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Abstract

We propose an indexing technique for approximate text searching, which is practical and
powerful, and especially optimized for natural language text. Unlike other indices of this kind,
it is able to retrieve any string that approximately matches the search pattern, not only words.
Every text substring of a fixed length g is stored in the index, together with pointers to all the
text positions where it appears. The search pattern is partitioned into pieces which are searched
in the index, and all their occurrences in the text are verified for a complete match. To reduce
space requirements, pointers to blocks instead of exact positions can be used, which increases
querying costs. We design an algorithm to optimize the pattern partition into pieces so that the
total number of verifications is minimized. This is especially well suited for natural language
texts, and allows to know in advance the expected cost of the search and the expected relevance
of the query to the user. We show experimentally the building time, space requirements and
querying time of our index, finding that it is a practical alternative for text retrieval. The
retrieval times are reduced from 10% to 60% of the best on-line algorithm.

Keywords: Approximate String Matching, Information Retrieval, Text Indexing.

1 Introduction

The problem of approximate string matching has a number of applications in computer science, such
as text retrieval, computational biology, signal processing, pattern recognition, etc. It is defined as
follows: given a long text of length n, and a (comparatively short) pattern of length m, retrieve
all the segments (or “occurrences”) of the text whose edit distance to the pattern is at most k.
The edit distance between two strings is defined as the minimum number of character insertions,
deletions and replacements needed to make them equal. It is common to report only the endpoints
of occurrences. We call a = k/m the “error ratio”.

In the on-line version of the problem, it is possible to preprocess the pattern but not the text.
The classical solution involves dynamic programming and is O(mn) time [25]. Recently, a number
of algorithms improved the classical one, for instance [29, 10, 27, 9, 33, 34, 4, 23]. Some of them
are “sublinear” in the sense that they do not inspect all the characters of the text, but of course
the on-line problem is Q(n) if m is taken as constant. In [4, 3], it is shown that [9] is the fastest
algorithm for moderately low error ratios and pattern length. Our present work can be seen as an
off-line version of that algorithm.

*This work has been supported in part by Fondef grant 96-1064 (Chile).



Although our index is applicable to other scenarios, we are particularly interested in natural
language text retrieval, where the text is normally so large that the on-line algorithms are not prac-
tical. Moreover, queries are more frequent than changes and therefore the text can be preprocessed,
the query patterns are not too large (i.e. less than 25 letters), the alphabet size (o) is not very
small (26 at least) and expected error ratios are < 1/3 (since otherwise the query returns too many
matches and is useless to the user).

Classical indices for text databases allow fast search of exact patterns [32]. These indices,
however, are unable to retrieve a word which has been misspelled. This is very common in texts
obtained by optical character recognition (OCR), or when there is no quality assurance for the
content of the database (e.g. when indexing the World Wide Web). Moreover, the query may also
be misspelled or we may not remember the exact spelling of a foreign name. The edit distance
defined before captures very well such errors [24].

The first indexing schemes for approximate text retrieval have appeared only a few years ago.
There are two types of indexing mechanisms: word-oriented and sequence-oriented. In the first one,
the index is capable of retrieving every word whose edit distance to the pattern is at most k. In
the second one, useful also when the text is not natural language, the index is capable of retrieving
every sequence, without notion of word separation.

Indices of the first kind store the set of all different words of the text (the vocabulary) and use
an on-line algorithm on the vocabulary, thus obtaining the set of words to retrieve. From that point
on, the problem does not need to involve approximate matching anymore. Since the vocabulary
is sublinear in size with respect to the text [14, 1], they achieve acceptable performance. These
indices are not capable, however, of retrieving an occurrence that is not a complete word. For
instance, if an OCR system has erroneously inserted a space in the middle of a word in the text,
or removed the space between two words, these indices will not be able to retrieve those words if
just one error is allowed. Examples of such indices are Glimpse [21], Igrep [1] and [5].

In the indices of the second kind, the words are disregarded. This makes them suitable not
only for natural language text but also in scenarios where there exist no words, such as in DNA
or protein databases. This is also useful for text retrieval on some agglutinating languages (e.g.
Finnish or German) where words are concatenated and their subwords are sought [19].

One class of indices for this case is based on building the suffix tree of the text and traversing it
instead of the text, to avoid its redundancies [30, 11, 12, 8]. The main problem with this approach
is that suffix trees pose heavy space requirements: the index, unless compressed, is twelve times the
size of the text. Approaches to compress the suffix tree are still in their beginnings and have not
been implemented yet [17]. If the index does not fit in main memory (which is usually the case),
the construction process is very costly, even if the suffix tree is converted to a suffix array [20], to
which [12, 8] can be adapted.

A second class reduces the problem to exact matching of substrings of the pattern, and uses
an index that searches the substrings with no errors [15, 28, 22]. Later, the occurrences of those
matching substrings have to be verified to search the complete pattern. These indices can be
efficiently built and take less space than the others. However, they are less tolerant to errors.

In this work we propose a sequence retrieving index especially aimed at text retrieval scenarios,
in the same lines of reducing the problem to exact matching. We show also an algorithm to optimize
the partition of the pattern in order to minimize the number of text positions to verify. This also



allows to predict the cost of the search and to give early feedback to the user about the approximate
size of the result set. In case of too many verifications (which involves probably too many results),
the user may preempt the search, given the poor precision to be obtained. Our index reduces the
retrieval times to 10%-60% of the on-line algorithms, depending on the number of errors allowed.
This paper is organized as follows. In Section 2 we review previous work. In Section 3 we
explain our new index. In Section 4 we analyze it. In Section 5 we show experimental results.
Finally, in Section 6 we give our conclusions. An earlier version of this work appeared in [7].

2 Previous Work

The idea of reduction to exact partitioning has been used many times for on-line searching [33, 9,
27, 4]. The basic idea is as follows: if a pattern occurs in the text with k errors, and if we cut the
pattern in k + 1 pieces arbitrarily, then at least one of the pieces must be present in the occurrence
with no errors. This is easily seen by considering that each error modifies at most one piece of the
pattern, and therefore at least one piece survives unchanged (see Figure 1). To find all approximate
occurrences it suffices to search all pieces and check their neighborhood.
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Figure 1: The exact partitioning algorithm for two errors: the pattern is split in three parts, and
some part must appear unaltered.

Many generalizations of the idea have been studied. It has been shown that if the pattern is
cut in less pieces (say j) then the subpatterns are to be searched with |k/j| errors [4, 8, 22].

Overlapping pieces have been considered in [27]. If all the pieces of length ¢ (called g-grams) in
the pattern are searched, then the search needs not to inspect every text position, but “samples”
separated by h characters that are not inspected at all. Moreover, they may also force that at least
s pieces are present in the candidate text area, by modifying h (s and h are related).

Recently, a particular case of matching more than one piece has been proposed [26]: if the
pattern is cut in k + s pieces, then at least s pieces must be present in every occurrence (moreover,
they observe some positional constraints). This increases the tolerance to errors in long patterns.
However, if the pattern is not long this partitioning gives very short pieces, which tend to trigger
much more verifications.



Despite all generalizations, the original partitioning idea leads to the fastest on-line algorithm
for moderate pattern length and error ratios, as shown in [4]. This is the typical case in natural
language text retrieval.

The first idea to apply reduction to exact partitioning to indexing is [15], where the g-grams
approach is used. The positions of all g-grams are stored. To search a pattern of length m, the
text is divided into blocks of size 2(m — 1). The number of all g-grams of the pattern that fall into
each block is computed. Each text block having at least m 4+ 1 — (k + 1)¢ g-grams is verified with
dynamic programming.

Independently, in [2] an alternative to Glimpse [21] is proposed to allow more general searches.
Instead of indexing every word as Glimpse does, they index every substring of a fixed length g.
Although originally conceived for exact search, it is mentioned the possibility of combining the
index with exact partitioning to answer approximate search queries.

The idea of ¢-grams is used again in [28] with a different approach, more oriented to sampling
the text as in [27]. Every text sample is stored in the index (hence, the space requirements are
reduced). Given a search pattern, its g-grams are searched in the index, and the rest proceeds
as in the on-line version. The dependence between s and h allows to use a single index (with
samples separated by h characters) for different m and k values (i.e. s is adjusted accordingly).
Compression schemes are considered in [16], although the time complexity increases significantly.

Although the ¢-grams schemes have small space overhead, their tolerance to errors is very low
for typical text retrieval applications, as shown in [4, 3] for its on-line version. In particular, it is
lower than that of the on-line algorithm we are adapting [9].

A somewhat different idea is proposed in [22]. It uses an index where every sequence of the
text up to a given length ¢ is stored, together with the list of its positions in the text. Hence, the
structure of the index is similar to the one we propose. However, the reduction to exact search is
completely different. To search for a pattern shorter than ¢ — k, all the maximal strings whose edit
distance to the pattern is less than k are generated, and each one is searched in the index. Later,
the lists are merged. To handle longer patterns, they are split in as many pieces as necessary to
make them of the required length.

In [22], the length of the strings stored in the index is made small enough to be able to represent
them as computer integers. This allows to build the index very quickly in practice. The strings
must be short also to avoid an explosive numbers of strings generated at search time.

Query complexity is shown in [22] to be sublinear for sufficiently low error ratios. This maximum
allowed error ratio increases with the alphabet size. For example, the formula shows that it is 0.33
for o = 4 and 0.56 for o = 20. However, the scheme gets worse (because of the number of strings
generated) as o grows, which is the typical case in text retrieval.

A useful concept to reduce the space requirements of these indices is block addressing. The main
idea is to cut the text in a number of blocks. Instead of storing all the exact positions where each
word or ¢g-gram occurs, only the blocks where it appears are stored. At search time, the candidate
blocks must be completely verified, which increases search times.

This concept has been used in word-retrieving indices [21, 5] with good results. It is also used
in Grampse [19], which is based on [28] (although approximate search is not implemented yet).
As opposed to block addressing, we denote letter addressing the case when all the positions are
recorded.



3 A New Indexing Scheme

Our proposal aims specifically at building a powerful and practical index for text retrieval purposes.
It indexes all g-grams and uses the simplest partitioning (i.e. in k + 1 disjoint pieces). This can
be seen as an off-line version of [9] (studied more in detail in [4, 3]). This is combined with a new
pattern splitting optimization technique to minimize the number of verifications to perform, which
is especially useful on natural language texts. Pointers to exact occurrences or to blocks can be
used, although we show later that only letter addressing gives a useful index.

At indexing time, we select a fixed length ¢. Every g-gram of the text is stored in the index
(in lexical order). To resemble traditional inverted lists, we call vocabulary the set of all different
g-grams. The number of different ¢-grams is denoted V, which is < n (in a text of n characters
there are n — ¢ + 1 ¢g-grams, but only V different ¢-grams). Together with each ¢g-gram, we store
the list of the text positions where it appears, in ascending positional order. Figure 2 shows a small
example.

exte 2 e

Index text 14

xtex 3 -

Figure 2: The indexing scheme for ¢ = 4.

If block addressing is used, the text is divided in blocks of a fixed length b, and all the g-grams
that start in the block are considered to lie inside the block. Only the ascending list of the blocks
where each g-gram appears is stored in this case. This makes the index smaller, since there is only
one reference for all the occurrences of a ¢g-gram in a single block and the pointers to blocks can be
smaller.

To search a pattern of length m with k errors, we split the pattern in k 4+ 1 pieces, search
each piece in the index of ¢-grams of the text, and take the union of all the occurrences of all the
pieces, since each of these is a candidate position for a match. The neighborhood of each candidate
position is then verified with a sequential algorithm. If blocks are used, each candidate block must
be completely traversed with an on-line algorithm. Figure 3 illustrates the search process.

Of course the pieces may not have the same length ¢. If a piece is shorter than ¢, all the ¢g-grams
with the piece as prefix are to be considered as occurrences of the piece (they are contiguous in the
index of ¢g-grams). If the piece is longer, it is simply truncated to its first ¢ letters (it is possible to
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Figure 3: The search process, with exact addressing and block addressing.

verify later, in the text, whether the ¢g-gram starts in fact an occurrence of the piece before verifying
the whole area).

We describe now a splitting optimization technique to be used at query time. When the pattern
is split in k + 1 pieces, we are free to select those pieces as we like. This idea is mentioned in [6]
for an on-line algorithm as follows: knowing or assuming a given letter distribution for the text to
search, the pieces are selected so that the probabilities of all pieces are similar. This minimizes the
total number of verifications to perform, on average.

We can do much better here. They key point is that it is very cheap to compute in advance the
exact number of verifications to perform for a given piece. We just locate the piece in the g-gram
index with binary search. In the general case we obtain a contiguous region, for pieces shorter than
g. By storing, for each g-gram, the accumulated length of the lists of occurrences, we can subtract
the lengths at the endpoints of the region to obtain immediately the number of verifications to
perform. The complete process takes O(logV') = O(logn).

We describe a dynamic programming algorithm to compute the partition that minimizes the
total number of verifications to perform. As a side result, we know in advance the total cost to pay
to retrieve the results, which as explained is useful as early feedback to the user.

Let pat[0..m — 1] be the search pattern. Let R[i, j] be the number of verifications to perform
for the piece pat[i..j — 1] (computed as explained above), for every 0 < ¢ < j < m. Using R we
build two matrices, namely

e PJi, k], which is the sum of the verifications of the pieces in the best partition for pat[i..m —1]
with k errors,

e (¢, k], which says where must the next piece start in order to obtain Pz, k].

Hence, we need O(m?) space. Computing R as described previously takes O(m?logn), and
the algorithm in Figure 4 computes the optimal partition in O(m?k) time. The final number of
verifications is P[0, k]. The beginnings of the pieces are £y = 0, £; = C[ly, k], Lo = C[l1,k — 1], ...,
L = Cllg_1,1].



for (i=0;i < m;i++)
{ PI[:,0] = R[i,m]; C[5,0]=m; }
for (r=1;r < k;r++)
for 1=0;2<m-—r;i++)
{ Pli,r] = minj eip1.m—r (R[4, 7]+ Plj, 7 = 1]);
C[i¢,r] = j that minimizes the expression above; }

Figure 4: The optimization dynamic programming algorithm.

4 Analysis

In this section we present the analysis for time and space requirements of our index, as well as its
retrieval performance.

4.1 Building the Index

To build the index we scan the text in a single pass, using hashing to store all the ¢g-grams that
appear in the text. This ¢ must be selected as large as possible, but small enough for the total
number of such g-grams to be small (practical values for natural language text are ¢ = 3..5).

Although we scan every ¢g-gram and any good hash function of a ¢-gram takes O(q) time, the
total expected time is kept O(n) instead of O(ng) by using a technique similar to Karp-Rabin
[18] (i.e. the hash value of the next g-gram can be obtained in O(1) from the current one). The
occurrences are found in ascending order, hence each insertion takes O(1) time.

Therefore, this index is built in O(n) expected time and a single pass over the text. The worst
case can be made O(n) by modifying Ukkonen’s technique to build a suffix tree in linear time [31].

4.2 Index Space

We analyze space now. To determine the number of different g-grams in random text, consider
that there are o? different “urns” (¢-grams) and n “balls” (g-grams in the text). The probability
of a g-gram to be selected in a trial is 1/¢9. Therefore, the probability of a ¢-gram not being
hit in n trials is (1 — 1/09)". Hence, the average number of g-grams hit in the n trials is V' =
41— (1-1/69)") = O(c9(1—e™?")) = O(min(n, 6?)). This shows that ¢ must be kept o(log, n)
for the vocabulary space to be sublinear. We show practical sizes in the experiments.

We consider the lists of occurrences now. Since we index all positions of all g-grams, the space
requirements are O(n), being effectively 4n on a 32-bit architecture!. If block addressing is used
(with blocks of size b), we consider that there is an entry in the list of occurrences per different
g-gram mentioned in each different block. Reusing the analysis of the vocabulary, each block has

! We store just one pointer for each g-gram position. This allows to index up to 4 Gb of text. Therefore we would
use more than four bytes to index longer texts. On the other hand, we are not considering here the possibility of
using a compressed list of positions, which can considerably reduce the space requirements, typically to 2 bytes per
pointer.



©(min(b, 0?)) different g-grams. Multiplying this by the number of blocks (n/b), we have that the
total size of the occurrence lists is O(n min(1, ¢9/b)), which is o(n) if and only if b = w(c?)o(b), or

q = o(log, b).

4.3 Retrieval Time

We now turn our attention to the time to answer a query. The first splitting optimization phase is
O(m?2(k + logn)) as explained. Once we have all the positions to verify, we check each zone using
a classical algorithm [29], at a cost of O(m?) each. This cost is exactly the same as in the on-line
version [9], since it is related to the number of occurrences of the pieces in the text.

We analyze only the case of random text (natural language is shown in the experiments). Under
this assumption, we discard the effect of the optimization and assume that the pattern is split in
pieces of lengths as similar as possible. In fact, the optimization technique makes more difference
in natural language texts, making the approach in that case more similar in performance to the
case of random text.

It should be clear that if k¥ and m are fixed, this index can never be sublinear in time, simply
because on random text the number of occurrences of the pattern grows linearly as the text grows
and we have to verify all those positions. In the analysis which follows we speak in terms of
sublinearity and derive order conditions on b and ¢. This is reasonable since we can control them
and make them grow as n grows. However, when the conditions imply that m or k£ must grow as a
function of n to obtain the sublinearity, we are in fact meaning that it is not reasonable to consider
that such sublinearity is achievable.

We split the pattern in pieces of length |m/(k +1)| and [m/(k + 1)|. In terms of probability
of occurrence, the shorter pieces are ¢ times more probable than the others (where o is the size of
the alphabet). The total cost of verifications is no more than

(k+1)ym(m+ k)

ol#5r)

n

which is sublinear for o = o(1/(log,(m/a))), i.e. @ = o(1/(log, m+log, log, m)). As this does not
involve ¢ or b, sublinear verification cost is not achievable.

However, we are not considering that, if ¢ is very small, it is possible that the pieces are longer
than ¢. In this case we must truncate the pieces to length ¢ and use the list of occurrences of
the resulting ¢g-grams. Before triggering a verification on each occurrence of such ¢-grams, we can
verify in the text if the occurrence of the g-gram is in fact an occurrence of the longer piece. As this
takes O(1) time on average for each occurrence of each of the (k + 1) lists, we have an additional
time of O(kn/c?), which is sublinear provided ¢ = w(log, k).

On the other hand, if we use block addressing, we must find the exact candidate positions before
verifying them with the above technique. To do this, we use the on-line version of our algorithm
(i.e. [9]), which in turn finds the candidate areas and verifies using [29]. Excluding the above
considered verifications, the on-line algorithm runs in linear time . Therefore, we show under which
restrictions a sublinear part of the text is sequentially traversed. This new condition goes together
with a = o(1/(31og, m)) in the case of block addressing.



The probability of a text position matching one piece is, as explained, (k + 1)/al™/(+1)],
Therefore, the probability of a block (of size b) being sequentially traversed is

kE+1\°
)
oLlk+l
and since there are n/b blocks and traversing each one costs O(b), we have that the expected
amount of work to traverse blocks is n times the above expression, which is

n <1 — E%) (1 +0 (k/crL%J»

The above expression is sublinear approximately for o = o(1/1log,(bm)). This is indeed very
low in practice.

5 Experiments

We show experimentally the index building times and sizes for different values of ¢, with letter
and block addressing. We also show the querying effectiveness of the indices, by comparing the
percentage of the query time using the index against that of using the on-line algorithm. The
experimental values agree well with our analysis in terms of the error ratios and block sizes up to
where the indices are useful. All the tests were run on a Sun UltraSparc-1 of 167 MHz, with 32
Mb of RAM, running Solaris 2.5.1.

For the tests we use a collection of 8.84 Mb of English literary text, filtered to lower-case
and with all separators converted to a single space. We test the cases ¢ = 3..5, as well as letter
addressing and block addressing with blocks of size 2 Kb to 64 Kb. Blocks smaller than 2 Kb were
of no interest because the index size was the same as with letter addressing, and larger than 64 Kb
were of no interest because query times were too close to the on-line algorithm.

Figure b shows index build time and space overhead for different ¢ values and block sizes. The
size of the vocabulary file was 61 Kb for ¢ = 3, 384 Kb for ¢ = 4 and 1.55 Mb for ¢ = 5, which
shows a sharp increase.

We show now query times. We tested queries of length m = 8, 16 and 24 (i.e. from a word to a
short phrase). The queries were randomly chosen from the text at the beginning of non-stopwords
(stopwords are words which carry no meaning and are normally not allowed in queries, such as
"a", "the", etc.). This setup mimics common text retrieval scenarios. For m = 8 we show tests
with k£ = 1 and 2; for m = 16 with £ = 1..4 and for m = 24 with k = 1..6. Every data point was
obtained by averaging Unix’s user time over 100 random trials.

Figure 6 shows the percentage of text traversed by using the index (while the online algorithm
has to traverse the whole text). As it can be seen, the percentage of text traversed is very low for
the index that stores the exact occurrences of the g-grams. The block addressing indices, on the
other hand, traverse much more text and they are useful only for small block sizes.

If we consider actual execution times instead of percentage of traversed text the situation
worsens. Figure 7 shows query times as a percentage of the on-line algorithm. This is because
there is an important overhead in manipulating the index. This not only plays against the indexed
algorithms, but even makes it better to use the on-line algorithm when the filtration efficiency of
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Figure 5: On the left, index construction times (minutes of user time). On the right, their space
overhead (i.e. index space divided by text space). The dotted line shows a 100% overhead.

the index is not good (moreover, the indices with larger b become better because the overhead is
less and the verifications are the same). In the letter addressing index, this happens for a > 1/4.
Up to that point, the search times are under 10 seconds. The block addressing indices, on the other
hand, cease to be useful too soon, namely for a > 1/8.

Finally, we show the effect of our splitting optimization technique, by comparing, for letter
addressing indices, the retrieval times using and not using the optimization. As Figure 8 shows,
the improvement due to the optimization is very significant. Even when the length of the g-grams
do not allow to select longer pieces, the optimization technique selects the least frequent g-grams.

6 Conclusions and Future Work

We have described a practical indexing scheme especially suited for text retrieval and capable of
retrieving any sequence matching a pattern with a given maximum number of errors. It is based
on storing all text g-grams in the index together with their occurrences. Querying is performed
by searching in the index pieces of the pattern and verifying the candidate positions. A variant
pointing to blocks instead of exact positions is described too. We analyze and experimentally test
our approach.

The experiments show that the scheme is practical when the index points to exact occurrences.
The value ¢ may be between 3 and b5, giving a tradeoff between index space and query performance.
Depending on ¢ and for a reasonable error level (a < 1/4 in English text), querying the index takes
10% to 60% of the time of the on-line algorithm. The space overhead depends on ¢ and is between
two and four times the text size.

Pattern pieces longer than ¢ are truncated. This loses part of the information on the pattern.
This case could justify the approach of [26] of splitting the pattern in more pieces and forcing
more than one piece to match before verifying. Extending the scheme to matching more than one
piece reduces the number of verifications but leads to a more complex algorithm, whose costs may
outweight the gains of less verifications. Another interesting idea which has not been pursued is to

10
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Figure 6: Percentage of text traversed using the index. The rows correspond to ¢ = 3, 4 and 5.
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try

many splits and to intersect the results (somehow resembling [13]). We are currently studying

these issues.

Finally, we leave for future work an experimental comparison against other indexing schemes

(most of which are not implemented yet) as well as an improved implementation of our index to

reduce construction time, space usage, and even the querying overhead of the index.
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