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Abstract

Let string S[1..n] be parsed into z phrases by the Lempel-Ziv algorithm. The corresponding
compression algorithm encodes S in O(z) space, but it does not support random access to S.
We introduce a data structure, the block tree, that represents S in O(z log(n/z)) space and
extracts any symbol of S in time O(log(n/z)), among other space-time tradeoffs. The structure
also supports other queries that are useful for building compressed data structures on top of
S. Further, block trees can be built in linear time and in a scalable manner. Our experiments
show that block trees offer relevant space-time tradeoffs compared to other compressed string
representations for highly repetitive strings.

1 Introduction

Much of the fastest-growing data these days is highly repetitive: versioned document and software
repositories like Wikipedia and GitHub store tens of versions of each document; whole-genome
sequencing projects generate thousands of genomes of individuals of the same species; periodic
astronomical surveys regularly scan the same portion of the sky. Such repetitiveness makes those
large datasets highly compressible with dictionary methods like grammar-based or Lempel-Ziv
compression, whereas typical statistical compression fails to capture the repetitiveness [KN13].

Lempel-Ziv compression [LZ76] of a string S[1..n] parses S into a sequence of z “phrases”,
where each phrase S[i..j] is a new symbol (and j = i) or it appears leftwards in S. Lempel-Ziv
compression takes O(n) time [RPE81] and reduces S to O(z) space by encoding the phrases. While
Lempel-Ziv is the practical method that best exploits repetitiveness, it has the problem that no
way is known to access arbitrary substrings of S without decompressing it from the beginning.

All the previous work in the literature [BLR+15, BPT15, BC17, BEGV18, GNP20] resorts to
grammar-based compression when it comes to provide direct access to compressed highly repetitive

∗Supported in part by Basal Funds FB0001 and Fondecyt Grant 1-200038, Conicyt, Chile, and by the Academy
of Finland grants 258308 and 268324. An early partial version of this work appeared in Proc. DCC’15 [BGG+15].

1



strings. Grammar-based compression [KY00] of S consists in generating a context-free grammar
that generates S and only S. When S is repetitive, the size g of the grammar can be much smaller
than n. While finding the smallest grammar that generates S is NP-complete [Ryt03, CLL+05],
there are several linear-time approximations that generate grammars of size g = O(z log(n/z))
[Ryt03, CLL+05, Jeż16]. Grammars, however, do not compress as well as Lempel-Ziv in general: it
always holds that g ≥ z [Ryt03, CLL+05], and there are string families like S = an where z = O(1)
and g = Θ(log n). Yet, grammars permit access to arbitrary positions of S in time O(log n) and
space O(g); this is not known to be possible within space O(z).

In this article we introduce the block tree, a data structure that uses O(z log(n/z)) space and
supports direct access to any symbol of S in time O(log(n/z)). It allows other space-time tradeoffs,
for example it can use O

(
z1−εnε

)
space for any constant ε > 0 and extract any substring of length

m in RAM-optimal time O(1 +m/ logσ n), where σ is the alphabet size of S. This is the first
structure offering constant-time access to S within O

(
z1−εnε

)
space.

Several more sophisticated objects can be represented in compressed form by resorting to strings
[Nav16]. These representations generally need not only direct access to S, but (at least) the
following two fundamental operations:

S.ranka(i) = return the number of occurrences of the character a in S[1..i].

S.selecta(j) = return the position of the jth occurrence of a in S.

Such operations can also be supported on grammar-compressed strings in time O(log n), by
multiplying the space by O(σ) [BPT15, ONB17]. The same holds with block trees, where we can
support rank and select in space O(zσ log(n/z)) and time O(log(n/z)), among other tradeoffs.

Block trees can be built in linear time and space. We also explore other scalable techniques
that are relevant when S is very large and we cannot afford such extra space.

Finally, we show experimentally that block trees are a practical alternative to grammar-based
representations. As expected from the theoretical results, block-tree-based representations are
significantly (typically an order of magnitude) faster than grammar-based ones at the expense of
sometimes being larger. On highly repetitive strings, however, block trees still offer an extremely
compact representation with very fast direct access and rank/select support, competitive in time
with statistically compressed representations, which are many times larger.

This article is a revised and expanded version of its conference publication [BGG+15], where
in particular we have optimized the space of the data structure, removed incorrect claims about
lowest-common-ancestor functionality, written the results with more detail, and carried out a much
more extensive implementation and experimental comparison of different practical variants. The
block tree idea derives from the earlier concept of block graph [GGP11, GGP15], which is more
complex and has less functionality and worse time complexities.

2 Related Work

Random access to a statistically compressed sequence S[1..n] over alphabet [1..σ] can be obtained
by adding o(n log σ) bits on top of its high-order empirical entropy [GN06, SG06, FV07], while
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allowing the extraction of any substring of length m in the RAM-optimal time O(1 +m/ logσ n).1

Any of those encodings can be enhanced with o(n log σ) further bits that provide efficient rank and
select support [BHMR11]. However, statistical compression is very far from what can be obtained
on highly repetitive strings [KN13].

A powerful compression technique to exploit repetitiveness is to find a context-free grammar
that generates (only) S [KY00]. If S is parsed by Lempel-Ziv [LZ76] into z phrases, then various
algorithms [Ryt03, CLL+05, Jeż16] produce grammars of size g = O(z log(n/z)). Then, a data
structure of size O(g) allows us to extract any substring of S of length m in time O(log n+m)
[BLR+15], and even O(log n+m/ logσ n) [BPT15]. This O(log n) additive penalty is nearly opti-
mal [VY13]. The latter structure [BPT15] also offers O(logτ n+m/ logσ n) extraction time using
O(gτ logτ (n/g)) space, for any τ . It can also support rank and select operations in O(log n) time
by increasing the space to O(gσ), or in O(logτ n) time using space O(gστ logτ (n/g)). Belazzougui
et al. [BPT15] give some evidence suggesting that the σ factor that multiplies the space cannot be
avoided, but clever implementations can reduce its impact [ONB17].

Those results are easier to obtain if we use a balanced grammar, that is, of height O(log n).
For example, Bille et al. [BEGV18] use a particular grammar of size O(z log(n/z)) and height
O(log(n/z)) to support extraction of a substring of length m in time O(log(n/z) +m). A recent
result [GJL19] is that any grammar of size g can be made balanced while retaining O(g) size.

Another relevant measure of repetitiveness is the number r of equal-letter runs in the Burrows-
Wheeler Transform [BW94] of S. Gagie et al. [GNP20] introduce a representation of S using
O(r log(n/r)) space that extracts any substring of S of length m in time O(log(n/r) +m/ logσ n).
Their result in fact relies on building a grammar of size O(r log(n/r)) and height O(log(n/r)).

Yet another measure of repetitiveness is the size e of the smallest compact automaton that
recognizes the substrings of S, or CDAWG [BBH+87]. Belazzougui and Cunial [BC17] show how
to extract substrings of length m in time O(log n+m/ logσ n). Once again, they exploit the fact
that the CDAWG induces a balanced grammar of size O(e).

As it can be seen, every single method for substring extraction and rank/select support on
highly repetitive strings builds on context-free grammars. Our block trees, which actually predate
many of those results [BGG+15], take an original approach, being the only ones that build directly
on the Lempel-Ziv parse of S. They obtain O(z log(n/z)) space and offer similar time bounds.
Interestingly, they do not need to actually build the Lempel-Ziv parse to obtain most of the results.
Several other structures then followed the block-tree design; they are mentioned in the Conclusions
as a sort of epilogue.

3 Block Trees

Let S[1..n] be a string over alphabet [1..σ], and τ and s be integer parameters larger than 1. Assume
for simplicity that n is of the form s · τh for some integer h. The block tree is a perfectly balanced
tree of height h, which may however have leaves at higher levels. The root has s children and every
other internal node has τ children. Leaves in the last level store symbols or short substrings of S;
the others store special leftward pointers to nodes or pairs of nodes in the same level.

1The minimum time to write the output, m symbols of log σ bits each, even if packing logσ n consecutive symbols
into words of logn bits, is Ω(1 +m/ logσ n).
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Figure 1: A block tree with s = 15, τ = 2, and leaves with size 1, for NNBOBOTW. . . NSBOBOTW
(from “99 Bottles of Beer on the Wall”): boxes are nodes; solid lines are edges and dashed lines
are leftward pointers to blocks’ first occurrences; only the symbols at the last level are stored. The
‘T’ symbols decorated with a � illustrate an access. Notice we mark the third child of the root and
its children, even though NNBO occurs earlier, because TWNN and BOBI do not. Also, although
BISH occurs only once, we do not mark the 22nd and 23rd blocks at the third level, since they are
not consecutive in the original string.

Each node u represents a “block” Bu, which is a substring of S with an identified position in
S. The root node represents the whole S and has s children representing the consecutive blocks of
S of length n/s. Let `u be the level (or depth) of node u; the level of the root is zero. Nonroot
nodes u that are not in the last level can be of two types: an internal node with τ children, or a
leaf with leftward pointers. Which is the case depends on a global criterion, defined as follows.

Let B1, B2, . . . be the blocks represented by all the nodes of level `u, left to right. For any i,
if Bi and Bi+1 are consecutive in S and they form the leftmost occurrence in S of their content,
Bi · Bi+1, — which is the case if Bi · Bi+1 contains the leftmost occurrence of any substring of S
— then we say that the two nodes that represent Bi and Bi+1 are marked.

If u turns out not to be marked, then it is an internal node with τ children, which represent the
consecutive blocks of length |Bu|/τ into which Bu can be divided. Otherwise, u is a leaf storing (1)
special pointers to the two consecutive nodes vi and vi+1 of the same level whose blocks, Bi and
Bi+1, cover the leftmost occurrence of Bu in S, and (2) the offset of that occurrence of Bu inside
Bi · Bi+1. Note that the nodes vi and vi+1 must exist and be marked, because they — and their
ancestors — contain the leftmost occurrence of Bu.

Note that |Bu| = n/(sτ `u−1) for nonroot nodes u. The last level is formed when |Bu| is
small enough, that is, when the cost of explicitly storing Bu becomes less than that of storing the
leftward pointers of a leaf — i.e., when |Bu| = Θ(logσ n) and thus Bu can be encoded in O(log n)
bits. Taking the constant as 1 for simplicity, leaves store exactly log n bits and the height of the
block tree is h = logτ

n log σ
s logn . Note that increasing s decreases the height at the cost of adding O(s)

words to the space. Reducing the height h matters because the time complexities of the operations
are proportional to h, as seen later.
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For strings of arbitrary length, we round their length n up to the next integer of the form s · τh
for an integer h, by adding dummy symbols $ at the end of S and avoiding storing rightmost blocks
formed only of $s. Figure 1 shows an example of a block tree.

4 Space Analysis

We state the key result that relates the size of the block tree to the Lempel-Ziv parse of S.

Lemma 1. The number of blocks in any level of the block tree (except the first) is at most 3zτ .

Proof. For any level ` other than the first, consider the level ` − 1. Any concatenation of three
consecutive blocks C = Bi−1 · Bi · Bi+1 at level ` − 1 not containing any phrase boundary from
the Lempel-Ziv parse has, by the definition of such parsing, a leftward occurrence in S. Therefore,
neither the pair Bi−1 · Bi nor the pair Bi · Bi+1 will be marked when building the block tree, and
then Bi will remain unmarked. Said another way, the only blocks that can be marked are Bj−1,
Bj , or Bj+1 whenever a phrase boundary falls inside Bj . Since there are at most z such blocks Bj ,
and each marked block produces τ blocks in level `, there can be at most 3zτ blocks in level `.

By Lemma 1, there are O(zτ) blocks per level. At any level ` except the last, each unmarked
block is encoded using O(log n) bits of space, for storing pointers of log n bits into leftward (marked)
nodes of level `. Each marked block requires O(τ log n) bits to point to its τ children in level `+ 1,
but we can charge each such pointer to the corresponding child. At the last level, each of the O(zτ)
blocks is simply encoded as plain text, that is, logσ n symbols of log σ bits each, which yields again
O(log n) bits per block.

Since the number of levels is h = logτ
n log σ
s logn , we need O(s) pointers to the top-level blocks (even

if only O(z) of them are marked) and O(zτ) pointers for the other levels. Rounding up the length
n may induce at most one extra block — that is, O(τ) pointers — per level.

Theorem 2. Given a string S[1..n] over alphabet [1..σ] and integers τ and s, we can build a block

tree with logτ
n log σ
s logn levels. The block tree occupies O

((
s+ zτ logτ

n log σ
s logn

)
log n

)
bits of space, where

z is the number of phrases in the Lempel-Ziv parsing of S.

A fairly large value of s that retains the minimum asymptotic space complexity is s = z,

where the block tree is of height logτ
n log σ
z logn and it uses O

(
zτ logτ

(
n log σ
z logn

)
log n

)
bits of space.

We note that n log σ
z logn is actually the Lempel-Ziv compression factor. Using a constant value of τ

yields the minimum space, O
(
z log n log σ

z logn

)
⊆ O(z log(n/z)) (measured in Θ(log n)-bit words), and

a logarithmic number of levels, O
(

log n log σ
z logn

)
⊆ O(log(n/z)).

Another interesting setting for the arity is τ =
(
n log σ
z logn

)ε
for some constant 0 < ε < 1. This

makes the space usage to be (O
(
1
ε (z log n)1−ε(n log σ)ε

)
bits (at most O

(
1
ε z

1−εnε
)

words) and the
number of levels the constant O(1/ε). This space usage is a weighted geometric average between
z log n (the space usage in bits achievable by the Lempel-Ziv parsing) and the uncompressed space
n log σ. The parameter ε allows us to give an arbitrarily large weight to the compressed space usage
at the cost of increasing the number of levels (and thus query time).
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5 Queries

The simplest query to answer with a block tree is to return a character S[i] when given i. To do
this, we start at the root and descend to the child whose corresponding block contains S[i], then
to the grandchild whose block contains S[i], etc. If we reach a leaf u, then either u stores its block
explicitly — we can then return S[i] immediately — or u stores leftward pointers to the (internal)
nodes in the same level whose blocks contain the leftmost occurrence in S of Bu, and the offset of
that occurrence in those blocks. In the latter case, in O(1) time we can identify a character S[i′] in
one of those leftward nodes’ blocks such that S[i′] = S[i], then start descending from that leftward
node to find S[i′]. Because we can traverse leftward pointers only once per level, returning S[i]

takes a total of O
(

logτ
n log σ
s logn

)
time, proportional to the height of the tree.

Theorem 3. Given a string S[1..n] over alphabet [1..σ], the block tree with parameters τ and s

built on S can extract any symbol S[i] in time O
(

logτ
n log σ
s logn

)
.

For example, to return S[47] with the block tree shown in Figure 1, we first descend to the
twelfth child of the root, which is a leaf; since S[47] is the third character in that child’s block
S[45..58] and the first occurrence of that block is S[15..18], we know S[47] = S[17]. We follow
the pointer to the root’s fifth child, with block S[17..20]; we then descend two more levels and
eventually return T. The relevant characters are marked with diamonds.

5.1 Extracting substrings

The original paper on block graphs [GGP11] showed how to store S in O(z log(n/z)) space such
that any substring of length m can be extracted in O(log n+m) time. In this section we show how
to extract an arbitrary substring from a block tree with h levels in O(h(1 +m/ logσ n)) time. Note
that this is better than the O(hm) time we would obtain by simply applying m times the basic
traversal procedure just described.

In order to achieve the improved bounds, we store the first and the last logσ n symbols for every
internal node. This adds log n bits per node and does not increase the space asymptotically. Note
that the leaves already store their logσ n symbols explicitly.

We extract a substring S[i..i+m− 1] with m ≤ logσ n as follows. Since the smallest blocks in
the tree are of length logσ n, S[i..i + m − 1] either falls inside the block of a single node or spans
the blocks of two consecutive nodes.

At each level, if S[i..i+m− 1] spans two consecutive internal blocks, then we can extract the
part of the string that lies in the first block in O(1) time, since we have stored the last logσ n
symbols of the block. The same goes for the part that lies in the second block, since we have
stored the first logσ n symbols of the block. If S[i..i+m− 1] is fully contained in a block, then we
descend to the next level, either directly if the block is marked, or by following leftward pointers if
the block is unmarked. Note that the new substring to extract after following a leftward pointer,
S[i′..i′ +m− 1] = S[i..i+m− 1], may now span two blocks.

We continue recursively in this way, stopping either at the first level at which S[i..i + m − 1]
spans two blocks, or when we reach the last level of the block tree (where the leaf stores its logσ n
symbols explicitly). Overall, the time spent is O(h).
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To extract S[i..i+m− 1] when m > logσ n, we simply divide it into pieces of length logσ n (the
last may be shorter) and extract each piece separately.

Theorem 4. Given a string S[1..n] over alphabet [1..σ] and integers τ and s, we can build a data

structure occupying O
((
s+ zτ logτ

n log σ
s logn

)
log n

)
bits of space, where z is the number of phrases in

the Lempel-Ziv parsing of S, that allows extraction of any substring of S of length m in time

O
((

1 +
m

logσ n

)
· logτ

(
n log σ

s log n

))
.

Setting s = z and τ =
(
n log σ
z logn

)ε
as before, for any constant 0 < ε < 1, we obtain RAM-optimal

extraction time, O
(
1
ε (1 +m/ logσ n)

)
, within O

(
1
ε (z log n)1−ε(n log σ)ε

)
bits of space.

5.2 Rank

To efficiently support rank queries on S we store at each block tree node u, for each distinct
character a, the number u.pre(a) of occurrences of a in the prefix of S preceding block Bu. This

takes O
(
σ
(
s+ zτ logτ

(
n log σ
s logn

))
log n

)
bits of space. This sample of rank values lets us turn any

rank query on S into a rank query on a block in O(1) time: if S[i] corresponds to Bu[j], then
S.ranka(i) = u.pre(a) + Bu.ranka(j). The values u.pre(a) also allow turning a rank query on a
marked block for an internal node, into a rank query on one of its children, also in O(1) time. We
also store information to turn any rank query on an unmarked block into a rank query on its pointed
marked block in O(1) time. Finally, we store a classic binary rank data structure [Cla96, Nav16]
for the concatenation of the strings in the blocks of the last level, which takes O(zτ logσ n) bits of
space per symbol a, so we can answer rank queries on those blocks directly in O(1) time, and can

thus answer rank queries on S in O
(

logτ
n log σ
s logn

)
total time.

Let an unmarked block Bu point to node vj representing block Bj or to consecutive nodes vj
and vj+1 representing blocks Bj and Bj+1, starting at offset g + 1 inside Bj . The information
to convert any rank query on Bu into a rank query on Bj or Bj+1 is, for each character a, the
number Bj .ranka(g) of occurrences of a in the prefix of Bj that precedes the occurrence of Bu. Let
d = |Bj |−g be the length of the prefix of Bu that is a suffix of Bj . Since the number of occurrences
of a in Bj is vj+1.pre(a) − vj .pre(a), the number of occurrences of a in Bu[1..d] = Bj [g + 1..|Bj |]
is Bu.ranka(d) = vj+1.pre(a) − vj .pre(a) − Bj .ranka(g), which is computed in O(1) time. Then,
if i ≤ d, it holds that Bu.ranka(i) = Bj .ranka(g + i) − Bj .ranka(g), and if i > d, it holds that
Bu.ranka(i) = Bu.ranka(d) +Bj+1.ranka(i− d). See Figure 2.

5.3 Select

To support select quickly on S we store, for each distinct symbol a, a predecessor data structure on
the rank samples v.pre(a) of the s top-level nodes v. A predecessor query yielding a top-level block
Bv = S[i..i+ |Bv|−1] then lets us translate the query S.selecta(j) = i−1+Bv.selecta(j−v.pre(a)).
We also store a similar structure on the values vk.pre(a) of the τ children v1, . . . , vτ of internal
marked nodes v, to translate the query on v to its proper child in the same way. Analogously as
for rank queries, we store a classical constant-time select data structure on the concatenation of
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Figure 2: To turn a rank query on the unmarked block Bu into a rank query on one of the
consecutive marked blocks Bj and Bj+1 that contain Bu’s first occurrence in S, which starts at
relative position g + 1 of Bi, we store Bi.ranka(g) in Bu and infer Bu.ranka(d) from the sampled
ranks pre(a).

all the strings in the lowest-level blocks [Cla96, Nav17], so that within O(zτ logσ n) extra bits per
symbol a we handle the last level in constant time. Finally, the information we already have stored
lets us turn any select query on an unmarked block Bu into a select query on its pointed marked
blocks Bi and Bi+1: if j ≤ Bu.ranka(d) then Bu.selecta(j) = Bi.selecta(j + Bi.ranka(g)) − g, and
if j > Bu.ranka(d) then Bu.selecta(j) = Bj+1.selecta(j −Bu.ranka(d)) + d.

Theorem 5. Given a string S[1..n] over alphabet [1..σ] and integers τ and s, we can build a data

structure occupying O
(
σ
(
s+ zτ logτ

n log σ
s logn

)
log n

)
bits of space, where z is the number of phrases

in the Lempel-Ziv parsing of S, that supports rank queries on S in time O
(

logτ
n log σ
s logn

)
and select

queries on S in time O
(
pred(s, n) + logτ

(
n log σ
s logn

)
· pred(r, n)

)
, where pred(t, n) is the time of a

predecessor query on t integers in the universe [1..n] with a structure that uses O(t) space.

Predecessor structures of size O(t) can achieve pred(t, n) = O(log log(n/t)) [BN15, App. A], for
example, but there are many other tradeoffs [PT06].

With constant τ , for example, the predecessor queries on internal nodes take constant time, so
the structure uses O(σz log(n/z)) space and supports rank and select in time O(log(n/z)).

Once again, if we use s = z and τ =
(
n log σ
z logn

)ε
for any constant 0 < ε < 1, the structure requires

O
(
1
εσ(z log n)1−ε(n log σ)ε

)
bits of space (i.e., O

(
1
ε z

1−εnε
)

words) and supports rank in constant
time, O

(
1
ε

)
, and select in time O

(
1
ε log log n

)
. To obtain O

(
1
ε

)
time also on select queries we can use

τ = (n/z)ε/2 and implement the predecessor queries as a trie with branching factor τ , so that the
space is still O

(
1
εσz

1−εnε
)

words. Yet another interesting tradeoff is obtained with s = τ = logε n
and using atomic heaps to solve predecessor queries in constant time. In this case, the space is

O
(
σz log1+ε n

)
words and both rank and select are solved in time O

(
logn

ε log logn

)
.

6 Construction

We now describe different strategies to build the block tree data structure on a string S[1..n] in
order to support the simple access of an isolated symbol. Adding the construction of the extra data
to support faster access, as well as rank and select operations, is an easy exercise.
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The core strategy is to identify all the marked blocks with a single pass over the text, and then
the targets of the unmarked blocks with a second pass. The successive passes on the next levels
process geometrically decreasing texts, so linear-time construction is obtained when s = Θ(z). To
ensure worst-case times, an Aho-Corasick automaton can be used, though it requires O(n) extra
space. This is a problem on very large strings, even if their final block tree is small. Instead,
Karp-Rabin hashing yields the same expected times, with just O(s+ zr) extra space. Further,
this second construction can maintain the original string on disk and perform only a logarithmic
number of passes over it. It then builds the block tree essentially in-place.

6.1 Worst-case-time construction using O(n) working space

We first partition S into s blocks B1, . . . , Bs of lengths n/s, and create in O(n) time and space
an Aho-Corasick automaton [AC75] that recognizes all the s− 1 consecutive pairs Bi ·Bi+1. This
automaton searches for all the patterns simultaneously in O(1) amortized time per scanned symbol.

We set a counter to zero for each block Bi. We then traverse S with the automaton. Every
time we find an occurrence of a pair Bi ·Bi+1, if it is the first time we find the pair in S, we increase
the counters of Bi and of Bi+1. After we scan S, all the blocks Bi with counter equal to 2 (and
Bs, if its counter is equal to 1) are the unmarked blocks (because both Bi−1 ·Bi and Bi ·Bi+1 have
earlier occurrences in S).

In the second stage, we destroy the first Aho-Corasick automaton and create a new one with
the contents of the unmarked blocks Bu, and scan S again. The first time we find each Bu to be
equal to a block Bi or contained in two consecutive blocks Bi ·Bi+1, we set pointers from Bu to the
node of Bi and, if appropriate, to that of Bi+1, and also store in Bu the offset g where the copy of
Bu starts within Bi. Recall that Bi and Bi+1 are guaranteed to be marked because they contain
the first occurrence of the string Bu, so they must also be the first occurrence of Bi ·Bi+1.

We now delete the second Aho-Corasick automaton and move on to the second level, where
each marked block is split into τ sub-blocks, all of size n/(sτ). We repeat the process, but build
the automata considering only the existing sub-blocks in this level. Sub-blocks that are surrounded
by two sub-blocks need to reach the counter value 2 to be unmarked; the others need to reach the
counter value 1. When we reach the final level, with blocks of length logσ n, we simply store the
text corresponding to each block.

To analyze the construction time complexity, consider the following. The top-level blocks are of
length n/s. If s < 3zτ , then after level ` = 1+blogτ (3z/s)c the block lengths are below n/(3zτ). Up
to level `, the lengths of the existing blocks may add up to n per level, but after level `, since there
exist at most 3zτ blocks per level (Lemma 1) and their lengths decrease exponentially, the sum of
all the existing block lengths is O(n). In total, since each symbol is processed in constant amortized
time, the process requires O(n(1 + logτ (z/s)) time and O(n) space. To this, we must add the time

to generate the block tree, O
(
s+ zτ logτ

n log σ
s logn

)
⊆ O(n+ zτ logτ (n/s)). This is subsumed by our

construction time, O(n logτ (zτ/s)), as long as zτ = O(n). Note that if τ > n/z then the block tree
uses Ω(n log n) bits (Theorem 2) and then it is better to represent S in plain form without building
the block tree at all (i.e., we can stop building the block tree as soon as generating it exceeds our
time budget; we know it will not compress).
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Figure 3: The pruned version of the block tree of Figure 1.

Pruning. While the structure we built satisfies the space guarantees of Theorem 2, it might hold
more blocks than necessary. We mark the first occurrence of each pair of consecutive blocks Bi·Bi+1,
which ensures that any rightward block Bu appearing inside them can point to them without having
unmarked blocks pointing to unmarked blocks. However, it might be that no rightward block Bu

points to any of them, and that either or both Bi and Bi+1 appear earlier in S. In this case, they
could have been replaced by leftward pointers, thereby reducing space.

We then modify our construction and also carry out a postprocessing space optimization once
the block tree is built. The modification is that, when we build the second automaton, we insert all
the blocks of the level, not only the unmarked ones. For the marked blocks we also remember their
leftmost occurrence found by the automaton, even if we do not yet replace them. The postprocessing
consists of traversing the block tree in post-order, with the children in reverse order and the parent
after the children. Initially, all the nodes have counter value zero. For each unmarked block Bu

we reach in our traversal that points leftward to blocks Bi and (possibly) Bi+1, we increment the
counters of Bi and (possibly) Bi+1. For each marked block we reach that has zero counter, its τ
children are unmarked or last-level leaves storing explicit strings, and its leftmost occurrence in S
does not overlap itself, we remove its children and make the block unmarked, creating the leftward
pointer (those pointed blocks must then have their counter incremented, and the blocks pointed by
the removed children must be decremented).

Figure 3 shows how the block tree of Figure 1 is pruned by this procedure. In Figure 1, we set
all counters to zero and start at the rightmost child, representing BOTW. We then visit its children,
TW and BO, which are unmarked, and increment the counters of their pointed blocks, the second
and fourth of the third level. When returning to the parent BOTW, we note that its counter is
zero, its two children are unmarked, and the leftmost occurrence of BOTW does not overlap the
last block. We then remove its two children, decrease the counters we had just incremented, remove
them, make the parent BOTW unmarked, make it point to its leftmost occurrence (the second block
in the second level), and increment the counter of that newly pointed block. The process continues
until obtaining the pruned block tree of Figure 3.

This postprocessing may remove a large number of unnecessary blocks from the tree. Another
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obvious improvement is to remove the initial levels one by one as long as they do not have sufficient
leftward pointers to reduce the space, since otherwise they only increase query times.

The postprocessing time, O
(
s+ zτ logτ

n log σ
s logn

)
, is proportional to the size of the block tree,

and thus it does not affect the construction complexity.

Theorem 6. The block tree of any string S[1..n] over alphabet [1..σ], with integer parameters τ
and s, can be built and optimized in O(n(1 + logτ (z/s))) worst-case time and O(n) working space.

If we want to use the value s = z in order to build the block tree in O(n) time, we can first
determine z by carrying out the Lempel-Ziv parsing of S. This takes O(n) time and space [RPE81].

6.2 Expected-time construction with O(s+ zτ) working space

A problem with the previous construction is that using O(n) working space may be unfeasible on
very large sequences. Such space is needed to build the Aho-Corasick automata, and we can avoid
it by replacing Aho-Corasick searching with Karp-Rabin signatures [KR87]. We store in a universal
hash table the signatures of all the pairs of blocks (first stage), or of the blocks (second stage), and
then scan the text computing the fingerprint of all the windows, each in constant time. We must
verify the strings with matching signatures, but with high probability (w.h.p.)2 the strings match,
and a matching block is never verified again because we have already found its leftmost occurrence.
Therefore, at each level we spend O(n) time for scanning and O(n) expected time for hashing and
verifications. The expected time becomes O(n) w.h.p. if we use a proper hashing scheme [Wil00].
The space per level is now proportional to the number of blocks in that level.

Overall, we build the block tree level by level, using only O(s) working space in the first level
and O(zτ) in the others, apart from storing S and the final block tree (without pruning), in
O(n(1 + logτ (z/s))) expected time (and w.h.p.). We can then apply the pruning without requiring

extra asymptotic space. The total construction space is O
(
s+ zτ logτ

n log σ
s logn

)
plus the n log σ bits

to store S, that is, asymptotically dominated by the input plus the output upper bound.

Theorem 7. The block tree of any string S[1..n] over alphabet [1..σ], with integer parameters τ

and s, can be built in O(n(1 + logτ (z/s))) expected time (and w.h.p.) and O
(
s+ zτ logτ

n log σ
s logn

)
working space, having read-access to S itself.

Note that, if we cannot compute z in low space, we can simply choose s = 1, so that we first
build all the levels and then remove the useless top levels; we can also apply pruning at this point.
In this case, however, the construction time becomes O(n logτ z).

6.3 Construction in external memory

In large and very repetitive texts, where z � n, the bulk of the working space in the preceding
construction will be the n log σ bits to maintain S, not the space proportional to the block tree

size. We now show that, if S is maintained on disk, we can use O
(
s+ zτ logτ

n log σ
s logn

)
main mem-

ory construction space, O(n(1 + logτ (z/s))) expected CPU time, and perform only O
(

logτ
n log σ
s logn

)
sequential passes over S on disk.

2That is, with probability 1−O
(
n−c) for any desired constant c.
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For each level, we traverse S once to compute the Karp-Rabin signatures of the left-to-right
blocks (or block pairs) in that level. A second traversal on S slides the window and finds leftmost
occurrences of the blocks or block pairs. The only important difference is that this time we cannot
afford comparing the strings with matching signatures, because the string contents are on disk.

Considering that the strings will be equal w.h.p., we can do as follows. We assume that matching
signatures imply matching strings and go on with the construction. Note that the resulting block
tree, if incorrect, must be smaller than the correct block tree, because it does not mark some blocks

that should have been marked. Therefore, the main memory space is still in O
(
s+ zτ logτ

n log σ
s logn

)
.

Once the block tree is built, we use Theorem 4 to retrieve its corresponding string S′[1..n] by chunks
of logσ n symbols, in total time O(h · n/ logσ n) ⊆ O(n logτ σ) ⊆ O(n logτ z), because z ≥ σ. As
we extract the symbols of S′, we scan S one final time, in order to verify that S = S′. If they are
distinct, we discard everything and run the construction again. This Las Vegas procedure iterates
a constant expected number of times (once, w.h.p.), which retains the time complexities.

Theorem 8. The block tree of any string S[1..n] over alphabet [1..σ], with integer parameters τ and

s, can be built in O(n(1 + logτ z)) expected time (and w.h.p.) and O
(
s+ zτ logτ

n log σ
s logn

)
working

space, plus O
(

logτ
n log σ
s logn

)
sequential read-only passes on S (in particular, S may reside on disk).

As before, we can simply use s = 1 and have a construction I/O complexity of O((n/B) logτ n),
where B is the disk block size. If we want to use s = z, an external memory algorithm computes z
within sorting I/O complexity [KKP14]. We can prune the tree in main memory after building it.

7 Implementation

Our implementation of the block tree data structure is built on top of the sdsl library3 and is
publicly available at https://github.com/elarielcl/BlockTrees.

We implemented the construction described in Section 6.2, which is the most practical if the
string fits in main memory. We include the pruning algorithm. We choose parameter s = 1, so we
build all the block tree levels. Then, we remove the top levels that do not contain any unmarked
block. We retain parameter τ and use a parameter b telling the length of the strings that are stored
explicitly at the last-level leaves.

The blocks at each level form a conceptual sequence. A bitvector aligned to that sequence, in
each level, indicates with a 1 which are marked. Since for each marked block there are exactly τ
blocks in the next level, we easily traverse the tree downwards by computing rank1 on these bitvec-
tors. The leftward pointers from unmarked blocks are packed in an array, which is addressed using
rank0 on the same bitvector. All the arrays of integers are stored using the minimum number of bits
required to store their maximum value (class sdsl::int vector), and the bitvector is indexed to
support constant-time rank queries (class sdsl::bit vector with sdsl::rank support v<1>).

As in the definition, we extend the string up to the next power of τ with a special terminator
symbol, but omit the blocks that are formed only by terminators, as these will never be accessed.
Since we do not store explicit pointers to children, this imposes a space overhead of O(logτ (n/b)).

3https://github.com/simongog/sdsl-lite
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Access. We store no extra information in order to support access to S. In particular, to save
space, we do not store the logσ n explicit leftmost and rightmost symbols described in Section 5.1,
but rather use the simpler procedure of Theorem 3. For unmarked blocks pointing to Bi or to Bi
and Bi+1, we store the integer offset of Bi, since Bi+1 must be next to it in case it exists. We
also store the offset where the block copy starts inside Bi. The last-level blocks are also stored in
packed form, concatenating all the explicit strings.

Therefore, it takes O(m logτ (n/b)) time to extract m consecutive symbols in the worst case. In
practice, if we keep track of the segment to extract as we descend, it is likely that we arrive at a
leaf with a range longer than 1, and then can access all those symbols together in optimal time.

Rank and select. To support rank queries, we store additional fields. For the top-level blocks,
we store the rank of every symbol a just before starting the current block. For the other blocks
(which are children of marked blocks), in order to represent smaller numbers, we store the rank of
every symbol a inside the blocks. Thus, when we go down, we must accumulate the ranks of the
siblings preceding the desired child, but the effect of this overhead was negligible for the small τ
values we used. For unmarked blocks Bu pointing to Bi ·Bi+1, we also store Bu.ranka(d) for every
symbol a; recall Figure 2. For binary sequences we only store the rank of one of the two symbols,
since the other can be inferred.

To implement select we perform binary search on the rank values of the first level, and then
sequential search on the children.

On the explicit strings at the leaves, we store no rank/select information, thus we have to scan
the b symbols of one leaf to complete the operations, but these accesses are cache-friendly.

As a result, rank takes O(τ logτ (n/b) + b) and select takes O(log n+ τ logτ (n/b) + b) time.

8 Experiments

We report practical performance of our block trees compared to other state-of-the art sequence
representations solving access, rank, and select queries, on different kinds of repetitive sequences.

8.1 Sequences

Table 1 lists our sequences with their basic statistics, including Lempel-Ziv compressibility using
p7zip4. The base of our sources are repetitive text collections obtained from the Repetitive Corpus
of the Pizza&Chili platform5. We consider the following real texts:

influenza: A collection composed of 78,041 DNA sequences of Haemophilus Influenzae, obtained
from the NCBI6.

escherichia: A collection of DNA sequences of different Escherichia Coli individuals, also ob-
tained from the NCBI.

4http://p7zip.sourceforge.net
5http://pizzachili.dcc.uchile.cl/repcorpus
6https://www.ncbi.nlm.nih.gov
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Collection Size σ p7zip

influenza 148 MB 4 1.69%
escherichia 107 MB 4 7.76%
einstein 89 MB 117 0.11%
kernel 247 MB 160 2.56%

dna.0001 100 MB 4 0.52%
dna.001 100 MB 4 0.54%
dna.01 100 MB 4 0.76%
dna.1 100 MB 4 2.35%

dna0.001.par 399 MB 2 2.63%
dna0.01.par 399 MB 2 4.19%

Collection Size σ p7zip

dna.0001.wt.bv 200 MB 2 0.26%
dna.001.wt.bv 200 MB 2 0.31%
dna.01.wt.bv 200 MB 2 0.73%
dna.1.wt.bv 200 MB 2 3.62%
escherichia.wt.bv 214 MB 2 5.34%
influenza.wt.bv 296 MB 2 2.25%

dna.0001.bwt.wt.bv 200 MB 2 0.65%
dna.001.bwt.wt.bv 200 MB 2 0.87%
dna.01.bwt.wt.bv 200 MB 2 1.53%
dna.1.bwt.wt.bv 200 MB 2 4.38%
escherichia.bwt.wt.bv 214 MB 2 7.23%
influenza.bwt.wt.bv 296 MB 2 1.34%

Table 1: The repetitive collections we use, with their size n (in MB, assuming one byte per symbol
is used), their alphabet size σ, and the compression achieved with p7zip (a hint on z logn

n log σ , again
assuming one byte per symbol is used).

einstein: A collection of all the versions (up to January 12, 2010) of the German Wikipedia
Article of Albert Einstein.

kernel: A collection of 36 versions of the Linux Kernel.

We also consider so-called “pseudo-real” texts. These are obtained by creating, from a real
nonrepetitive text, a collection with controlled repetitiveness. This is useful to study how the
structures evolve as repetitiveness increases. We use the pseudo-real texts dna0.001, dna0.01,
dna0.1, and dna1.0, where each dnap is built by taking a 1MB prefix of the DNA sequence in the
corpus, copying it 100 times, and mutating (substituting by another) each symbol with probability
p/100. The 1MB prefix is obtained from the DNA sequence of the Gutenberg Project7.

We are particularly interested in binary sequences, because block trees have a σ blowup factor
in their space when supporting rank and select. We then generate various binary sequences from
our base texts, where these operations are useful in applications:

*.par: These are obtained from the respective text, by building its suffix tree [Wei73, CR02] and
then representing it as a sequence of balanced parentheses [MR01, Nav16], which is used for
example to represent suffix trees of repetitive collections [NO16, CN19].

*.wt.bv: These are the concatenation of the bitvectors of the wavelet trees [GGV03, Nav16] of the
sequences. Wavelet trees are sequence representations that support access, rank, and select.
Since deeper levels of the wavelet tree lose the original repetitiveness, we use only the DNA
sequences, whose wavelet trees have two levels only.

7http://www.gutenberg.org
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*.bwt.wt.bv: The concatenations of the bitvectors of the wavelet trees of the Burrows-Wheeler
Transform (BWT) [BW94, Nav16] of the sequences. The BWT transform is used to implement
text indexes by using the operations access, rank, and select.

8.2 Data structures

We compare our block trees with structures specialized for each kind of sequence, binary and
non-binary. The space for operations rank and select is included only in the corresponding plots.

8.2.1 Binary alphabet

BT Our block trees. We vary the arity τ ∈ {2, 4, 8} and the length of the blocks at the leaves,
b ∈ {16, 32, 64, 128, 256, 512}.

GCCN,GCCC The most efficient implemented grammar-compressed sequence representation
supporting the operations [ONB17]. We tested both regular sampling on text (GCCN),
and sampling on the start rule (GCCC). We vary their parameters as the authors suggest in
their original publication.

CM An uncompressed bitvector representation [Cla96, Nav16], using an implementation [GGMN05]
with one level of counters over the plain bitvectors. We vary the sampling length for the coun-
ters, s ∈ {32, 64, 128}.

RRR A statistically compressed bitvector representation [RRR07, Nav16], using an efficient im-
plementation [CN08] where we vary the sampling length for counters, s ∈ {32, 64, 128}.

8.2.2 Non-binary alphabet

BT Our block trees, varying τ ∈ {2, 4, 8} and b ∈ {2, 4, 8, 16, 32, 64}.

GCCN,GCCC: The grammar-compressed sequence representation [ONB17], with the same con-
siderations as for the binary alphabet.

WT.{GCCN,GCCC}: The wavelet tree [GGV03, Nav16] using different representations for the
bitvectors, with the same parameterizations as for binary alphabets.

HSWT.{GCCN,GCCC,CM,RRR} The Huffman-shaped wavelet tree [GGV03, Nav16] using
different representations of their bitvectors, with the same parameterizations as for binary
alphabets.

We omit some combinations that are never Pareto-optimal, such as WT.CM and WT.RRR, to
avoid cluttering the plots. Except for BT, the code of the structures comes from the benchmark of
the GCC article [ONB17].
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8.3 Setup and Plots

Our experiments ran on an isolated Intel(R) Xeon(R) CPU E5620 @ 2.40GHz with 96GB of RAM
and 10MB of L3 cache. The operating system is GNU/Linux, Debian 2, with kernel 4.9.0-6-amd64.
The implementations use a single thread and all of them are coded in C++. The compiler is gcc
version 6.3.0, with -O9 optimization flag set.

For every input, operation, and tested structure, we ran 10,000 random queries, and obtained
the average time. The plots show only the Pareto-optimal points. In the case of access we chose
10,000 random positions of the input. For rank we also chose 10,000 random letters from the input
alphabet. For select, we chose 10,000 random characters, and 10,000 random ranks between 1 and
the number of times the character occurs.

Points are shown in 2D-graphs, where the x-coordinate represents the space in bps (bits per
symbol) and the y-coordinate is the time per operation in microseconds and logarithmic scale; the
input and operation analyzed are indicated in the title of every graph. The results are shown in
Figures 4 to 12.

8.4 Results

Access. Figures 4 to 6 show the results on operation access. On general sequences (Figure 4)
block trees (BT) excel. In all the datasets, they outperform GCC, the grammar-based alternative,
by more than an order of magnitude in time, while using nearly the same space. On the other
hand, BT is several times smaller and as fast as the structures that use statistical compression
(HSWT.CM, HSWT.RRR, and WT.RRR) or no compression at all (WT.CM; some are omitted in
the plots). The alternatives that combine GCC with wavelet trees ({WT,HSWT}.{GCCN,GCCC})
are dominated by GCC, and sharply dominated by BT. Note that access times in uncompressed and
statistically compressed structures is O(log σ) (0.1–1 µsec in practice), whereas grammars require
O(log n) time (around 10 µsec in practice) and block trees require time O(log(n/s)) (0.1–1 µsec in
practice), where s is the number of blocks in the first represented level.

In the case of binary alphabets, Figure 5 shows the case of parenthesis sequences and of wavelet
tree bitvectors, whereas Figure 6 shows the bitvectors of wavelet trees of BWTs. On parentheses,
BT offers a relevant tradeoff: it is more than an order of magnitude faster than GCC, though 3–4
times larger. BT is as fast as statistically compressed bitvectors (RRR) and 3–5 times smaller. In
fact, statistical compression is useless in these sequences: the plain representation (CM) uses the
same space (i.e., 3–5 times larger than BT), though it is nearly an order of magnitude faster than
BT (its operation times are O(1), nearly 0.01 µsec in practice, whereas BT and GCC require the
same time as for general alphabets).

On wavelet-tree bitvectors, BT is always better than GCC, using less or similar space and more
than an order of magnitude less time. Uncompressed bitvectors (CM) are an order of magnitude
faster than BT, but they use many times more space (twice in the least repetitive sequences, and
many more in the others). Statistically-compressed bitvectors (RRR) are again dominated by
uncompressed representations.

The situation changes somehow on the BWTs. BT still outperforms GCC by an order of
magnitude in time, but it loses in space on the less repetitive sequences. On the other hand, RRR
becomes much more competitive because it reaches high-order statistical compression, and it even
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dominates BT on the least repetitive sequences.

Rank and Select. Figures 7 to 9 show the results for rank queries. In the case of general
sequences (Figure 7), the need to store σ counters per block makes BT significantly larger, especially
on the less repetitive sequences or on large alphabets. Instead, GCC has sampling mechanisms that
diminish this impact [ONB17], although it also grows. As a result, although the time comparisons
are as for operation access, BT is competitive in space only on the most repetitive DNA sequences.
Statistically compressed structures do not have the same problem, because their representation
already supports rank and select with no extra space. As a consequence, BT is dominated by
statistically compressed representations on dna1.0 and escherichia.

On binary alphabets (Figures 8 and 9), BT and GCC need only to store one extra field, which
diminishes the impact on their space. Still, the impact is much larger on BT than on GCC,
and as a consequence BT uses much more space than GCC on various less repetitive sequences.
The uncompressed representation (CM) is nearly an order of magnitude faster and still generally
smaller, but by a smaller factor. On the BWT-transformed sequences, BT is still about an order of
magnitude faster than GCC, but always larger by a significant factor. The statistically compressed
representation (RRR) is several times faster than BT, and smaller on the less repetitive sequences.

As a rough figure, rank on general sequences takes around 10 µsec on GCC (O(log n) complex-
ity) and 1 µsec on BT (O(log(n/s)) complexity). The statistically compressed and uncompressed
representations take around 1 µsec on general alphabets (O(log σ) complexity) and 0.1 µsec on
binary alphabets (O(1) complexity).

Figures 10 to 12 show the results for select, which are similar to those of rank, except that the
practical implementation of this operation on uncompressed and statistically compressed bitvectors
takes time O(log n), and therefore they do not outperform BT and GCC as for rank. While the
times of GCC and BT are nearly unaffected, the wavelet-tree based representations now take 1–10
µsec, being noticeably worse on the larger alphabets. Similarly, on bitvectors, CM and RRR are
at most twice as fast as BT, lying in the range of 0.5–1 µsec.

9 Conclusions

We have introduced the block tree, a data structure that represents sequences in compressed form
while supporting logarithmic-time access and rank/select queries on them. In particular, if a string
S[1..n] is parsed into z phrases (and thus compressed to O(z) space) by Lempel-Ziv [LZ76], then
the block tree can represent S in O(z log(n/z)) space and support the queries in O(log(n/z)) time.
Our experiments demonstrate that block trees are very competitive compressed representations of
highly repetitive sequences: they use about the same space of grammar-compressed representations
[ONB17] but they can be orders of magnitude faster, and they are not much slower than the
statistically-compressed representations [Cla96, RRR07, GGV03], which are several times larger.

9.1 Epilogue

Since our conference publication [BGG+15], block trees have had a significant impact on compressed
data structures. In particular, its basic idea of marked and unmarked blocks has been applied to
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Figure 4: Access on non-binary alphabets.
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Figure 5: Access on binary alphabets: suffix tree topologies and wavelet tree bitvectors.
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Figure 6: Access on binary alphabets: wavelet trees of BWTs.
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Figure 7: Rank on general sequences.
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Figure 8: Rank on binary alphabets: suffix tree topologies and wavelet tree bitvectors.
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Figure 9: Rank on binary alphabets: wavelet trees of BWTs.
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Figure 10: Select on general sequences.
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Figure 11: Select on binary alphabets: suffix tree topologies and wavelet tree bitvectors.
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Figure 12: Select on binary alphabets: wavelet trees of BWTs.
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analogous situations. Kempa and Prezza [KP18] defined attractors, which are combinatorial objects
that describe the repetitiveness of a string S[1..n]. An attractor Γ is a set of positions so that any
substring of S has a copy including a position in Γ. The size γ of the smallest attractor lower-
bounds z, γ ≤ z, and a block-tree-like data structure is shown to provide access on S in time
O(log(n/γ)) and space O(γ log(n/γ)) [KP18]. They also extract a substring of length m in time
O(log(n/γ) +m/ logσ n). Such block-tree-like structure can also be enhanced to support rank and
select operations in time O(logτ (n/γ)) by using space O(γστ logτ (n/γ)) [Pre19].

Navarro and Prezza [NP19] used a variant, called Γ-tree, that is closer to an actual block tree
with parameters s = γ and r = 2. The main difference of both variants [KP18, NP19] is that the
marked blocks in each level are those close to an attractor position. It can then be shown, much
like our Lemma 1, that since any unmarked block has a copy including an attractor position, such
copy lies within the concatenation of two marked blocks. Navarro and Prezza [NP19] add fields
in the Γ-tree blocks to support another operation: given a range (i, j), compute the Karp-Rabin
fingerprint of S[i..j] in time O(log(n/γ)). This structure is then used as the basis of a compressed
text index, which uses O(γ log(n/γ)) space and finds the occ occurrences of a pattern of length m
in S in O(m log n+ occ logε n) time for any constant ε > 0. Their fingerprint calculation algorithm
works almost verbatim on the original block trees.

Such block tree variants based on attractors have an important conceptual interest because
many other dictionary compressors can be expressed in terms of attractors, for example collage
systems [KMS+03] and bidirectional macro schemes [SS82], in addition to Lempel-Ziv parsing: if
any such method compresses S[1..n] into space p, then one can build an attractor of size γ = O(p)
and thus a block-tree-like structure built on S uses O(p log(n/p)) space and supports direct access
(and other functions) in O(log(n/p)) time. Finding the smallest attractor size γ is NP-complete
[KP18], however, and among all those compression methods, Lempel-Ziv parsing provides the best
approximation to the smallest γ that can be computed in polynomial time (actually, in linear time).
Therefore, this generalization boils down, in practice, to our original Lempel-Ziv-bounded block
trees (i.e., marked blocks are those around phrase boundaries).

Even more remarkably, Kociumaka et al. [KNP20] worked on an even stricter measure of repet-
itiveness, δ ≤ γ, which like z can be computed in linear time. They show that it is sufficient to
choose s = δ in our block trees to obtain space O(δ log(n/δ)) while retaining the time complexities
in terms of log(n/z). This then yields a practical construction of our block trees that is even smaller
than those based on attractors, of size O(γ log(n/γ)).

Other generalizations of the block tree in the literature include two-dimensional block trees
to compress adjacency matrices of Web graphs (and possibly repetitive images) [BGGBN18], self-
indexes on the original block trees [Nav17], extensions to compute suffix array cells [Kem19], and
extensions to support sequences of parentheses with applications to suffix trees of repetitive text
collections [CN19]. The latter application is interesting because it exposes some possible limitations
of the block-tree functionality: a sequence of parentheses that represents a tree topology needs
to support further operations, such as finding a given “excess” forwards or backwards from a
given position and giving the position with minimum “excess” in a range [NS14]. The excess of a
position is the number of opening minus closing parentheses up to it. Despite what is incorrectly
claimed in the conference version of this article [BGG+15], we know no way to compute these
operations in polylogarithmic time using block trees (some heuristics perform well in practice
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[CN19]). This is instead possible using context-free grammars [BLR+15, NO16], but block trees
permit a block to be an arbitrary substring of two consecutive blocks, which context-free grammars
do not support. Block trees are, instead, a particular case of collage systems [KMS+03], for which no
polylogarithmic-time access algorithms are known. Delimiting which operations can be efficiently
computed on block trees is an interesting open problem.
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