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Abstract

In this paper we present the architecture and algorithms behind Matchsimile, an
approximate string matching lookup tool especially designed for human and com-
pany names searches against a large textual database. Part of a larger information
retrieval environment, this specific engine accepts an input text file with a set of
personal and company names and a set of restrictions for the search. After a batch
processing, the engine outputs another text file containing the occurrences that match
each record of the input names file, according to its search parameters. Beyond the
similarity search capabilities applied on each word that forms a name, the tool con-
siders a set of personal names formation rules for their words such as combination,
abbreviation, character mapping, duplicity detections, ordering, word omission and
insertion, among others. This engine is used in a succeeded commercial application
(also named Matchsimile), which uses this tool to allow lawyers names searches
against many official law journals publications.

1 Introduction

Living in a world surrounded by errors and mistakes, the overwhelming existing search
technologies does not address the human tendency to be inexact. They were designed to
mainly focus on exact matching searches capabilities. Many situations tend to fail when
those algorithms are applied, instead of performing approximate string matching searches
in a textual database, where they have higher chances to suffer some kind of (undesirable)
corruption, or even when the valuable information can suffer modifications the way that
they can appear, in function of their nature.



Computational biology, image analysis, speech processing, medical diagnosis and legal
texts constitute motivation examples for this kind of search. In the scope of the last one
we have found a particular situation focused on personal names searches, where exists
formation rules that can write the same piece of information in many ways. In addition,
we have to add typos, spelling errors, OCR errors, etc.

Matchsimile will find a person name, a company name or a simple geographical ad-
dress even if the words that form the name present errors among their characters. Suppose
the following example for a hypothetical fellow named "Juan Abigahil Eslopénio de
Capriolli". This name is formed by five distinct words that can easily suffer modifi-
cations such as words duplicity, abbreviations, omissions, insertions and transpositions.
Thus, the following occurrence triggered by Matchsimile would be correctly evaluated for
the above example: "Caprioli, Juam A. Slopenio". Easy to be detected by the human
sense of similarity, but not by normal query languages, this occurrence has a large chance
to be the pattern name we were looking for.

The reverse scenario is also true, when we do not know for sure what we are looking
for. For example, we can query a personal name like "Catano Velozo" (which is wrong
for the Brazilian singer and composer named Caetano Veloso) and the Matchsimile search
engine once more will trigger occurrences for "Caetano B. Costa Veloso", and so on.

Thus, Matchsimile allow users of an arbitrary information system to find quickly and
easily the information they want, even when they are not sure the way this information
should be written or matched, allowing character and word errors.

Matchsimile’s revolutionary lookup technology effectively redefines the search paradigm.
Under other existing technologies, the terms used in a search query strictly limit the in-
formation that the query returns; as a result, even minor errors in the query potentially
return unwanted or irrelevant information. Matchsimile tolerates a wide spectrum of vari-
ations and errors, in an attempt to model a human notion of similarity. Despite that this
is done at a simple, low syntactic level, it helps bridge the gap between human tendencies
and computer requirements.

To solve the problem of string matching allowing errors, also called approximate string
matching, Matchsimile uses a balance of theoretical data structures and advanced tech-
niques for fast searching algorithms to model a human similarity judgment under strict
time performance constraints. The mathematical properties of this type of model allow
Matchsimile to compute each match using an extremely efficient algorithm. The result is
an extremely fast search engine capable to process thousands of patterns against a large
textual database (measured in Gb) in hours.

Unlike the typical “advanced search” features found on popular search engines, Match-
simile uses no special query syntax - no special prefixes, suffixes, brackets, braces, or
Boolean connectives. Otherwise, Matchsimile lets the user personalize a set of length
independent personal and company names, called “Inputs”, to be searched against any
textual database, independent of its length and language. It makes no language-specific
assumptions, intelligently handling accented and special characters found in many lan-
guages.

This paper is organized as follows: Section 2 presents related work, section 3 the
overall design of the system, section 4 the algorithmic techniques used by the search
engine, section 5 analytical and experimental performance results, and the last section
the conclusions.



2 Related Work

The algorithmic problems faced by Matchsimile lie in what is known as “approximate
string matching” | a well established field in stringology with applications in text retrieval,
computational biology, pattern recognition and a dozen of other fields. The main error
model used in approximate string matching permits symbol insertions, deletions, substi-
tutions and transpositions. This model has been validated many times in the past, e.g.
[10, 4, 14, 6].

The problem of approximate string matching consists of finding all the occurrences
of a pattern in a text where a limited number of differences between the pattern and
an occurrence is permitted. We distinguish between sequential and indexed solutions.
Sequential solutions do not permit to preprocess the text. There has been research on
sequential searching since the sixties, see [11] for a recent survey. Indexed solutions permit
building a data structure on the text beforehand in order to answer queries later. There
has been research in this trend since the nineties, see [12] for a survey.

Nevertheless, our particular problem involves searching thousands of patterns in a text
allowing errors. Multiple approximate pattern matching is a rather undeveloped area, so
in Matchsimile we have used a combination of known and new techniques. We borrow
mostly from trie backtracking techniques [16, 5].

From the applications point of view, there are few systems permitting approximate
matching on natural language text (there are more systems for specific computational
biology applications, e.g. [5]), and none addressing our particular problem. The first such
system was Glimpse [9], which indexes the text and permits approximate searching by
looking sequentially all the vocabulary words. The same idea, with few modifications, has
been used in other natural language indexes [3, 13].

A recent system relying on a slightly different approximate matching model is Likelt
[17]. In this system symbol transpositions are permitted and penalized according to their
distances from their original positions. Based on recent algorithmic developments, Likelt
still does not deal with the simultaneous search of thousands of patterns.

3 System Design and Capabilities

Basically, the Matchsimuile’s kernel accepts an input text file with a set of personal and
company names (also called patterns) with a set of parameters which to determine the
search features to be used. The engine preprocesses the patterns building an index based
on suffix trees. Notice that in our application the text database changes more often than
the patterns, so it is not worth to preprocess the text (for example, the official journals
are printed daily). Then, using this pattern index, the engine sequentially scans the
target text files. At the end, the engine outputs one text file containing the occurrences
that matches each record for the input files, and optionally can output another text file
containing spurious or weaker occurrences, if they were filtered through a exact search
mechanism based in dictionaries.

Next we highlight the main features of the parameterization.

The system distinguishes between personal and company names. For personal names,
the input file points out which are given names and surnames. In legal texts, we will



find always at least one of them (in the worst case, one is an initial). Let us examine
the following example: "Juan Carlos Bartolomeu Mattos Netto'. It can be published
like this: "Matos, J. Carla B. Neto". There exists higher chances to be the person we
are looking for. Note that we have one surname followed by on name, with a stopword
among them with less than three characters, which we can discard with a lower cost (its
existence is insignificant to the final result). The following occurrence is also honored:
"Juan Neto". Less chances to be the person we are looking for but can be.

Inside names we can: 1) allow intruders words insertions. Ex: "Juan Benedito
Neto"; 2) set the error level applied in each word (as a % of the length); 3) filtering
the results using a dictionary of names and surnames that discard spurious occurrences.
All these values or actions have a default case.

Allowing intruders words (that ones that are not among those given for the original
input) is meaningful if the original words are the first word of a name set and the last
word of a surname set respectively. This could represent people derived from the same
family. The variable error level per word is useful when you have short and long names
that you want to treat differently. The filter checks for “personal names rules formation”.
These rules can differ from language to language, depending on their cultures and mor-
phological /semantical constructions and speaking habits. The disadvantage of this filter
is that there must exist one dictionary for names and one for surname for each language
processed, so it is an optional feature.

Company names can be one or more words. Inside them we can flag which is the
most important word (that typically will always appear). For example, in the following
input record: "Eletropaulo Metropolitana", the first word is the important one, and
will appear even with errors. We also allow to have duplicate input keywords for common
abbreviations which are not due to errors. For example: "Eletrop Metrop".

All these parameters and actions can be predefined through a configuration file. In
particular, defines which set of characters can compose one valid word. Numbers can
be discarded because there is no sense to have them inside personal names. Each word
is a sequence of a valid characters subset, surrounded by space character at both sides.
Nevertheless, a minimal length can be specified (the default is 3). Shorter sequences are
not considered words (so they cannot be intruder words).

Mapping of charactars can also be specified. This can simulate the “case insensitive”
behavior, for example, and discard the accents arose from our alphabet. The “mapping”
is a good technique to enhance the algorithm performance, allowing the code to work with
a valid subset of characters determined by the “word characters” session.

The default cost of each error is 1. However, this can also be changed, specifying
different costs for inserting, deletion, replacing, or transposing letters. In this case the
maximum allowed cost to trigger a match must be specified.

4 Algorithmic Principles

We describe in this section the algorithms and data structures behind Matchsimile. Some
of these are already known in the scientific literature, while others have been specifically
developed for our needs. This last category includes a phrase matching algorithm and
our overall architecture.



4.1 The Search Problem

We first define the search problem precisely, motivating the decisions taken.

Defining the text and patterns. We consider the text as a sequence of words. A
word is a string formed by letters and delimited by separators, which can be defined by the
user. On the other hand, we have a set of patterns to search in the text. Each pattern is
formed by a sequence of pattern words. Patterns and text words obey the same formation
rules. The user can also specify a mapping of characters, which is used to normalize every
text and pattern word, as well as a set of stopwords, i.e. text and pattern words that will
not be considered when matching.

Now that we have defined precisely what is the text and what is the set of patterns,
we define the matching criterion. There are two levels of matching. A first level deals
with single words and their possible typing or spelling errors. A second level deals with
phrases (sequences of words) and their possible differences in arrangement.

Intraword similarity. Our first task is to determine when a text and a pattern word
are similar enough. By “similar enough” we mean that the cost to transform the text
word into the pattern word is smaller than a user defined threshold. The user can specify
this threshold in several ways, and it can be different for every pattern word.

There are many forms to define “cost”, but a popular one is the minimum number
of insertions, deletions, substitutions and transposition of adjacent characters that are
necessary to convert the text word into the pattern word. This is a variant over the
original Levenshtein distance [7, 8].

The effectiveness of this cost measure is well known. For instance, about 80% of the
typical typing errors are corrected allowing just one insertion, deletion, substitution or
transposition [4]. It is also known, however [14, 6], that making every such operation to
cost 1 (i.e. just counting the number of those operations) is simplistic, as much better
results are achieved by permitting common errors to cost less. For example, we can
give a lower cost to the transposition of two letters that are close in the keyboard or
to omissions due to common spelling errors. So we choose a cost model where all these
operations are permitted but we let the user change the cost of the insertion or deletion
of every character, and the cost of substituting or transposing every character with every
other. This permits us parameterizing the tool to different scenarios and languages.

The cost model is defined by means of two functions, 6 and 7, which represent the
costs to perform the diverse alterations on the text word (we could have chosen to think
on altering pattern word instead). For two different letters a and b, d(a,b) is the cost to
substitute a by b in the text word (it is assumed that 6(a,a) = 0). For a letter a present
in the text word, d(a, ) is the cost to delete a from the word. For a letter a, d(¢, a) is the
cost to insert a in the word. Finally, for two different letters a followed by b, adjacent in
the text word, 7(a,b) is the cost to transpose them, i.e. to convert ab into ba.

Phrase similarity. We define now when two phrases match. The first is a sequence
of text words and the second is a whole pattern. From now on, we say that a text and
a pattern words match whenever they are similar enough according to the user defined
threshold, and we disregard their internal differences.



For sequences of words, we use a model where we can delete pattern words and insert
text words in the pattern (or which is the same, delete text words). Permitting substi-
tution of words seems unreasonable given that we already detect words that are close to
each other and assume that they match. We found the transpositions to be of little use
at this level, although for future work we are considering models where the order of the
words is irrelevant.

The similarity criterion for phrases includes two thresholds. We permit deleting at
most D words from the pattern, and inserting at most / spurious (text) words in the
pattern. The user has several ways to specify these thresholds, in general or for specific
patterns in the set. This turned out to be more adequate than setting a single threshold,
say for I + D, because we can control more precisely the minimum amount of pattern
words that must be present in order to consider that a match has occurred, as well as
how many spurious words can be reasonably accepted in between interesting words.

For our particular Portuguese language application of personal and companies names
searching, however, we need a finer control. This has lead to some extensions of the above
matching criterion (which can be switched on or off for every pattern).

Reporting the results. The goal is to report mazrimal sequences of text words that
match some pattern by outputting its exact text position (as well as the identification of
the pattern matched and some information on how close is the occurrence to the correctly
written pattern, used for ranking the results). The word “maximal” means that we cannot
enlarge the sequence reported and still make it match.

Reporting maximal occurrences is in general a good choice because it calls the attention
of the user over a longer sequence of text words that match the pattern, giving a better
grasp of the relevance of the match. For example, if we permit one insertion and one
deletion, then "Maria Rosa Ferreira de Oliveira" matches against "Maria Ferreira
de Oliveira", yet it also matches with the prefix "Maria Ferreira'.

4.2 General Architecture

Now it should be clear that our problem is to detect patterns in the text even when the
words are spelled differently and arranged differently. Hence the software works at three
levels: (1) Text tokenizing, a very basic layer that delimits and normalizes text words;
(2) Recognizing pattern words, which recognizes the text words with enough similarity to
pattern words, the similarity being measured at the character level; and (3) Recognizing
whole patterns, which recognizes text phrases (sequences of words) which are similar
enough to whole patterns, where we measure the similarity at the word level.

The first level implements a reading routine that delivers the text words one by one.
It delimits the words, maps the characters, removes stopwords and delivers normalized
words to the next level. The set of patterns is normalized according to the same rules.

The second level processes each word received against the set of all the patterns in
one shot. A suitable data structure is used to arrange all the set of patterns in order to
permit simultaneously comparing the text word against the whole set of patterns. As a
result, this level triggers for each text word a set of occurrences (permitting errors) of
the word inside the patterns, pointing out every pattern involved and specifying which
pattern word has matched.



The third level is in charge of matching the whole pattern. However, it is invoked only
when a text word relevant to some pattern has been recognized. This level keeps for every
pattern P information about the last text window where the pattern could match. Since
we report maximal occurrences, we need to have surpassed the area of interest before
analyzing the window and reporting possible occurrences.

Hence, we run the phrase matching algorithm only over text windows that have some
chance of being similar enough to a pattern. Each text word is analyzed in turn, and
the patterns holding similar words get their windows updated. Those that may trigger
a match are analyzed at that moment. At the end of each text document processed
we increment our virtual word count by a number large enough to avoid any confusion
with previous text. When we finish processing all the text collection we must check all
the patterns for remaining matches not yet reported because we did not know they were
maximal (note that we know that a match is maximal only when we find that the next
occurrence in the text is far ahead).

The architecture is shown in Figure 1. We detail now the two most important levels.

Sear ch
opti ons

5 \
matchesin whole pattern
. text words Pattern words patterns Whole patterns |  occurrences
Text tokenizer > . > )
recognizer recognized

Figure 1: The architecture of the algorithm.

4.3 Recognizing Pattern Words

The first level is responsible for detecting all the text words that are similar enough to
some pattern word. We first explain how to compute the similarity between a text and a
pattern word, and then how to do the same against a large set of pattern words.

4.3.1 Similarity between Two Words

Let us assume that we have a text word z; , and a pattern word y; ,, and want to
compute the cost to convert x into y. A well known dynamic programming algorithm [§]
fills a matrix C' of size (n + 1) x (m + 1) with the following rule:

C[],O - 0
Cij = min ( Cioy 1 +0(2i,y;), Cicay +6(4,2). Ci o1 +6(e, 5),

if @, 12, = yjyj-1 then Cij_o ;9 + (2,1, 25) else 0o )

where we assume that C' yields oo when accessed at negative indices.



We fill the matrix column by column (left to right), and fill each column top to bottom.
This guarantees that previous cells are already computed when we fill C; ;. The distance
between z and y is in the final cell, C,, ,.

The rationale of this formula is as follows. C} ; represents the distance between @
and y; ;. Hence Cpy = 0 because the two empty strings are equal. To fill a general cell
C; ;. we assume inductively that all the distances between shorter strings have already
been computed, and try to convert x; ; into y;_;.

Consider the last characters z; and y;. Let us follow the four allowed operations. First,
we can substitute z; by y; (paying d(x;,y;)) and convert in the best possible way @y ;_;
into y; j—1 (at cost C;_1;_1). Second, we can delete x; (at cost 6(z;,c)) and convert
in the best way x; ;4 into vy ; (at cost C;_y;). Third, we can insert y; at the end
of z1 ; (at cost 6(c,y;)) and convert in the best way = ; into y; ;1 (paying C;;_1).
Finally, if 2;_12; = y;y;-1 then a transposition can be attempted: we convert x;_;x; into
rixio1 = y;—1y; (paying 7(z;_1,x;) for this) and convert in the best possible way x1 ;_o
into y1._j_o, at cost C;_o .

4.3.2 Comparing against Multiple Words

Now, our problem is that we have a large set of pattern words (thousands of them) and
want to find every approximate match between a given text word and a pattern word.
Comparing the patterns one by one is a naive solution, but we present a better one.

We address this problem as follows. We build a trie data structure on the set of pattern
words, which permits us simulating the cost computation algorithm of Section 4.3.1 so
as to compare each individual text word to all the pattern words at the same time. A
trie built on a set of words is a tree with labeled edges where every node corresponds to
a unique prefix of one or more words. The root corresponds to the empty string, . If a
node corresponds to string z and it has a child by an edge labeled a, then the child node
corresponds to the string za. The leaves of the trie correspond to complete words.

Let us assume that our text word is the string x and our pattern word (any of them)
is y. All those pattern words y are stored together in the trie. Since each node of the trie
represents a prefix of the set of patterns (in our example, the first node of the third line
represents "ab", which is a prefix of two of the words of the trie), the plan is to go down
the trie by all the possible branches, and fill for every node a new column of the dynamic
programming matrix of Section 4.3.1. The idea is that the column computed for a node
that represents the string z corresponds to the C' matrix between our text string = and
the pattern prefix z.

According to the formula to fill C' of Section 4.3.1, we initialize the first column
Cio = Yi_,6(xi,2), which corresponds to the root of the trie, i.e. the empty string
(which is a prefix of every pattern). Now, we descend recursively by every branch of
the trie. When we descend by a branch labeled by the letter a, we fill a new column
which corresponds to adding letter a to the current pattern prefix z. Hence, children
nodes generate their column using that of their parent and grandparent nodes (recall that
transpositions make the current column dependent on the two previous ones). Note that
since a node may have several children, different columns can follow from a given one.

When we arrive to the leaves of the trie, we have computed the cost matrix C' between
the text word o and some pattern word y, so we check whether the last cell of the final



column is smaller than the threshold. If this is the case, then the corresponding pattern
word matches the text word.

So the trie is used as a device to avoid repeating the computation of the cost against
the same prefixes of many patterns. This algorithm is not new but an adaptation of
existing techniques [16, 5. We reduce the traversal cost further by performing several
improvements over the basic algorithm. For lack of space we just mention the most
important: it is possible to determine, prior to reaching the leaves, that the current
branch cannot produce any relevant match: if all the values of the current column are
larger than the threshold, then a match cannot occur since we can only increase the cost
or at best keep it the same.

Figure 2 shows how to search the text word "abord" in an example trie holding the
words "abacus", "aboard", "board" and "border". We assume that all the operations
cost 1 and that our threshold is 2. In this case the pattern words "aboard" and "board"
match, but "abacus" and "border" do not. If we computed the 4 matrices separately,
we would have filled 27 columns, while the trie permitted us to compute only 19, mostly
due to shared prefixes (the reduction is much larger when there are many patterns and
hence many prefixes shared). In the example we do not need to traverse all the path of
"abacus", since at the point of "abacu" it is already clear that a match is not possible.
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Figure 2: Searching "abord" with threshold 2 in our example trie.

4.4 Recognizing Whole Patterns

We first explain how to determine, given two sequences of words, whether they match or
not under the (I, D) restriction. Later we show how to apply this algorithm only using
the information of words (approximately) matched.



4.4.1 Sequential Word Matching

Let us assume that our pattern is a sequence of words P = pips...p,. Also assume that
we have a specific sequence of text words 1" = tyt5...t,. Furthermore, for each text word
t; and each pattern word p; we have precomputed the answer to the question “does ¢;
match p;?”. The following algorithm, which is new as far as we know, permits evaluating
the similarity between P and T

We consider the words t; one by one, and for each new word we (re)fill a matrix W of
m + 1 rows and I + 1 columns. After we have processed t; ...t;, it holds that W is the
minimum number of deletions necessary to match p; ...p; against ¢;...¢; permitting at
most £ insertions. Hence, P and T match if and only if at the end it holds W, ; < D.

Before processing the first text word we initialize W with the formula W;;, = j.
which means that in order to match p; ...p; against ¢ with at most £ insertions, we need
the deletion of the j pattern words (indeed the insertions are not used). When we have a
new text word t;, we update W (which refers to t1...t; 1) to W' using the formula

!
0,k — WO,lcfl

]{,k = if Pj :t7 then ijl,k else min(W}fl,k+1,Wj,k,1), j> 0

whose rationale is as follows. If we consider the empty pattern (j = 0), then the question
is how many deletions are necessary to match ¢ against ¢; ...¢; with k insertions. Clearly
the answer is zero for i < k and oo otherwise. Alternatively, this can be expressed as:
zero if i = 0 (which matches our initialization W;, = j), otherwise the same value as for
i —1 with & — 1 insertions (which is precisely Wy ,_1). We assume that W delivers oo
when accessed outside bounds, so the oo shows up when we use this scheme for i > k..

Let us now consider a nonempty pattern. If the new text word matches p;, then
the number of deletions necessary to match p;...p; against ¢;...¢; permitting up to &
insertions is the same as that for matching p,...p;_1 against #,...%;,_; permitting up
to k insertions. Otherwise we must do something with those p; and t; that refuse to
match. A first choice is to get rid of the last p; (paying a deletion) and match in the best
possible way p; ...p; 1 against ¢, . ..t;, which can be done with W} _, ; deletions (we keep
k because we have not used insertions). Note that we use W' instead of W because we
refer to 7, not 7 — 1. The second choice is to get rid of the last #; by inserting it at the end
of p1...p;, and then convert in the best possible way p; ...p; into #;...%;_1, using W,
deletions (it is £ — 1 because we have used one insertion).

It is easy to keep W and W' in the same matrix, as long as we fill it for decreasing
values of k£ and inside each £ for increasing values of j.

Something that is interesting for what comes next is that, if we know that the next s
text words do not match against any pattern word, then we can directly skip them in one
shot. The reason is that the only way to deal with these words is inserting them into the
pattern, so for each of them we will have to shift all the W, values to the right. Faster
than that is to shift virtually, i.e. keep a A value initialized in zero and accessing W ;_a
every time we need the value of W; ;. Hence, we can process the sequence of s text words
by assigning A < A + s.

For lack of space we omit the modifications necessary to accomodate the particular
restrictions for matching personal and company names.



4.4.2 Operating with Triggered Occurrences

Finally, we explain how we simulate the algorithm of Section 4.4.1 when, for a given
pattern, we are only notified of relevant words that appear as the text is scanned.

We keep for every pattern P a list of up to m+1I pairs (posy, masky) ... (pos,, masky),
where pos, is the index of a text word that has matched a word in P and mask, is a bit
mask (of m bits) indicating which pattern words have been matched by t,,5,. The positions
are in increasing order in the list, pos, < pos,y1. After we have processed text word t;,
the following invariants hold on the list of pairs stored for every P: (1) Every occurrence
ending before pos; stored has already been reported. (2) It holds pos; —pos; +1 < m+1.
Since m + I is the maximum possible length of an occurrence of P, this means that all
the window could be part of a single occurrence, and hence we still do not have enough
information to determine a maximal match starting at pos;.

The word matching algorithm processes each text word in turn. Some data are stored
at the trie leaves so that each time a word y is found in the trie, we can identify the
patterns the word y belongs to and its index(es) in those patterns (i.e. those (P, j) such
that y = p;). For each of these patterns involved, we have to carry out some actions.

First, say that we find that a word ¢; matches y = p;. We start by adding (pos¢41, maskeiq) =
(i,{j}) at the end of the list of P (and increment ¢ of course). In fact it is possible that
t; has already matched some other word of P, in which case i = pos,. In this case we do
not add a new entry to the list but simply add j to the set represented by the bit mask
mask,. indicating that 7; also matches p;.

If the enlargement of the window does not make it exceed the size m + I, nothing else
needs to be done. However, if after the insertion we have that pos;, — pos; +1 > m + I,
then we need to restore the invariants. We have now information on a text area that spans
more than m + I words, which is enough to report at least maximal matches starting at
POS1.

The idea is then to remove pairs from the beginning of the list until it covers an area
not larger than m + [. However, prior to deleting each pair, we must make sure that
a maximal match cannot start at it. So, while pos, — pos; +1 > m + I, we check for
a maximal occurrence starting at text position pos;. If it is not found, we remove the
first entry (pos;, mask;) and make the list start at pos,. If, on the other hand, we find a
maximal match spanning the text area [posi, pos.|, we report it and make the list start
at pos, + 1. This last assertion means that our reporting is greedy, i.e. no overlapping
sequences are reported.

Checking for a maximal occurrence is done using the sequential word matching algo-
rithm of Section 4.4.1: we initialize the matrix and feed it with the text words of the
window. The precomputed answers to “p; = ;77 are precisely in the bit mask mask;
(so we do not have to really look at the text). We abandon the algorithm only when it
holds W, ; > D for all j (since no occurrence can appear later). This eventually happens
because our window is long enough. When this finally occurs, we check which was the
last window position where we found a match, i.e. the last position pos, where the matrix
satisfied W,,,; < D. If this ever happened, then that e is the end of a maximal occur-
rence, otherwise there are no occurrences starting at pos;. Occurrences are reported at
their exact text positions thanks to information kept together with every pair.

Note that between consecutive entries (pos,, mask,) and (pos,,1, mask,,1) we have



pos, 11 —pos, — 1 text words that match no pattern word. Here is where we use our ability
to process all the gap in one shot.

We can avoid the sequential matching in some cases. First, if the length of the list
of pairs is ¢ < m — D, then we will need more than D deletions to match it. Second, if
the accumulated gap length pos, — pos; — (¢ — 1) > m + I then we will need more than
insertions. We keep track of those values so as to verify as little as possible.

5 Performance

We consider now the performance of our system, both in theory and in practice.

Analysis. Let us assume that we have a text of N words, where we have to search for
M patterns of m words each, permitting I insertions and D deletions when matching
phrases. Assume that words have w letters on average. We estimate the cost of our
algorithm as follows.

The trie of the Mm words has O(Mm) nodes on average [15]. Each time we traverse
it with backtracking permitting a maximum error threshold we touch O((Mm)*) nodes,
for some 0 < a < 1 that depends on the threshold and the costs of the operations
(under a simple model of constant probability of traversing an edge [1]). Since we fill a
column of the matrix at each node, we have a total cost of O(Nw(Mm)®) average time
for recognizing pattern words. The space necessary for the traversal is that to store the
trie, O(Mm), plus that of the backtracking. This last one is proportional to the height
of the trie because we need to store only the columns of the current path during the
backtracking, which gives O(wlog(Mm)) [15].

Let us now consider recognizing whole patterns. Unlike words, each complete pattern
is in general different from the rest, so we can consider that their probability of occurring
(approximately) in the text is additive. Hence, if we have M patterns we expect that they
will trigger O(N M) verifications (albeit multiplied by a very small constant). Assuming
that every time a word from a pattern appears we add a node to the list of that pattern,
and that we are unable to avoid verifications, we have that every node that enters the list
needs to exit it, and in order to exit the list a verification is necessary. The verification
needs to fill the W matrix, of size O(Im), a number of times which is at most m + I.
Hence the total cost of this level is pessimistically bounded by O(MNIm(m + I)). The
space required is that of one list per pattern, O(M(m + I)).

Hence the total cost of the algorithm is O(N (w(Mm)*+ MmlI(m+1))) and the space
is O(Mm+wlog(Mm)+ M(m+1)). If we are interested in the behavior of the algorithm
when the text size N or the number of patterns M grow, and want to assume that the
other quantities D, I, m and w remain more or less constant, then we can make the
simpler statement that the algorithm is O(NM®) time to traverse the trie and O(NM)
to process the sequences of words. Despite that this is formally O(N M), in practice the
time spent at the trie dominates, as processing the sequences of words is multiplied by a
much smaller constant. Hence in practice the algorithm behaves more like O(NM®) for
0 < a < 1. The space required is O(M).



Experimental results. We have tested our algorithm in a real case (see a brief de-
scription in the Conclusions).

We took our measures in a development machine, a Sun UltraSparc-1 of 167 MHz
and 64 Mb of RAM, running Solaris 2.5.1. Since there is no doubt that the algorithm
is linear time with N, we have fixed a text of 1 Mb size. In this text, we searched the
first M = 5,000 names of our test data, the first M = 10,000 names, and so on until
M = 65,000. Also we have noticed that the process is strongly CPU bound, so we measure
user times, as these turn out to be very close to elapsed times.

Figure 3 shows the results. We show a plot with all the figures and also a zoomed
version to appreciate the cheaper parts of the cost.

Times for 1 Mb of text Times for 1 Mb of text

Boot ——
4 + Scan —<—

User time (minutes)
CPU time (seconds)
N
(6]

70 0 10 20 30 40 50 60 70
Number of patterns (thousands) Number of patterns (thousands)

Figure 3: Search time for 1 Mb of text as the number of patterns M grows. On the left
we show all the times and on the right a detail of the cheaper costs.

The Boot time is that of loading the M patterns from disk and setting up the trie
and other data structures to start the search. As it can be seen, this cost is negligible
compared to the rest. Predictably, it grows linearly with M and it is independent of N.
A least squares estimation yields 0.17 + 6.4 x 107°M seconds (1.5% of relative error).

The Scan time is that of tokenizing the text: reading , separating the words, normal-
izing, removing stopwords, keeping positional information to permit reporting the exact
positions of the occurrences, searching the dictionaries, etc. This is basically dependent
on NN, although there is a slight dependence on M probably due to less locality of reference
as M grows. A least squares estimation yields 2.05N + 1.6 x 107°MN (4% of relative
error), where N is measured in megabytes (not in words).

The Trie time is that of searching every relevant word in the trie of pattern words, with
backtracking. This is by far the heaviest part of the process, and it is clearly sublinear.
A least squares estimation yields 5.69N M6, with a relative error of 3%.

Finally, the Words time is that of verifying potentially relevant sequences of words.
We argumented that this process was linear on M, so we now check the hypothesis ¢NM?,
obtaining 0.005NM"%  which shows that it is effectively linear. Under a model of the
form ¢NM we obtained 0.01NM, with 3.7% of error.

Hence, the total cost in our machine to process M patterns on N Mb of text is
N x (2.05 4+ 5.69M%5 4+ 0.01 M), discarding negligible contributions.

The constants in the result depend on the machine we used and are only illustrative
of the relative importance of the main parts of the algorithm and of their growth rate in



terms of N and M. The production machine in Matchsimile is right now an Intel 700
MHz machine with 128 Mb of RAM, with a common IDE hard disk. In this machine we
search all the 65,000 patterns in 60 Mb of text every day, in an elapsed time of 3 hours,
much faster than in our development machine.

Let us compare this performance against that of LIKEIT. As reported in [17], that
tool is able of scanning the text for one pattern at a rate of 2.5 Mb/sec on an Intel 200
MHz processor. Lacking multipattern search capabilities, the search for M patterns in
N megabytes of text would take about 0.4/N M seconds. Extrapolating to our machine of
700 MHz, scanning 60 Mb for 65,000 names would require 5 days.

The result also depends on the search parameters. The values reported represent
a realistic scenario, since they correspond to the current real world application where
Matchsimale is being used.

6 Conclusions

The first well succeeded commercial application of this software is also called Matchsimile.
Despite that more tuning of the parameters is still needed, the combination of performance
and precision/recall has proven very good in practice for this application, which has been
responsible for the development of the software and has pushed the improvement of the
code performance and capabilities to adapt it to new circumstances.

The objective of this application is to retrieve lawyers names from official law journals
in Brazil and gather that information for each company, personalized through daily reports
that can be retrieved by www, html-mail and wap-enabled celulars (www.matchsimile.com).
Currently, three official publications are scanned daily: DOSP (Diario Oficial de Sao
Paulo), DOMG (Diario Oficial de Minas Gerais) and DOPE (Diario Oficial de Pernam-
buco). Nevertheless, this tool can be useful for other applications, like eliminating dupla-
cates in addresses lists or to identify a client in software that handles customer complaints
via e-mail.

Future plans with Matchsimile include sorting the output by decreasing similarity
with the input and incorporating new models for word matching where the order between
words is not important (useful for company names in some cases, and for personal names
with some modifications). On the side of the efficiency, we plan to improve it using a
more sophisticated technique: right now we build a trie of patterns and search every text
word sequentially. This avoids repeating the same work for similar pattern prefixes, but
similar text words are processed over an over. Using a technique known in computational
biology to find all the approximate matches between two tries [2], we plan to build a trie
with the text words and match it against the trie of pattern words. Since the whole text
will not fit in main memory, the text will be divided in chunks of appropriate size and
each chunk will be processed as a whole trie against the patterns.
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