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Abstract

We introduce a practical disk-based compressed text index that,
when the text is compressible, takes much less space than the suffix
array. It provides good I/O times for searching, which in particu-
lar improve when the text is compressible. In this aspect our index
is unique, as most compressed indexes are slower than their classi-
cal counterparts on secondary memory. We analyze our index and
show experimentally that it is extremely competitive on compressible
texts. As side contributions, we introduce a compressed rank dictio-
nary for secondary memory operating in one I/O access, as well as
a simple encoding of sequences that achieves high-order compression
and provides constant-time random access, both in main and sec-
ondary memory.

1 Introduction and Related Work

Compressed full-text self-indexing [31] is a recent trend that builds on the
discovery that traditional text indexes like suffix trees and suffix arrays
can be compacted to take space proportional to the compressed text size,
and moreover be able to reproduce any text context. Therefore self-indexes
replace the text, take space close to that of the compressed text, and in
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addition provide indexed search into it. Although a compressed index is
slower than its uncompressed version, it can run in main memory in cases
where a traditional index would have to resort to the (orders of magni-
tude slower) secondary memory. In those situations a compressed index is
extremely attractive.

There are, however, cases where even the compressed index is too large
to fit in main memory. One would still expect some benefit from com-
pression in this case (apart from the obvious space savings). For example,
sequentially searching a compressed text can be significantly faster than
searching a plain text, because fewer disk blocks must be scanned [36].
However, this has not been usually the case on indexed searching. The
existing compressed text indexes for secondary memory are usually slower
than their uncompressed counterparts, due to their poor locality of access.

A self-index built on a text T1,n = t1t2 . . . tn over an alphabet A of size
σ will support at least the following queries, where P = P1,m is a pattern
over A:

• count(T, P ): counts the number of occurrences of pattern P in T .

• locate(T, P ): locates the positions of all those occ = count(T, P )
occurrences of P .

• extract(T, l, r): extracts the substring Tl,r of T , with 1 ≤ l ≤ r ≤ n.

The most relevant text indexes for secondary memory follow:

• The String B-tree [9] is based on a combination between B-trees and
Patricia tries. In this index locate takes O(m+occ

b̃
+logb̃ n) worst-case

I/O operations, where b̃ is the disk block size measured in integers.
Yet, the string B-tree is not a compressed index. Its static version
takes about 5–6 times the text size, plus text.

• The Compact Pat Tree (CPT) [6] represents a suffix tree in secondary
memory in compact form. It does not provide theoretical space or
time guarantees, but the index works well in practice, requiring 2–3
I/Os per query. Still, its size is 4–5 times the text size, plus text.

• The disk-based Suffix Array [2] is a suffix array on disk plus some
memory-resident structures that improve the cost of the search. The
suffix array is divided into blocks of h elements, and for each block
the first m symbols of its first suffix are stored. At best1, it takes

1Here we are assuming m is known at indexing time, which is rather optimistic. Times
would be worse otherwise, and this is the meaning of “at best”. Still, we refer to worst
cases.



4+m/h times the text size, plus text, and needs 2(1+ logh) I/Os for
counting and 1 + ⌈(occ − 1)/b̃⌉ extra I/Os for locating2. This is not
yet a compressed index.

• The disk-based Compressed Suffix Array (CSA) [26] adapts a main
memory compressed self-index [33] to secondary memory. It requires
n(H0 + O(log log σ)) bits of space (Hk is the k-th order empirical
entropy of T [28]). It takes O(m logb̃ n) I/O time for count. Locating
requires O(log n) accesses per occurrence, which is too expensive.

• The disk-based LZ-Index [1] adapts another main-memory self-index
[30]. It uses up to 8nHk(T ) + o(n log σ) bits, for any k = o(logσ n).
It does not provide theoretical bounds on time complexity, but it is
very competitive in practice.

• The disk-based Geometric Burrows-Wheeler Transform (GBWT) [5]
uses O(n log σ) bits of space, with constant > 2. Locating takes
O(m/b̃ + logσ n logb̃ n + occ logb̃ n) I/Os. There is no practical im-
plementation as far as we know.

• The LOF-SA index [35] is a suffix array enriched with longest com-
mon prefix (LCP) information, the characters that distinguish each
pair of consecutive suffixes, and a truncated suffix tree in RAM that
distinguishes suffixes in consecutive disk blocks. The whole structure
requires more than 13n bytes, text included. It permits counting with
at most 2 + ⌈(m − 1)/b̃⌉ accesses to disk. Locating takes O(occ/b)
I/Os, with constant at least 2.

In this paper we present a practical self-index for secondary mem-
ory, which is built from three components: for count, we develop a novel
secondary-memory version of backward searching; for locate we adapt a
recent technique to locally compress suffix arrays [16]; and for extract we
present a technique to compress sequences to k-th order entropy while re-
taining random access. Depending on the available main memory, our data
structure requires 2(m − 1) to 4(m − 1) accesses to disk for count in the
worst case. It locates the occurrences in 1 + ⌈(occ − 1)/b̃⌉ I/Os in the
worst case, and on average in 1 + (cr · occ − 1)/b̃ I/Os, 0 < cr ≤ 1 being
the suffix array compression ratio achieved: the compressed size divided
by the original suffix array size. Similarly, the time to extract Tl,r is at
most 1 + ⌈(r − l)/b⌉ I/Os in the worst case (where b is the number of text
symbols on a disk block). On average, this is 1 + (cs · (r − l + 1) − 1)/b,
0 < cs ≤ 1 being the text compression ratio achieved: the compressed size
divided by the original text size. With sufficient main memory our index

2In this paper log x stands for ⌈max(0, log2 x)⌉, and thus 0 log 0 = 0.



takes O(Hk log(1/Hk)n log n) bits of space (see restrictions in the next sec-
tion), which in practice can be up to 4 times smaller than classical suffix
arrays. Thus, our index is the first in being compressed and at the same
time taking advantage of compression in secondary memory, as its locate
and extract times are better when the text is compressible. Counting time
does not improve with compression but it is usually better than, for ex-
ample, disk-based suffix arrays and CSAs. We show experimentally that
our index is very competitive against the alternatives, offering a relevant
space/time tradeoff when the text is compressible.

Our technique to solve extract is of independent interest. We start with
a data structure that offers constant-time random access to a text that is
compressed up to its k-th order entropy, and then adapt it for secondary
storage. Such a main-memory data structure already existed [34], however,
it is based on Ziv-Lempel encoding and it is not obvious how to adapt it
to secondary memory. We introduce an alternative data structure which
achieves the same space and time bounds, is much simpler, and is easy to
adapt to secondary memory. We build on semi-static k-th order modeling
plus statistical encoding, just as a normal semi-static statistical compressor
would process S. This technique is also used within the structure that solves
count.

We also introduce a secondary-memory data structure for compressed
bitmaps supporting rank. It takes basically the same space and CPU time
of an existing data structure for main memory [20], yet just one I/O access.

2 Background and Notation

We assume that the symbols of our strings (or sequences) are drawn from
an alphabet A of size σ. Although the distinction is somewhat arbitrary, we
will in general write strings in the form S = S1,n = s1s2 . . . sn, substrings
Si,j = sisi+1 . . . sj , and symbols Si = si, whereas for arrays of other types
we will use the form A = A[1, n], subarrays A[i, j], and elements A[i]. In
both cases we use |S| = |A| = n.

We will have different ways to express the size of a disk block: b̄ will be
the number of bits, b = b̄/ logσ the number of symbols, and b̃ = b̄/ log n
the number of integers in a block.



The k-th order empirical entropy [28] is defined using that of zero-
order. Let S1,n be a string over alphabet A, then

H0(S) = −
∑

a∈A

na
S

n
log2(

na
S

n
) (1)

with na
S the number of occurrences of symbol a in sequence S. This def-

inition extends to k > 0 as follows. Let Ak be the set of all sequences of
length k over A. For any string w ∈ Ak, called a context of size k, let wS

be the string consisting of the concatenation of characters following w in
S. Then, the k-th order empirical entropy of S is

Hk(S) =
1

n

∑

w∈Ak

|wS |H0 (wS) . (2)

The k-th order empirical entropy captures the dependence of symbols
upon their context. For k ≥ 0, nHk(S) provides a lower bound to the
output of any compressor that considers a context of size k to encode every
symbol of S. Note that the uncompressed representation of S takes n logσ
bits, and that 0 ≤ Hk(S) ≤ Hk−1(S) ≤ . . . ≤ H1(S) ≤ H0(S) ≤ log σ.

Note that a semi-static k-th order modeler that yields the probabili-
ties p1, p2, . . . , pn for the symbols s1, . . . , sn, will actually determine pi ≈
P (si|si−k . . . si−1) using the formula pi =

n
si
wS

|wS | , where w = si−k . . . si−1.

It is not hard to see, by grouping all the terms with the same w in the
summation [28, 18], that

−
n

∑

i=k+1

log pi = nHk(S). (3)

Operations rank and select We make heavy use of operations rankc(S, i)
and selectc(S, i) on sequences, where rankc(S, i) returns the number of
times c appears in prefix S1,i and selectc(S, i) returns the position of the
i-th appearance of c within S. A particularly interesting case arises when
S is a bitmap (i.e., a sequence over alphabet {0, 1}).

The suffix array SA[1, n] of a text T [27] contains all the starting posi-
tions of the suffixes of T , such that TSA[1],n < TSA[2],n < . . . < TSA[n],n,
that is, SA gives the lexicographic order of all suffixes of T . All the occur-
rences of a pattern P in T are pointed from an interval of SA.



Algorithm count(T, P1,m)
i← m, c← pm, First← C[c] + 1, Last← C[c + 1];
while (First ≤ Last) and (i ≥ 2) do

i← i− 1; c← pi;
First← C[c] + Occ(c, First− 1) + 1;
Last← C[c] + Occ(c, Last);

if (Last < First) then return 0 else return Last− First + 1;

Figure 1: Backward search algorithm to find and count the suffixes in SA
prefixed by P (or the occurrences of P in T ).

The Burrows-Wheeler transform (BWT) is a reversible permutation
T bwt of T [4] which puts together characters sharing a similar context, so
that k-th order compression can be easily achieved. There is a close relation
between T bwt and SA: T bwt

i = TSA[i]−1.
3 This is the key reason why one

can search using T bwt instead of SA.

The inverse transformation is carried out via the so-called “LF map-
ping”, defined as follows:

• For c ∈ A, C[c] is the total number of occurrences of symbols in T
(or T bwt) which are alphabetically smaller than c.

• For c ∈ A, Occ(c, q) = rankc(T
bwt, q) is the number of occurrences of

character c in the prefix T bwt
1,q .

• LF (i) = C[T bwt
i ] + Occ(T bwt

i , i), the “LF mapping”.

Backward searching is a technique to find the area of SA containing the
occurrences of a pattern P1,m by traversing P backwards and making use of
the BWT. It was first proposed for the FM-index [10], a self-index composed
of a compressed representation of T bwt and auxiliary structures to compute
Occ(c, q). Fig. 1 gives the pseudocode to get the area SA[First, Last] with
the occurrences of P . It requires at most 2(m− 1) calls to Occ. Depending
on the variant, each call to Occ can take constant time for small alphabets
[10] or O(log σ) time in general [11], using wavelet trees (see below).

Bitmaps with rank/select. Both rank and select on a bitmap B1,n can
be computed in constant time using o(n) bits of space in addition to B
[29, 13], or nH0(B) + o(n) bits overall using a numbering scheme for bit
blocks [32]. In both cases the o(n) term is Θ(n log log n/ logn).

3We write T bwt
i for (T bwt)i and T bwt

i,j for (T bwt)i,j .



Let s be the number of one-bits in B. Then nH0(B) = s log n
s + O(s),

and thus the o(n) terms above are too large if s is much smaller than n/2.
As in this paper we will have s << n, we are interested in techniques
with less overhead over the entropy, even if not of constant-time (which
will not be an issue for us). One such rank dictionary [20] encodes the
gaps between successive 1’s in B using δ-encoding and adds some data
to support a binary-search-based rank. It requires s log n

s + O(s log log n
s )

bits of space and supports rank in O(log s) time. This structure is called
BSGAP (binary searchable gap encoding) [19, Section 4.3].

The wavelet tree [18] wt(S) over a sequence S1,n is a perfect binary tree of
height log σ, built on the alphabet symbols, such that the root represents
the whole alphabet and each leaf represents a distinct alphabet symbol.
If a node v represents alphabet symbols in the range Av = [i, j], then
its left child vl represents Avl = [i, i+j

2 ] and its right child vr represents

Avr = [ i+j
2 + 1, j]. We associate to each node v the subsequence Sv of S

formed by the characters in Av. However, sequence Sv is not really stored
at the node. Instead, we store a bit sequence Bv telling whether characters
in Sv go left or right, that is, Bv

i = 1 if Sv
i ∈ Avr . The wavelet tree has all

its levels full, except for the last one that is filled left to right.

The wavelet tree permits us to calculate rankc(S, i) using binary ranks
over the bit sequences Bv. Starting from the root v of the wavelet tree, if c
belongs to the right side, we set i← rank1(B

v, i) and move to the right child
of v. Similarly, if c belongs to the left child we update i← rank0(B

v, i) and
go to the left child. We repeat this until reaching the leaf that represents c,
where the current i value is the answer to rankc(T

bwt, i). We can obtain Si

from the wavelet tree with a very similar process, except that we go down
left or right depending on whether Bv[i] = 0 or 1, until we reach the leaf
corresponding to symbol c = Si. By traversing the tree upwards we can
also solve selectc(S, i). All the operations take O(log σ) time.

We will build wavelet trees over sequences S = T bwt. A plain wavelet
tree of S requires n logσ bits of space. If we compress the wavelet tree using
the numbering scheme [32] we obtain nHk(T ) + o(n log σ) bits of space for
any k ≤ α logσ n and any constant 0 < α < 1 [25].

The locally compressed suffix array (LCSA) [16] is built on well-
known regularity properties that show up in suffix arrays when the text
they index is compressible [31]. The LCSA uses differential encoding on SA,
which converts those regularities into true repetitions. Those repetitions are
then factored out using Re-Pair [23], a compression technique that builds a
dictionary of phrases and permits fast local decompression using only the



dictionary (whose size one can control at will, at the expense of losing some
compression). Also, the Re-Pair dictionary is further compressed with a
novel technique. The LCSA can extract any portion of the suffix array very
fast by adding a small set of sampled absolute values. It is proved [16] that
the size of the LCSA is O(Hk log(1/Hk)n log n) bits for any k ≤ α logσ n,
any constant 0 < α < 1, and Hk = o(1).

The LCSA consists of three substructures: the sequence of phrases SP ,
the compressed dictionary CD needed to decompress the phrases, and the
absolute sample values to restore the suffix array values. One disadvantage
of the original structure is the space and time needed to construct it, but
in the extended paper [17] they show how to build it on disk.

Statistical encoding. We are interested in the use of semi-static statistical
encoders [3] to represent the text on disk. Thus, we are given a k-th order
modeler as described earlier, which will yield the probabilities p1, p2, . . . , pn

for each symbol in S, and we will encode the successive symbols of S trying
to use − log pi bits for si. If we reach exactly − log pi bits, the overall
number of bits produced will be nHk(S)+O(k log n), according to Eq. (3).

Different encoders give different approximations to the ideal − log pi

bits. The simplest encoder is probably Huffman’s [21], while the one gen-
erating the least number of bits is Arithmetic coding [3].

Given a statistical encoder E and a semi-static modeler over sequence
S1,n yielding probabilities p1, p2, . . . , pn, we call E(S) the bitwise output
of E for those probabilities, and |E(S)| its bit length. We call f(E, S) =
|E(S)| − (−

∑

1≤i≤n log pi) the extra space in bits needed to encode S us-
ing E, on top of the entropy of the model. We also define f(E, n) =
max|S|=n f(E, S). For example, the wasted space of Huffman encoding is
bounded by 1 bit per symbol, and thus f(Huffman, n) < n (tighter bounds
exist [3] but are not useful for this paper). On the other hand, Arith-
metic encoding approaches − log pi as closely as desired, requiring only at
most two extra bits to terminate the whole sequence (see next). Thus
f(Arithmetic, n) ≤ 2.

Arithmetic coding essentially expresses S using a number in [0, 1) which
lies within a range of size P = p1 × p2 × · · · × pn. We need − logP =
−∑

log pi bits to distinguish a number within that range (plus two extra
bits for technical reasons [3, Sections 5.2.6 and 5.4.1]). Thus each symbol
si, which appears within its context npi times, requires − log pi bits to be
encoded. This totalizes −∑

log pi +2 bits. Again, we can relate the model
entropy of p1, p2, . . . , pn with the empirical entropy of S using Eq. (3). This



way, Arithmetic coding encodes S using at most nHk(S) + O(k log n) + 2
bits for any k.

There are usually some limitations to the near-optimality achieved by
Arithmetic coding in practice [3]. One is that many bits are required to
manipulate P , which can be cumbersome. This is mainly alleviated by
emitting the most significant bits of the final number as soon as they are
known, and thus scaling the remainder of the number again to the range
[0, 1) (that is, dropping the emitted bits from our number). Still, some
symbols with very low probability may require many bits. To simplify
matters, fixed precision arithmetic is used to approximate the real values,
and this introduces a very small (yet linear) inefficiency in the coding. In
this paper, we never run into this problem because, as seen later, we do not
encode any sequence that requires more than log n

2 bits. As soon as those
bits are not precise enough to represent the encoding, we switch to plain
symbol-wise encoding.

Another limitation applies to adaptive encoding, where some kind of
aging technique is used to let the model forget symbols that have appeared
many positions away in the sequence. In our case this does not apply, as we
use semi-static encoding. Finally, we notice that we run into no efficiency
problems at all at decoding time, as we will use the log n

2 -bit compressed
stream as an index to a precomputed table that will directly yield the
uncompressed symbols.

3 An Entropy-compressed Rank Dictionary

on Secondary Memory

As we will require several bitmaps in our structure with few bits set, we de-
scribe an entropy-compressed rank dictionary, suitable for secondary mem-
ory, to represent a binary sequence B1,n. In case it fits in main memory,
we use BSGAP (Section 2). Otherwise we will store in secondary memory
GAP , the δ-encoded form of B: We encode the gaps between consecutive
1’s in B as variable-length integers, so that 0x−11 is represented as the num-
ber x using log x+2 log log x bits [3]. Let s be the number of one-bits in B.
Then GAP uses at most s log n

s + 2s log log n
s + O(log n) bits of space. We

split GAP into blocks of at most b̄ bits: if a δ-encoding spans two blocks we
move it to the next block. Each block is stored in secondary memory and,
at the beginning of block j, we also store the number of 1’s accumulated
up to block j − 1; we call this value OBj . To access GAP , we use in main
memory an array Ba, where Ba[j] is the number of bits of B represented
in blocks 1 to j − 1. Ba uses (s log n

s + 2s log log n
s + O(log n)) log n

b̄
bits of



Structure Space (bits)
CPU time
for rank

BSGAP s log n

s
+ 2s log log n

s
+ O(log n) O(log s)

GAP+ s log n

s
+ 2s log log n

s
+ O(log n) + O(log s + b̄

Ba (s log n

s
+ 2s log log n

s
+ O(log n)) log n

b̄
+ log log n

s
)

Structure
Real space if s = n/b

n = 1 Tb 1 Gb 1 Gb 1 Mb
b = 32 KB 8 KB 4 KB 4 KB

BSGAP 100 MB 354 KB 667 KB < 1KB

GAP+ 93 MB 326 KB 613 KB < 1KB
Ba 14 KB < 1KB < 1KB < 1KB

Table 1: Different sizes and times obtained to answer rank, for some rele-
vant choices of n and b. GAP is stored in secondary memory and is accessed
using Ba. Ba and BSGAP reside in main memory. Tb, Gb, etc. mean
terabits, gigabits, etc. TB, GB, etc. mean terabytes, gigabytes, etc.

space. We call DGAP = Ba + GAP the whole structure.

To answer rank1(B, i) with this structure, we carry out the following
steps: (1) We binary search Ba to find j such that Ba[j] ≤ i < Ba[j + 1].
(2) Our initial position is p ← Ba[j] and our initial rank is r ← OBj . (3)
We read block j from disk. (4) We decompress the δ-encodings x in block
j, adding x to p, and adding 1 to r if p ≤ i. (5) We stop when p ≥ i;
rank1(B, i) will be r.

Overall this costs O(log s
b̄

+ log log n
s + b̄) = O(log s + log log n + b̄)

CPU time and just one disk access. When we use these structures in the
paper, s will be Θ(n/b). Table 3 shows some real sizes and times obtained
for the structures, when s = n/b. As it can be seen, we require very little
main memory for DGAP , and for moderate-size bitmaps even the BSGAP
option is good.

Theorem 1. A bit sequence of length n with s bits set can be stored using
c = s log n

s + 2s log log n
s + O(log n) bits in secondary memory, plus c · log n

b̄

bits in main memory (being b̄ the disk block size in bits), so that rank1 can
be solved using one access to disk plus O(log s + log log n + b̄) CPU time.



4 A Simple Entropy-Bounded Sequence Rep-

resentation

Given a sequence S1,n over an alphabet A of size σ, we encode S into a
compressed data structure S′ within entropy bounds. To perform all the
original operations over S under the RAM model, it is enough to allow
extracting any aligned block of β = ⌊ 12 logσ n⌋ consecutive symbols of S,
using S′, in constant time. We then show how to adapt the structure to
secondary memory.

4.1 Data structures for substring decoding

We describe our data structure to represent S in essentially nHk(S) bits,
and to permit the access of any aligned substring of size β = ⌊ 12 logσ n⌋
in constant time. We assume k < β. This structure is built using any
statistical encoder E as described in Section 2.

Structure. We divide S into blocks of length β = ⌊ 12 logσ n⌋ symbols.
Each block will be represented using at most β′ = ⌊ 12 log n⌋ bits (and hope-
fully less). We define the following sequences indexed by block number
i = 1, . . . , ⌈n/β⌉:

• Si = Sβ(i−1)+1,βi is the sequence of symbols forming the i-th block of
S.

• Ci = Sβ(i−1)−k+1,β(i−1) is the sequence of symbols forming the k-th
order context of the i-th block (a dummy value is used for C1).

• Ei = E(Si) is the encoded sequence for the i-th block of S, initializing
the k-th order modeler with context Ci.

• ℓi = |Ei| is the size in bits of Ei.

• Ẽi =

{

Si if ℓi > β′

Ei otherwise
, is the shortest sequence among Ei and Si.

• ℓ̃i = |Ẽi| = min(β′, ℓi) is the size in bits of Ẽi.

The idea behind Ẽi is to ensure that no encoded block is longer than
β′ bits (which could happen if a block contains many infrequent symbols).
These special blocks are encoded explicitly.

Our compressed representation of S stores the following information:



• W [1, ⌈n/β⌉]: A bit array such that

W [i] =

{

0 if ℓi > β′

1 otherwise
,

with the additional o(n/β) bits to answer rank queries over W in
constant time [29].

• C[1, rank1(W, ⌈n/β⌉)]: C[rank1(W, i)] = Ci, that is, the k-th order
context for the i-th block of S iff ℓi ≤ β′, with 1 ≤ i ≤ ⌈n/β⌉.

• U = Ẽ1Ẽ2 . . . Ẽ⌈n/β⌉: A bit sequence obtained by concatenating all
the variable-length Ẽi s.

• DM : Ak × 2β
′

−→ 2β: A table defined as DM [α, β] = γ, where α is
any context of size k, β represents any encoded block of at most β′

bits, and γ represents the decoded form of β, truncated to the first β
symbols (as less than the β′ bits will be usually necessary to obtain
the β symbols of the block).

• Information to answer where each Ẽi starts within U . We group
together every c = log n consecutive blocks to form superblocks of
size Θ(log2 n) and store two tables:

– Rg[1, ⌈n/(βc)⌉] contains the absolute position of each superblock.

– Rl[1, ⌈n/β⌉] contains the relative position of each block with re-
spect to the beginning of its superblock.

4.2 Substring decoding algorithm

We want to retrieve Sj = S(j−1)b+1,jb in constant time. To achieve this, we
take the following steps:

1. We calculate h = ⌈j/c⌉, h′ = ⌈(j+1)/c⌉ and u = U [Rg[h]+Rl[j], Rg[h
′]+

Rl[j + 1]− 1], then

• if W [j] = 0 then we have Sj = u.

• if W [j] = 1 then we have Sj = DM [C[rank1(W, j)], u′], where
u′ is u padded with β′ − |u| dummy bits.

We note that |u| ≤ β′ and thus it can be manipulated in constant
time.

Lemma 2. Our data structure can extract any aligned substring of b sym-
bols from sequence S in O(1) time.



4.3 Space requirements

Let us now consider the storage size of our structures.

• We use the constant-time solution to answer rank queries [29] over
W , totalizing 2n

logσ n (1 + o(1)) bits.

• Table C requires at most 2n
logσ nk log σ bits.

• Sequence U takes |U | =
∑⌈n/β⌉

i=1 |Ẽi| ≤ ∑⌈n/β⌉
i=1 |Ei| = nHk(S) +

O(k log n) + ⌈n/β⌉f(E, β) bits, which depends on the statistical en-
coder E used. For example, in the case of Huffman coding, we have
f(Huffman, β) < β, and thus we achieve nHk(S)+O(k log n)+n bits.
For the case of Arithmetic coding, we have f(Arithmetic, β) ≤ 2, and
thus we have nHk(S) + O(k log n) + 4n

logσ n bits, as described in Sec-
tion 2.

• The size of DM is σk2β′

β log σ = σk n1/2 log n
2 bits.

• Finally, let us consider tables Rg and Rl. Table Rg has ⌈n/(βc)⌉
entries of size log n, totalizing 2n

log
σ

n bits. Table Rl has ⌈n/β⌉ entries

of size log(β′c), totalizing 4n log log n
logσ n bits.

By considering that any substring of Θ(logσ n) symbols can be extracted
in constant time by applying O(1) times the procedure of Section 4.2, we
have the final theorem.

Theorem 3. Let S1,n be a sequence over an alphabet of size σ. Our data
structure uses nHk(S) + O( n

logσ n (k log σ + log log n)) bits of space for any

k ≤ (1 − ǫ) logσ n and any constant 0 < ǫ < 1, and it supports access to
any substring of S of size Θ(logσ n) symbols in O(1) time.

Note that, in our scheme, the size of DM can be neglected only if
k ≤ (1

2 − ǫ) logσ n, but this can be pushed to (1− ǫ) logσ n, for any constant

0 < ǫ < 1, by choosing β = ǫ
2 logσ n. Thus the size of DM will be σkn

ǫ

2
log n

s ,
which is negligible for, say, k ≤ (1 − ǫ

2 − ǫ
2 ) logσ n. The price is that now

we must decode O(1/ǫ) blocks to extract O(logσ n) bits from S, but this is
still constant.

Corollary 3.1. The previous structure takes space nHk(S) + o(n log σ) if
k = o(logσ n).



These results match exactly those of [34]4. Our method is simpler, but
their result holds simultaneously for all k, while in our structure k must be
chosen beforehand.

Note that we are storing some redundant information that can be elim-
inated. The last characters of block Si are stored both within Ẽi and as
Ci+1. Instead, we can choose to explicitly store the first k characters of all
blocks Si, and encode only the remaining β−k symbols, Si[k+1, β], either
in explicit or compressed form. This improves the space in practice, but in
theory it cannot be proved to be better than the scheme we have given.

Some extensions of this result to handle dynamism, and to apply it to
encode wavelet trees, are studied in [14].

4.4 A secondary memory version

We now modify our data structure to operate on secondary memory.

Structures maintained in main memory. We store in main mem-
ory the data generated by the modeler, that is, table DM , which requires
σkn1/2 log n

2 bits. This restricts the maximum possible k to be used.

Structures in secondary memory. To store the structure in secondary
memory we split the sequence U = Ẽ1Ẽ2 . . . Ẽ⌈n/β⌉ and W into disk blocks
of b̄ bits (thus we lose at most n

b β = O(n log n
b ) bits due to alignments).

Also each block will contain the context Cj (for some j) of order k of the
first entry of U , Ẽj , stored in the disk block (k log σ bits).

To know where a symbol of S is stored we need a compressed rank
dictionary ER (Section 3), in which we mark the beginning of each disk
block. This replaces tables Rg and Rl. ER has n

b bits set out of ⌈n/β⌉,
and it can be chosen to reside in main or in secondary memory, the latter
choice requiring one more I/O access.

The algorithm to extract Sl,r is: (1) Find the block j = rank1(ER, ⌈l/β⌉)
where Sl is stored. (2) Read block j and decompress it using DM and the
context of the first entry. (3) Continue reading and decompressing them
until reaching Sr.

4The term k log σ appears as k in [34], but this is a mistake (K. Sadakane and R.
Grossi, personal communication). The reason is that they take from [22] an extra space
of the form Θ(kt + t) as stated in Lemma 2.3, whereas the proof in Theorem A.4 gives
a term of the form kt log σ + Θ(t).



Using this scheme we have at most 1+⌈(r− l)/b⌉ I/O operations, which
on average is 1 + ((r− l + 1)Hk(S)− 1)/b̄. We add one I/O operation if we
use the secondary memory version of the rank dictionary. The total CPU
time is O( r−l

logσ n + b̄ + log n). Term b̄ can be removed by directly accessing

inside the block. This requires maintaining in each disk block the Rl of each
Ẽi stored inside the block, which adds other o(n log σ) bits of space. The
next theorem considers only the basic variant, others are easy to derive.

Theorem 4. Let S1,n be a sequence over an alphabet of size σ. Our
secondary-memory data structure uses nHk(S) + O( n

logσ n + n
b (k log σ +

log n)) bits of space for any k ≤ (1− ǫ) logσ n and any constant 0 < ǫ < 1,
and O(n1−ǫ log n + n

b log b
β ) bits in main memory. It supports access to

any substring Sl,r in 1 + ⌈(r − l)/b⌉ I/O accesses, which on average is
1 + ((r − l + 1)Hk(S)− 1)/b̄. The total CPU time is O( r−l

logσ n + b̄ + log n).

5 A Compressed Secondary Memory Struc-

ture

We introduce a structure on secondary memory which is able to answer
count, locate and extract queries. It is composed of three substructures,
each one responsible for one type of query, and allows diverse trade-offs
depending on how much main memory space they occupy.

5.1 Counting

We run the algorithm of Fig. 1 to answer a counting query. Table C uses
σ log n bits and easily fits in main memory, thus the problem is how to
calculate Occ over T bwt.

To calculate Occ(c, i), we need to know the number of occurrences of
symbol c before each block on disk. To do so, we store a two-level structure:
the first level stores for every t-th block the number of occurrences of every
c from the beginning, and the second level stores the number of occurrences
of every c from the last t-th block. The first level is maintained in main
memory and the second level on disk, together with the representation of
T bwt (i.e., the entry of each block is stored within the block)5 Let K be the
total number of blocks. We define:

5Thus, in what follows, b will be the remaining space in the disk block. This is
asymptotically irrelevant as long as b ≥ c · σ log(tb) for some c > 1. Otherwise the
accesses to disk must be doubled.



• Ec(j), for 1 ≤ j ≤ ⌈K/t⌉, is the number of occurrences of symbol c
in blocks 1 to (j − 1)· t, with Ec(1) = 0.

• E′
c(j), for 1 ≤ j ≤ K, is the number of occurrences of symbol c in

blocks from ⌈j/t⌉· t− t + 1 to j.

Now we can compute Occ(c, i) = rankc(T
bwt, i) = Ec(⌈j/t⌉) + E′

c(j) +
rankc(Bj , offset), where j is the block where i belongs and offset is the
position of i within block j. Now we explain four ways to represent T bwt,
each with its pros and cons. This will give us four different ways to calculate
j, offset, and rankc(Bj , offset).

Version 1. The simplest choice is to store T bwt directly without any
compression. As a disk block can store b symbols, we will have K = ⌈n/b⌉
blocks. rankc(Bj , offset) is calculated by traversing the block and counting
the occurrences of c up to offset. As the layout of blocks is regular, we
know that that T bwt

i belongs to block j = ⌈i/b⌉, and offset = i− (j − 1) · b.

Version 2. We represent the T bwt chunks with a wavelet tree (Sec-
tion 2) to speed up the scanning of the block. We divide the first level
of WT = wt(T bwt) into blocks of b bits. Then, for each block, we gather its
propagation over WT by concatenating the subsequences in breadth-first
order, thus forming a sequence of b log σ bits (just like the plain storage of
the chunk of T bwt). In this case the division of T bwt is uniform and uncom-
pressed, thus we can still easily determine j and offset. Fig. 2 illustrates.
Note that this propagation generates 2ℓ−1 intervals at level ℓ of WT . Some
definitions follow:

• Bℓ
i : the i-th interval of level ℓ, with 1 ≤ ℓ ≤ log σ and 1 ≤ i ≤ 2ℓ−1.

• Lℓ
i : the length of interval Bℓ

i .

• Oℓ
i/Z

ℓ
i : the number of 1’s/0’s in interval Bℓ

i .

• Dℓ = Bℓ
1 . . . Bℓ

2ℓ−1 with 1 ≤ ℓ ≤ log σ: all concatenated intervals from
level ℓ.

• B = D1D2 . . . Dlog σ: concatenation of all the Dℓ, with 1 ≤ ℓ ≤ log σ.

Some relationships hold: (1) Lℓ
i = Oℓ

i + Zℓ
i . (2) Zℓ

i = rank0(B
ℓ
i , L

ℓ
i).

(3) Lℓ
i = Zℓ−1

(i+1)/2 if i is odd (Bℓ
i is a left child); Lℓ

i = Oℓ−1
i/2 otherwise.

(4) |Dℓ| = L1
1 = b for ℓ < ⌊log σ⌋, the last level can be different if σ is

not a power of 2. With those properties, Lℓ
i , Oℓ

i and Zℓ
i are determined



Figure 2: Block propagation over the wavelet tree. Making ranks over the
first level B of WT (rank0(B, 12) = 6, rank0(B, 24) = 10 and rank1(·, i) =
i− rank0(·, i)), we determine the propagation over the second level of WT ,
and so on.
Algorithm Rank(B, c, j)
node← 1; ans← j; des← 0; B1

1 = B[1, b];
for ℓ← 1 to log σ do

if c belongs to the left subtree of node then

ans← rank0(B
ℓ
node, ans);

len← Zℓ
node;

node← 2·node− 1;
else ans← rank1(B

ℓ
node, ans);

len← Oℓ
node; des← Zℓ

node;
node← 2·node;

Bℓ
node = B[ℓ · b + des + 1, ℓ · b + des + len];

return ans;

Figure 3: Algorithm to obtain rankc(B, j), for version 2.

recursively from B and b. We only store B plus the structures to answer
rank on it in constant time. Note that any rank over Bℓ

i is answered via
two ranks over B.

Fig. 3 shows how we calculate rank in O(log σ) constant-time steps.
Some precisions are in order

1. Block Dℓ begins at bit (ℓ − 1)· b + 1 of B, and |B| = b logσ.

2. To know where Bℓ
i begins, we only need to add to the beginning of

Dℓ the length of Bℓ
1, . . . , B

ℓ
i−1. Each Bℓ

k, with 1 ≤ k ≤ i− 1, belongs
to a left branch that we do not follow to reach Bℓ

i from the root. So,
when we descend through the wavelet tree to Bℓ

i , every time we take



a right branch we accumulate the number of bits of the left branch
(zeros of the parent).

3. node is the number of the current interval at the current ℓ.

4. We do not calculate Bℓ
node, we just maintain its position within B.

The extra space on top of the n log σ bits is still O(n log σ log log n
log n ) =

o(n log σ), even if encoding is local to the block. This is achieved by main-
taining the block sizes of 1

2 log n bits in the rank structures (Section 2). The
consequence is a small table of O(

√
n polylog(n)) bits in main memory.

Version 3. We aim at compressing T bwt so as to achieve k-th order
compression of T . We compress the blocks B from version 2 using the
numbering scheme [32], yet without any structure for rank. In this case
the division of T bwt is not uniform; rather we add symbols from T bwt to the
disk block as long as its compressed WT fits in the block. By doing this,
we compress T bwt to at most nHk + σk+1 log n + o(n log σ) bits for any k
[25]. To calculate rankc(B, offset), we apply the same algorithm of Version
2, but now the bitmap is not stored explicity. Constant time ranks on the
bitmaps are supported by the compressed representation [32].

As the block size is variable, determining j is not as simple as before.
Compression ensures that there are at most (n + o(n))/b blocks. We use a
binary sequence EB1,n to mark where each block starts. Thus the block of
T bwt

i is j = rank1(EB, i). We use an entropy-compressed rank dictionary
(Section 2) for EB. If we need to use the DGAP variant, we add up one
more I/O per access to T bwt (Section 3) .

Version 4. We aim at compressing T bwt directly without wavelet trees.
We represent T bwt with our entropy-bounded data structure on secondary
memory (Section 4.4). Again, the division of T bwt is not uniform, rather we
add symbols from T bwt to the disk block as long as its compressed T bwt fits
in the block. By doing this, we compress T bwt to nHk(T bwt) + o(n log σ)
bits for k = o(logσ n). To calculate rankc(B, offset), we decompress block
B by applying the decoding algorithm presented in Section 4.4.

Space usage of E and E′. In versions 1 and 2, if we sum up all the en-
tries, E uses ⌈K/t⌉·σ log n bits and E′ uses Kσ log t·n

K bits. In version 3, the
numbering scheme [32] has a compression limit n/K ≤ b · logn/(2 log log n).
Thus, for version 3, E′ uses at most K·σ log(t· b log n

2 log log n ) bits. In version



Version Main Memory Secondary Memory

1 n

bt
·σ log n n log σ + n

b
·σ log(t· b)

2 n

bt
·σ log n + o(

√
n log2 n) n log σ(1 + o(1)) + n

b
·σ log(t· b)

3a
n

bt
·σ log n nHk(T ) + o(n log σ) + σk+1 log n

+o(
√

n log2 n) + bsgap +n

b
·σ log(t · b log n)

3b
n

bt
·σ log n nHk(T ) + o(n log σ) + σk+1 log n

+o(
√

n log2 n) + gap log n

b
+gap + n

b
·σ log(t · b log n)

4a
n

bt
·σ log n nHk(T bwt) + o(n log σ) + σk+1 log n

σk√n log n

2
+ bsgap +n

b
·σ log(t · b log n)

4b
n

bt
·σ log n nHk(T bwt) + o(n log σ) + σk+1 log n

σk√n log n

2
+ gap log n

b
+gap + n

b
·σ log(t · b log n)

gap = n
b
(log b + 2 log log b) + O(log n) = O(n

b
log n)

bsgap = n

b
log b + O(n

b
log log b) = O(n

b
log n).

Table 2: Different sizes (in bits) obtained to answer count.

4, there is no upper bound to how many original symbols can fit in a
compressed block. To avoid an excessively large E′, we can impose an ar-
tificial limit: if more than b log n symbols are compressed into a single disk
block, we stop adding symbols there. This guarantees that log(t · b log n)
bits are sufficient for each entry of E′. The growth in the compressed
file we cause cannot be more than b̄ bits per b logn symbols, that is,
O( nb̄

b log n ) = o(n log σ) bits overall.

Costs per call to rankc. In Versions 1 and 2, we pay one I/O per call
to rankc. In Versions 3 and 4, we pay one or two I/Os per call to rankc.
In Versions 1 and 4, we spend O(b) CPU operations per call to rankc. In
Versions 2 and 3, this is reduced to O(log σ) per call to rankc.

Tables 2 and 3 show the different sizes and times, respectively, needed
for our four versions. We added the times to do rank on the entropy-
compressed bit arrays. Versions 3a and 4a use an in-memory rank dictio-
nary BSGAP , while 3b and 4b use the DGAP variant (Section 3). The
space complexity of version 3 depends on Hk(T ) but version 4 depends on
Hk(T bwt). There is no obvious connection between Hk(T ) and Hk(T bwt).
In Appendix A we prove that H1(T

bwt) ≤ 1 + Hk(T ) logσ + o(1) for any
k ≤ (1 − ǫ) logσ n and any constant 0 < ǫ < 1.



Version I/O CPU

1 2(m − 1) O(m· b)

2 2(m − 1) O(m log σ)

3a 2(m − 1) O(m(log σ + log n

b
))

3b 4(m − 1) O(m(b + log n

b
))

4a 2(m − 1) O(m(b + log n

b
))

4b 4(m − 1) O(m(b + log n

b
))

Table 3: Different times obtained to answer count.

5.2 Locating

Our locating structure will be a variant of the LCSA [16], see Section 2. The
array SP from LCSA will be split into disk blocks of b̃ integers. Also, we will
store in each block the absolute value of the suffix array at the beginning
of the block. To minimize the I/Os, the dictionary will be maintained
in main memory (in theory, it is sufficient to maintain O(log2 n) bits in
main memory for the dictionary in order to achieve the promised space
bounds for the LCSA [16]; in the next section we see how this translates
to practice). So we compress the differential suffix array until we reach
the desired dictionary size. Finally, we need a compressed bitmap LB
(Section 3) to mark the beginning of each disk block. LB is entropy-
compressed and can reside in main or secondary memory.

For locating every match of a pattern P1,m, we first use our count-
ing substructure to obtain the interval [First, Last] of the suffix array of
T (see Section 2). Then we find the block index First belongs to, j =
rank1(LB, First). Finally, we read the necessary blocks until we reach
Last, decompressing them using the dictionary of the LCSA.

We define occ = Last − First + 1 and occ′ = cr· occ, where 0 < cr ≤
1 is the compression ratio of SP . This process takes, without counting,
1+⌈(occ−1)/b̃⌉ I/O accesses, plus one if we store LB in secondary memory.
This I/O cost is optimal and on average improves, thanks to compression,
to 1 + (occ′ − 1)/b̃. We perform O(occ + b̃) CPU operations to decompress
the interval of SP .

5.3 Extracting

To extract arbitrary portions of the text we store T in compressed form
using the variant of our entropy-bounded succinct data structure for sec-
ondary memory, see Section 4.4.
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Figure 4: On the left, compression ratio achieved on XML (for different
lengths) as a function of the percentage allowed to the dictionary (CD).
On the right, on different texts. Both are percentages over the size of SA.

6 Experiments

We consider two text files for the experiments: the text wsj (Wall Street
Journal) from the trec collection from year 1987, of size 126 MB, and the
200 MB XML file provided in the Pizza&Chili Corpus6. We searched for
5,000 random patterns, of length from 5 to 50, generated from these files. As
in previous work [7, 1], we assume a disk page size of 32 KB. We first study
the compressibility we achieve as a function of the dictionary size, |CD|
(as CD must reside in RAM). Fig. 4 (left) shows that the compressibility
depends on the percentage |CD|/|SA| and not on the absolute size |CD|.
Fig. 4 (right) shows the relation between |CD|/|SA| versus |SP |/|SA| for
the texts used in the next experiments. In the following, we let our CD
use 2% of the suffix array size. For counting we use version 1 (Section 5.1)
with t = log n, and BSGAP for the LB locating structure (Section 5.2).
With this setting our index uses 16.13 MB of RAM for XML (σ = 97), and
10.58 MB for WSJ (σ = 91), for LB, CD, and Ec. It compresses the SA
of XML to 34.30% and that of WSJ to 80.28% of its original size.

We compared our results against String B-tree [9], Compact Pat Tree
(CPT) [6], disk-based Suffix Array (SA) [2] and disk-based LZ-Index [1].
We omit the disk-based CSA [26] and the disk-based GBWT [5] as they
are not implemented (even for simulations), but also because they can be
predicted to be strictly worse than ours in these experiments. We also
omit the LOF-SA index [35] because it largely exceeds our range of space
consumption of interest, and it would not be competitive for locating for
the same reason (fewer entries fit in a disk block). For counting it would
need usually less than 4 accesses to disk.

6http://pizzachili.dcc.uchile.cl



We add our results to those of [1, Section 4]. Albeit our RAM usage
is moderate, other data structures [9, 6, 1] can operate with a (small)
constant number of disk blocks in main memory. We now consider the
impact of giving these other structures the same amount of RAM we use,
using it in the most reasonable (obvious) way we can devise. For the String
B-tree, it was shown [8] that the arity of the tree is b/12.25 for the static
version. For our page size b = 8192 integers, one would need less than
21 MB of RAM to hold the first tree level, thus we will subtract one disk
access from the results given in [1]. For the CPT, we have that the pages
are formed mostly by pointers to children and are filled to about 50% [6].
Thus one would need near 100 MB to fit the first level in RAM. The effect
of fitting as much as possible in, say, 20 MB of RAM, is negligible and thus
we have not changed the results used in [1]. For the disk-based LZ-index,
in both texts one could store one level of LZTrie and RevTrie in about
12 MB of RAM. Yet, this time the top-down tree traversal is just a part
of the total number of accesses, as there are also many direct accesses to
the tries. As the potential benefit is hard to predict and implementations
taking advantage of main memory do not exist yet7, we do not change the
results of [1]. Finally, the disk-based SA needs to hold the extra nm/h bytes
in RAM, and thus we have extended the range studied in [1] to include the
point where nm/h is as small as our RAM usage.

Fig. 5 (left) shows counting experiments (GN-index being ours). Our
structure needs at most 2(m−1) disk accesses, but usually less as both ends
of the suffix array interval tend to fall within the same disk block as the
counting progresses. We show our index with and without the substructures
for locating. It can be seen that our structure is extremely competitive for
counting, being much smaller and/or faster than all the alternatives.

Fig. 5 (right) shows locating experiments. This time our structure grows
due to the inclusion of the LCSA. Note that, for m = 5, we are able to report
more occurrences than those the block could store in raw format. This time
the competitiveness of our structure depends a lot on the compressibility
of the text. In the highly-compressible XML our index occupies a very
relevant niche in the tradeoff curves, whereas in WSJ it is subsumed by
String B-trees.

We have used texts up to 200 MB, but our results show that the com-
pression ratio stays similar if we maintain a fixed percentage for the dic-
tionary size (Fig. 4 (left)), that the counting cost is at most 2(m− 1), and
that the locating cost depends on the number of occurrences of P and on
the compression ratio. Thus it is very easy to predict other scenarios.

7D. Arroyuelo. Personal communication.
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Figure 5: Search cost vs. space requirement for the different texts and
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7 Conclusions and Future Work

We have presented a practical self-index for secondary memory that, when
the text is compressible, takes much less space than the suffix array. It also
provides good I/O times for locating, which in particular improve when the
text is compressible. In this aspect our index is unique, as most compressed
indexes are slower than their classical counterparts on secondary memory.
We show experimentally that our index is very competitive against the
alternatives, offering very relevant space/time tradeoffs.

We have also presented a simple scheme based on k-th order modeling
plus statistical encoding to convert the sequence S into a compressed data
structure. This structure permits retrieving any string of S of Θ(logσ n)
symbols in constant time. This is an alternative to the first work achiev-
ing the same result [34], which is based on Ziv-Lempel compression and
more complex (yet, their result holds simultaneously for all k = o(logσ n),
whereas ours requires to fix k at compression time). We also show how
to adapt our structure for secondary memory, and apply it to compress
T bwt and the text itself. We show a relationship between the entropies of
H1(T

bwt) and Hk(T ). Other relationships are studied in [14], together with
some mechanisms to add text to the compressed sequence. Later work [12]
builds on our result and simplifies it.

We have also presented a compressed rank dictionary for secondary
memory, which takes basically the same space of the BSGAP structure [19,
Section 4.3] and performs just one access to disk. It needs a negligible
amount of RAM space.

As future work we plan to improve the counting time of our secondary
memory index. In this line, we are working on merging the CPT structure
[6] with our index. The former contains a small disk-based tree structure
plus a suffix array. By replacing that suffix array with our index, we will
achieve a significant space reduction over the CPT (actually the space will
be only slightly more than that of our current index). The counting times
will be as good as for the CPT, and the locating times as good as for our
index.

Acknowledgement. We thank Diego Arroyuelo for his help on the ex-
perimental part.
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[15] R. González and G. Navarro. A compressed text index on secondary
memory. In Proc. 18th International Workshop on Combinatorial Al-
gorithms (IWOCA), pages 80–91. College Publications, UK, 2007.
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[24] V. Mäkinen and G. Navarro. Succinct suffix arrays based on run-length
encoding. Nordic Journal on Computing, 12(1):40–66, 2005.
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A Appendix

We show that there is a relationship between the k-th order entropy of a
text T and the first-order entropy of T bwt. For this sake, we will compress
T bwt with a first-order compressor, whose output size is an upper bound to
nH1(T

bwt).

A run in T bwt is a maximal substring formed by a single letter. Let
rl(T bwt) be the number of runs in T bwt. It was proved [24] that rl(T bwt) ≤
nHk(T ) + σk for any k. Our first-order encoder exploits this property, as
follows:

• If i > 1 and si = si−1 then we output bit 0.

• Otherwise we output bit 1 followed by si in plain form (log σ bits).

Thus we encode each symbol of T bwt by considering only its preceding
symbol. The total number is n + rl(T bwt) log σ ≤ n(1 + Hk(T bwt) log σ +
σk log σ

n ) bits. The latter term is negligible for k ≤ (1 − ǫ) logσ n, for any
0 < ǫ < 1. On the other hand, the total space obtained by our first-order
encoder cannot be less than nH1(T

bwt). Thus we get our result:

Lemma 5. Let T1,n be a text over an alphabet of size σ. Then H1(T
bwt) ≤

1+Hk(T ) log σ+o(1) for any k ≤ (1−ǫ) logσ n and any constant 0 < ǫ < 1.

We can improve this upper bound if we use Arithmetic encoding to
encode the 0 and 1 bits that distinguish run heads. Their zero-order prob-

ability is at most p = Hk(T ) + σk

n , thus the 1 becomes −p log p − (1 −
p) log(1 − p) ≤ 1. Likewise, we can encode the run heads si up to their
zero-order entropy. These improvements, however, do not translate into
clean formulas.

This shows, for example, that we can get (at least) about the same
results of the Run-Length FM-Index [24] by compressing T bwt using a
entropy-bounded succinct data structure.


