
Grammar-Compressed Indexes
with Logarithmic Search Time ?

Francisco Claude1, Gonzalo Navarro2,3, and Alejandro Pacheco3

1 LinkedIn, USA
2 Center for Biotechnology and Bioengineering (CeBiB), Chile

3 Department of Computer Science, University of Chile

Abstract. Let a text T [1..n] be the only string generated by a context-free grammar with g (terminal
and nonterminal) symbols, and of size G (measured as the sum of the lengths of the right-hand sides
of the rules). Such a grammar, called a grammar-compressed representation of T , can be encoded
using G lgG bits. We introduce the first grammar-compressed index that uses O(G lgn) bits (precisely,
G lgn+ (2 + ε)G lg g for any constant ε > 0) and can find the occ occurrences of patterns P [1..m] in
time O((m2 + occ) lgG). We implement the index and demonstrate its practicality in comparison with
the state of the art, on highly repetitive text collections.

1 Introduction and Related Work

Grammar-based compression is an active area of research since at least the seventies
[CRA76,Sto77,ZL78,SS82]. A given sequence T [1..n] over alphabet [1..σ] is replaced by a hope-
fully small (context-free) grammar G that generates exactly one string: T . Let g be the number of
grammar symbols, counting terminals and nonterminals. Let G = |G| be the size of the grammar,
measured as the sum of the lengths of the right-hand sides of the rules. Then a basic grammar-
compressed representation of T requires G lgG bits, instead of the n lg σ bits required by a plain
representation. It always holds G ≥ lg n, and indeed G can be as small as O(lg n) in extreme cases;
consider T = an.

Grammar-based methods yield universal lossless source codes1 if one ensures to avoid some
obvious redundancies and properly encodes the grammar [KY00]. On the other hand, unlike
statistical methods, which exploit frequencies to achieve compression, grammar-based methods
exploit repetitions in the text; this makes them especially suitable for compressing highly repetitive
sequence collections, where statistical compression is helpless [KN13,Nav20]. Highly repetitive
collections, containing long identical substrings that are possibly far away from each other, arise
when managing software repositories, versioned documents, transaction logs, periodic publications,
and computational biology sequence databases, among others.

Finding the smallest grammar G∗ that represents a given text T is NP-complete
[Sto77,SS82,Ryt03,CLL+05]. Moreover, the size G∗ of the smallest grammar is never smaller than
the number z of phrases in a Lempel-Ziv parse [LZ76] of T . A simple method to achieve an
O(lg n)-approximation to the smallest grammar size is to parse T using Lempel-Ziv and then
convert the parse into a grammar [Ryt03,CLL+05]. More precisely, these and other approximations

? A preliminary version of this article appeared in Proc. SPIRE’12 [CN12]. This work was partially funded by Basal
Funds FB0001, Fondecyt Grant 1-200038, and Doctoral Scholarship grant 21180760, ANID, Chile.

1 That is, its size asymptotically converges to the entropy of any finite-state information source over a fixed alphabet.

[Ryt03,CLL+05,Jez15,Jez16] yield grammars of size G = O(z lg(n/z)) ⊆ O(G∗ lg(n/G∗)), that is,
with an approximation ratio of O(lg(n/G∗)). It has also been shown that no approximation ratio
better than Ω(lg n/ lg lg n) to z is possible in general [HLR16].

The known approximation ratios of popular grammar compressors such as LZ78 [ZL78],
Re-Pair [LM00] and Sequitur [NMWM94], instead, are much larger than the optimal
[CLL+05,HLR16,BHH+19]. Still, some of those methods (in particular Re-Pair) perform very
well in practice, both in classical and repetitive settings.2

On the other hand, unlike Lempel-Ziv, grammar compression allows one to decompress arbitrary
substrings of T in logarithmic time [GKPS05,BLR+15,BCPT15]. The most recent results extract
any T [p..p+ `−1] in time O(`+lg n) [BLR+15] and even O(`/ lgσ n+lg n) [BCPT15], which is close
to optimal [VY13]. Unfortunately, those representations require O(G lg n) bits, possibly proportional
but in practice many times the size of the output of a grammar compressor.

More ambitious than just extracting substrings from T is to ask for indexed searches, that is,
finding the occ occurrences in T of a given pattern P [1..m]. Self-indexes are compressed text repre-
sentations that support both operations, extract T [p..p+`−1] and locate the occurrences of a pattern
P [1..m], in time sublinear (and usually polylogarithmic) in n. They appeared in the year 2000 and
have focused mostly on statistical compression [NM07]. As a result, they work well on classical texts,
but not on repetitive collections [MNSV10,Nav20]. Some of those self-indexes have been adapted
to such repetitive collections [MNSV10,NPL+13,NPC+13,DJSS14,BGG+14,BCG+15,GNP20], but
they do not reach the compression ratio of the best grammar-based methods.

Searching for patterns on grammar-compressed text has been faced mostly in sequential form
[AB92], that is, scanning the whole grammar. The best result [KMS+03] achieves timeO(G+m2+occ).
This may be o(n), but is still linear in the size of the compressed text. There exist a few self-indexes
based on LZ78-like compression [FM05,RO08,ANS12], but LZ78 is among the weakest grammar-
based compressors. In particular, LZ78 has been shown not to be competitive on highly repetitive
collections [MNSV10].

The only self-index supporting general grammar compressors [CN10] operates on “binary
grammars”, where the right-hand sides of the rules are of length 1 or 2. Given such a grammar they
achieve, among other tradeoffs, g lg n+(3+o(1))g lg g bits of space and O(m(m+h) lg g lg lg g+occ ·
h lg g) search time, where h ≤ g is the height of the parse tree of the grammar. A general grammar
of g symbols and size G can be converted into a binary grammar by adding at most G− 2g symbols
and/or rules.

A self-index based on Lempel-Ziv compression was also developed [KN13]. It uses z lg z +
2z lg n + O(z lg σ) bits of space and searches in time O(m2h̄ + (m + occ) lg z), where h̄ ≤ z is
the nesting of the parsing. Extraction requires O(` h̄) time. Experiments on repetitive collections
[CFMPN10,CFMPN16] showed that the grammar-based compressor [CN10] can outperform the
(by then) best classical self-index adapted to repetitive collections [MNSV10] but, at least that
particular implementation, was not competitive with the Lempel-Ziv-based self-index [KN13].

The search times in both self-indexes depend on h or h̄. This is undesirable as both are only
bounded by g or z, respectively. As mentioned, this kind of dependence has been removed for
extracting text substrings [BLR+15], at the cost of using O(G lg n) further bits. Similarly, a recent
result [GJL19] shows that from any grammar of size G one can obtain a balanced grammar of size

2 See the statistics in http://pizzachili.dcc.uchile.cl/repcorpus.html.

O(G) generating the same string; therefore one can replace h by lg n in previous results at the cost of
raising the space to O(G lg n). Previous work [CN10] then achieves O(m(m+lg n) lgG+occ lg n lgG)
time within O(G lg n) bits of space.

There have also been combinations of grammar-based and Lempel-Ziv-based methods
[GGK+12,GGK+14,BEGV18,CE18], yet (1) none of those is implemented, (2) the constant factors
multiplying their space complexities are usually large, (3) they cannot be built on a given arbitrary
grammar. They use at least O(z lg(n/z) lg n) bits (which is an upper bound to our space complexity)
and can search as fast as in O(m+ lgε z + occ(lgε z + lg lgn)) time for any constant ε > 0 [CE18],
decreasing to O(m + occ lg lgn) time with O(z lg(g/z) lg lg z lg n) bits of space [BEGV18]. Gagie
et al. [GGK+12] can depart from any given grammar, but add some extra space so that, within
O(G lg n+ z lg lg z lg n) bits, they can search in time O(m2 + (m+ occ) lg lg n).

Gagie et al. [GNP20] built an index based on a completely different measure: the number r
of equal-letter runs in the Burrows-Wheeler Transform (BWT) [BW94] of the text. This measure
is sensitive to repetitiveness, but usually larger than z or G. In exchange, the index is very fast:
O((m+ occ) lg lg n) search time, which also shows up in their implementation.

More recently, Navarro and Prezza [NP19] introduced a self-index of O(γ lg(n/γ) lg n) bits,
where γ ≤ z ≤ G is the size of any attractor of T (which lower-bounds many other repetitiveness
measures). Kociumaka et al. [KNP20] derived another self-index of O(δ lg(n/δ) lg n) bits, where
δ ≤ γ is an even stricter measure of repetitiveness. Both can search in time O(m lg n+ occ lgε n).
Kociumaka et al. [CEK+20] maintain the space of the first index [NP19] while improving its time to
O(m+ (occ+ 1) lgε n), and reach optimal time O(m+ occ) within O(γ lg(n/γ) lg1+ε n) bits of space.
All these results are theoretically appealing, but still suffer from the drawbacks (1)–(3) above, and
still their size dominate only an upper bound on G lg n.

In this article we introduce the first (as of the time of conference publication [CN12], and still
the only3) grammar-based self-index that can be built from any given grammar of size G, using
G lg n+ (2 + ε)G lgG bits for any ε > 0, and whose search time depends only logarithmically on
G, independently of the grammar height. In addition, we give an engineered implementation of
the index and compare it with different state-of-the-art indexes on repetitive collections, showing
that our index is also practical. In fact, the ability of our index to build on any grammar has an
important practical value, because it can be built on top of compressors like RePair, which perform
extremely well in practice.

The following theorem summarizes its properties; we note that the space can be simplified, as in
the abstract, to G lg n+ (2 + ε′)G lg g for any constant ε′ > ε, and the search time can be simplified
to O((m2 + occ) lgG) because lg lg n ≤ lgG. Table 1 compares our result with previous work.

Theorem 1. Let a sequence T [1..n] be represented by a context-free grammar with g symbols,
size G and height h. Then, for any 0 < ε ≤ 1, there exists a data structure using at most
G lg n+ 2G lg g+ ε g lg g+ o(G lg g) +O(G) bits that finds the occ occurrences of any pattern P [1..m]
in T in time O((m2/ε) lg lg n+ (m+ occ)(1/ε+ lg g/ lg lg g)). It can extract any substring of length
` from T in time O(`+ h lg(G/h)). The structure can be built in O(G lgG lg n) time and O(G lg2 n)
bits of working space.

3 Kociumaka et al. [CEK+20, App. A] show how to build an index of O(G lgn) bits on top of any grammar, which
searches in time O(m lgn+ occ lgε n). This is still theoretical work and is preceded by the present article.

Table 1. Our result in the context of other implemented indexes based on measures z (number of Lempel-Ziv phrases),
r (number of BWT runs), G (grammar size) and g (grammar rules). Our space is simplified and assumes ε is a
constant; our construction time assumes the grammar is given (many can be built in O(n) time).

Source Technique Space in bits Query time Construction time

[CN10] Binary grammars g lgn+ 3g lg g + o(g lg g) O(m(m+ h) lg g lg lg g + occ · h lg g) O(n+ g lgn)
[KN13] Lempel-Ziv 2z lgn+ z lg z +O(z lg σ) O(m2h̄+ (m+ occ) lg z) O(n lg σ)
[GNP20] BWT runs O(r lgn) O((m+ occ) lg lgn) O(n)

Ours Grammars G lgn+ (2 + ε)G lgG O((m2 + occ) lgG) O(G lg2 n)

Note that the extraction time still depends on the grammar height. To remove this dependence,
we can include the structure of Belazzougui et al. [BCPT15], which adds O(G lg n) bits. Within
that space we derive a coarser version of our result.

Corollary 1. Let a sequence T [1..n] over alphabet [1..σ] be represented by a context-free grammar
with g symbols and of size G. Then there exists an index requiring O(G lg n) bits that finds the occ
occurrences of any pattern P [1..m] in T in time O(m2 + (m+ occ) lgε g), for any ε > 0, and extracts
any substring of length ` from T in time O(`/ lgσ n+ lg n).

As most of the previous work, our results holds on the so-called transdichotomous RAM model,
where the computer word holds w = Θ(lg n) bits and can perform all the usual arithmetic and
logical operations (including multiplication) in constant time.

In the rest of the article we describe our structure. First, we preprocess the grammar to enforce
several invariants useful to ensure our time complexities. Then we use a data structure for binary
relations [BCN13] to find the “primary” occurrences of P , that is, those formed when concatenating
symbols in the right hand side of a rule. To get rid of the factor h in this part of the search, we
extend a technique [GKPS05] to extract the first m symbols of the expansion of any nonterminal
in time O(m). To find the “secondary” occurrences (i.e., those that are found as the result of
the nonterminal containing primary occurrences being mentioned elsewhere), we use a pruned
representation of the parse tree of T . This tree is traversed upwards for each secondary occurrence
to report. The grammar invariants introduced ensure that those traversals amortize to a constant
number of steps per occurrence reported. In this way we get rid of the factor h on the secondary
occurrences too.

We also show that our structure is practical. We implement the index of Theorem 1 and show that
it outperforms the preceding grammar-based index [CN10], even in its optimized form [CFMPN16],
and it becomes a valid space/time tradeoff to the Lempel-Ziv based self-index [KN13] (also in
optimized form [CFMPN16]). Our expermental results show that, while the technique to speed
up the extraction [GKPS05] does not have an impact in practice, the idea to amortize the cost of
finding the secondary occurrences does speed up the index significantly.

The main differences with our conference version [CN12] are improved theoretical complexities,
the whole implementation and experimental results, and an expanded and improved writing.

2 Basic Concepts

2.1 Sequence Representations

Our data structures use succinct representations of sequences. Given a sequence S[1..N], over the
alphabet Σ, we need to support the following operations:

– access(S, i) retrieves the symbol S[i];
– ranka(S, i) counts the number of occurrences of a in S[1..i];
– selecta(S, j) computes the position where the jth a appears in S.

For the case |Σ| = 2 (i.e., bitmaps), all the operations can be supported in N + o(N) bits
and constant time [Cla96]. Sadakane and Okanohara [OS07] proposed a compressed representation
based on Elias-Fano codes [Eli74,Fan71], which is useful when the number N1 of 1s in S is small.
It takes N1 lg N

N1
+O(N1) bits of space and supports select1(S, j) in constant time and access(S, i)

and rank(S, i) in time O(lg min(N1, N/N1)).
For general sequences, we will use a representation [BN15] that requires N lg |Σ|+ o(N lg |Σ|)

bits and solves access(S, i) in O(1) time and select(S, j) and rank(S, i) in time O(lg lgw |Σ|).

2.2 Labeled Binary Relations

A labeled binary relation is a binary relation R ⊆ A × B, where A = [1..n1] and B = [1..n2],
augmented with a function L : A×B → L ∪ {⊥}, L = [1..`], that defines labels for each pair in R,
and ⊥ for pairs that are not in R. Let us identify A with the columns and B with the rows in a
table. In our case, each element of A will be associated with exactly one element of B, so |R| = n1.
We augment a representation of unlabeled binary relations [BCN13] with a plain string SL[1..n1] on
alphabet [1..`], where SL[i] is the label of the pair of column i. The total space of this structure
is n1(lg n2 + lg `) + o(n1 lg n2) bits. With this representation we can answer, among others, the
following queries of interest in this article:

1. Find the label of the pair (a, b) associated with a given a, SL[a], in O(1) time.
2. Given a1, a2, b1, and b2, enumerate the k pairs (a, b) ∈ R such that a1 ≤ a ≤ a2 and b1 ≤ b ≤ b2,

in time O((k+1)(1+lg n2/ lg lg(n1 +n2))). This corresponds to operation rel acc, implemented
through rel min obj acc or rel min lab acc [BCN13, Lem. 10 or 11].

2.3 Succinct Tree Representations

There are many representations for trees T with N nodes that take 2N + o(N) bits of space. In this
paper we use one called Fully-Functional (FF) [NS14], which in particular answers in constant time
the following operations (node identifiers v are associated with a position in [1..2N]):

– node(p) is the node with preorder number p;
– preorder(v) is the preorder number of node v;
– leafrank(v) is the number of leaves to the left of v;
– leafselect(j) is the jth leaf;
– intrank(v) is the number of internal nodes before v, in preorder;

– intselect(j) is the jth internal node, in preorder;
– numleaves(v) is the number of leaves below v;
– parent(v) is the parent of v;
– child(v, k) is the kth child of v;
– nextsibling(v) is the next sibling of v;
– degree(v) is the number of children of v;
– depth(v) is the depth of v; and
– level -ancestor(v, k) is the kth ancestor of v.

The FF representation is obtained by traversing the tree in DFS order and appending to a
bitmap a 1 when we arrive at a node, and a 0 when we leave it. The operations leafrank , leafselect ,
intrank , and intselect are not discussed so widely in the literature. In the FF sequence F [1..2N], each
internal node starts with a bit 1 followed by another 1, and each leaf is represented by a 1 followed
by a 0. The same mechanisms described in Section 2.1 to support rank and select for 0s and 1s on
bitmaps are easily extended to support two-bit operations, within o(N) extra bits. Therefore, we
implement leafrank(i) = rank10(F, i− 1), leafselect(j) = select10(F, j), intrank(i) = rank11(F, i− 1),
and intselect(j) = select11(F, j), all in constant time.

3 Preprocessing the Grammar

We will work on a given context-free grammar G that generates a single string T [1..n] over alphabet
Σ = [1..σ], formed by g (terminal and nonterminal) symbols. We assume for simplicity that all the
terminal symbols in Σ appear in T , otherwise we can reduce σ by renaming the nonterminals.4 The
grammar G then contains σ terminal symbols and g − σ nonterminal symbols, each nonterminal Xi

defined by a unique rule of the form Xi → αi. The sequence αi, called the right-hand side of the
rule, is the sequence of terminal and non-terminal symbols to which Xi expands in one step. We
call G =

∑ |αi| the size of G. Note it holds σ ≤ G since the symbols must appear in the right-hands
of the rules. We assume that all the nonterminals are reachable (i.e., used to generate T); otherwise
unused rules can be found and dropped in O(G) time. The grammar cannot have loops since it
generates a finite string T .

Let Xs always denote the start symbol (despite of successive symbol renamings). We call F(Xi)
the single string generated by Xi, that is F(a) = a for terminals a and F(Xi) = F(Ai1) · · · F(Aik)
for nonterminals Xi → Ai1 . . . Aik . The grammar G generates the text T = L(G) = F(Xs).

For the purpose of building our index, we preprocess G as follows:

– First, for each terminal symbol a ∈ Σ we create a rule Xa → a, and replace all other occurrences
of a in the grammar by Xa. As a result, the grammar contains exactly g nonterminal symbols
X = {X1, . . . , Xg}, each associated with a rule Xi → αi, where αi ∈ Σ or αi is a sequence of
elements in X .

– Any rule that generates just one single nonterminal Xi → Xj , or the empty string, Xi → ε, is
removed by replacing Xi by Xj or by ε everywhere. This decreases g without increasing G and
ensures G ≥ g − σ because there are no empty right-hand sides.

4 If needed, we can store for example a perfect hash function that maps in constant time from the symbols of Σ that
appear in T to identifiers in [1..σ], and an array mapping the symbols back to Σ. This requires O(σ lg |Σ|) further
bits, which will be ignored in the sequel.

– We further preprocess G to enforce the property that any nonterminal Xi, except Xs and those
Xa → a ∈ Σ, must be mentioned in at least two right-hand sides. We traverse the rules of the
grammar, count the occurrences of each symbol, and then rewrite the rules, so that only the
rules of those Xi appearing more than once (or the excepted symbols) are preserved, and as
we rewrite their right-hand sides, we replace any (non-excepted) Xi that appears once by its
right-hand side αi. This transformation takes O(G) time and can only reduce G and g.

– Our last preprocessing step, and the most expensive one, is to renumber the nonterminals so
that i < j ⇔ F(Xi)

rev < F(Xj)
rev, where “<” between strings stands for the lexicographic

order and Srev is string S read backwards (the purpose of this renumbering will be apparent
later). The sorting can be done in O(G lg(n/G) + g lg g lg n) time and O(G lg2 n) bits of space:
we first compute in time O(G lg(n/G)) a compressed longest-common-extension data structure
[I17] on the reversed grammar and then use any sorting algorithm, where each string comparison
is decided in the O(lg n) time needed to access both strings at the symbol following their longest
common extension.

From now on, g will refer to the number of rules in the transformed grammar G (i.e., the number
of terminal and nonterminal symbols in the original grammar, minus possible reductions). Instead,
G will still denote the size of the original grammar (the transformed one has size at most G+ σ).

Finally, we define a structure that will be key in our index (cf. pruned parse tree [Ryt03]).

Definition 1. The grammar tree of G is a tree TG with nodes labeled in X . Its root is labeled Xs

and its topology is obtained by pruning the parse tree of T with two rules: (1) for each nonterminal
symbol Xi, every node labeled Xi except the first one (in DFS order) is converted into a leaf (i.e.,
its subtree is pruned); (2) for each terminal a, the child a of every node labeled Xa is also pruned,
leaving Xa as a leaf. We say that each Xi is defined in the only internal node of TG labeled Xi.

Since each right-hand side αi 6∈ Σ is written once in the tree as the sequence of children of Xi,
and the root Xs is written once, the total number of nodes in TG is G+ 1. The number of internal
nodes is g − σ, and the number of leaves is G+ 1− g + σ ≤ G.

Example. Figure 1 shows the reordering and grammar tree for a grammar generating the string
"alabaralalabarda".

The grammar tree partitions T in a way that will be useful for extracting substrings and finding
occurrences.

Definition 2. Let Xl1 , Xl2 , . . . be the nonterminals labeling the consecutive leaves of TG. Let Ti =
F(Xli), then T = T1 · T2 · · ·TG+1−g+σ is a partition of T according to the leaves of TG.

Table 2 summarizes the notation.

4 Extracting Text

We first describe a simple structure that extracts the text of a whole nonterminal, of length `, in
O(`) time. We then augment this structure to support extracting any prefix or suffix of length ` of
a nonterminal in time O(`). Finally, we use those tools to extract any substring of T of length ` in

X1 → a

X2 → X9X1X6X9X5X1

X3 → b
X4 → X1X6X1X3

X5 → d

X6 → l

X7 → r
X8 → X1X7

X9 → X4X8

⇒

X̄1 → a

X̄2 → b

X̄3 → d
X̄4 → l

X̄5 → r

X̄6 → X̄1X̄5

X̄7 → X̄1X̄4X̄1X̄2

X̄8 → X̄7X̄6

X̄9 → X̄8X̄1X̄4X̄8X̄3X̄1

X2

a

alabaralalabarda
b

alab

d

l
r

ar

alabar

X9 X1 X6 X9 X5 X1

X4 X8

X1 X7

X1 X6 X1 X3

X4 X8

X1 X7

X1 X6 X1 X3

X1 X6 X1 X3 X1 X7 X1 X6 X9 X5 X1

L = 1 1 1 1 1 1 1 1 100000 1 1

Fig. 1. At the top left, a grammar G generating string "alabaralalabarda". At the top right, our reordering of the
grammar and strings F(Xi). On the bottom, the grammar tree TG in black; the whole parse tree includes also the
grayed part. Below the tree we show our bitmap L (Section 4.3).

time O(`+ h lg(G/h)). This is not the best extraction time that can be obtained [BLR+15,VY13],
but those more sophisticated methods require significantly more space in practice.

The optimal-time extraction of prefixes and suffixes is fundamental for supporting searches, and
is obtained by extending the structure proposed by Gasieniec et al. [GKPS05] for binary grammars
to general context-free grammars.

Conceptually, we represent the topology of the grammar tree TG using FF (Section 2.3), using
O(G) bits. The sequence of nonterminal labels associated with the tree nodes is stored in preorder in
a sequence X[1..G+ 1] using G lg g + o(G lg g) bits with the representation described in Section 2.1.
We also store a bitmap C[1..g] that marks the rules of the form Xi → a ∈ Σ with 1s. Since the
rules have been renumbered in (reverse) lexicographic order, every time we find a rule Xi such that
C[i] = 1, we can determine the terminal symbol it represents as a = rank1(C, i) in constant time. In
our example of Figure 1 this bitmap is C = 101011100.

This conceptual arrangement will be modified and expanded in the sequel; Table 3 gives the
complete list of structures used for extracting substrings. The following theorem states our results;
note that the space is the sum of those in the top part of the table after redefining ε appropriately.

Table 2. Notation.

Symbol Meaning

T [1..n] The text to be represented
n The length of T
G A context-free grammar that generates (only) T
Σ The alphabet of T and the set of terminals of G
σ Size of the alphabet Σ = [1..σ]
g Number of symbols (terminals and nonterminals) of G
G Size of G, that is, sum of lengths of right-hand sizes of rules
Xs Start symbol of G
F(Xi) The substring of T that symbol Xi expands to
Xa → a Introduced rules that generate terminals a; they are later renumbered to be some Xi
Xi → αi The other rules, with |αi| ≥ 2
TG The grammar tree of G
Ti The substring of T covered by the ith leaf of TG
Srev String S read backwards
P [1..m] The pattern whose occurrences we find with the index
m The length of P
P1 · P2 A cut of P = P1 · P2 for searching purposes

Theorem 2. Let a sequence T [1..n] be represented by a context-free grammar with g symbols and
size G. Then, for any 0 < ε ≤ 1, there exists a data structure using at most G lg g +G lg(n/G) +
(2 + ε)g lg g+ o(G lg g) +O(G) bits of space that expands any rule of length ` in time O(`), the prefix
or suffix of length ` of any rule in time O(`/ε), and extracts any substring of length ` from T in
time O(`/ε+ lg(n/G)).

4.1 Expanding Whole Rules

Expanding a rule Xi that does not correspond to a terminal is done as follows. By the definition of
TG , the first left-to-right occurrence of Xi in sequence X corresponds to the definition of Xi; all the
others are leaves in TG . Therefore, v = node(select i(X, 1)) is the node in TG where Xi is defined.
We then traverse the subtree rooted at v in DFS order. Every time we reach a leaf u, we compute
its label Xj with j = X[preorder(u)], and either output the terminal rank1(C, j) if C[j] = 1, or
recursively expand Xj . This is in fact a traversal of the parse tree starting at node v, using the
grammar tree instead. If we extract the whole sequence F(Xi), we perform O(|F(Xi)|) traversal
steps, since we have removed unary paths during the preprocessing of G and thus the subtree rooted
at v has less than 2|F(Xi)| nodes.

Lemma 1. Given i in [1..g], we can extract F(Xi) in O(|F(Xi)|) time by using (g − σ)dlg(g − σ)e
bits on top of TG, X, and C.

Proof. The only obstacle to having constant-time steps in the procedure we described are the queries
select i(X, 1). As these are used to find the internal node of TG that defines Xi, we use a different
mechanism. Note that the 0s in bitmap C correspond to the g − σ nonterminals of the grammar
(ordered by increasing nonterminal identifier). That is, if Xi is a nonterminal, then C[i] = 0, and

Table 3. Conceptual and actual structures used for extraction (top part) and, in addition, for searching (bottom
part).

Structure Meaning Space in bits

TG Topology of the parse tree using parentheses O(G)
X[1..G+ 1] Sequence of nonterminal labels of the nodes in TG Not represented
C[1..g] Bitmap marking which nonterminals Xi represent a symbol O(g)
π[1..g − σ] Permutation mapping from reverse lexicographic order (g − σ)dlg(g − σ)e

of nonterminals to DFS rank of internal nodes
π−1[1..g − σ] Structure to compute inverses of π in time O(1/ε) ε(g − σ) lg(g − σ) +O(g)
X ′[1..G− g + σ + 1] The elements of X corresponding to leaves (G− g + σ − 1) lg g(1 + o(1))
TS Trie topology of nonterminal labels of reversed O(g)

leftmost/rightmost paths in the parse tree
XS [1..g] Sequence of the labels in trie TS (two of them) Not represented
X ′S [1..g − σ] The elements of XS that are not root children (g − σ) lg g
B[1..g] Bitmap marking which elements of XS are root children O(g)
X−1
S [1..g] Inverse permutation of XS (two of them) 2ε · g lg g

L[1..n] Compressed bitmap marking starting positions of the G lg(n/G) +O(G)
grammar tree leaves in T

R, SL Binary relation connecting rule suffixes with their preceding (G− g + σ)(lg g + lgG) + o(G lg g)
element, SL is the sequence of column labels

PA, PB Patricia trees with sampled expansions of rules O(G)

j = rank0(C, i) gives a unique identifier for Xi in [1..g−σ]. We store a permutation π[1..g−σ] where
π[j] = k if Xi labels the kth internal node of TG , in DFS order. Using (g−σ)dlg(g−σ)e bits to store
π in plain form, we find in constant time that Xi is defined at the node intselect(π[rank0(C, i)]). ut

The total space required considering the FF representation, sequence X, bitmap C, and permu-
tation π, is bounded by G lg g + (g − σ) lg(g − σ) + o(G lg g) +O(G) bits.5 We reduce the space by
almost (g − σ) lg(g − σ) bits by removing the labels of the internal nodes, which we can recover
using the inverse permutation π−1.

Lemma 2. Given i in [1..g], we can extract F(Xi) in O(|F(Xi)|) time by using G lg g + ε g lg g +
o(G lg g) +O(G) bits, for any constant 0 < ε ≤ 1.

Proof. Instead of storing the full X[1..G+ 1], we store a reduced sequence X ′[1..G−g+σ+ 1] where
the labels of the internal nodes are removed. We can still access any X[p] = X ′[leafrank(v) + 1], with
v = node(p), if v is a leaf (because leafrank gives the DFS position of v skipping internal nodes). If
v is an internal node, we have that k = intrank(v) + 1 is its DFS position skipping leaves, so by
definition of π we have that π[j] = k if the label of v is Xi, where i is the position of the jth 0 in C,
i = select0(C, j). Therefore,

X[p] = select0(C, π
−1[intrank(v) + 1]).

To compute π−1, we use the representation of Munro et al. [MRRR12] that takes (1 + ε)(g −
σ) lg(g−σ) +O(g−σ) bits and computes any π[j] in O(1) time and any π−1[k] in time O(1/ε). This

5 It could be that g = O(1), so o(G lg g) does not necessarily absorb O(G).

yields the promised space: X would use G lg g bits and is replaced by X ′, which uses (G−g+σ+1) lg g
bits, a reduction of (g−σ) lg g bits. In exchange, we must store ε(g−σ) lg(g−σ) +O(g−σ) further
bits to represent π−1. The lemma writes the resulting space in simplified form.

Note that, with this representation, the time to access X[i] is now O(1/ε). The extraction
time stays O(|F(Xi)|), however, because it only accesses X at leaf nodes, which takes O(1) time
independently of ε. ut

With the representation of Lemma 2 we can also support general select on X in time O(lg lg g):
since the first occurrence of each distinct symbol Xi is removed in X ′ and all remaining symbols in
X ′ are the labels of the leaves in TG , we can compute select i(X, j) for j > 1 by finding the position
k of the (j − 1)th occurrence of i in X ′, which is the leaf rank of the node in TG . With leafselect we
obtain its node v, and finally with preorder we find its DFS position, that is, the place where the
symbol would occur in X:

select i(X, j) = preorder(leafselect(select i(X
′, j − 1)));

while select i(X, 1) is solved in O(1) time with intselect(π[rank0(C, i)]) as shown in Lemma 1.

4.2 Optimal Expansion of Rule Prefixes and Suffixes

To extract rule prefixes or suffixes of length ` in time O(`), we extend the algorithm of Gasieniec
et al. [GKPS05] so as to handle general grammars instead of only binary grammars. Using their
notation, call S(Xi) the string of labels of the nodes in the path from any node labeled Xi to its
leftmost leaf in the parse tree (we take as leaves the nonterminals Xa ∈ X with Xa → a, not the
terminals a ∈ Σ). We insert all the strings S(Xi)

rev into a trie (or digital tree [Fre60]) TS . Note that
each symbol Xi labels only one node in TS because, being there a single rule for each nonterminal,
the sequence of leftmost descendants S(Xi) is always the same for all places where Xi appears in
the parse tree. Therefore, TS has g nodes.

Again, we represent the topology of TS using FF; the operations on this tree will use the subindex
TS to distinguish them from the operations in TG . Since each Xi appears exactly once as a label, the
sequence of labels XS [1..g] is a permutation of [1..g]. We represent it once again with the structure
[MRRR12] that takes (1 + ε)g lg g bits and computes any XS [i] in constant time and any X−1S [j] in
time O(1/ε). To further save space, since the label of the ath root child is nonterminal Xa → a, we
do not store XS but a bitmap BS [1..g] marking with 1s the preorders that are root children and
a reduced version X ′S [1..g − σ] with the labels of the other nodes. It then holds that, if BS [i] = 0,
then XS [i] = X ′S [rank0(BS , i)], and otherwise XS [i] is Xa, with a = rank1(BS , i) (we can obtain
the index of Xa with select1(C, a) but we will actually want to know a in order to display it). The
structure now takes (g − σ) lg g + εg lg g +O(g) bits.

Lemma 3. With structures TS, BS, and X ′S, we can determine F(Xi)[1] in constant time given i.

Proof. We determine the first terminal in the expansion of Xi, which labels node v ∈ TS , as follows.
Since the last symbol in S(Xi) is a nonterminal Xa with Xa → a for some a ∈ Σ (so F(Xi)[1] = a),
it follows that Xi descends in TS from Xa, which is a child of the trie root. If v is at depth d in TS ,
then this child of the root is the ancestor of v at distance d− 1, that is,

va = level -ancestorTS (v, depthTS (v)− 1).

X1 X3 X5 X6 X7

X4 X8

X9

X2

level-ancestor(v, depth(v)− 1)v

Fig. 2. Example of the trie TS of leftmost paths for the grammar of Figure 1. The arrow pointing from X2 to X1

illustrates the procedure to determine the first terminal symbol generated by X2.

The symbol Xa is then in XS , at the preorder position of va, and then we obtain a from Xa using
rank on the bitmap C:

a = rank1(C,XS [preorderTS (va)]).

From our representation of XS , however, we can simply compute a = rank1(BS , preorderTS (va)). ut

Example. Figure 2 shows an example of this query in the trie TS for the grammar presented in
Figure 1. To obtain the first symbol of F(X2), we map X2 to the node v ∈ TS and then jump to its
ancestor that is a child of the root, labeled X1. Then X1 must represent a terminal, indeed, C[1] = 1
and it corresponds to the symbol rank1(C, 1) = 1, which we interpret as a.

We can then extract a prefix of F(Xi) in optimal time.

Lemma 4. By adding (g − σ) lg g + εg lg g +O(g) bits to the data structures of Lemma 2, we can
extract any F(Xi)[1..`] in time O(`/ε), given i.

Proof. First, we obtain the corresponding node v ∈ TS with v = nodeTS (X−1S [i]). Then we obtain
the leftmost symbol of v as in Lemma 3. The remaining symbols descend from the second and
following children, in the parse tree, of the nodes in the upward path from a node labeled Xi to
its leftmost leaf, or which is the same, in the second-to-last children of a node labeled S(Xi)[1],
then the second-to-last children of a node labeled S(Xi)[2], and so on. These symbols S(Xi)[j] label,
precisely, the downward path from the root of TS to v, that is, S(Xi)[j] is the label of the node
level -ancestorTS (v, depthTS (v)− j). Therefore, for each node

u ∈ 〈level -ancestorTS (v, depthTS (v)− 2), level -ancestorTS (v, depthTS (v)− 3), . . . , parentTS (v), v〉,

we compute the corresponding label Xj′ = S(Xi)[j] with j′ = XS [preorderTS (u)], and then find the
internal node x ∈ TG with label Xj′ . This is done with x = node(select j′(X, 1)), which is computed

in constant time as in Lemma 1. Once x is found, with children x1, x2, . . . in TG , we recursively
expand x2, . . . by computing each label X[preorderG(xk)] and mapping it back to TS .

We stop the process when we extract the first ` symbols. Charging the cost to the new symbol to
be expanded, and since there are no unary paths, it follows that we carry out O(`) steps [GKPS05].
All costs per step are O(1) except for the O(1/ε) to access X−1S and X (recall the end of the proof
of Lemma 2). The time is therefore O(`/ε). ut

For extracting suffixes of rules in G, we need another version of TS that stores the rightmost
paths. The spaces we have given then double.

Example. Returning to Figure 2, let us now extract F(X2)[1..5]. After extracting F(X2)[1] = a, we
continue with u = level -ancestorTS (v, 2), which is labeled X4. We find the internal node x ∈ TG with
label X4 (see Figure 1) and see that its second to last children in TG are labeled X6, X1, X3. Those
represent single symbols (since C[6] = C[1] = C[3] = 1), which we obtain with rank1(C, 6) = 4 = l,
rank1(C, 1) = 1 = a, and rank1(C, 3) = 2 = b. We have then obtained F(X2)[1..4] = alab, but still
need F(X2)[5]. For this sake we continue with u = level -ancestorTS (v, 1), which is labeled X9. We
find the internal node x ∈ TG with label X9 and see that its second and last child is labeled X8. We
then map X8 back to TS and find that its ancestor that is a child of the root is labeled X1, which
gives us again F(X2)[5] = a.

In practice. Our experiments will show that the optimal-time extraction does not make much
difference with respect to a simple variant of the procedure of Section 4.1: To extract a prefix (suffix)
of length ` of F(Xi), we recursively expand its children left-to-right (right-to-left) until obtaining `
symbols. This requires O(`) time for the extracted symbols plus O(h) time to explore the paths
that are not fully expanded, for a total of O(`+ h) time.

4.3 Extracting Arbitrary Substrings

In order to extract any given substring of T , we add a bitmap L[1..n] that marks with a 1 the first
position of each Ti (i.e., expansion of a grammar tree leaf, recall Definition 2) in T ; see the bottom
of Figure 1. We can then compute in constant time the starting position p(v) in T of any grammar
tree node v: we compute the number k of the grammar tree leaves preceding v, k = leafrank(v),
and then p(v) is the starting position of the next leaf:

p(v) = select1(L, leafrank(v) + 1).

To extract T [p..p+ `− 1], we binary search the children u1, u2, . . . of the root of TG for the child
uj covering position p, that is, p(uj) ≤ p < p(uj+1). If u = uj is an internal node, we continue
recursively with its children. Instead, if u is a leaf representing a nonterminal Xi, we go to the
internal node v ∈ TG with label Xi as we did in Lemma 1, translate position p to the area below the
new node v (i.e., p becomes p− p(u) + p(v)), and continue recursively from v. At some point we
reach a leaf u, representing a terminal Xi → a, that covers the position p (indeed, a = T [p]). We
repeat an analogous process for the final position, p′ = p+ `− 1, reaching the leaf u′.

We have then obtained the paths of the parse tree that lead to the leaves u and u′, which
represent the text positions p and p′. We now extract T [p..p+ `− 1] with a standard technique, see

for example Bille et al. [BLR+15]. Let u∗ be the lowest common node in the paths from the root to
u and u′ (i.e., where the paths diverge). For every parent-child edge (v, v′) in the path from u∗ to u,
we collect all the children of v to the right of v′. Similarly, we collect all the children of v to the left
of v′ in the path from u∗ to u′. We also collect u, u′, and the children of u∗ between those leading
to u and u′. All the subtrees of those nodes are expanded as in Section 4.1, in increasing DFS order
of the parse tree.

Lemma 5. The time of the described extraction procedure is O(`+ h lg(G/h)).

Proof. The total time is O(`), which is the sum of the sizes of the expanded trees, plus the time to
find u and u′. These are at depth at most h and we perform a binary search each time we descend,
so the total time is O(h lgG). Note, however, that we cannot repeat nodes in a path because the
grammar has no cycles, so we binary search at most h distinct right-hand sides that add up at
most to length G. The worst case, by Jensen’s inequality, is that each searched right-hand side is of
length G/h, leading to a maximum time complexity of O(`+ h lg(G/h)). ut

The number of 1s in L is at most G. Since we only need select1 on L, we can use the compressed
bitmap representation of Section 2.1, which supports the operation in constant time and requires
G lg(n/G) +O(G) bits.

In practice. We also implement an alternative technique, which is less attractive in the worst case
but is faster in practice. Instead of doing successive binary searches in the path along internal nodes
u until finding a grammar tree leaf (and then switching to its definition v), we directly compute
the grammar tree leaf with rank1(L, p). We can still, in the worst case, switch h times, and since
computing rank on L takes time O(lg min(G,n/G)), the worst-case time is O(`+ h lg min(G,n/G)).

More precisely, we first compute r1 = rank1(L, p) and r2 = rank1(L, p+ `− 1), so that the area
to extract intersects from the r1th to the r2th leaves of TG. If r1 < r2, then we extract the suffix of
length select1(L, r1 + 1)− p of X ′[r1], then extract the whole nonterminals X ′[r1 + 1], . . . , X ′[r2− 1],
and finally extract the prefix of length p+ `− select1(L, r2) from X ′[r2].

If r1 = r2, instead, the substring is inside a single leaf u ∈ TG, whose label is Xi, i = X ′[r1].
We then find the internal node v ∈ TG labeled Xi as in Lemma 1 and continue by extracting
T [p− p(u) + p(v)..p− p(u) + p(v) + `− 1].

5 Locating Patterns

We now consider the problem of locating all the occurrences in T of a given pattern P [1..m]. In
Definition 2, we partitioned T into blocks T = T1 · · ·TG+1−g+σ according to the leaves of TG . We
now use this partition to classify the possible occurrences of P in T into primary and secondary,
following a seminal idea by Kärkkäinen [Kär99].

Definition 3. We say that an occurrence of a pattern P is primary with respect to the partition
T1 · · ·TG+1−g+σ if it spans more than one Tj. The other occurrences, completely inside some Tj, are
called secondary.

The strategy [Kär99] is to first find the primary occurrences and then induce the secondary ones
from those. To find the primary occurrences of P = p1p2 . . . pm, Kärkkäinen considers each of the
m− 1 cuts P = P1 · P2, P1 = p1 · · · pi and P2 = pi+1 · · · pm, for 1 ≤ i < m, and finds the text blocks
ending with P1 that are followed by P2. His blocks correspond to Lempel-Ziv phrases, whereas our
text partition is induced by the grammar tree leaves. We now prove that our strategy is valid; we
start with the following definition.

Definition 4. The locus of a primary occurrence T [p..p+ `− 1] that spans blocks Tj · · ·Tj′ is the
lowest node of TG whose descendants include the jth to the j′th leaves.

It is clear that, if v∗ is the locus of a primary occurrence of P , and it is labeled Xi, then P
occurs in F(Xi). Further, P occurs in F(Xj) for all the labels Xj of the ancestors of v∗ in the
grammar tree. Those correspond to the same occurrence of P in T , but P also appears in F(Xj)
for every other leaf of TG labeled Xj , and recursively in the other leaf occurrences of its ancestors,
and so on. The next lemma proves that those are all the secondary occurrences of P in T .

Lemma 6. Every secondary occurrence of P in T appears in a leaf u ∈ TG labeled Xi, where the
(only) internal node v labeled Xi is an ancestor of the locus v∗ of a primary occurrence, or it is an
ancestor of another leaf containing a secondary occurrence.

Proof. We proceed by induction on |F(Xi)| ≥ |P |. Since P occurs inside F(Xi), it also occurs in
the concatenation of the expansions of the leaves descending from v. If that occurrence spans more
than one leaf, then that is a primary occurrence of P and its locus v∗ descends from v. Because the
right-hand sides of our modified grammar are of length at least two, this is the only possibility if
|F(Xi)| = |P |, which proves the base case of the induction. Otherwise, the occurrence is inside a
leaf u′ descending from v and labeled Xj , with |F(Xj)| < |F(Xi)|, which then contains a secondary
occurrence of P . By the inductive hypothesis, the only internal node v′ labeled Xj is an ancestor of
the locus of a primary occurrence or of another leaf containing a secondary occurrence. ut

Our strategy is then to find the locus of each primary occurrence and then propagate it
to all the other secondary ones. To efficiently find the locus of P1 · P2, we will look for the
nonterminal Xk → Xk1Xk2 . . . Xkr such that P1 is a suffix of some F(Xki) and P2 is a prefix of
F(Xki+1

) · · · F(Xkr). The secondary occurrences are then tracked in the grammar tree from Xk.
Although this scheme does not consider the case m = 1 (i.e., P = p1), we handle it by finding

its corresponding nonterminal Xj → p1 with j = select1(C, p1), finding all the occurrences of Xj in
TG using select j(X, ·), and treating those leaves as the loci of primary occurrences.

5.1 Finding Primary Occurrences

We store a binary relation R ⊆ A × B to find the primary occurrences. It has g rows labeled
X1, . . . , Xg, so B = X , and G− g + σ ≤ G columns. Each column corresponds to a border between
two consecutive text blocks, in a way that identifies the corresponding locus: there is one column per
proper suffix αi[j+ 1..ri] = Xij+1 · · ·Xiri

of a distinct rule Xi → αi = Xi1 · · ·Xiri
. The labels belong

to [1..G+ 1]. The relation contains one pair per column: (αi[j], αi[j + 1..ri]) ∈ R for all 1 ≤ i ≤ g
and 1 ≤ j < ri. Its label is the preorder of the (j + 1)th child of the internal node that defines Xi in
TG . The space for the binary relation is (G− g + σ)(lg g + lgG) + o(G lg g) bits; recall Section 2.2.

X1

X2

X3

X4

X5

X6

X7

X8

X9

X
1
X

6
X

9
X

5
X

1

X
6
X

9
X

5
X

1

X
9
X

5
X

1

X
1

X
5
X

1

X
6
X

1
X

3

X
1
X

3

X
3

X
7

X
8

X2

X4X2

X9

X4

X2

X4 X2X8

X2

X9

X

X X X X X

X

X X X X

X X

X

2

9 1 9 5 1

4

1 7

1 1 3

6

8X

L =

X X X X X X X X X X

1 1 1 1 1 1 1 1 1 1100000

1
X

61111 6 3 7 9 5

6

Fig. 3. Relation R for the grammar presented in Figure 1 (the grammar tree is replicated on the right). The highlighted
ranges correspond to the result of searching for b · ar, where the single primary occurrence corresponds to the locus
node labeled X9. The dashed arrow shows a secondary occurrence of X9 that is found from the primary one.

Recall that, in our preprocessing of Section 3, we have sorted X according to the lexicographic
order of F(Xi)

rev. We also sort the suffixes αi[j + 1..ri] lexicographically with respect to their
expansion, that is, F(αi[j + 1]) · F(αi[j + 2]) · · · F(αi[ri]). This can be done as when sorting
X , in O(G lgG lg n) time and O(G lg2 n) bits of space: we produce a binary grammar of O(G)
rules so that Xi → Xi1Xi2 · · ·Xiri

is replaced by Xi → Xi1Xi,2, Xi,2 → Xi2Xi,3, and so on until
Xi,ri−1 = Xiri−1Xiri

; note that F(Xi,j+1) is the expansion of αi[j+1..ri] if we also assume Xi,ri = Xri .
We then compute in time O(G lg(n/G)) a compressed longest-common-extension data structure
[I17] on the binary grammar and then use any sorting algorithm, as in Section 3. The lexicographic
position of F(Xi,j+1) then corresponds to that of the expansion of αi[j + 1..ri].

Example. Figure 3 illustrates how R is defined and used for the grammar presented in Figure 1. For
simplicity, each point in the binary relation shows the label of the locus node, although we actually
store the preorder of the first child of the corresponding rule suffix.

Given P1 and P2, we first find the range of rows whose expansions finish with P1, by binary
searching for P rev1 in the expansions F(Xi)

rev; note that i is precisely the row number we access.
Each comparison in the binary search needs to extract up to |P1| terminals from the suffix of F(Xi).
As shown in Section 4.2, this can be done in O(|P1|/ε) time. Similarly, we binary search for the
range of columns whose expansions start with P2. Each comparison needs to extract up to ` = |P2|
terminals from the prefix of F(αi[j+1]) ·F(αi[j+2]) · · · . Let c be the column we wish to compare to
P2. We extract the label, that is, the preorder p = SL[c] associated with the column, in constant time
(Section 2.2), and compute the corresponding node, v = node(p). We then extract the first ` symbols
from v as done in Section 4.2. If v expands to less than ` symbols, we continue with nextsibling(p),
and so on, until we extract ` symbols or we exhaust the suffix of the rule. This requires in total

O(|P2|/ε) time. Thus our two binary searches require time O((m/ε) lgG) (in practice, we extract
only the symbols needed to decide each lexicographic comparison during the binary search).

This time can be further improved by building a trie of sampled expansions, PA and PB, for
columns and rows of R. We sample expanded strings at regular intervals and store them in a Patricia
tree [Mor68]. We first search for the pattern in the Patricia tree, and then complete the process
with a binary search between two sampled strings (we first verify the correctness of the Patricia
search by checking that our pattern actually prefixes any string in the range found). By sampling
one out of lg n strings, the search time becomes O((m/ε) lg lgn) and we only require O(G) bits of
extra space, since the Patricia trees need O(lg n) bits per node.6

Once we identify a range of rows [a1, a2] and of columns [b1, b2], we retrieve all the k points
in the rectangle and their labels in time O((k + 1)(1 + lg g/ lg lgG)). The nodes node(p), for each
preorder p labeling a point in the range, are the children of the loci of primary occurrences, so that
P1 is the suffix of the expansion of the previous sibling of p and P2 is the prefix of the expansion of
p and its following siblings.

We have to carry out this search for m− 1 partitions of P , whereas each primary occurrence is
found exactly once. Adding the space of Theorem 2 and the space of R, PA and PB (i.e., all the
structures in Table 3), yields the following result.

Lemma 7. The loci of the occ primary occurrences of P are found in time O((m2/ε) lg lgn+ (m+
occ)(1 + lg g/ lg lgG)) with a structure that uses G lg n+ 2G lg g + ε g lg g + o(G lg g) +O(G) bits of
space.

Example. Figure 3 shows how we find the only primary occurrence of P1 ·P2 = b · ar in our example
grammar. Nonterminals X3 and X4, which expand to b and alab, respectively, are those ending with
P1 = b, whereas X8 is the only suffix whose expansion is prefixed by P2 = ar (indeed, F(X8) = ar).
The grid shows, conceptually, the locus node of that primary occurrence (the internal one labeled
X9), though it actually stores the preorder of its second child, labeled X8.

Note that, if P occurs several time in the expansion of a locus node v∗, then the same v∗

will be the parent of various node preorders p; it can even appear several times for the same p
with different cuts P1 · P2. For example, P = aaa appears 4 times with locus X1 → X2X2X2 and
X2 → XaXa, twice with the partition P1 · P2 = a · aa and twice with P1 · P2 = aa · a; two of those
with p corresponding to the second X2 and two with p corresponding to the third X2. We show
next how to report primary and secondary occurrences starting from those nodes node(p).

5.2 Tracking Secondary Occurrences through the Grammar Tree

The remaining problem is how to track all the secondary occurrences triggered by a primary
occurrence, and how to report the positions where they occur in T . Given a primary occurrence
for partition P = P1 · P2 located at the child v = node(p) of the locus v∗ = parent(v), the starting
position of P in T is p(v)− |P1|; recall the formula to compute p(·) in the beginning of Section 4.3.
We must, however, walk the upward path from v∗ to the root to find the secondary occurrences.
For every ancestor u in the path, we obtain its nonterminal label Xi, i = X[preorder(u)], in time

6 We could push it a bit further, for example sampling one out of lgn lg lg g/ lg g strings to obtain o(G lg g) +O(G)

bits of extra space and a search time of O
(

(m/ε) lg
(

lgn lg lg g
lg g

))
, but we opt for a simpler formula.

O(1/ε) and look for all the other occurrences of i in X, u′ = leafselect(select i(X
′, ·)), each in time

O(lg lg g) (recall Section 4.1). For each such leaf u′, we report the corresponding occurrence of P ,
p(v)− |P1|+ p(u′)− p(u), and recursively walk the path from u′ to the root.

Lemma 8. Once the loci of the primary occurrences are located, the occ occurrences of P in T are
obtained, with the structures already defined, in O(occ (1/ε+ lg lg g)) time.

Proof. It seems that we do O(h) steps per occurrence reported, since we walk the upward path to
the root for each. The steps, however, amortize to O(1). Our preprocessing of Section 3 guarantees
that every nonterminal Xi appears at least twice in the grammar tree. Therefore, every time we
move from an ancestor u of v (or of u′) to its parent, we know that u is an internal node and thus
Xi (i = X[u]) appears at least once more in the grammar tree. The cost of walking through u in
the path from v∗ (or u′) to the root can then be charged to the first leaf labeled Xi (the one that is
found at select i(X

′, 1) = select i(X, 2)). The cost of each step is O(1/ε+ lg lg g). ut

Example. In Figure 3, once we find the primary occurrence of b ·ar at the internal node v labeled X8,
we compute leafrank(v) = 4 and obtain the starting position of v in T , p(v) = select1(L, 4 + 1) = 5.
Since |P1| = 1, the position of this occurrence is 5 − 1 = 4, that is, T [4..6] = bar. Further,
starting from the locus node u = v∗, labeled X9, we walk up to the root. We then find the only
secondary occurrence because X9 occurs again at a leaf u′ of TG . This occurrence is at position
p(v)− |P1|+ p(u′)− p(u) = 5− 1 + 9− 1 = 12, and thus T [12..14] = bar is the second occurrence.

6 The Resulting Index

By adding up the spaces of Table 3, the query times of Lemmas 7 and 8, and the construction time
and space of Sections 3 and 5.1, we have our central result, Theorem 1, where for simplicity we
have replaced the cost per occurrence of 1/ε+ lg lg g + lg g/ lg lgG by just 1/ε+ lg g/ lg lg g.

By using ε = Θ(1) and ε = 1/ lg lg g, we obtain two simpler results. From the first we can adjust
ε to obtain upper bounds of G lg n + (2 + ε)G lg g bits in space and O((m2 + occ) lgG) in time
because lg lg n ≤ lgG; this is the simplified result we give in the abstract.

Corollary 2. Let a sequence T [1..n] be represented by a context-free grammar with g symbols and
size G. Then, for any constant 0 < ε ≤ 1, there exists a data structure using at most G lg n +
2G lg g + ε g lg g + o(G lg g) +O(G) bits that finds the occ occurrences of any pattern P [1..m] in T
in time O(m2 lg lgn+ (m+ occ) lg g/ lg lg g).

Corollary 3. Let a sequence T [1..n] be represented by a context-free grammar with g symbols and size
G. Then, there exists a data structure using at most G lg n+2G lg g+o(G lg g)+O(G) bits that finds
the occ occurrences of any pattern P [1..m] in T in time O(m2 lg lgn lg lg g + (m+ occ) lg g/ lg lg g).

Finally, by using a geometric structure [CLP11] that uses O(G lgG) bits for the binary relation,
we can report the k points in a range in time O((k+ 1) lgε g) for any constant ε > 0. With O(G lg n)
bits we can also use a dense sampling for our Patricia trees PA and PB, which allow searching for
all the pattern cuts in time O(m2). We then obtain a faster structure, Corollary 1.

7 Implementation and Experiments

7.1 Implementation

We implemented our grammar-based self-index on top of SDSL (Succinct Data Structures Library)7,
which is written in C++11 and contains efficient deployments of several succinct data structures.
We implement our structures as follows:

C, L: In repetitive collections it holds that g ≤ G� n; we also expect that σ � g for large texts.
It follows that bitmaps C (of length g and with σ 1s) and L (of length n and with less than G
1s) are expected to be sparse. We then represent them using the class sd vector from SDSL,
which implements Sadakane and Okanohara’s sparse array [OS07].

π, XS: For the permutations π and XS (which is represented plainly, not with X ′S and BS), we use
the class inv permutation support<t> of SDSL, which gives access to the inverse permutation
in at most t steps, and fix t to 32.

X ′ : The sequence X ′ is represented using the structure of Golynski et al. [GMR06] (wt gmr in
SDSL), which is advisable in our case, where the alphabet of X ′ is large and the sequence is
almost incompressible. This is an implementation of the theoretical version [BN15] we use in
Section 2.1, which has constant-time select , O(lg g) time for rank , and O(t) time for access , with
an inverse permutation with parameter t (we use the same t = 32 here).

R : Our representation for R is the same structure used in the implementation of Claude and
Navarro [CN10] for labeled binary relations, based on wavelet trees [Nav14]. The sequence SL is
represented in plain form.

TG, PA, PB, TS: The topology of the grammar tree TG and of the sampled Patricia tries PA and
PB is represented with a variant of balanced FF (Section 2.3) called DFUDS [BDM+05], which
is faster in practice for moving towards children. The trees TS , instead, are represented using
FF [NS14], which is more efficient for level ancestor queries. Both are implemented over the
parentheses support of SDSL (bp support sada).

To generate the grammar G we use the RePair algorithm [LM00], in particular Navarro’s
implementation8. RePair produces a binary grammar (i.e., all the rules have 2 symbols in their
right-hand side) plus a long initial rule. We then postprocess the resulting grammar as required for
our index, see Section 3.

We test four versions of our index, called g-index in the experiments:

– The variants whose name continue with binary search use plain binary search on the rules
prefixes/suffixes in order to find the row and column intervals on the grid.

– The variants whose name instead continue with patricia tree speed up this process using the
sampled Patricia trees PA and PB, which take one string every 4, 8, 16, 32, and 64 positions.

– The variants suffixed trie use the algorithm of Gasieniec et al. [GKPS05] (Section 4.2) to extract
rule prefixes/suffixes in optimal time, using the two variants of TS .

– The variants suffixed notrie, instead, omit the structures TS and extract the text from the rules
in recursive form.

7 https://github.com/simongog/sdsl-lite
8 http://www.dcc.uchile.cl/gnavarro/software/repair.tgz

– The term qgram indicates that we add a short q-gram (q = 2, 4, 6, 8, 10, 12) with the prefix
and suffix of the expansion of each nonterminal [CFMPN16], to speed up extraction during
binary searches. The strings are stored in a dictionary compressed with Huffman and Front
Coding. Since the q-grams are limited, the binary search must be completed, either using plain
decompression of nonterminals (suffix dfs), the real-time prefix extraction (suffix trie), or plain
decompression speeded up by using the same q-grams for the first symbols of each nonterminal
we must decompress (suffix smp).

Our implementation is available at https://github.com/apachecom/grammar improved index/.

7.2 Experimental Setup

The experimental evaluation was carried out using the environment provided in Pizza&Chili
(http://pizzachili.dcc.uchile.cl). We compared our implementation with the available indexes
in the state of the art that are most faithful with respect to different compressibility measures:

slp-index 9 is the only previous implementation of a grammar-based index [CN10], using O(G lg n)
bits like ours. It does not guarantee, however, logarithmic locating time per occurrence. It uses
the same RePair algorithm we use to build the index (a construction over the heuristically
balanced version of RePair is called slp-index-bal). In its optimized version [CFMPN16], it
speeds up the binary searches by storing the q-gram prefixes of the strings expanded by each
nonterminal, as we use in the qgram variant of g-index, yet here the best values are q = 4, 8, 16.

lz-index 10 is the only implementation of a Lempel-Ziv based index [KN13] that guarantees O(z lg n)
bits of space on a Lempel-Ziv parse of z phrases. We also include the LZ-End variant, lz-end-
index. We use their optimized implementations [CFMPN16], which were shown to outperform
slp-index both in space and time.

r-index 11 is the only implementation of a classical self-index (i.e., suffix-array based) using O(r lg n)
bits, where r is the number of runs in the Burrows-Wheeler Transform of the text [GNP20].

We use six real repetitive collections from Pizza&Chili repetitive corpus12. Three of these
collections contain DNA sequences extracted from different sources: para and cere are extracted from
the Saccharomyces Genome Resequencing Project13, whereas influenza is formed by DNA sequences
of H. Influenzae taken from the National Center for Biotechnology Information (NCBI)14. Collection
einstein.en is formed by all version of the articles in English of Albert Einstein taken from Wikipedia.
Collections kernel and coreutils are formed by all versions 1.0.x and 1.1.x of the Linux Kernel15,
and all versions 5.x of the Coreutils package16, respectively. Table 4 lists their main characteristics
and how they compress under different measures; note how our grammar preprocessing reduces G
and g significantly, making G 1.7–2.5 times larger than z and 1.4–2.9 times smaller than r.

9 https://github.com/migumar2/uiHRDC/tree/master/uiHRDC/self-indexes/SLP
10 https://github.com/migumar2/uiHRDC/tree/master/uiHRDC/self-indexes/LZ
11 https://github.com/nicolaprezza/r-index
12 http://pizzachili.dcc.uchile.cl/repcorpus/real
13 http://www.sanger.ac.uk/Teams/Team71/durbin/sgrp
14 http://www.ncbi.nlm.nih.gov
15 https://mirrors.edge.kernel.org/pub/linux/kernel
16 https://ftp.gnu.org/gnu/coreutils

Table 4. Main characteristics of the collections: n (size in bytes), σ (alphabet size), z (number of Lempel-Ziv phrases),
r (number of runs in the BWT), G/g – repair (size of the RePair grammar and its number of symbols), and G/g –
proc (the same after applying the transformations of Section 3).

Collection n σ z r G – repair g – repair G – proc g – proc

para 429,265,758 5 2,332,908 15,636,740 7,338,520 3,093,540 5,344,480 1,099,500
cere 461,286,644 5 1,700,859 11,574,641 5,780,080 2,561,120 4,069,450 850,491
influenza 154,808,555 15 770,253 3,022,822 2,174,650 642,965 1,957,370 425,697
einstein.en 467,626,544 139 91,036 290,239 263,962 100,763 212,903 49,843
kernel 257,961,616 162 794,290 2,791,368 2,185,860 1,058,260 1,374,650 247,212
coreutils 205,281,778 235 1,446,891 4,684,465 3,798,100 1,822,380 2,409,460 433,854

Fig. 4. Space breakdown of our index, in bits per symbol (bps), for all the text collections.

Our times per occurrence are the average over 1000 patterns of length 10 extracted at random
from each collection. Our extraction times average over 1000 queries at random text positions.

7.3 Space Breakdown

Figure 4 shows the space used by each component of g-index, assuming a sampling step of 8 for PA
and PB. It can be seen that the bulk of the space is contributed, in about equal parts, by X ′, R,
and LS . The components L and XS come next in terms of impact, and π, the tree topologies TG and
TS , and the Patricia trees contribute the least, together with C (which cannot be seen in the plot).

This anticipates that it may be a good idea to pay for the extra space of PA and PB if they
yield a good speedup, whereas it may be a good idea to get rid of TS +XS if they do not provide
significant speedups, since this would free a noticeable amount of space.

7.4 Locating Time

We first discuss the results on our index and then compare it with the others.

Tuning our index. Figure 5 shows the space-time tradeoffs obtained for locating patterns of length
10 over all the g-index variants and parameter values on all the collections.

In all cases, the use of Patricia trees with a sufficiently sparse sampling rate can reach essentially
the same space of the plain binary-search versions. Even with the sparsest sampling rate (1 out of
64), the Patricia trees outperform the binary searches, most sharply on the DNA alphabets. The
rule samplings of the qgram versions also outperform binary searches on DNA alphabets without
increasing the space, reaching the sweet point at value 8. Nevertheless, the Patricia trees always
make better use of the space.

On the other hand, the use of the tries TS increases the space by about 15% while providing
only a slight improvement in time (the most noticeable improvements occur on para and cere). Still,
it is always more convenient to use Patricia trees and no tries TS .

As a result, we take g-index-patricia tree-notrie as the most convenient version of our implemen-
tation, and we call it simply g-index henceforth.

Comparing with other indexes. Figure 6 compares our chosen variant of g-index with the other index
variants and parameter values. The use of denser samplings yields an interesting space-time tradeoff
for g-index on DNA. On the other texts, it is better to use it with the sparsest sampling.

In all cases, with the sparsest sampling g-index uses almost the same space of the previous
grammar-based index, slp-index (except on influenza, where g-index is 20% larger), and it is 1.75 to
6 times faster. This makes g-index the best grammar-based self-index in practice. Note that there
are almost no differences between slp-index and slp-index-bal, which confirms that typical grammar
heights do not affect extraction time in practice.

Index lz-index outperforms slp-index in both space and time, as in previous work [CFMPN16].
While losing to lz-index in space is expected because z ≤ G always holds, grammars allow for
better methods to access the text. The index slp-index was, however, unable to take advantage of
those methods to outperform lz-index in time. Now our g-index does offer a space-time tradeoff,
typically using more space than lz-index, but in exchange being faster: for example, with sampling
value 8, g-index is 50%–70% larger than lz-index, but around 30% faster (except only 15% faster on
cere). Instead, with the sparsest sampling, g-index matches lz-index almost exactly on kernel and
outperforms it both in space and time on coreutils. The variant lz-end-index takes little more space
than lz-index and is usually faster; it outperforms g-index on cere.

Finally, r-index is much faster than all the others, but also much larger (1.8–4.3 times larger
than lz-index and 1.5–2.5 times larger than g-index).

Overall, g-index provides a relevant space/time tradeoff between the previous implemented
indexes.

Varying the pattern length. Figure 7 shows how the locate time evolves with the pattern length m
on einstein.en (the numbers in brackets are the sample values of the indexes), and consider pattern
lengths 5, 10, 20, 30, 40, and 50.

The left plot shows that, while g-index is significantly faster than slp-index and lz-index on this
text for small m, it slows down as m increases (the same happens for all the g-index variants, with

Fig. 5. Time-space tradeoffs for locating on different collections and variants of our index. The time is given in
microseconds per occurrence and the space in bits per symbol (bps).

Fig. 6. Time-space tradeoffs for locating on different collections and indexes. The time is given in microseconds per
occurrence and the space in bits per symbol (bps).

Fig. 7. Locating time for increasing pattern lenghts on einstein.en. The time is given in microseconds per occurrence
on the left, and per pattern symbol on the right.

the notrie variants slowing down more clearly). Eventually, g-index loses to lz-index for m = 50. The
most important lengths, however, where a large number of occurrences are found, are the short ones.
The total query times are much less significant for long patterns, as shown on the right plot.

7.5 Extraction Time

Figure 8 shows the time per extracted symbol of the different indexes and collections, when extracting
100 consecutive text symbols. The r-index is excluded because it does not support this operation.
Note that the extraction in our g-index is independent of whether or not we use binary search or
Patricia trees. The variant that continues with binary search leaf descends from the root symbol,
binary searching the children, to reach the desired substring to extract, as in the main body of
Section 4.3. Instead, the variant that continues with rank phrases uses rank on the bitmap L, so
as to find faster the phrases to be expanded, as described at the end of Section 4.3. The suffixes
trie/notrie refer again to using/not using the structure for extracting prefixes and suffixes in linear
time (for the phrases that are not completely contained in the area to extract). Finally, if qgram
follows g-index, we use the q-grams to speed up extraction, with lengths 2, 4, 6, 8.

In this section we vary the parameter t used for all inverse permutations, which makes little
difference in the locating experiments but has a significant impact on extraction, because we perform
many accesses to X. All the variants of g-index are shown for values t = 2, 4, 8, 16, 32. The exception
is the gram variant, which uses fixed t = 32.

As it can be seen, in all cases the rank phrases variant is faster than binary search leaf (by a very
slight margin in the case of notrie). Further, the notrie versions use less space and are faster than the
trie variants. As a result, the best g-index variant, both in space and time, is g-index-rank phrases-
notrie. It is also apparent that lz-index excells in extraction, dominating every other alternative
almost everywhere (except on einstein.en, the most repetitive collection, where the h̄ value of the
Lempel-Ziv parsing is very high; lz-end-index shows its robustness in this aspect). On the other
hand, our best g-index variant competes with slp-index, dominating it on kernel and coreutils, being
dominated one influenza and einstein.en, and with mixed results on para and cere.

Fig. 8. Time-space tradeoffs for extracting on different collections and indexes. The time is given in microseconds per
extracted symbol and the space in bits per symbol (bps).

Fig. 9. Construction time breakdown of our index, in seconds (s), for all the text collections.

7.6 Construction

In this section we study the construction time and space of our index and compare them with those
of the other indexes.

Figure 9 shows the construction time of our index, distinguishing the main parts: Running
RePair to build the grammar (RE-PAIR), sorting the nonterminals X according to their expansions
during our grammar preprocessing of Section 3 (SORT RULES), and sorting the coordinates of R
according to the reverse rule and rule suffix expansions in Section 5.1 (SORT SUFFIXES).

Overall, our construction takes 3–6 seconds per megabyte of text. The sorting of rule expansions
is done by reusing previous work [CN10]. This first uses O(n) time and space to build the suffix and
longest common prefix arrays of the text and a range minimum query data structure on the second
array. With those, the rule expansions are then sorted in O(G lgG) time.

The figure also shows the construction time of the other indexes. The other grammar-based
index, slp-index, is slower to build than g-index. The other indexes build considerably faster, with
lz-end-index taking about half the time and r-index and lz-index being an order of magnitude faster.

Figure 10 shows a breakdown of the construction space. The figure includes the same stages
as before, but we also distinguish the constructions of the structures that precede the sorting
(PRE-SORT) from the sorting itself (SORT). The construction of our index requires significant space,
around 15 times the text size, dominated by RE-PAIR and the structures of the PRE-SORT steps.

The figure also shows the construction space of the other indexes. The construction of slp-index
is similar to ours and uses slightly more space. Instead, r-index uses much less space, and lz-index
and lz-end-index use even less.

The construction space is certainly a bottleneck to use our index on larger text collections. A
more sophisticated construction based on I’s data structures [I17] would significantly reduce the
space of sorting the rule expansions, to O(G lg2 n) bits, with similar time complexity, O(G lg(n/G)),
as discussed in Sections 3 and 5.1. The remaining space bottleneck would be RE-PAIR, for which
good approximations using little space have been recently developed [GIM+19] (we can also use
other grammar construction algorithms, some of which are designed to handle very large texts too
[TIS17], but RePair offers the best space in practice).

Fig. 10. Construction space of the successive steps of our index and of the other indexes, in gigabytes, for all the text
collections.

8 Conclusions

We have presented the first compressed text index of space bounded by the size of an arbitrary
context-free grammar and whose time per retrieved occurrence is logarithmic, independent of
the grammar height. Given a text T [1..n] represented by a grammar of size G, our index uses
G lg n + (2 + ε)G lg g bits of space, for any constant ε > 0, and returns the occ occurrences of a
pattern P [1..m] in time O((m2 +occ) lgG). We implemented our index and compared it with various
alternatives in the literature, showing that it is practical and offers relevant space/time tradeoffs.

The most interesting open theoretical question is whether it is possible to obtain O(G lgG) bits,
as obtained by grammar-based compressors, instead of O(G lg n), since in some text families it holds
that G = O(lg n). This term owes to storing the lengths of the expansions of the nonterminals in
bitmap L. We tried storing these lengths in the nonterminals, instead, and sampling the nonterminals
that would store lengths. We then need to find a suitable sampling on the grammar DAG, which
is the grammar tree where nonterminal leaves are identified with the internal node that defines
them. Finding a suitable sampling on a DAG, however, is related to finding sparsest cuts in graphs
[AHK04], which is not an easy problem.

With respect to practical results, an interesting research direction is to obtain competi-
tive implementations of recent techniques that reduce the O(m2) term in the search complex-
ity [GGK+14,BEGV18,NP19,CE18,KNP20,CEK+20]. Some of those methods [GGK+14,BEGV18]
have a penalty factor of O(lg lg z) or O(lg(n/z)) in the space, which is far from negligible, and thus
they are unlikely to be space-competitive. Other indexes [CE18,CEK+20] build on grammars and
look more promising. They manage to ensure that P needs be cut into P1 ·P2 at only O(lgm) places
in order to spot all the primary occurrences, which reduces the O(m2) term to O(m). For this to
hold, however, the grammar must be of a special type called locally-consistent. In our experience,
RePair outperforms in space, by a wide margin, all the other grammar construction algorithms,
including those that offer guarantees of the form G = O(z lg(n/z)). Yet another class of indexes
[NP19,KNP20] builds on block trees [BCG+20] instead of grammars, reducing the O(m2) term to
O(m lg n). Block trees have been shown to offer faster access than grammars in practice, though
being competitive in space only when repetitiveness is very high [BCG+20]. Finally, Christiansen et
al. [CEK+20, App. A] show an index of O(G lg n) bits that can be built on any grammar of size
G, and reduces our O(m2) term to O(m lg n). Their space involves a constant that is likely to be
significantly larger than ours, because they rely on a space-demanding data structure (the z-fast

trie [BBPV18, Sec. H.2]) to search for t prefixes/suffixes of P in time O(t lgm) (indeed, these z-fast
tries are indeed used in most of the recent work obtaining o(m2) search time). Therefore, various of
these indexes could be faster, yet likely larger, than our grammar-based index, thereby providing
new space/time tradeoffs between our index and the r-index [GNP20].

Acknowledgements

We thank the reviewers for their comments, which helped improve the presentation considerably;
one of them pointed us the reference for efficient construction [I17].

References

[AB92] A. Amir and G. Benson. Efficient two-dimensional compressed matching. In Proc. 2nd Data Compression
Conference (DCC), pages 279–288, 1992.

[AHK04] S. Arora, E. Hazan, and S. Kale. O(
√

lgn) approximation to SPARSEST CUT O(n2) in time. In Proc.
45th Annual Symposium on Foundations of Computer Science (FOCS), pages 238–247, 2004.

[ANS12] D. Arroyuelo, G. Navarro, and K. Sadakane. Stronger Lempel-Ziv based compressed text indexing.
Algorithmica, 62(1):54–101, 2012.

[BBPV18] D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna. Fast prefix search in little space, with applications.
CoRR, abs/1804.04720, 2018.

[BCG+15] D. Belazzougui, F. Cunial, T. Gagie, N. Prezza, and M. Raffinot. Composite repetition-aware data
structures. In Proc. 26th Annual Symposium on Combinatorial Pattern Matching (CPM), pages 26–39,
2015.

[BCG+20] D. Belazzougui, M. Cáceres, T. Gagie, P. Gawrychowski, J. Kärkkäinen, G. Navarro, A. Ordóñez, S. J.
Puglisi, and Y. Tabei. Block trees. Journal of Computer and System Sciences, 2020. To appear.

[BCN13] J. Barbay, F. Claude, and G. Navarro. Compact binary relation representations with rich functionality.
Information and Computation, 232:19–37, 2013.

[BCPT15] D. Belazzougui, P. H. Cording, S. J. Puglisi, and Y. Tabei. Access, rank, select in grammar-compressed
strings. In Proc. 23rd Annual European Symposium on Algorithms (ESA), pages 142–154, 2015.

[BDM+05] D. Benoit, E. Demaine, J. I. Munro, R. Raman, V. Raman, and S. Srinivasa Rao. Representing trees of
higher degree. Algorithmica, 43(4):275–292, 2005.

[BEGV18] P. Bille, M. B. Ettienne, I. L. Gørtz, and H. W. Vildhøj. Time-space trade-offs for Lempel-Ziv compressed
indexing. Theoretical Computer Science, 713:66–77, 2018.

[BGG+14] D. Belazzougui, T. Gagie, S. Gog, G. Manzini, and J. Sirén. Relative FM-indexes. In Proc. 21st
International Symposium on String Processing and Information Retrieval (SPIRE), pages 52–64, 2014.

[BHH+19] H. Bannai, M. Hirayama, D. Hucke, S. Inenaga, A. Jez, M. Lohrey, and C. P. Reh. The smallest grammar
problem revisited. CoRR, 1908.06428, 2019.

[BLR+15] P. Bille, G. M. Landau, R. Raman, K. Sadakane, S. S. Rao, and O. Weimann. Random access to
grammar-compressed strings and trees. SIAM Journal on Computing, 44(3):513–539, 2015.

[BN15] D. Belazzougui and G. Navarro. Optimal lower and upper bounds for representing sequences. ACM
Transactions on Algorithms, 11(4):article 31, 2015.

[BW94] M. Burrows and D. Wheeler. A block sorting lossless data compression algorithm. Tech. Rep. 124, Digital
Equipment Corporation, 1994.

[CE18] A. R. Christiansen and M. B. Ettienne. Compressed indexing with signature grammars. In Proc. 13th
Latin American Symposium on Theoretical Informatics (LATIN), pages 331–345, 2018.

[CEK+20] A. R. Christiansen, M. B. Ettienne, T. Kociumaka, G. Navarro, and N. Prezza. Optimal-time dictionary-
compressed indexes. ACM Transactions on Algorithms, 2020. To appear.

[CFMPN10] F. Claude, A. Fariña, M. Mart́ınez-Prieto, and G. Navarro. Compressed q-gram indexing for highly
repetitive biological sequences. In Proc. 10th IEEE Conference on Bioinformatics and Bioengineering
(BIBE), 2010.

[CFMPN16] F. Claude, A. Fariña, M. Mart́ınez-Prieto, and G. Navarro. Universal indexes for highly repetitive
document collections. Information Systems, 61:1–23, 2016.

[Cla96] D. Clark. Compact Pat Trees. PhD thesis, University of Waterloo, 1996.
[CLL+05] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and A. Shelat. The smallest

grammar problem. IEEE Transactions on Information Theory, 51(7):2554–2576, 2005.
[CLP11] T. M. Chan, K. G. Larsen, and M. Pătraşcu. Orthogonal range searching on the RAM, revisited. In

Proc. 27th ACM Symposium on Computational Geometry (SoCG), pages 1–10, 2011.
[CN10] F. Claude and G. Navarro. Self-indexed grammar-based compression. Fundamenta Informaticae,

111(3):313–337, 2010.
[CN12] F. Claude and G. Navarro. Improved grammar-based compressed indexes. In Proc. 19th International

Symposium on String Processing and Information Retrieval (SPIRE), pages 180–192, 2012.
[CRA76] C. Cook, A. Rosenfeld, and A. Aronson. Grammatical inference by hill climbing. Information Science,

10:59––80, 1976.
[DJSS14] H. H. Do, J. Jansson, K. Sadakane, and W.-K. Sung. Fast relative Lempel-Ziv self-index for similar

sequences. Theoretical Computer Science, 532:14–30, 2014.
[Eli74] P. Elias. Efficient storage and retrieval by content and address of static files. Journal of the ACM,

21:246–260, 1974.
[Fan71] R. Fano. On the number of bits required to implement an associative memory. Memo 61, Computer

Structures Group, Project MAC, Massachusetts, 1971.
[FM05] P. Ferragina and G. Manzini. Indexing compressed texts. Journal of the ACM, 52(4):552–581, 2005.
[Fre60] E. Fredkin. Trie memory. Communications of the ACM, 3:490–500, 1960.
[GGK+12] T. Gagie, P. Gawrychowski, J. Kärkkäinen, Y. Nekrich, and S. J. Puglisi. A faster grammar-based

self-index. In Proc. 6th International Conference on Language and Automata Theory and Applications
(LATA), pages 240–251, 2012.

[GGK+14] T. Gagie, P. Gawrychowski, J. Kärkkäinen, Y. Nekrich, and S. J. Puglisi. LZ77-based self-indexing with
faster pattern matching. In Proc. 11th Latin American Theoretical Informatics Symposium (LATIN),
pages 731–742, 2014.

[GIM+19] T. Gagie, T. I, G. Manzini, G. Navarro, H. Sakamoto, and Y. Takabatake. Rpair: Scaling up repair with
rsync. In Proc. 26th International Symposium on String Processing and Information Retrieval (SPIRE),
pages 35–44, 2019.

[GJL19] M. Ganardi, A. Jeż, and M. Lohrey. Balancing straight-line programs. In Proc. 60th IEEE Annual
Symposium on Foundations of Computer Science (FOCS), pages 1169–1183, 2019.

[GKPS05] L. Gasieniec, R. Kolpakov, I. Potapov, and P. Sant. Real-time traversal in grammar-based compressed
files. In Proc. 15th Data Compression Conference (DCC), page 458, 2005.

[GMR06] A. Golynski, J. I. Munro, and S. Rao. Rank/select operations on large alphabets: a tool for text indexing.
In Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 368–373, 2006.

[GNP20] T. Gagie, G. Navarro, and N. Prezza. Fully-functional suffix trees and optimal text searching in BWT-runs
bounded space. Journal of the ACM, 67(1):article 2, 2020.

[HLR16] D. Hucke, M. Lohrey, and C. P. Reh. The smallest grammar problem revisited. In Proc. 23rd International
Symposium on String Processing and Information Retrieval (SPIRE), pages 35–49, 2016.

[I17] T. I. Longest common extensions with recompression. In Proc. 28th Annual Symposium on Combinatorial
Pattern Matching (CPM), pages 18:1–18:15, 2017.

[Jez15] A. Jez. Approximation of grammar-based compression via recompression. Theoretical Computer Science,
592:115–134, 2015.

[Jez16] A. Jez. A really simple approximation of smallest grammar. Theoretical Computer Science, 616:141–150,
2016.

[Kär99] J. Kärkkäinen. Repetition-Based Text Indexing. PhD thesis, U. Helsinki, Finland, 1999.
[KMS+03] T. Kida, T. Matsumoto, Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa. Collage system: a unifying

framework for compressed pattern matching. Theoretical Computer Science, 298(1):253–272, 2003.
[KN13] S. Kreft and G. Navarro. On compressing and indexing repetitive sequences. Theoretical Computer

Science, 483:115–133, 2013.
[KNP20] T. Kociumaka, G. Navarro, and N. Prezza. Towards a definitive measure of repetitiveness. In Proc. 14th

Latin American Symposium on Theoretical Informatics (LATIN), 2020. To appear.
[KY00] J. Kieffer and E.-H. Yang. Grammar-based codes: A new class of universal lossless source codes. IEEE

Transactions on Information Theory, 46(3):737–754, 2000.

[LM00] J. Larsson and A. Moffat. Off-line dictionary-based compression. Proc. IEEE, 88(11):1722–1732, 2000.
[LZ76] A. Lempel and J. Ziv. On the complexity of finite sequences. IEEE Transactions on Information Theory,

22(1):75–81, 1976.
[MNSV10] V. Mäkinen, G. Navarro, J. Sirén, and N. Välimäki. Storage and retrieval of highly repetitive sequence

collections. Journal of Computational Biology, 17(3):281–308, 2010.
[Mor68] D. Morrison. PATRICIA – practical algorithm to retrieve information coded in alphanumeric. Journal of

the ACM, 15(4):514–534, 1968.
[MRRR12] J. I. Munro, R. Raman, V. Raman, and S. S. Rao. Succinct representations of permutations and functions.

Theoretical Computer Science, 438:74–88, 2012.
[Nav14] G. Navarro. Wavelet trees for all. Journal of Discrete Algorithms, 25:2–20, 2014.
[Nav20] G. Navarro. Indexing highly repetitive string collections. CoRR, 2004.02781, 2020. To appear in ACM

Computing Surveys.
[NM07] G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Computing Surveys, 39(1):article 2,

2007.
[NMWM94] C. Nevill-Manning, I. Witten, and D. Maulsby. Compression by induction of hierarchical grammars. In

Proc. 4th Data Compression Conference (DCC), pages 244–253, 1994.
[NP19] G. Navarro and N. Prezza. Universal compressed text indexing. Theoretical Computer Science, 762:41–50,

2019.
[NPC+13] J. C. Na, H. Park, M. Crochemore, J. Holub, C. S. Iliopoulos, L. Mouchard, and K. Park. Suffix tree of

alignment: An efficient index for similar data. In Proc. 24th International Workshop on Combinatorial
Algorithms (IWOCA), pages 337–348, 2013.

[NPL+13] J. C. Na, H. Park, S. Lee, M. Hong, T. Lecroq, L. Mouchard, and K. Park. Suffix array of alignment:
A practical index for similar data. In Proc. 20th International Symposium on String Processing and
Information Retrieval (SPIRE), pages 243–254, 2013.

[NS14] G. Navarro and K. Sadakane. Fully-functional static and dynamic succinct trees. ACM Transactions on
Algorithms, 10(3):article 16, 2014.

[OS07] D. Okanohara and K. Sadakane. Practical entropy-compressed rank/select dictionary. In Proc. 9th
Workshop on Algorithm Engineering and Experiments (ALENEX), pages 60–70, 2007.

[RO08] L. Russo and A. Oliveira. A compressed self-index using a Ziv-Lempel dictionary. Information Retrieval,
11(4):359–388, 2008.

[Ryt03] W. Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-based compression.
Theoretical Computer Science, 302(1-3):211–222, 2003.

[SS82] J. A. Storer and T. G. Szymanski. Data compression via textual substitution. Journal of the ACM,
29(4):928–951, 1982.

[Sto77] J. A. Storer. NP-completeness results concerning data compression. Technical Report 234, Department
of Electrical Engineering and Computer Science, Princeton University, 1977.

[TIS17] Y. Takabatake, T. I, and H. Sakamoto. A space-optimal grammar compression. In Proc. 25th Annual
European Symposium on Algorithms (ESA), pages 67:1––67:15, 2017.

[VY13] E. Verbin and W. Yu. Data structure lower bounds on random access to grammar-compressed strings. In
Proc. 24th Annual Symposium on Combinatorial Pattern Matching (CPM), pages 247–258, 2013.

[ZL78] J. Ziv and A. Lempel. Compression of individual sequences via variable length coding. IEEE Transactions
on Information Theory, 24(5):530–536, 1978.

