
A Practical q-Gram Index for Text Retrieval Allowing Errors �Gonzalo Navarro Ricardo Baeza-YatesDepartment of Computer Science, University of ChileBlanco Encalada 2120 - Santiago - Chilefgnavarro,rbaezag@dcc.uchile.clAbstractWe propose an indexing technique for approximate text searching, which is practical andpowerful, and especially optimized for natural language text. Unlike other indices of this kind,it is able to retrieve any string that approximately matches the search pattern, not only words.Every text substring of a �xed length q is stored in the index, together with pointers to all thetext positions where it appears. The search pattern is partitioned into pieces which are searchedin the index, and all their occurrences in the text are veri�ed for a complete match. To reducespace requirements, pointers to blocks instead of exact positions can be used, which increasesquerying costs. We design an algorithm to optimize the pattern partition into pieces so that thetotal number of veri�cations is minimized. This is especially well suited for natural languagetexts, and allows to know in advance the expected cost of the search and the expected relevanceof the query to the user. We show experimentally the building time, space requirements andquerying time of our index, �nding that it is a practical alternative for text retrieval. Theretrieval times are reduced from 10% to 60% of the best on-line algorithm.Keywords: Approximate String Matching, Information Retrieval, Text Indexing.1 IntroductionThe problem of approximate string matching has a number of applications in computer science, suchas text retrieval, computational biology, signal processing, pattern recognition, etc. It is de�ned asfollows: given a long text of length n, and a (comparatively short) pattern of length m, retrieveall the segments (or \occurrences") of the text whose edit distance to the pattern is at most k.The edit distance between two strings is de�ned as the minimum number of character insertions,deletions and replacements needed to make them equal. It is common to report only the endpointsof occurrences. We call � = k=m the \error ratio".In the on-line version of the problem, it is possible to preprocess the pattern but not the text.The classical solution involves dynamic programming and is O(mn) time [25]. Recently, a numberof algorithms improved the classical one, for instance [29, 10, 27, 9, 33, 34, 4, 23]. Some of themare \sublinear" in the sense that they do not inspect all the characters of the text, but of coursethe on-line problem is
(n) if m is taken as constant. In [4, 3], it is shown that [9] is the fastestalgorithm for moderately low error ratios and pattern length. Our present work can be seen as ano�-line version of that algorithm.�This work has been supported in part by Fondef grant 96-1064 (Chile).1

Although our index is applicable to other scenarios, we are particularly interested in naturallanguage text retrieval, where the text is normally so large that the on-line algorithms are not prac-tical. Moreover, queries are more frequent than changes and therefore the text can be preprocessed,the query patterns are not too large (i.e. less than 25 letters), the alphabet size (�) is not verysmall (26 at least) and expected error ratios are � 1=3 (since otherwise the query returns too manymatches and is useless to the user).Classical indices for text databases allow fast search of exact patterns [32]. These indices,however, are unable to retrieve a word which has been misspelled. This is very common in textsobtained by optical character recognition (OCR), or when there is no quality assurance for thecontent of the database (e.g. when indexing the World Wide Web). Moreover, the query may alsobe misspelled or we may not remember the exact spelling of a foreign name. The edit distancede�ned before captures very well such errors [24].The �rst indexing schemes for approximate text retrieval have appeared only a few years ago.There are two types of indexing mechanisms: word-oriented and sequence-oriented. In the �rst one,the index is capable of retrieving every word whose edit distance to the pattern is at most k. Inthe second one, useful also when the text is not natural language, the index is capable of retrievingevery sequence, without notion of word separation.Indices of the �rst kind store the set of all di�erent words of the text (the vocabulary) and usean on-line algorithm on the vocabulary, thus obtaining the set of words to retrieve. From that pointon, the problem does not need to involve approximate matching anymore. Since the vocabularyis sublinear in size with respect to the text [14, 1], they achieve acceptable performance. Theseindices are not capable, however, of retrieving an occurrence that is not a complete word. Forinstance, if an OCR system has erroneously inserted a space in the middle of a word in the text,or removed the space between two words, these indices will not be able to retrieve those words ifjust one error is allowed. Examples of such indices are Glimpse [21], Igrep [1] and [5].In the indices of the second kind, the words are disregarded. This makes them suitable notonly for natural language text but also in scenarios where there exist no words, such as in DNAor protein databases. This is also useful for text retrieval on some agglutinating languages (e.g.Finnish or German) where words are concatenated and their subwords are sought [19].One class of indices for this case is based on building the su�x tree of the text and traversing itinstead of the text, to avoid its redundancies [30, 11, 12, 8]. The main problem with this approachis that su�x trees pose heavy space requirements: the index, unless compressed, is twelve times thesize of the text. Approaches to compress the su�x tree are still in their beginnings and have notbeen implemented yet [17]. If the index does not �t in main memory (which is usually the case),the construction process is very costly, even if the su�x tree is converted to a su�x array [20], towhich [12, 8] can be adapted.A second class reduces the problem to exact matching of substrings of the pattern, and usesan index that searches the substrings with no errors [15, 28, 22]. Later, the occurrences of thosematching substrings have to be veri�ed to search the complete pattern. These indices can bee�ciently built and take less space than the others. However, they are less tolerant to errors.In this work we propose a sequence retrieving index especially aimed at text retrieval scenarios,in the same lines of reducing the problem to exact matching. We show also an algorithm to optimizethe partition of the pattern in order to minimize the number of text positions to verify. This also2

allows to predict the cost of the search and to give early feedback to the user about the approximatesize of the result set. In case of too many veri�cations (which involves probably too many results),the user may preempt the search, given the poor precision to be obtained. Our index reduces theretrieval times to 10%-60% of the on-line algorithms, depending on the number of errors allowed.This paper is organized as follows. In Section 2 we review previous work. In Section 3 weexplain our new index. In Section 4 we analyze it. In Section 5 we show experimental results.Finally, in Section 6 we give our conclusions. An earlier version of this work appeared in [7].2 Previous WorkThe idea of reduction to exact partitioning has been used many times for on-line searching [33, 9,27, 4]. The basic idea is as follows: if a pattern occurs in the text with k errors, and if we cut thepattern in k+1 pieces arbitrarily, then at least one of the pieces must be present in the occurrencewith no errors. This is easily seen by considering that each error modi�es at most one piece of thepattern, and therefore at least one piece survives unchanged (see Figure 1). To �nd all approximateoccurrences it su�ces to search all pieces and check their neighborhood.
Figure 1: The exact partitioning algorithm for two errors: the pattern is split in three parts, andsome part must appear unaltered.Many generalizations of the idea have been studied. It has been shown that if the pattern iscut in less pieces (say j) then the subpatterns are to be searched with bk=jc errors [4, 8, 22].Overlapping pieces have been considered in [27]. If all the pieces of length q (called q-grams) inthe pattern are searched, then the search needs not to inspect every text position, but \samples"separated by h characters that are not inspected at all. Moreover, they may also force that at leasts pieces are present in the candidate text area, by modifying h (s and h are related).Recently, a particular case of matching more than one piece has been proposed [26]: if thepattern is cut in k+ s pieces, then at least s pieces must be present in every occurrence (moreover,they observe some positional constraints). This increases the tolerance to errors in long patterns.However, if the pattern is not long this partitioning gives very short pieces, which tend to triggermuch more veri�cations. 3

Despite all generalizations, the original partitioning idea leads to the fastest on-line algorithmfor moderate pattern length and error ratios, as shown in [4]. This is the typical case in naturallanguage text retrieval.The �rst idea to apply reduction to exact partitioning to indexing is [15], where the q-gramsapproach is used. The positions of all q-grams are stored. To search a pattern of length m, thetext is divided into blocks of size 2(m� 1). The number of all q-grams of the pattern that fall intoeach block is computed. Each text block having at least m + 1� (k + 1)q q-grams is veri�ed withdynamic programming.Independently, in [2] an alternative to Glimpse [21] is proposed to allow more general searches.Instead of indexing every word as Glimpse does, they index every substring of a �xed length q.Although originally conceived for exact search, it is mentioned the possibility of combining theindex with exact partitioning to answer approximate search queries.The idea of q-grams is used again in [28] with a di�erent approach, more oriented to samplingthe text as in [27]. Every text sample is stored in the index (hence, the space requirements arereduced). Given a search pattern, its q-grams are searched in the index, and the rest proceedsas in the on-line version. The dependence between s and h allows to use a single index (withsamples separated by h characters) for di�erent m and k values (i.e. s is adjusted accordingly).Compression schemes are considered in [16], although the time complexity increases signi�cantly.Although the q-grams schemes have small space overhead, their tolerance to errors is very lowfor typical text retrieval applications, as shown in [4, 3] for its on-line version. In particular, it islower than that of the on-line algorithm we are adapting [9].A somewhat di�erent idea is proposed in [22]. It uses an index where every sequence of thetext up to a given length q is stored, together with the list of its positions in the text. Hence, thestructure of the index is similar to the one we propose. However, the reduction to exact search iscompletely di�erent. To search for a pattern shorter than q�k, all the maximal strings whose editdistance to the pattern is less than k are generated, and each one is searched in the index. Later,the lists are merged. To handle longer patterns, they are split in as many pieces as necessary tomake them of the required length.In [22], the length of the strings stored in the index is made small enough to be able to representthem as computer integers. This allows to build the index very quickly in practice. The stringsmust be short also to avoid an explosive numbers of strings generated at search time.Query complexity is shown in [22] to be sublinear for su�ciently low error ratios. This maximumallowed error ratio increases with the alphabet size. For example, the formula shows that it is 0:33for � = 4 and 0:56 for � = 20. However, the scheme gets worse (because of the number of stringsgenerated) as � grows, which is the typical case in text retrieval.A useful concept to reduce the space requirements of these indices is block addressing. The mainidea is to cut the text in a number of blocks. Instead of storing all the exact positions where eachword or q-gram occurs, only the blocks where it appears are stored. At search time, the candidateblocks must be completely veri�ed, which increases search times.This concept has been used in word-retrieving indices [21, 5] with good results. It is also usedin Grampse [19], which is based on [28] (although approximate search is not implemented yet).As opposed to block addressing, we denote letter addressing the case when all the positions arerecorded. 4

3 A New Indexing SchemeOur proposal aims speci�cally at building a powerful and practical index for text retrieval purposes.It indexes all q-grams and uses the simplest partitioning (i.e. in k + 1 disjoint pieces). This canbe seen as an o�-line version of [9] (studied more in detail in [4, 3]). This is combined with a newpattern splitting optimization technique to minimize the number of veri�cations to perform, whichis especially useful on natural language texts. Pointers to exact occurrences or to blocks can beused, although we show later that only letter addressing gives a useful index.At indexing time, we select a �xed length q. Every q-gram of the text is stored in the index(in lexical order). To resemble traditional inverted lists, we call vocabulary the set of all di�erentq-grams. The number of di�erent q-grams is denoted V , which is � n (in a text of n charactersthere are n � q + 1 q-grams, but only V di�erent q-grams). Together with each q-gram, we storethe list of the text positions where it appears, in ascending positional order. Figure 2 shows a smallexample.
21 43extetextxtext e tx 4 ...e x tIndexText 321

Figure 2: The indexing scheme for q = 4.If block addressing is used, the text is divided in blocks of a �xed length b, and all the q-gramsthat start in the block are considered to lie inside the block. Only the ascending list of the blockswhere each q-gram appears is stored in this case. This makes the index smaller, since there is onlyone reference for all the occurrences of a q-gram in a single block and the pointers to blocks can besmaller.To search a pattern of length m with k errors, we split the pattern in k + 1 pieces, searcheach piece in the index of q-grams of the text, and take the union of all the occurrences of all thepieces, since each of these is a candidate position for a match. The neighborhood of each candidateposition is then veri�ed with a sequential algorithm. If blocks are used, each candidate block mustbe completely traversed with an on-line algorithm. Figure 3 illustrates the search process.Of course the pieces may not have the same length q. If a piece is shorter than q, all the q-gramswith the piece as pre�x are to be considered as occurrences of the piece (they are contiguous in theindex of q-grams). If the piece is longer, it is simply truncated to its �rst q letters (it is possible to5

vocabularyoccurrences TEXTINDEXxxx OnlineApprox.,PATTERN Searchvocabularyoccurrences TEXTINDEXxxxPATTERN Veri�cation
Figure 3: The search process, with exact addressing and block addressing.verify later, in the text, whether the q-gram starts in fact an occurrence of the piece before verifyingthe whole area).We describe now a splitting optimization technique to be used at query time. When the patternis split in k + 1 pieces, we are free to select those pieces as we like. This idea is mentioned in [6]for an on-line algorithm as follows: knowing or assuming a given letter distribution for the text tosearch, the pieces are selected so that the probabilities of all pieces are similar. This minimizes thetotal number of veri�cations to perform, on average.We can do much better here. They key point is that it is very cheap to compute in advance theexact number of veri�cations to perform for a given piece. We just locate the piece in the q-gramindex with binary search. In the general case we obtain a contiguous region, for pieces shorter thanq. By storing, for each q-gram, the accumulated length of the lists of occurrences, we can subtractthe lengths at the endpoints of the region to obtain immediately the number of veri�cations toperform. The complete process takes O(logV) = O(logn).We describe a dynamic programming algorithm to compute the partition that minimizes thetotal number of veri�cations to perform. As a side result, we know in advance the total cost to payto retrieve the results, which as explained is useful as early feedback to the user.Let pat[0::m � 1] be the search pattern. Let R[i; j] be the number of veri�cations to performfor the piece pat[i::j � 1] (computed as explained above), for every 0 � i � j � m. Using R webuild two matrices, namely� P [i; k], which is the sum of the veri�cations of the pieces in the best partition for pat[i::m�1]with k errors,� C[i; k], which says where must the next piece start in order to obtain P [i; k].Hence, we need O(m2) space. Computing R as described previously takes O(m2 logn), andthe algorithm in Figure 4 computes the optimal partition in O(m2k) time. The �nal number ofveri�cations is P [0; k]. The beginnings of the pieces are `0 = 0, `1 = C[`0; k], `2 = C[`1; k � 1], ...,`k = C[`k�1; 1]. 6

for (i = 0;i < m;i++)f P [i; 0] = R[i;m]; C[i; 0] = m; gfor (r = 1;r � k;r ++)for (i = 0;i < m� r;i++)f P [i; r] = minj 2 i+1::m�r(R[i; j]+ P [j; r� 1]);C[i; r] = j that minimizes the expression above; gFigure 4: The optimization dynamic programming algorithm.4 AnalysisIn this section we present the analysis for time and space requirements of our index, as well as itsretrieval performance.4.1 Building the IndexTo build the index we scan the text in a single pass, using hashing to store all the q-grams thatappear in the text. This q must be selected as large as possible, but small enough for the totalnumber of such q-grams to be small (practical values for natural language text are q = 3::5).Although we scan every q-gram and any good hash function of a q-gram takes O(q) time, thetotal expected time is kept O(n) instead of O(nq) by using a technique similar to Karp-Rabin[18] (i.e. the hash value of the next q-gram can be obtained in O(1) from the current one). Theoccurrences are found in ascending order, hence each insertion takes O(1) time.Therefore, this index is built in O(n) expected time and a single pass over the text. The worstcase can be made O(n) by modifying Ukkonen's technique to build a su�x tree in linear time [31].4.2 Index SpaceWe analyze space now. To determine the number of di�erent q-grams in random text, considerthat there are �q di�erent \urns" (q-grams) and n \balls" (q-grams in the text). The probabilityof a q-gram to be selected in a trial is 1=�q. Therefore, the probability of a q-gram not beinghit in n trials is (1 � 1=�q)n. Hence, the average number of q-grams hit in the n trials is V =�q(1�(1�1=�q)n) = �(�q(1�e�n=�q)) = �(min(n; �q)). This shows that q must be kept o(log� n)for the vocabulary space to be sublinear. We show practical sizes in the experiments.We consider the lists of occurrences now. Since we index all positions of all q-grams, the spacerequirements are O(n), being e�ectively 4n on a 32-bit architecture1. If block addressing is used(with blocks of size b), we consider that there is an entry in the list of occurrences per di�erentq-gram mentioned in each di�erent block. Reusing the analysis of the vocabulary, each block has1We store just one pointer for each q-gram position. This allows to index up to 4 Gb of text. Therefore we woulduse more than four bytes to index longer texts. On the other hand, we are not considering here the possibility ofusing a compressed list of positions, which can considerably reduce the space requirements, typically to 2 bytes perpointer. 7

�(min(b; �q)) di�erent q-grams. Multiplying this by the number of blocks (n=b), we have that thetotal size of the occurrence lists is O(nmin(1; �q=b)), which is o(n) if and only if b = !(�q)o(b), orq = o(log� b).4.3 Retrieval TimeWe now turn our attention to the time to answer a query. The �rst splitting optimization phase isO(m2(k + logn)) as explained. Once we have all the positions to verify, we check each zone usinga classical algorithm [29], at a cost of O(m2) each. This cost is exactly the same as in the on-lineversion [9], since it is related to the number of occurrences of the pieces in the text.We analyze only the case of random text (natural language is shown in the experiments). Underthis assumption, we discard the e�ect of the optimization and assume that the pattern is split inpieces of lengths as similar as possible. In fact, the optimization technique makes more di�erencein natural language texts, making the approach in that case more similar in performance to thecase of random text.It should be clear that if k and m are �xed, this index can never be sublinear in time, simplybecause on random text the number of occurrences of the pattern grows linearly as the text growsand we have to verify all those positions. In the analysis which follows we speak in terms ofsublinearity and derive order conditions on b and q. This is reasonable since we can control themand make them grow as n grows. However, when the conditions imply that m or k must grow as afunction of n to obtain the sublinearity, we are in fact meaning that it is not reasonable to considerthat such sublinearity is achievable.We split the pattern in pieces of length bm=(k + 1)c and dm=(k + 1)e. In terms of probabilityof occurrence, the shorter pieces are � times more probable than the others (where � is the size ofthe alphabet). The total cost of veri�cations is no more than(k + 1)m(m+ k)�b mk+1 c nwhich is sublinear for � = o(1=(log�(m=�))), i.e. � = o(1=(log� m+log� log� m)). As this does notinvolve q or b, sublinear veri�cation cost is not achievable.However, we are not considering that, if q is very small, it is possible that the pieces are longerthan q. In this case we must truncate the pieces to length q and use the list of occurrences ofthe resulting q-grams. Before triggering a veri�cation on each occurrence of such q-grams, we canverify in the text if the occurrence of the q-gram is in fact an occurrence of the longer piece. As thistakes O(1) time on average for each occurrence of each of the (k + 1) lists, we have an additionaltime of O(kn=�q), which is sublinear provided q = !(log� k).On the other hand, if we use block addressing, we must �nd the exact candidate positions beforeverifying them with the above technique. To do this, we use the on-line version of our algorithm(i.e. [9]), which in turn �nds the candidate areas and veri�es using [29]. Excluding the aboveconsidered veri�cations, the on-line algorithm runs in linear time . Therefore, we show under whichrestrictions a sublinear part of the text is sequentially traversed. This new condition goes togetherwith � = o(1=(3 log� m)) in the case of block addressing.8

The probability of a text position matching one piece is, as explained, (k + 1)=�bm=(k+1)c.Therefore, the probability of a block (of size b) being sequentially traversed is1� �1� k + 1�b mk+1 c�band since there are n=b blocks and traversing each one costs O(b), we have that the expectedamount of work to traverse blocks is n times the above expression, which isn�1� e� b(k+1)�bm=(k+1)c ��1 +O �k=�b mk+1 c��The above expression is sublinear approximately for � = o(1= log�(bm)). This is indeed verylow in practice.5 ExperimentsWe show experimentally the index building times and sizes for di�erent values of q, with letterand block addressing. We also show the querying e�ectiveness of the indices, by comparing thepercentage of the query time using the index against that of using the on-line algorithm. Theexperimental values agree well with our analysis in terms of the error ratios and block sizes up towhere the indices are useful. All the tests were run on a Sun UltraSparc-1 of 167 MHz, with 32Mb of RAM, running Solaris 2.5.1.For the tests we use a collection of 8.84 Mb of English literary text, �ltered to lower-caseand with all separators converted to a single space. We test the cases q = 3::5, as well as letteraddressing and block addressing with blocks of size 2 Kb to 64 Kb. Blocks smaller than 2 Kb wereof no interest because the index size was the same as with letter addressing, and larger than 64 Kbwere of no interest because query times were too close to the on-line algorithm.Figure 5 shows index build time and space overhead for di�erent q values and block sizes. Thesize of the vocabulary �le was 61 Kb for q = 3, 384 Kb for q = 4 and 1.55 Mb for q = 5, whichshows a sharp increase.We show now query times. We tested queries of length m = 8, 16 and 24 (i.e. from a word to ashort phrase). The queries were randomly chosen from the text at the beginning of non-stopwords(stopwords are words which carry no meaning and are normally not allowed in queries, such as"a", "the", etc.). This setup mimics common text retrieval scenarios. For m = 8 we show testswith k = 1 and 2; for m = 16 with k = 1::4 and for m = 24 with k = 1::6. Every data point wasobtained by averaging Unix's user time over 100 random trials.Figure 6 shows the percentage of text traversed by using the index (while the online algorithmhas to traverse the whole text). As it can be seen, the percentage of text traversed is very low forthe index that stores the exact occurrences of the q-grams. The block addressing indices, on theother hand, traverse much more text and they are useful only for small block sizes.If we consider actual execution times instead of percentage of traversed text the situationworsens. Figure 7 shows query times as a percentage of the on-line algorithm. This is becausethere is an important overhead in manipulating the index. This not only plays against the indexedalgorithms, but even makes it better to use the on-line algorithm when the �ltration e�ciency of9

1 2K 4K 8K 16K 32K 64K0.0
4.5
0.00.51.01.52.02.53.03.5
4.04.5 b

t q = 3q = 4q = 5
1 2K 4K 8K 16K 32K 64K0.0

4.0
0.00.51.01.52.02.53.0
3.54.0 bq = 3q = 4q = 5Figure 5: On the left, index construction times (minutes of user time). On the right, their spaceoverhead (i.e. index space divided by text space). The dotted line shows a 100% overhead.the index is not good (moreover, the indices with larger b become better because the overhead isless and the veri�cations are the same). In the letter addressing index, this happens for � > 1=4.Up to that point, the search times are under 10 seconds. The block addressing indices, on the otherhand, cease to be useful too soon, namely for � > 1=8.Finally, we show the e�ect of our splitting optimization technique, by comparing, for letteraddressing indices, the retrieval times using and not using the optimization. As Figure 8 shows,the improvement due to the optimization is very signi�cant. Even when the length of the q-gramsdo not allow to select longer pieces, the optimization technique selects the least frequent q-grams.6 Conclusions and Future WorkWe have described a practical indexing scheme especially suited for text retrieval and capable ofretrieving any sequence matching a pattern with a given maximum number of errors. It is basedon storing all text q-grams in the index together with their occurrences. Querying is performedby searching in the index pieces of the pattern and verifying the candidate positions. A variantpointing to blocks instead of exact positions is described too. We analyze and experimentally testour approach.The experiments show that the scheme is practical when the index points to exact occurrences.The value q may be between 3 and 5, giving a tradeo� between index space and query performance.Depending on q and for a reasonable error level (� � 1=4 in English text), querying the index takes10% to 60% of the time of the on-line algorithm. The space overhead depends on q and is betweentwo and four times the text size.Pattern pieces longer than q are truncated. This loses part of the information on the pattern.This case could justify the approach of [26] of splitting the pattern in more pieces and forcingmore than one piece to match before verifying. Extending the scheme to matching more than onepiece reduces the number of veri�cations but leads to a more complex algorithm, whose costs mayoutweight the gains of less veri�cations. Another interesting idea which has not been pursued is to10

1 21 20100020406080100 k 1 41 2 3 40100020406080100 k 1 61 2 3 4 5 60100020406080100 k
1 21 20100020406080100 k 1 41 2 3 40100020406080100 k 1 61 2 3 4 5 60100020406080100 k
1 21 20100020406080100 k 1 41 2 3 40100020406080100 k 1 61 2 3 4 5 60100020406080100 kFigure 6: Percentage of text traversed using the index. The rows correspond to q = 3, 4 and 5.The columns correspond to m = 8, 16 and 24. The dashed line corresponds to letter addressing,full lines to block addressing. From lower to upper (at k = 1) they correspond to b = 2, 4, 8, 16,32 and 64 Kb. 11

1 21 2
12020406080100120 k 1 41 2 3 4

12020406080100120 k 1 61 2 3 4 5 6
12020406080100120 k

1 21 2
12020406080100120 k 1 41 2 3 4

12020406080100120 k 1 61 2 3 4 5 6
12020406080100120 k

1 21 2
12020406080100120 k 1 41 2 3 4

12020406080100120 k 1 61 2 3 4 5 6
12020406080100120 kFigure 7: Query time using the index divided by query time using the on-line algorithm (percent-age). The rows correspond to q = 3, 4 and 5. The columns correspond to m = 8, 16 and 24. Thedashed line corresponds to letter addressing, full lines to block addressing. From lower to upper(at k = 1) they correspond to b = 2, 4, 8, 16, 32 and 64 Kb.12

1 21 2030123 k 1 41 2 3 40401234 k 1 61 2 3 4 5 608012345678 k
1 21 2030123 k 1 41 2 3 40401234 k 1 61 2 3 4 5 608012345678 k
1 21 2030123 k 1 41 2 3 40401234 k 1 61 2 3 4 5 608012345678 kFigure 8: Comparison of retrieval times using the splitting optimization technique (dashed line)versus not using it (solid line), for the letter addressing index. The rows correspond to q = 3, 4and 5. The columns correspond to m = 8, 16 and 24.13

try many splits and to intersect the results (somehow resembling [13]). We are currently studyingthese issues.Finally, we leave for future work an experimental comparison against other indexing schemes(most of which are not implemented yet) as well as an improved implementation of our index toreduce construction time, space usage, and even the querying overhead of the index.AcknowledgementsWe thanks the anonymous referees for their suggestions to improve this paper.References[1] M. Ara�ujo, G. Navarro, and N. Ziviani. Large text searching allowing errors. In Proc. 4thSouth Americal Workshop on String Processing (WSP'97), pages 2{20. Carleton UniversityPress, 1997.[2] R. Baeza-Yates. Space-time trade-o�s in text retrieval. In Proc. 1st South American Workshopon String Processing (WSP'93), pages 15{21, 1993.[3] R. Baeza-Yates and G. Navarro. A fast heuristic for approximate string matching. In Proc. 3rdSouth American Workshop on String Processing (WSP'96), pages 47{63. Carleton UniversityPress, 1996.[4] R. Baeza-Yates and G. Navarro. A faster algorithm for approximate string matching. In Proc.7th Combinatorial Pattern Matching (CPM'96), LNCS 1075, pages 1{23, 1996. Extendedversion to appear in Algorithmica, 1998.[5] R. Baeza-Yates and G. Navarro. Block-addressing indices for approximate text retrieval. InProc. 6th ACM Conference on Information and Knowledge Management (CIKM'97), pages1{8, 1997.[6] R. Baeza-Yates and G. Navarro. Multiple approximate string matching. In Proc. 5th Workshopon Algorithms and Data Structures (WADS'97), LNCS 1272, pages 174{184, 1997.[7] R. Baeza-Yates and G. Navarro. A practical index for text retrieval allowing errors. InR. Monge, editor, Proc. of the XXIII Latin American Conference on Informatics (CLEI'97),pages 273{282, 1997.[8] R. Baeza-Yates, G. Navarro, E. Sutinen, and J. Tarhio. Indices for approximate informationretrieval. Technical Report TR/DCC-97-2, Dept. of Computer Science, Univ. of Chile, 1997.[9] R. Baeza-Yates and C. Perleberg. Fast and practical approximate pattern matching. In Proc.3rd Combinatorial Pattern Matching (CPM'92), pages 185{192, 1992. LNCS 644.[10] W. Chang and J. Lampe. Theoretical and empirical comparisons of approximate string match-ing algorithms. In Proc. 3rd Combinatorial Pattern Matching (CPM'92), pages 172{181, 1992.LNCS 644. 14

[11] A. Cobbs. Fast approximate matching using su�x trees. In Proc. 6th Combinatorial PatternMatching (CPM'95), pages 41{54, 1995.[12] G. Gonnet. A tutorial introduction to Computational Biochemistry using Darwin. Technicalreport, Informatik E.T.H., Zurich, Switzerland, 1992.[13] D. Greene, M. Parnas, and F. Yao. Multi-index hashing for information retrieval. In Proc.Foundations of Computer Science (FOCS'94), pages 722{731. IEEE Press, 1994.[14] J. Heaps. Information Retrieval - Computational and Theoretical Aspects. Academic Press,NY, 1978.[15] P. Jokinen and E. Ukkonen. Two algorithms for approximate string matching in static texts. InProc. Mathematical Foundations of Computer Science (MFCS'91), volume 16, pages 240{248,1991.[16] J. K�arkk�ainen and E. Sutinen. Lempel-Ziv index for q-grams. In Proc. 4th European Symposiumon Algorithms (ESA'96), pages 378{391, 1996. LNCS 1136.[17] J. K�arkk�ainen and E. Ukkonen. Lempel-Ziv parsing and sublinear-size index structures forstring matching. In Proc. 3rd South American Workshop on String Processing (WSP'96),pages 141{155. Carleton University Press, 1996.[18] R. Karp and M. Rabin. E�cient randomized pattern-matching algorithms. IBM J. Res.Development, 31(2):249{260, March 1987.[19] O. Lehtinen, E. Sutinen, and J. Tarhio. Experiments on block indexing. In Proc. 3rd SouthAmerical Workshop on String Processing (WSP'96), pages 183{193. Carleton University Press,1996.[20] U. Manber and G. Myers. Su�x arrays: a new method for on-line string searches. In ACM-SIAM Symposium on Discrete Algorithms (SODA'90), pages 319{327, 1990.[21] U. Manber and S. Wu. glimpse: A tool to search through entire �le systems. In Proc. USENIXTechnical Conference, pages 23{32. USENIX Association, Berkeley, CA, USA, Winter 1994.[22] E. Myers. A sublinear algorithm for approximate keyword searching. Algorithmica,12(4/5):345{374, Oct/Nov 1994.[23] G. Myers. A fast bit-vector algorithm for approximate pattern matching based on dynamicprogamming. In Proc. 9th Combinatorial Pattern Matching (CPM'98), New Jersey, USA, July1998. Springer-Verlag.[24] J. Nesbit. The accuracy of approximate string matching algorithms. J. of Computer-BasedInstruction, 13(3):80{83, 1986.[25] P. Sellers. The theory and computation of evolutionary distances: pattern recognition. J. ofAlgorithms, 1:359{373, 1980. 15

[26] F. Shi. Fast approximate string matching with q-blocks sequences. In Proc. 3rd South AmericanWorkshop on String Processing (WSP'96), pages 257{271, 1996.[27] E. Sutinen and J. Tarhio. On using q-gram locations in approximate string matching. In Proc.3rd European Symposium on Algorithms (ESA'95), 1995. LNCS 979.[28] E. Sutinen and J. Tarhio. Filtration with q-samples in approximate string matching. In Proc.7th Combinatorial Pattern Matching (CPM'96), pages 50{61, 1996.[29] E. Ukkonen. Finding approximate patterns in strings. J. of Algorithms, 6:132{137, 1985.[30] E. Ukkonen. Approximate stringmatching over su�x trees. In Proc. 4th Combinatorial PatternMatching (CPM'93), pages 228{242, 1993.[31] E. Ukkonen. Constructing su�x trees on-line in linear time. Algorithmica, 14(3):249{260, Sep1995.[32] I. Witten, A. Mo�at, and T. Bell. Managing Gigabytes. Van Nostrand Reinhold, New York,1994.[33] S. Wu and U. Manber. Fast text searching allowing errors. Comm. of the ACM, 35(10):83{91,1992.[34] S. Wu, U. Manber, and E. Myers. A sub-quadratic algorithm for approximate limited expres-sion matching. Algorithmica, 15(1):50{67, 1996.

16

