
An Access Method for Objects Moving among Fixed Regions

Gilberto Gutiérrez R. 1 Gonzalo Navarro 2 Andrea Rodŕıguez T. 3

Resumen Este art́ıculo resume una propuesta de un método de acceso espacio-temporal para objetos que se
mueven a través de un conjunto de regiones fijas y disjuntas. La propuesta se basa en un R-tree, en un método
de acceso temporal y en un esquema de hashing. Con nuestro método es posible responder consultas de tipo time
slice, interval como también consultas sobre la trayectoria que ha seguido un objeto. También es posible procesar
objetos espacio-temporales con intervalos de tiempo abiertos, es decir, objetos cuyo tiempo final de permanencia
en una determinada posición es desconocido. Esta caracteŕıstica permite mantener un ı́ndice espacio-temporal
en el cual se pueden mezclar operaciones que modifican la estructura de datos subyacente, con operaciones de
consulta.

Abstract We propose a spatio-temporal access method for objects that move through a set of fixed and disjoint
regions. The proposal is based on an R-tree, on a temporal access method and on a hashing scheme. With our
method it is possible to respond to queries of the timeslice and interval types as well as queries about the trajectory
that an object has followed. It is also possible to process spatio-temporal queries with open time intervals, that
is, queries about objects whose final duration in a determined position is unknown. This characteristic allows
maintaining an index in which operations that can modify the underlying data structure can be mixed with query
operations.

1 Introduction

A spatio-temporal database is a spatial database
in which objects can change their spatial position
and/or their shape in different time intervals. In
this way, a spatio-temporal database allows the es-
tablishment of models that are very close to the
real world, which is essentially dynamic [6]. There
exist many applications that require the use of
this dynamism; for example, an application whose
database needs to store information at all times
about the position of all the cars in a fleet of taxis.
Other applications can be found in the areas of
transportation, environment, social (demographics,
health, etc), and multimedia.

For the spatial databases the type of fundamen-
tal query is Window Query that consists in retrie-
ving all the objects that intersect with a rectan-
gle (window) specified by an user. For the spatio-
temporal databases, as well, there exist two types

of fundamental queries (which can be considered as
subtypes of the Window Query type): the first type
of query, known as timeslice or timestamp, allows
the retrieving of all the objects that intersect with
a rectangle at a specific timestamp. The other type
is called Interval and allows the retrieving of all the
objects that intersect with a rectangle in successive
timestamps [13]. The efficient processing of these
types of queries (especially timeslice) is very im-
portant since they are already used as a part of the
more complex spatio-temporal queries.

One of the objectives of the Databases Mana-
gement System is to provide access methods that
avoid examining all the objects at the time of the
queries. In this way, a Spatio-temporal Databases
System must also count on mechanisms that allow
the construction of indexes that improve the res-
ponse time for the spatio-temporal queries. For
that purpose, the spatio-temporal access methods
that have been proposed are mostly based on three
points of view:

1Departamento de Auditoŕıa e Informática, Universidad del B́ıo-B́ıo, Avenida La Castilla S/N - Chillán(Chile),
ggutierr@ubiobio.cl. Partially financed by project “Procesamiento de consultas espacio-temporales”, Dirección de Investigación,
Universidad del B́ıo-B́ıo and RITOS2 (Red Iberoamericana de Tecnoloǵıas del Software para la década del 2000).

2Departamento de Ciencias de la Computación, Universidad de Chile(Chile), gnavarro@dcc.uchile.cl. Partially funded by
Millennium Nucleus Center for Web Research, Grant P01-029-F, Mideplan, Chile.

3Departamento de Ingenieŕıa Informática y Ciencias de la Computación, Universidad de Concepción(Chile), andrea@udec.cl.
Partially funded by Millennium Nucleus Center for Web Research, Grant P01-029-F, Mideplan, Chile.

• Methods that treat time as another dimen-
sion. For example 3D R-tree proposed in [15].

• Methods that incorporate the time informa-
tion into the nodes of the structure without
considering time as another dimension. For
example, RT-tree proposed in [16]

• Methods that use overlapping of the under-
lying structure of data reusing that part of
the structure in which the stored objects have
not suffered changes in their position and/or
shape between the consecutive timestamps.
For example HR-tree [7, 6] and MR-tree [16].

All the above methods are oriented to support
spatio-temporal applications in general domain and
therefore do not benefit from the particular charac-
teristics and behavior of the objects of certain types
of applications, characteristics which, according to
[13, 14], can be convenient to consider for a design
of a specific access method. Some of these types of
applications are the following:

1. Those in which the objects move at great
speed.

2. Applications where the size and the shape of
the object is not important and the only point
of interest is its position in time [8].

3. Those that require maintaining an on-line in-
dex [5]. In this type of index, when an object
moves to a new position in the timestamp ti,
its final duration is unknown, its interval be-
ing [ti, ∗), where ∗ is a variable (always in-
creasing) that represents the current time or
now. Subsequently, when the final time, tj ,
is known, the interval of duration is updated
to [ti, tj).

On the contrary, an off-line index assumes
that the position as well as the interval of du-
ration are known. In this way the construc-
tion of the off-line index is more efficient since
it is possible to rely on more information in an
anticipated way [5], however, with an off-line
index is not possible to mix operations that
update the structure with query operations.

4. Applications in which the space and/or the
number of objects does not change.

5. Those where the objects move in previously
established areas or sectors; for example ap-
plications about road networks and the dis-
placement of vehicles. Furthermore, in this
type of applications, it is necessary to query
the trajectory that the object has followed.

This paper defines a new spatio-temporal ac-
cess method that takes into consideration the de-
fined conditions for types 3 and 5 applications.
The method allows the processing of queries of the
timeslice and interval type using both historic and
actual information about the objects. Furthermore,
it is possible to obtain the trajectory of an object
and maintain an on-line index. In [3] a similar
method of access is proposed, but this one takes
into consideration only part of the conditions of
type 5 applications since it does not allow the re-
trieving of the trajectory of an object in an efficient
way.

The basic idea of our method is to maintain the
intervals of duration of the objects separately for
each of the regions or areas as can be seen in Fi-
gure 1. For example, in region R3 of Figure 2, the
intervals of duration of the objects are [t1, t2) for
the object o1, [t0, t1) for the object o2 and [t5, ∗)
for the object o3. These intervals are indexed using
a temporal access method, specifically Window In-
dex described in [10] which is the optimum in time
and space for queries of the pure-timeslice type. Ne-
vertheless, the basic structure of Window Index as
well as its algorithms were modified to allow the
processing of spatio-temporal queries and queries
based on the trajectories of the objects. The spa-
tial extension of the regions is organized in an R-
tree [4] whose basic structure was also modified. In
addition to these access methods, an extensible ha-
shing scheme and a skip list are used to allow the
retrieving of the trajectory and maintain an on-line
index. In this paper only the underlying data struc-
tures and the algorithms are described to process
the spatio-temporal queries as well as updating the
data structures. In a future paper the performance
of our access method will be evaluated in relation
to other proposals.

The rest of this paper is organized in the fo-
llowing way. Section 2 briefly reviews the access
methods, temporal as well as spatial in which our
method is based. Section 3 describes the data struc-
tures used. Section 4 presents the algorithms used
to process the distinct types of queries conside-
red by our spatio-temporal access method. Sec-
tion 5 shows the algorithm that allows actualizing
the data structures. Finally, Section 6 presents the
conclusions and future work.

2 Related work.

In this section we review of the temporal and spa-
tial access methods used in our method. The skip

<....> <....> .. <....> <....> .. <....> <....> ..

<...>

<...>

<...>

Window Index

<...>

<...>

<...>

<...>

<...>

<...>

Window Index

<...>

<...>

<...>

<...>

<...>

<...>

Window Index

<...>

<...>

<...>

<...>

<...>

<...>

Window Index

<...>

<...>

<...>

 R−tree

<
...>

<
...>

<
...>

 Hashing

<
...>

Figure 1: General structure of our spatial-temporal access method

oo11

tt00

oo11

tt11

oo11
tt22

oo22

tt00

oo22
tt11

oo22
tt22

oo22

tt33

R1 R2

R3

R4

oo33

tt00

oo33
tt11

oo33

tt55

Figure 2: Objects moving around a set of regions

list [9] and extensible hashing [2], used by our pro-
posal too, are not discussed in this section since
they are well-known.

2.1 Window Index

Window Index (henceforth WI) [10] is a tempo-
ral access method in which each register to be in-
dexed is assumed to have three fields: (1) key attri-
butes that are invariable in time, (2) attributes that
change in distinct time intervals where each inter-
val is found to be defined by an initial time and
a final time, and (3) a temporal object identifier.
Furthermore, it is assumed that:

• When an object is added to the database in
the timestamp t1, its time interval is [t1, ∗],
where ∗ refers to current time. In this way an
object is activated in the timestamp t1 and
will exist until it is eliminated.

• When a previously inserted object is elimi-
nated in the timestamp t2, its time interval
that was originally [t1, ∗], is now [t1, t2].

• No other operations are defined on the stored
objects in the database. For example, it is
prohibited to modify the limits of the inter-
vals that are already found established or add
an object that refers to a time in the past.

WI is a method for the problem of the inter-
section of segments, that is, given a set of inter-
vals [ai, bi], 1 ≤ i ≤ n, and a point q, to find
all the intervals or segments that intersect with q.
This problem can be solved easily by identifying,
for each ai and bi, the set of intervals that inter-
sect and insert them into a B+-tree. This solu-
tion, nevertheless, needs space O(n2) in the worst
case. WI is based on the observation that the adja-
cent sets do not differ in an important way. In this
way, making an adequate choice of the sets, it is

possible to reduce the space from O(n2

B
) to O(n

B
),

where B is the block size. WI, first orders the ex-
treme points of the input intervals, a1, a2, . . . , an

and b1, b2, . . . , bn obtaining e1, e2, . . . , e2n. Then a
set of windows W1, W2, . . . , Wp is chosen on the
extreme points w1, w2, . . . , wp+1 such that w1 =
e1, wp+1 = e2n, wj ≤ wj+1 and Wj = [wj , wj+1].
For example, in Figure 3 the limits of the window
W2 are a1 and d1. In this way the windows repre-
sent a set of p partitions of the intervals between
e1 and e2n. For each window Wj there exists a list
of intervals that corresponds to those that intersect
with the limits of Wj ; said list is stored as a B+-
tree indexed by the initial point of the window. WI

forces the fulfillment of the following two conditions
about the windows to guarantee efficiency in space
as well as in time.

1. For each point q that intersects a window Wj ,
the set of intervals that intersects q (Oq) satis-
fies the condition 0 < |Wj | ≤ δ max(1, |Oq|),
where δ > 1 is a parameter that provides
a tradeoff between space and response time,
|Wj | represents the number of intervals in the
Wj window and |Oq| is the size of the set Oq.

2.
∑j=p

j=1
|Wj | < 2δ

δ−1
n guarantees that the list of

intervals of each window needs linear storage.

Making small modifications on the basic scheme
of WI, it is possible to use it as an efficient tem-
poral access method. In the temporal model each
object is associated with three attributes: (1) a key
attribute that is invariable over time, (2) a time in-
terval, and (3) an object identifier (Oid). To index
these objects, first a list of intervals is construc-
ted that will now contain temporal objects instead
of intervals. Each object in the list of intervals is
inserted separately in the B+-tree considering the
compound key (initial point of the window, attri-
buted key) as the key to the search. For example,
if the objects of the window are considered to be
W1 (Figure 3), the pairs that must be inserted in
the B+-tree are the following: (a1, k1, a), (a1, k2, b)
and (a1, k3, c), where (a1, k1), (a1, k2) and (a1, k3)
are the key compounds of the objects a, b, and c

respectively.

WI also allows indexing intervals whose extreme
end is unknown (dynamic version of the problem).
Finally, WI is optimum in space (O(n

B
)) and time

(O(logBn + t
B

), for queries of the pure-timeslice
type, where n is the number of changes, B is the ca-
pacity of the block and t is the size of the response.

2.2 R-tree

A R-tree is an extension of B-tree for multidimen-
sional objects (points and regions) [4, 12]. Each
node corresponds to a page or block of disk. The
leaf nodes of an R-tree contain entries of the form
(I, Oid) where Oid is the identifier of the spatial ob-
ject in the database and I is an n-dimensional rect-
angle that corresponds to the Minimum Bounding
Rectangle(MBR) of the spatial object, that is, I =
(I0, I1, . . . , In), where n is the number of dimen-
sions and Ii is a closed interval [a, b] that describes
the limits of the object in the i dimension. The in-
ternal nodes (non-leaf nodes) contain entries of the

a, k
11

 b, k
22

 c, k
33

 d, k
44

ww
11
={a,b,c} ww

22
={a,c,d} ww

33
={a,c,d}

ww
11
,k

11
,a

,a
11
,a

22
,x

,y
,n

ww
33
,k

11
ww

22
,k

11

Type 2 Node
Type 1 Node

n Pointers of the skip list

aa
11

bb
11

bb
22

cc
11

cc
22

dd
22

dd
11

aa
22

Figure 3: Types of entries considered by a Window Index

form (I, pchild) where pchild is the direction of the
corresponding leaf node in the R-tree and I covers
all the rectangles defined in the entries of the child
node.

M being the maximum number of entries that
can be stored in a node and being m ≤ M

2
a para-

meter specifying the minimum number of entries in
a node. An R-tree satisfies the following properties
[4]:

1. Each node contains between m and M entries
unless it corresponds to the root.

2. For each entry (I, oid) in a leaf node, I is the
minimum rectangle that (spatially) contains
the object.

3. Each internal node has between m and M

children, unless it be the root.

4. For each entries of the form (I, pchild) of an
internal node, I is the smallest rectangle that
spatially covers the rectangles defined in the
child node.

5. The root node has at least two children, un-
less it is a leaf.

6. All the leaves are found at the same level.

The height of the R-tree that stores N keys is
at least ⌈logmN⌉ − 1, since the number of children
is at least m. The maximum number of nodes is
⌈N

m
⌉+ ⌈ N

m2 ⌉+ · · ·+1 [4]. The use of storage (worst
case) for all the nodes, except the root, is m

M
[4].

The nodes have a tendency to maintain more than
m entries that allows the height of the tree to de-
crease and improve storage use.

The search and insertion algorithms are very si-
milar to the algorithms used for these operations in
a B-tree.

Many variants exist of the R-tree; one of these is
proposed in [11] called R+-tree, which tries to avoid
that in a search various paths of the tree cross each
other, that is achieved by storing the MBR of an ob-
ject in more than one page when it intersects with
various internal nodes. The other proposal is the
one presented in [1] known as R∗-tree, which intro-
duces a policy of insertion called forced reinsertion
that consists in not dividing a node immediately
when it fills up. Instead of this, it proposes elimi-
nating p entries of the node and reinserting them
in the tree. Furthermore, the algorithms minimize
the superposition of regions, the MBR perimeters,
and maximize storage use.

3 Our spatio-temporal access

method

As we have already said, our spatio-temporal ac-
cess method focuses on supporting applications in
which there exist a set of fixed, disjointed, and pre-
established areas or regions around which the ob-
jects move (Figure 2). We assumed that the objects
are capable of informing, in a discrete way, the coor-
dinates and the time in which an object reached a
new spatial position that must belong to one of the
regions. We defined two types of object displace-
ment: (1) interregions when the object is displaced
to a position that belongs to a region that is dis-
tinct to the one where it is actually found, and (2)
intraregions when the object is moved to a position
within the same region.

When an object is displaced to a position p in
the timestamp t1, its interval of duration in p is
[t1, ∗). Subsequently when the object is displaced

to a position q in the timestamp t2, the time inter-
val that the object remains in p is [t1, t2) and the
interval of duration in q is [t2, ∗). In this way an
object is found in a position p in any timestamp t

so that t1 ≤ t < t2.

To maintain the spatial and temporal informa-
tion of the objects, our proposal considers a spatial
(R-tree) access method and a temporal (Window
Index) access method. R-tree is used to construct
a spatial index around the regions or areas. As far
as WI is concerned (one per area or region), it is
used to index the time intervals in which the ob-
jects have remained in the corresponding region,
and is used to carry out searches based on time
(see Figure 1). In this way, a query of the timeslice
type, for example, is solved by first retrieving the
areas or regions that intersect within the range or
spatial window of the query and then, using the res-
pective WI, the objects whose intervals of duration
in the region intersect with the time given in the
query are retrieved. Our method also considers a
hashing scheme organized by the Oid do the object
and has the purpose of retrieving the trajectory of
an object and allows to maintain open intervals of
duration that which makes possible an on-line in-
dex. The trajectory of the objects is maintained
through an index of skip lists (one for each object)
and corresponds to an entry type in the WI’s.

3.1 Data structures of our proposal

In this section, the data structures and the algo-
rithms that make up our spatio-temporal access
method are discussed.

3.1.1 R-tree

As above-mentioned, the R-tree will store the spa-
tial component of the problem, that is, the regions
or areas. The structure of the R-tree nodes is the
following:

Internal Node < MBR, ptr > same as the data
structure of the original proposal [4].

Leaf Node < MBR, ptrArea, ptrWI >, where
MBR is the minimum rectangle that surrounds the
extension of the area, ptrArea is a block pointer
that stores the points defined by the area (together
with other attributes), and ptrWI is the block
pointer that allows the attainment of the area’s WI.

3.1.2 Window Index

This structure is used to store the time intervals in
which the objects remain within the area and/or
spatial position. It is based principally in a B+-
tree that is organized by a compound key formed
by the start of each window and an object key. WI
can duplicate objects in various windows with the
purpose of guaranteeing optimum response times.
Given that in our proposal these entries are part of
the skip list of the spatio-temporal object, we only
considered the first entry (first window) as node
of the skip list. The remaining entries (duplicated)
maintain a pointer to the first as is shown in Figure
3. In Figure 3, WI stores the object a in three dif-
ferent windows (W1, W2, W3), but in our proposal,
only in the W1 window we store the data of the time
interval, position, Oid, and the pointers of the skip
list of the trajectory of the object Oid. There are
two types of entries of a WI block of data:

1. < te, w, k, pe > (see Type 1 Nodes in Figure
3), where te indicates the entry type, w is
the window number, and k is the object key.
Finally, pe is the block pointer in which the
first entry of the object k is stored and that
corresponds to the node of the skip list of the
trajectory of the object Oid.

2. < te, w, k, Oid, te, ts, x, y, n, < p0, p1, . . . ,

pn−1 >> (see Node Type 2 in Figure 3).
Where te, w, k and Oid represent the same as
in the above-mentioned entry. te corresponds
to the time in which the object is moved to
the position (x, y). In the same way ts cor-
responds to the timestamp in which it left
such position. n corresponds to the num-
ber of pointers or node level in the skip list.
p0, p1, pnp−1 correspond to the node pointers
of the level 0, 1, etc of the skip list.

The entries in the internal blocks have the follo-
wing format: < ptr, (w, k) >, where w is the win-
dow number, k the object key, and ptr a block data
pointer and/or internal block whose stored keys are
greater or equal to the compound key (w, k).

3.1.3 Hashing scheme

We used a hashing scheme (extensible hashing) to
maintain and index for the Oid of the objects. This
allowed us to do searches based on the objects (ac-
tual location, trajectory, etc) as we will see later
on. An entry (register) in the hashing scheme has
the following structure: < Oid, p0, p1, ..pnm−1 >

where Oid corresponds to the object identifier,
p0, p1, pnm−1 correspond to node pointers of the ob-
ject skip list. nm is a parameter that indicates the
maximum level of the nodes of the skip list.

4 Query processing

4.1 Timeslice Queries

This query consists in retrieving all the objects
that are found in a determined sub-space R in
a timestamp t. Figure 4 shows the algorithm to
process this type of query. The SearchInRtree(R)
function corresponds to the search algorithm in
an R-tree proposed in [4]. The SearchInWin-
dowIndex(e.ptrWI, t) function is used to find the
objects that have remained in R in the timestamp
t.

4.2 Interval Queries

This type of queries is very similar to the timeslice
type. The difference resides in that the temporal
component considers a time interval instead of a
timestamp. In this way a query of this type con-
sists in retrieving all the objects that remain in a
sub-space R during the time interval [ti, tj]. Ba-
sically, this type of query can be solved with the
same algorithm found in Figure 4, only being neces-
sary to replace the SearchInWindowIndex(e.ptrWI,
t, t) instruction by SearchInWindowIndex(e.ptrWI,
ti, tj).

4.3 Retrieving of the trajectory of

an object

In general, we can define the trajectory of an object
as the set of spatial positions in which an object re-
mains during a determined time. In our proposal it
is possible to obtain two types of trajectories. The
first type consists in obtaining all the areas or re-
gions in which an object has remained. For exam-
ple, in Figure 2 for the object o2, the trajectory
is < R3, R4, R2, R1 >. The second type consists
in retrieving the coordinates where a determined
object has remained in a period of time. The al-
gorithm in Figure 5 allows obtaining the answer to
the queries belonging to the second type.

5 Update of the data struc-

ture

In our model, when an object is displaced from one
position to another, it is necessary to update the
underlying structure of data. Furthermore, this is
the only event that provokes an actualization. The
same as in the temporal access method WI, an ob-
ject is displaced to a position p in a timestamp ti,
the interval of duration of the object in the posi-
tion p will be [ti, ∗). Subsequently, when the object
is displaced to a position q that is distinct from p

in the timestamp tj , with tj > ti, the interval of
duration of the object in p will be [ti, tj) and in
q will correspond to [tj , ∗). Figure 6 describes the
algorithm that allows the actualizing of the data
structure.

// Given a rectangle R and a time t, find all the objects that intersect with R in the time t.

SetOid TimeSliceQuery(R, t) }
Being E the set of entries of the leaf nodes of the R-tree whose MBR intersect with R.

Being Q the set of objects that satisfy the query

Q = ∅
E = SearchInRtree(R)

For each of the entries in E, its corresponding WI is revised, retrieving all the objects

that meet the spatial and temporal restrictions given in the query

for each(e ∈ E)
Q = Q ∪ SearchInWindowIndex(e.ptrWI, t, t)

return Q

}

Figure 4: Algorithm to process a query of the type timeslice

// Given an object Oid and a time interval, [ti, tj], obtain the trajectory

// of the object. It is assumed that ti ≤ tj.

Trajectory Positions(Oid,ti, tj) {
// T is a set of spatial positions. T is used to maintain the trajectory

T = ∅
// Search in the hashing scheme the corresponding entry to the object identified

// as Oid. Being e this entrie.

e = SearchInHashing(Oid)

//With the entry e, search the node of the skip list whose final time (tmp.ts)

//is the least time so that tj ≤ tmp.ts. The node being tmp.

tmp = SearchInSkipList(e.p0, e.p1, . . . , e.pn−1, ti)

// go through the nodes of the skip list starting with tmp

while(nodes are left and tmp.te ≤ ti) {
// an element is added to the answer set T. Each element is formed by the position (x.y)
// and the time interval in which the object was in said position.

T = T∪ < tmp.ts, tmp.te, tmp.x, tmp.y >

tmp = tmp.p0

}
return T

}

Figure 5: Algorithm to obtain the trajectory of an object

// This algorithm allows updating the data structure when an object Oid is

// displaced from a position to a new one (x, y) in the timestamp t.

Move(Oid, t, x, y) {
// Search in the hashing scheme using as the search key for Oid an

// entry e with values < Oid, p0, p1, ..pn−1 >. Being p the direction of the

// block that contains the entry e.

p = SearchInHashing(Oid)
e = SearchInBlock(p, Oid)
// tmp maintains the first node of the skip list

tmp = e.p0

// Search the region or area where the object is actually found. Being s this entrie.

s = SearchInRtree(tmp.x, tmp.y)
// Update the entry in WI s.P trWI with the values < tmp.te, t >.

UpdateWindowIndex(s.P trWI, tmp.te, t)
// Search the region or area of the object’s displacement according to the coordinates

// (x, y) and using the R-tree. Being r this entrie.

r = SearchInRtree(x, y)
// Being n the level of the node inserted in the skip list

n = NodeLevel()
Being ne an entry < Oid, te, x, y, n, < p0, p1, . . . , pn − 1 >>

for(i = 0; i < n; i + +)ne.pi = e.pi

bid = InsertinWindowIndex(r.P trWI, ne)
for(i = 0; i < n; i + +)e.pi = bid;

Update the block p with the new values of the entry e.

}

Figure 6: Algorithm to update the data structure

6 Conclusions

Our spatio-temporal access method allows the pro-
cessing of queries of the timeslice and interval types
for objects that move around a set of regions with
pre-established and disjoint boundaries between
themselves. An advantage of our method with res-
pect to an FNR-tree, proposed in [3], is that it
is possible to process queries around the trajec-
tory that the objects have followed and further-
more open time intervals can be managed which
is achieved by modifying the basic Window Index
structure. This last advantage allows maintaining
a spatio-temporal on-line index, and it is therefore
possible to mix query operations with operations
that update the index. Finally, all the data struc-
tures on which our access method is based are quite
known (except Window Index), so it is presumed
that the implementation is relatively simple. In
the future, we will try to implement and evaluate
our proposal comparing it with the best methods
proposed in the literature.

References

[1] Beckmann, N., Kriegel, H.-P., Schnei-

der, R., and Seeger, B. The R*-Tree: An
efficient and robust access method for points
and rectangles. In ACM SIGMOD Conference
on Management of Data (1990), ACM.

[2] Fagin, R., Nievergelt, J., and Pip-

penger, N. Extendible hashing-a fast access
method for dynamic files. ACM Transactions
on Database Systems 4, 3 (1979), 315–344.

[3] Frentzos, E. Indexing objects moving on
fixed networks. In Advances in Spatial and
Temporal Databases (2003), pp. 289–305.

[4] Guttman, A. R-trees: A dynamic index
structure for spatial searchinng. In ACM
SIGMOD Conference on Management of Data
(Boston, 1984), ACM, pp. 47–57.

[5] Kollios, G., Tsotras, V. J., Gunopulos,

D., Delis, A., and Hadjieleftheriou, M.

Indexing animated objects using spatiotempo-
ral access methods. Knowledge and Data En-
gineering 13, 5 (2001), 758–777.

[6] Nascimento, M., Silva, J., and Theodor-

idis, Y. Access structures for moving points,
1998.

[7] Nascimento, M. A., Silva, J. R. O.,

and Theodoridis, Y. Evaluation of ac-
cess structures for discretely moving points.
In Spatio-Temporal Database Management
(1999), pp. 171–188.

[8] Pfoser, D., Jensen, C. S., and Theodor-

idis, Y. Novel approaches in query processing
for moving object trajectories. In The VLDB
Journal (2000), pp. 395–406.

[9] Pugh, W. Skip lists: A probabilistic alterna-
tive to balanced trees. In Workshop on Algo-
rithms and Data Structures (1989), pp. 437–
449.

[10] Ramaswamy, S. Efficient indexing for con-
straint and temporal databases. In ICDT’97
Intern. Conference on Database Theory, Del-
phi, Greece (1997).

[11] Sellis, T., Roussopoulos, N., and

Faloutsos, C. The R+-Tree: A dy-
namic index for multi-dimensional objects. In
13th Conference on Very Large Data Bases
(Brighton, England, 1987), pp. 507–518.

[12] Sellis, T., Roussopoulos, N., and

Faloutsos, C. Multidimensional access
methods. Trees Have Grown Everywhere. In
23rd Conference on Very Large Data Bases
(Athens, Greece, 1997), pp. 13–14.

[13] Tao, Y., and Papadias, D. Efficient histori-
cal R-Tree. In IEEE International Conference
on Scientific and Statical Database Manage-
ment (2001).

[14] Tao, Y., and Papadias, D. MV3R-Tree: A
spatio-temporal access method for timestamp
and interval queries. In The VLDB Journal
(2001), pp. 431–440.

[15] Theodoridis, Y., Vazirgiannis, M., and

Sellis, T. K. Spatio-temporal indexing for
large multimedia applications. In Interna-
tional Conference on Multimedia Computing
and Systems (1996), pp. 441–448.

[16] Xu, X., Han, J., and Lu, W. RT-
Tree: An improved R-tree index structure for
spatio-temporal database. In 4th International
Symposium on Spatial Data Handling (1990),
pp. 1040–1049.

