd) f-----=5 Kpd) f-----=>

i<q i<q

FIG. 7: The areas in thég, j) coordinate space that must be computed have been
shadowed, parameterized wittandi. They are different according to whether- 2i

or not. The dashed lines show other areas that must be alsputedito obtain the
desired values.

To fill the required cells, two processes are necesgayyirecompute the row-wise
and column-wise distanceg;i) run the dynamic programming algorithm over the
shadowed areas. The second process is proportional todldewhd areas (summed
overall(i, p)). In the first process we must compute all the distances legtyweefixes
of rows and columns that lie in the shadowed area. Howevir,igmotO(1) per
shadowed cell.

To compute the edit distance between row prefites ; and B, 1., we need to
compute also the distance between all the prefixes of thafix@s. This takes con-
stant time per prefix computed (hence the t63é4;) quadratic cost). However, the
shadowed area in Figure 7 is not prefix-closed. We have adaigted lines enclosing
the square that must be computed to obtain the shadowedldelige the total cost of
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the preprocessing is proportional to this extended setlts, @nd therefore dominates
the total processing time.

To measure the area enclosed in dashed lines we must sejparatesses shown in
Figure 7, which depend on whethek p < 2i or p > 2i. In the first case the total
area is(k/(p — i))? and in the secongk?/(2i(p — i)?). Summing all the relevant
areas ovet < i < p < myieldsO(k%*m).

6.1.2 More than Two Dimensions

We can generalize the above scheme to> 2 dimensions. In general, if we have
two hypercubes, we need to compare them only if they are nadiy close in size.
Considering again that the preprocessing that comparéiseat? different(d — 1)-
dimensional objects along each dimension is the most ekgepart, we see that
two objects of “volume”V that are at positions andp need only be compared if
V(p—1i) <k, sinceV (p — i) is the minimum number of insertions necessary to make
them comparable (their volume could be different, ayand V5, but the number of
insertions isnax(V4, V2)(p—i) and therefore the limit is reached for similar volumes).
Comparing those objects of volunié, together with all their prefixes (objects of
smaller volume) take®(V'2), which is limited by(k/(p — ))?). Summing over all
(i, p) yieldsO(k?>m), and summing this over each dimension giggk>m).

7 Multidimensional Searching Algorithms

We first present some new results on exact multidimensicat&m matching which
we later use for fast filter algorithms for multidimensioapproximate pattern match-

ing.

7.1 Exact Multidimensional Pattern Matching

In [12], they allow searching, in two dimensions, a patterraitext inO(n?/m)
average time. They traverse only the text rows of the formm searching for all
the pattern rows at the same time (using Aho-Corasick [1l, erify all potential
matches. Clearly, no match can be missed with the filter.

In [12], the authors briefly mention that their technique tanextended to more
dimensions by selecting one dimension and recursivelygusialgorithm fo(d — 1)
dimensions on the:-th “rows” of such text. However no more details are giver, no
any analysis.

We give now a more detailed version of the algorithm and amalyy We select
one dimension (say, coordinate 1) and obtaim: different(d — 1) dimensional ob-

jects of the formT’, 1 .n,1.m,..0 Tom1.m1mps s Tim,1.m,1.0m,..., @nd SO 0N, ON
the other hand, we obtain patterns ofld — 1) dimensions, namely; 1. m.1..m....,
Psi.mi.m,..»Ppi.m1.m,. andsoon. Allthen subpatterns are searched in each

one of the(d — 1) dimensional subtexts. See Figure 8. Each time one dfdhel) di-
mensional subpatterns is found in a text position, the cetegtdimensional pattern
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3-d pattern 3-d text

2-d text

2-d pattern

2-d pattern 3-d pattern

N
O

FiG. 8: Algorithm for exact searching. All the pattern “rows’easearched im/m
text “rows” at the same time.

is checked.

An important part of the analysis of [12] for two dimensioaghat the total cost to
verify potential matches is not too large. It is not immedititat this is still valid for
more dimensions, since a very large number of verificatioaginally triggered.

The cost to verify a potential match ihdimensions is alway®(1) on average,
since we have to check ih¢ letters of the pattern are equal to the text at a given
position. Since we stop the checking as soon as we find a mibmae verify more
than ¢ characters with probability /o¢. Hence, the average number of characters
checkedisy_,1/0¢ = O(1) (even for patterns of unbounded size).

We denote byFE, , the average search cost fopatterns ind dimensions. The
existence of the Aho-Corasick [1] algorithm implies that, = n. Now, for d di-
mensions, we perform/m searches form patterns onl — 1 dimensions, and check
all the candidates that occur. The probability of a pattdrsize m?~! occurring in
a text position isl/amH, but we multiply that byrm because we search fomn
different patterns. As the average cost to verify each giematch isO(1), and the
(d — 1) dimensional texts are of siz¢! !, we have that

ndr

n . rm n
Eq, = — (Edfl,rm'knd ! ) = —FEq1m+ —a
m m

) d—1 d—1

which gives

P _ nd 1 pdp _ ofnt 1 r
dr = g1t > om® g T om
w=1

(where the first term corresponds to the actual searcheshvani all done in one
dimension).

To search for one pattern we replacdy 1 in this final formula (although the
algorithm internally uses multipattern search). This falanmatches the result for
two dimensions, sincé/c™ = o(1/m). In general, ifd is considered fixed, the
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1 dimension 3 dimensions

2 dimensions
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FiG. 9: Filtering algorithm forj; = 3. The maximum possiblé so that some block
appears unchanged is 2, 2, and 8 as the dimension grows.

above result for = 1 can be bounded b@(n?/m?~'). The worst case search cost
corresponds to verifying all text positions like a bruted®search, i.e0(rmn?).

The space complexity of the algorithm corresponds to the-8basick machine,
whose space requirements are proportional to the totalafizdl the patterns, i.e.
O(rm?). We use this algorithm as a building block in the next section

7.2 A Fast Filter for Multidimensional Approximate Searui

We present now an effective filter to quickly discard largetpaf the text which
cannot contain a match, so that we use the dynamic progragretgorithm to verify
only the text areas which could contain an occurrence of gte.

The filter is based on a generalization of the one-dimensiiter explained in
Section 2. In that case, we cut the patterni+ 1) pieces, and since each error
can destroy at most one piece, we have always one piece lefichred inside each
occurrence.

In two and more dimensions, we cut the pattern jpieces along each dimension,
for somel < j < m (see Figure 9). Since each error occurs along one dimension
only, at mostkj pieces are destroyed. Therefore, since theregjégieces in total,
it is enough that? > kj to ensure that at least one of the pieces is left untouched
(although we do not know which one). Hence, we search fohaljj{ pieces at the
same time in the text without allowing errors. Those piegesoé size(m /)¢, and
can be searched with the algorithm of the previous sectiail(im?) space and an
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average time of

1 jd , 1 1
d - _ d, d
(s + 7o) = 7 (G + )

Each time one such piece is found, we have to verify a suriogreéxt area to
check for a possible match. Hence, the cost of a verificaahé same as that of
comparing the pattern with a subtext of siz€ allowing errors, which i) (d!m?2?).
The total number of verifications is obtained by multiplyitige number of pattern
pieces;? by the probability of a piece matching, i.d./a(™/)". Hence, the total
expected cost for verifications jéd!m2dnd /o(m/i)*,

The space requirement of this algorithm(gd!m??—!) (this corresponds to the
verification phase, since the search of the pieces needs lesgh.e.O(m?)).

Both the search and the verification cost worse gows, so we are interested in
the minimumj that works. As said, we need thit > k3, hence

jo= [kT] 4

is the best choice. The formula does not work for one dimen@iecause it is not
true thatkj pieces are destroyed), and for 2 dimensions it gets k + 1 as in the
traditional one-dimensional case. Notice that we needjthatm, and therefore the
mechanism works fok < k3 = m?~!. Using this optimum (and minimumny), the
total cost of searching plus verifying is

1 1 dlm?
nipase < + + o ) (7.1)

rmdflde O_m/kl/(d—l) o_md/kd/(d—l)

which worsens ag grows. This search complexity has three terms, each of which
dominates for a different range bfvalues. The first one dominates for

md*]

k < ky = W(1+0(1))

while the second dominates frokn> kg until

m/dfl

k< ki = d—1 (1+0(1))
(d(log, d + 2log, m)) T

In the maximum acceptable valike= m?~' — 1, the search complexity becomes
O(d'm?In?), which is worse than using dynamic programming. We want tovkn
which is thek value for which the filter is better than dynamic programminlis is

m/dfl

k< hy = — 0 (1+0(1
<k (leogUm)T( (1))

Finally, the most stringent condition we can ask to the fiketio be sublinear, i.e.
faster thanO(n?). If we try to consider the third term of the search complexity
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dominant, we arrive to & value which is smaller thak, , which means that the solu-
tion is in a strictert: range. By considering the second term of the search contylexi
we arrive to the conditiok < kq. That is, the search time is sublinear precisely when
the first term of the summation dominates.

To summarize, the search algorithm is sublinear (i@&kn?/md-1)) for k <
(m/(dlog, m))?—'. Otherwise, it is not sublinear, but it improves over dynaprio-
gramming fork < m?1/(2dlog, m)(?~1/?, Figure 10 illustrates the result of the
analysis.

/
____________________ Dyn.pog. .
o
I
r
,/'
‘/
-~ Filter
- O(r¥)
| | —L
0 Ko ki k ks
L M ._._._._._.a
first term second term third term
dominates dominates dominates

FiG. 10. The complexity of the proposed filter, dependingd:on

7.3 A Stricter Filter

We have assumed up to now that we verify the presence of tkerpallowing errors

as soon as any of thg pieces appears. However, we can do better. We know that
j% — jk pieces must appear, at their correct positions, for a matdetpossible.
Therefore, whenever a piece appears, we can check the woeigidal for the exact
occurrences of other pieces. On average, the verificatiead piece will fail inD(1)
character comparisons, and we will chégkjk) pieces untiljk of them fail the test
(this is because both are geometric processes). Thereferbave a preverification
test which occurs with probability? /o(m/9)* | costsO(jk) and is able to discard
more text positions before actually verifying the candédatea. The probability that a
text position passes the preverification test and undertp@edynamic programming
verification can be computed by considering tjfat- j& cells need to match, which
means thatn? — km?/j¢~1 characters match. On the other hand, we can select as we
want whichjk cells match out of ?.



New Models and Algorithms for Multidimensional Approxim@attern Matching 25
The new search cost is therefore

e . e jt 2d
jé! 5 ik (Jp)dim

d
n + - - -
md—1 (J'm/J g(m/J)d 07714*]”"4/.7471

where the first term dominates fgr < m/(dlog, m), the second one up tp <
m/(log, m + log, k)'/?, and the third one for larger. The fourth term decreases
with j, and therefore it is not immediate that the minimgins the optimum (in fact
it is not). We have not been able to determine the optimiubut we can still obtain
the maximumk value up to where the filter is better than dynamic prograngmiline
first two terms are never worse than dynamic programming,thedhird improves
over dynamic programming for

m

] 1 1
J (log, m + log, k — dlog, d)'/4 (1+o(1))
which gives a condition ok since;j*~! > k:
m[(i*l
B K = - (1+0(1))

(d(logu' m — logo' d)) K

Now, we introduce this maximurjvalue in the fourth term to determine whether
it is also better than dynamic programming at that point. fdseilt is that, using that
Jj value, the fourth term is dominated by the third preciselykfa< k5. Therefore we
improve over dynamic programming fér< k!, (which is better than our previous
limit). The proposed is the best for hight values, but smaller values are better for
lower k values. In particular, we may be interested in obtainingstiiginearity limit
for this filter. The first three terms put an upper boundpthe strictest one being

= (1+o0(1))

d(log, m — log, d)

7 =<

and using this maximum value the fourth term gives us the maximuénthat allows
sublinear search time:
d—1
ko< kb o= o
- % (d(log, m —log, d))!
which is slightly better than our previots limit.

We could have used the algorithm of Karkkainen and Ukkd@ehinstead of that
of Baeza-Yates and Régnier [12] considering that the foriméaster on average.
However, the former does not have the ability of searchingynpetterns simultane-
ously, which is the key issue in our case. In fact, using thgarghm, our filter is
slower only in two cases:

d—1

T
k< <%> which is a very smalk; or
FEs log, m

(1+0(1))

i) £ > md!, which is too large and where the filters do not work anyway.

This resembles the difference between searching multipteeqms using a Boyer-
Moore or an Aho-Corasick algorithm.
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7.4 Adapting the Filter to Simpler Distances

Since theRk andC distances are lower bounded By, the filter we have just designed
for RC works for R andC' as well, with the same complexities (albeit only the case
d = 2 is interesting).

Another possible simplification is to use the filter to seaacpattern allowingk
substitutions. This problem is much simpler: a brute forearsh algorithm checks
any possible text position until it findsmismatches. Being a geometric process, this
occurs afteiO(k) character comparisons, which makes the total search(d@st?)
on average.

Therefore, in this model the cost to verify a candidate tediton is onlyO (k).
The search cost, as in Eq. (7.1), still has three terms:

dp 757 1 1 k
e ,mdflk.ﬁ + am/kl/(dfl) + O,md/kd/(d—l)

where the first term is dominant fér< ky. The second term is now dominant for

md*]

E <k = —————= (1+0(1))

(dlog, m) T
and the last one dominates fbr> k;. This filter is sublinear (i.e. does not inspect
all the text characters) on average tok kq as before. On the other hand, it turns
out to be better than brute force (i©(kn?)) for k < ki, i.e. before the verification
step dominates the search cost. Overall, we achiev@ the? /m?~!) search time on
average. However, Karkkainen and Ukkonen algorithm’g f@2this case is faster,
achievingO(dn?klog, (m)/m?) average time.

8 Concluding Remarks

We have focused on two and multidimensional approximateepatmatching. The
contribution of this work is many fold. We have developedfihg sublinear average
time filters for the existing model on two dimensions. We haraposed new distances
for two dimensions and have shown how to compute them and tieeerch a pattern
in a text under those distances. The most promising of thieat Wte have called the
RC distance, allows the errors to occur along rows and colurhayatime. We
have generalized the most promising of therd timensions and have presentedta
dimensional filtering algorithm that yields sublinear statime when the error level
tolerated is low enough. For instance, in two dimensionfiltee is sublinear time for
k < m/(2log, m) and better than a brute force searchfo« m/+/2log, m.

These are the first search algorithms and fast filters fortstenfiodel which extends
successfully the concept of approximate string matchingdoee than one dimension.
Although the algorithms have been presented for sqdatenensional pattern and
text, they also work for hyper-rectangular elements andensomplex shapes.

An open problem is how to design optimal worst-case timerélywos for approx-
imate searching using the new measures, i.e. achiaVing®n?) time complexity
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for the R, C, L, and RC measures. Another interesting problem is how to search
efficiently using thel, distance.

There are other open problems related to the models theaesselvor example,
we could try to define théargest common imagef two images, which generalizes
the concept of longest common subsequence of one-dimexsimimgs. Given two
images, find a set of position pairs that match exactly in limidges subject to the
following restrictions:

1. The set of positions for the same pattern are disjoint;

2. a suitable order given by the position values is the samddth images (for
example, image pixels can be sorted by thei j value, using the value of
in the case of ties); and

3. the total size of the set of positions is maximized.
For the edit distance, condition 3 has to be changed to:

3. Minimize the number of mismatches, insertions and dmlstheeded to obtain the
set of matching positions.

Figure 11 gives an example. All pieces of the pattern not etéxt corresponds
to deletions and mismatches and should be counted. In thebtaxgk regions are not
counted, because they correspond to mismatches. All oibegpare insertions in the
pattern. It is not clear that the minimal string editing $mn gives the same answer
as the largest common set of sub-images. Also, it could beedrghat characters
inserted/deleted on external borders should not be coastedrors.

Pattern Text piece
T
1 ==
2
4 3

FiG. 11. Example of largest common image.

The approximate two-dimensional pattern matching proldambe stated as usual
using the above definition as searching for all rectangulbinsages of the text that
have edit distance at moktwith the pattern. An alternative definition would be to
find all pieces of the text that have at least — & matching positions with the pattern.

Our work is a (very preliminary) step towards presentingralsimatorial alternative
to the current image processing technology. Other relgiptbaches have focused on
rotations [20] and scalings [3, 2] An open problem is how tmbine those approaches
to allow deformations in the occurrences.
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