
Mat
hsimile: A Flexible ApproximateMat
hing Tool for Personal NamesSear
hingGonzalo Navarro Ri
ardo Baeza-YatesDept. of Computer S
ien
e, University of Chile,Blan
o En
alada 2120, Santiago, Chile.fgnavarro,rbaezag�d

.u
hile.
l.Jo~ao Mar
elo Azevedo Ar
overdeMat
hsimile Ltda - CTO,Rua Ribeiro de Brito, 1002/1103, CEP 51.021-310, Re
ife-PE, Brazil.jmar
elo�mat
hsimile.
om.brAbstra
tIn this paper we present the ar
hite
ture and algorithms behind Mat
hsimile, anapproximate string mat
hing lookup tool espe
ially designed for human and
om-pany names sear
hes against a large textual database. Part of a larger informationretrieval environment, this spe
i�
 engine a

epts an input text �le with a set ofpersonal and
ompany names and a set of restri
tions for the sear
h. After a bat
hpro
essing, the engine outputs another text �le
ontaining the o

urren
es that mat
hea
h re
ord of the input names �le, a

ording to its sear
h parameters. Beyond thesimilarity sear
h
apabilities applied on ea
h word that forms a name, the tool
on-siders a set of personal names formation rules for their words su
h as
ombination,abbreviation,
hara
ter mapping, dupli
ity dete
tions, ordering, word omission andinsertion, among others. This engine is used in a su

eeded
ommer
ial appli
ation(also named Mat
hsimile), whi
h uses this tool to allow lawyers names sear
hesagainst many oÆ
ial law journals publi
ations.1 Introdu
tionLiving in a world surrounded by errors and mistakes, the overwhelming existing sear
hte
hnologies does not address the human tenden
y to be inexa
t. They were designed tomainly fo
us on exa
t mat
hing sear
hes
apabilities. Many situations tend to fail whenthose algorithms are applied, instead of performing approximate string mat
hing sear
hesin a textual database, where they have higher
han
es to su�er some kind of (undesirable)
orruption, or even when the valuable information
an su�er modi�
ations the way thatthey
an appear, in fun
tion of their nature.

Computational biology, image analysis, spee
h pro
essing, medi
al diagnosis and legaltexts
onstitute motivation examples for this kind of sear
h. In the s
ope of the last onewe have found a parti
ular situation fo
used on personal names sear
hes, where existsformation rules that
an write the same pie
e of information in many ways. In addition,we have to add typos, spelling errors, OCR errors, et
.Mat
hsimile will �nd a person name, a
ompany name or a simple geographi
al ad-dress even if the words that form the name present errors among their
hara
ters. Supposethe following example for a hypotheti
al fellow named "Juan Abigahil Eslopênio deCapriolli". This name is formed by �ve distin
t words that
an easily su�er modi�-
ations su
h as words dupli
ity, abbreviations, omissions, insertions and transpositions.Thus, the following o

urren
e triggered by Mat
hsimile would be
orre
tly evaluated forthe above example: "Caprioli, Juam A. Slopenio". Easy to be dete
ted by the humansense of similarity, but not by normal query languages, this o

urren
e has a large
han
eto be the pattern name we were looking for.The reverse s
enario is also true, when we do not know for sure what we are lookingfor. For example, we
an query a personal name like "Catano Velozo" (whi
h is wrongfor the Brazilian singer and
omposer named Caetano Veloso) and the Mat
hsimile sear
hengine on
e more will trigger o

urren
es for "Caetano B. Costa Veloso", and so on.Thus, Mat
hsimile allow users of an arbitrary information system to �nd qui
kly andeasily the information they want, even when they are not sure the way this informationshould be written or mat
hed, allowing
hara
ter and word errors.Mat
hsimile's revolutionary lookup te
hnology e�e
tively rede�nes the sear
h paradigm.Under other existing te
hnologies, the terms used in a sear
h query stri
tly limit the in-formation that the query returns; as a result, even minor errors in the query potentiallyreturn unwanted or irrelevant information. Mat
hsimile tolerates a wide spe
trum of vari-ations and errors, in an attempt to model a human notion of similarity. Despite that thisis done at a simple, low synta
ti
 level, it helps bridge the gap between human tenden
iesand
omputer requirements.To solve the problem of string mat
hing allowing errors, also
alled approximate stringmat
hing, Mat
hsimile uses a balan
e of theoreti
al data stru
tures and advan
ed te
h-niques for fast sear
hing algorithms to model a human similarity judgment under stri
ttime performan
e
onstraints. The mathemati
al properties of this type of model allowMat
hsimile to
ompute ea
h mat
h using an extremely eÆ
ient algorithm. The result isan extremely fast sear
h engine
apable to pro
ess thousands of patterns against a largetextual database (measured in Gb) in hours.Unlike the typi
al \advan
ed sear
h" features found on popular sear
h engines, Mat
h-simile uses no spe
ial query syntax - no spe
ial pre�xes, suÆxes, bra
kets, bra
es, orBoolean
onne
tives. Otherwise, Mat
hsimile lets the user personalize a set of lengthindependent personal and
ompany names,
alled \Inputs", to be sear
hed against anytextual database, independent of its length and language. It makes no language-spe
i�
assumptions, intelligently handling a

ented and spe
ial
hara
ters found in many lan-guages.This paper is organized as follows: Se
tion 2 presents related work, se
tion 3 theoverall design of the system, se
tion 4 the algorithmi
 te
hniques used by the sear
hengine, se
tion 5 analyti
al and experimental performan
e results, and the last se
tionthe
on
lusions.

2 Related WorkThe algorithmi
 problems fa
ed by Mat
hsimile lie in what is known as \approximatestring mat
hing", a well established �eld in stringology with appli
ations in text retrieval,
omputational biology, pattern re
ognition and a dozen of other �elds. The main errormodel used in approximate string mat
hing permits symbol insertions, deletions, substi-tutions and transpositions. This model has been validated many times in the past, e.g.[10, 4, 14, 6℄.The problem of approximate string mat
hing
onsists of �nding all the o

urren
esof a pattern in a text where a limited number of di�eren
es between the pattern andan o

urren
e is permitted. We distinguish between sequential and indexed solutions.Sequential solutions do not permit to prepro
ess the text. There has been resear
h onsequential sear
hing sin
e the sixties, see [11℄ for a re
ent survey. Indexed solutions permitbuilding a data stru
ture on the text beforehand in order to answer queries later. Therehas been resear
h in this trend sin
e the nineties, see [12℄ for a survey.Nevertheless, our parti
ular problem involves sear
hing thousands of patterns in a textallowing errors. Multiple approximate pattern mat
hing is a rather undeveloped area, soin Mat
hsimile we have used a
ombination of known and new te
hniques. We borrowmostly from trie ba
ktra
king te
hniques [16, 5℄.From the appli
ations point of view, there are few systems permitting approximatemat
hing on natural language text (there are more systems for spe
i�

omputationalbiology appli
ations, e.g. [5℄), and none addressing our parti
ular problem. The �rst su
hsystem was Glimpse [9℄, whi
h indexes the text and permits approximate sear
hing bylooking sequentially all the vo
abulary words. The same idea, with few modi�
ations, hasbeen used in other natural language indexes [3, 13℄.A re
ent system relying on a slightly di�erent approximate mat
hing model is LikeIt[17℄. In this system symbol transpositions are permitted and penalized a

ording to theirdistan
es from their original positions. Based on re
ent algorithmi
 developments, LikeItstill does not deal with the simultaneous sear
h of thousands of patterns.3 System Design and CapabilitiesBasi
ally, the Mat
hsimile's kernel a

epts an input text �le with a set of personal and
ompany names (also
alled patterns) with a set of parameters whi
h to determine thesear
h features to be used. The engine prepro
esses the patterns building an index basedon suÆx trees. Noti
e that in our appli
ation the text database
hanges more often thanthe patterns, so it is not worth to prepro
ess the text (for example, the oÆ
ial journalsare printed daily). Then, using this pattern index, the engine sequentially s
ans thetarget text �les. At the end, the engine outputs one text �le
ontaining the o

urren
esthat mat
hes ea
h re
ord for the input �les, and optionally
an output another text �le
ontaining spurious or weaker o

urren
es, if they were �ltered through a exa
t sear
hme
hanism based in di
tionaries.Next we highlight the main features of the parameterization.The system distinguishes between personal and
ompany names. For personal names,the input �le points out whi
h are given names and surnames. In legal texts, we will

�nd always at least one of them (in the worst
ase, one is an initial). Let us examinethe following example: "Juan Carlos Bartolomeu Mattos Netto". It
an be publishedlike this: "Matos, J. Carla B. Neto". There exists higher
han
es to be the person weare looking for. Note that we have one surname followed by on name, with a stopwordamong them with less than three
hara
ters, whi
h we
an dis
ard with a lower
ost (itsexisten
e is insigni�
ant to the �nal result). The following o

urren
e is also honored:"Juan Neto". Less
han
es to be the person we are looking for but
an be.Inside names we
an: 1) allow intruders words insertions. Ex: "Juan BeneditoNeto"; 2) set the error level applied in ea
h word (as a % of the length); 3) �lteringthe results using a di
tionary of names and surnames that dis
ard spurious o

urren
es.All these values or a
tions have a default
ase.Allowing intruders words (that ones that are not among those given for the originalinput) is meaningful if the original words are the �rst word of a name set and the lastword of a surname set respe
tively. This
ould represent people derived from the samefamily. The variable error level per word is useful when you have short and long namesthat you want to treat di�erently. The �lter
he
ks for \personal names rules formation".These rules
an di�er from language to language, depending on their
ultures and mor-phologi
al/semanti
al
onstru
tions and speaking habits. The disadvantage of this �lteris that there must exist one di
tionary for names and one for surname for ea
h languagepro
essed, so it is an optional feature.Company names
an be one or more words. Inside them we
an
ag whi
h is themost important word (that typi
ally will always appear). For example, in the followinginput re
ord: "Eletropaulo Metropolitana", the �rst word is the important one, andwill appear even with errors. We also allow to have dupli
ate input keywords for
ommonabbreviations whi
h are not due to errors. For example: "Eletrop Metrop".All these parameters and a
tions
an be prede�ned through a
on�guration �le. Inparti
ular, de�nes whi
h set of
hara
ters
an
ompose one valid word. Numbers
anbe dis
arded be
ause there is no sense to have them inside personal names. Ea
h wordis a sequen
e of a valid
hara
ters subset, surrounded by spa
e
hara
ter at both sides.Nevertheless, a minimal length
an be spe
i�ed (the default is 3). Shorter sequen
es arenot
onsidered words (so they
annot be intruder words).Mapping of
hara
tars
an also be spe
i�ed. This
an simulate the \
ase insensitive"behavior, for example, and dis
ard the a

ents arose from our alphabet. The \mapping"is a good te
hnique to enhan
e the algorithm performan
e, allowing the
ode to work witha valid subset of
hara
ters determined by the \word
hara
ters" session.The default
ost of ea
h error is 1. However, this
an also be
hanged, spe
ifyingdi�erent
osts for inserting, deletion, repla
ing, or transposing letters. In this
ase themaximum allowed
ost to trigger a mat
h must be spe
i�ed.4 Algorithmi
 Prin
iplesWe des
ribe in this se
tion the algorithms and data stru
tures behind Mat
hsimile. Someof these are already known in the s
ienti�
 literature, while others have been spe
i�
allydeveloped for our needs. This last
ategory in
ludes a phrase mat
hing algorithm andour overall ar
hite
ture.

4.1 The Sear
h ProblemWe �rst de�ne the sear
h problem pre
isely, motivating the de
isions taken.De�ning the text and patterns. We
onsider the text as a sequen
e of words. Aword is a string formed by letters and delimited by separators, whi
h
an be de�ned by theuser. On the other hand, we have a set of patterns to sear
h in the text. Ea
h pattern isformed by a sequen
e of pattern words. Patterns and text words obey the same formationrules. The user
an also spe
ify a mapping of
hara
ters, whi
h is used to normalize everytext and pattern word, as well as a set of stopwords, i.e. text and pattern words that willnot be
onsidered when mat
hing.Now that we have de�ned pre
isely what is the text and what is the set of patterns,we de�ne the mat
hing
riterion. There are two levels of mat
hing. A �rst level dealswith single words and their possible typing or spelling errors. A se
ond level deals withphrases (sequen
es of words) and their possible di�eren
es in arrangement.Intraword similarity. Our �rst task is to determine when a text and a pattern wordare similar enough. By \similar enough" we mean that the
ost to transform the textword into the pattern word is smaller than a user de�ned threshold. The user
an spe
ifythis threshold in several ways, and it
an be di�erent for every pattern word.There are many forms to de�ne \
ost", but a popular one is the minimum numberof insertions, deletions, substitutions and transposition of adja
ent
hara
ters that arene
essary to
onvert the text word into the pattern word. This is a variant over theoriginal Levenshtein distan
e [7, 8℄.The e�e
tiveness of this
ost measure is well known. For instan
e, about 80% of thetypi
al typing errors are
orre
ted allowing just one insertion, deletion, substitution ortransposition [4℄. It is also known, however [14, 6℄, that making every su
h operation to
ost 1 (i.e. just
ounting the number of those operations) is simplisti
, as mu
h betterresults are a
hieved by permitting
ommon errors to
ost less. For example, we
angive a lower
ost to the transposition of two letters that are
lose in the keyboard orto omissions due to
ommon spelling errors. So we
hoose a
ost model where all theseoperations are permitted but we let the user
hange the
ost of the insertion or deletionof every
hara
ter, and the
ost of substituting or transposing every
hara
ter with everyother. This permits us parameterizing the tool to di�erent s
enarios and languages.The
ost model is de�ned by means of two fun
tions, Æ and � , whi
h represent the
osts to perform the diverse alterations on the text word (we
ould have
hosen to thinkon altering pattern word instead). For two di�erent letters a and b, Æ(a; b) is the
ost tosubstitute a by b in the text word (it is assumed that Æ(a; a) = 0). For a letter a presentin the text word, Æ(a; ") is the
ost to delete a from the word. For a letter a, Æ("; a) is the
ost to insert a in the word. Finally, for two di�erent letters a followed by b, adja
ent inthe text word, �(a; b) is the
ost to transpose them, i.e. to
onvert ab into ba.Phrase similarity. We de�ne now when two phrases mat
h. The �rst is a sequen
eof text words and the se
ond is a whole pattern. From now on, we say that a text anda pattern words mat
h whenever they are similar enough a

ording to the user de�nedthreshold, and we disregard their internal di�eren
es.

For sequen
es of words, we use a model where we
an delete pattern words and inserttext words in the pattern (or whi
h is the same, delete text words). Permitting substi-tution of words seems unreasonable given that we already dete
t words that are
lose toea
h other and assume that they mat
h. We found the transpositions to be of little useat this level, although for future work we are
onsidering models where the order of thewords is irrelevant.The similarity
riterion for phrases in
ludes two thresholds. We permit deleting atmost D words from the pattern, and inserting at most I spurious (text) words in thepattern. The user has several ways to spe
ify these thresholds, in general or for spe
i�
patterns in the set. This turned out to be more adequate than setting a single threshold,say for I + D, be
ause we
an
ontrol more pre
isely the minimum amount of patternwords that must be present in order to
onsider that a mat
h has o

urred, as well ashow many spurious words
an be reasonably a

epted in between interesting words.For our parti
ular Portuguese language appli
ation of personal and
ompanies namessear
hing, however, we need a �ner
ontrol. This has lead to some extensions of the abovemat
hing
riterion (whi
h
an be swit
hed on or o� for every pattern).Reporting the results. The goal is to report maximal sequen
es of text words thatmat
h some pattern by outputting its exa
t text position (as well as the identi�
ation ofthe pattern mat
hed and some information on how
lose is the o

urren
e to the
orre
tlywritten pattern, used for ranking the results). The word \maximal" means that we
annotenlarge the sequen
e reported and still make it mat
h.Reporting maximal o

urren
es is in general a good
hoi
e be
ause it
alls the attentionof the user over a longer sequen
e of text words that mat
h the pattern, giving a bettergrasp of the relevan
e of the mat
h. For example, if we permit one insertion and onedeletion, then "Maria Rosa Ferreira de Oliveira" mat
hes against "Maria Ferreirade Oliveira", yet it also mat
hes with the pre�x "Maria Ferreira".4.2 General Ar
hite
tureNow it should be
lear that our problem is to dete
t patterns in the text even when thewords are spelled di�erently and arranged di�erently. Hen
e the software works at threelevels: (1) Text tokenizing, a very basi
 layer that delimits and normalizes text words;(2) Re
ognizing pattern words, whi
h re
ognizes the text words with enough similarity topattern words, the similarity being measured at the
hara
ter level; and (3) Re
ognizingwhole patterns, whi
h re
ognizes text phrases (sequen
es of words) whi
h are similarenough to whole patterns, where we measure the similarity at the word level.The �rst level implements a reading routine that delivers the text words one by one.It delimits the words, maps the
hara
ters, removes stopwords and delivers normalizedwords to the next level. The set of patterns is normalized a

ording to the same rules.The se
ond level pro
esses ea
h word re
eived against the set of all the patterns inone shot. A suitable data stru
ture is used to arrange all the set of patterns in order topermit simultaneously
omparing the text word against the whole set of patterns. As aresult, this level triggers for ea
h text word a set of o

urren
es (permitting errors) ofthe word inside the patterns, pointing out every pattern involved and spe
ifying whi
hpattern word has mat
hed.

The third level is in
harge of mat
hing the whole pattern. However, it is invoked onlywhen a text word relevant to some pattern has been re
ognized. This level keeps for everypattern P information about the last text window where the pattern
ould mat
h. Sin
ewe report maximal o

urren
es, we need to have surpassed the area of interest beforeanalyzing the window and reporting possible o

urren
es.Hen
e, we run the phrase mat
hing algorithm only over text windows that have some
han
e of being similar enough to a pattern. Ea
h text word is analyzed in turn, andthe patterns holding similar words get their windows updated. Those that may triggera mat
h are analyzed at that moment. At the end of ea
h text do
ument pro
essedwe in
rement our virtual word
ount by a number large enough to avoid any
onfusionwith previous text. When we �nish pro
essing all the text
olle
tion we must
he
k allthe patterns for remaining mat
hes not yet reported be
ause we did not know they weremaximal (note that we know that a mat
h is maximal only when we �nd that the nexto

urren
e in the text is far ahead).The ar
hite
ture is shown in Figure 1. We detail now the two most important levels.
Search

options

Text tokenizer
Pattern words

recognizer

Whole patterns

recognized

Text Patterns

text words patterns
matches in

occurrences
whole patternFigure 1: The ar
hite
ture of the algorithm.4.3 Re
ognizing Pattern WordsThe �rst level is responsible for dete
ting all the text words that are similar enough tosome pattern word. We �rst explain how to
ompute the similarity between a text and apattern word, and then how to do the same against a large set of pattern words.4.3.1 Similarity between Two WordsLet us assume that we have a text word x1:::n and a pattern word y1:::m and want to
ompute the
ost to
onvert x into y. A well known dynami
 programming algorithm [8℄�lls a matrix C of size (n+ 1)� (m+ 1) with the following rule:C0;0 = 0Ci;j = min (Ci�1;j�1 + Æ(xi; yj); Ci�1;j + Æ(xi; "); Ci;j�1 + Æ("; yj);if xi�1xi = yjyj�1 then Ci�2;j�2 + �(xi�1; xi) else 1)where we assume that C yields 1 when a

essed at negative indi
es.

We �ll the matrix
olumn by
olumn (left to right), and �ll ea
h
olumn top to bottom.This guarantees that previous
ells are already
omputed when we �ll Ci;j. The distan
ebetween x and y is in the �nal
ell, Cn;m.The rationale of this formula is as follows. Ci;j represents the distan
e between x1:::iand y1:::j. Hen
e C0;0 = 0 be
ause the two empty strings are equal. To �ll a general
ellCi;j, we assume indu
tively that all the distan
es between shorter strings have alreadybeen
omputed, and try to
onvert x1::i into y1::j.Consider the last
hara
ters xi and yj. Let us follow the four allowed operations. First,we
an substitute xi by yj (paying Æ(xi; yj)) and
onvert in the best possible way x1::i�1into y1::j�1 (at
ost Ci�1;j�1). Se
ond, we
an delete xi (at
ost Æ(xi; ")) and
onvertin the best way x1::i�1 into y1::j (at
ost Ci�1;j). Third, we
an insert yj at the endof x1::i (at
ost Æ("; yj)) and
onvert in the best way x1::i into y1::j�1 (paying Ci;j�1).Finally, if xi�1xi = yjyj�1 then a transposition
an be attempted: we
onvert xi�1xi intoxixi�1 = yj�1yj (paying �(xi�1; xi) for this) and
onvert in the best possible way x1::i�2into y1::j�2, at
ost Ci�2;j�2.4.3.2 Comparing against Multiple WordsNow, our problem is that we have a large set of pattern words (thousands of them) andwant to �nd every approximate mat
h between a given text word and a pattern word.Comparing the patterns one by one is a naive solution, but we present a better one.We address this problem as follows. We build a trie data stru
ture on the set of patternwords, whi
h permits us simulating the
ost
omputation algorithm of Se
tion 4.3.1 soas to
ompare ea
h individual text word to all the pattern words at the same time. Atrie built on a set of words is a tree with labeled edges where every node
orresponds toa unique pre�x of one or more words. The root
orresponds to the empty string, ". If anode
orresponds to string z and it has a
hild by an edge labeled a, then the
hild node
orresponds to the string za. The leaves of the trie
orrespond to
omplete words.Let us assume that our text word is the string x and our pattern word (any of them)is y. All those pattern words y are stored together in the trie. Sin
e ea
h node of the trierepresents a pre�x of the set of patterns (in our example, the �rst node of the third linerepresents "ab", whi
h is a pre�x of two of the words of the trie), the plan is to go downthe trie by all the possible bran
hes, and �ll for every node a new
olumn of the dynami
programming matrix of Se
tion 4.3.1. The idea is that the
olumn
omputed for a nodethat represents the string z
orresponds to the C matrix between our text string x andthe pattern pre�x z.A

ording to the formula to �ll C of Se
tion 4.3.1, we initialize the �rst
olumnCi;0 = Pik=1 Æ(xi; "), whi
h
orresponds to the root of the trie, i.e. the empty string(whi
h is a pre�x of every pattern). Now, we des
end re
ursively by every bran
h ofthe trie. When we des
end by a bran
h labeled by the letter a, we �ll a new
olumnwhi
h
orresponds to adding letter a to the
urrent pattern pre�x z. Hen
e,
hildrennodes generate their
olumn using that of their parent and grandparent nodes (re
all thattranspositions make the
urrent
olumn dependent on the two previous ones). Note thatsin
e a node may have several
hildren, di�erent
olumns
an follow from a given one.When we arrive to the leaves of the trie, we have
omputed the
ost matrix C betweenthe text word x and some pattern word y, so we
he
k whether the last
ell of the �nal

olumn is smaller than the threshold. If this is the
ase, then the
orresponding patternword mat
hes the text word.So the trie is used as a devi
e to avoid repeating the
omputation of the
ost againstthe same pre�xes of many patterns. This algorithm is not new but an adaptation ofexisting te
hniques [16, 5℄. We redu
e the traversal
ost further by performing severalimprovements over the basi
 algorithm. For la
k of spa
e we just mention the mostimportant: it is possible to determine, prior to rea
hing the leaves, that the
urrentbran
h
annot produ
e any relevant mat
h: if all the values of the
urrent
olumn arelarger than the threshold, then a mat
h
annot o

ur sin
e we
an only in
rease the
ostor at best keep it the same.Figure 2 shows how to sear
h the text word "abord" in an example trie holding thewords "aba
us", "aboard", "board" and "border". We assume that all the operations
ost 1 and that our threshold is 2. In this
ase the pattern words "aboard" and "board"mat
h, but "aba
us" and "border" do not. If we
omputed the 4 matri
es separately,we would have �lled 27
olumns, while the trie permitted us to
ompute only 19, mostlydue to shared pre�xes (the redu
tion is mu
h larger when there are many patterns andhen
e many pre�xes shared). In the example we do not need to traverse all the path of"aba
us", sin
e at the point of "aba
u" it is already
lear that a mat
h is not possible.

a b a c u s
0
1
2
3
4
5

a
b
o
r
d

1 2 3 4 5 6
0
1
2
3
4

1
0
1
2
3

2
1
1
2
3

3
2
2
2
3

4
3
3
3
3

5
4
4
4
4

o

a
b
o
r
d

0
1
2
3
4
5

1 2 3 4 5 6
1
1
2
3
4

2
2
1
2
3

3
3
2
1
2

4
4
3
2
1

5
5
4
3
2

6
6
5
4
3

b o r d e r

��
��
��
��

��
��
��
��

s

c

u

b

a

a

r

d

o r

a

a

b

r

d

d

e

r

a
b
o
r
d

0
1
2
3
4
5

1 2 3 4 5 6
0
1
2
3
4

1
0
1
2
3

2
1
0
1
2

3
2
1
1
2

4
3
2
1
2

5
4
3
2
1

a b o a r d

a
b
o
r
d

0
1
2
3
4
5

1 2 3 4 5
1
1
2
3
4

2
2
1
2
3

2
3
2
2
3

3
3
3
2
3

4
4
4
3
2

b o a r d

Figure 2: Sear
hing "abord" with threshold 2 in our example trie.4.4 Re
ognizing Whole PatternsWe �rst explain how to determine, given two sequen
es of words, whether they mat
h ornot under the (I;D) restri
tion. Later we show how to apply this algorithm only usingthe information of words (approximately) mat
hed.

4.4.1 Sequential Word Mat
hingLet us assume that our pattern is a sequen
e of words P = p1p2 : : : pm. Also assume thatwe have a spe
i�
 sequen
e of text words T = t1t2 : : : tn. Furthermore, for ea
h text wordti and ea
h pattern word pj we have pre
omputed the answer to the question \does timat
h pj?". The following algorithm, whi
h is new as far as we know, permits evaluatingthe similarity between P and T .We
onsider the words ti one by one, and for ea
h new word we (re)�ll a matrix W ofm+ 1 rows and I + 1
olumns. After we have pro
essed t1 : : : ti, it holds that Wj;k is theminimum number of deletions ne
essary to mat
h p1 : : : pj against t1 : : : ti permitting atmost k insertions. Hen
e, P and T mat
h if and only if at the end it holds Wm;I � D.Before pro
essing the �rst text word we initialize W with the formula Wj;k = j,whi
h means that in order to mat
h p1 : : : pj against " with at most k insertions, we needthe deletion of the j pattern words (indeed the insertions are not used). When we have anew text word ti, we update W (whi
h refers to t1 : : : ti�1) to W 0 using the formulaW 00;k = W0;k�1W 0j;k = if pj = ti then Wj�1;k else min(W 0j�1;k + 1;Wj;k�1); j > 0whose rationale is as follows. If we
onsider the empty pattern (j = 0), then the questionis how many deletions are ne
essary to mat
h " against t1 : : : ti with k insertions. Clearlythe answer is zero for i � k and 1 otherwise. Alternatively, this
an be expressed as:zero if i = 0 (whi
h mat
hes our initialization Wj;k = j), otherwise the same value as fori � 1 with k � 1 insertions (whi
h is pre
isely W0;k�1). We assume that W delivers 1when a

essed outside bounds, so the 1 shows up when we use this s
heme for i > k..Let us now
onsider a nonempty pattern. If the new text word mat
hes pj, thenthe number of deletions ne
essary to mat
h p1 : : : pj against t1 : : : ti permitting up to kinsertions is the same as that for mat
hing p1 : : : pj�1 against t1 : : : ti�1 permitting upto k insertions. Otherwise we must do something with those pj and ti that refuse tomat
h. A �rst
hoi
e is to get rid of the last pj (paying a deletion) and mat
h in the bestpossible way p1 : : : pj�1 against t1 : : : ti, whi
h
an be done with W 0j�1;k deletions (we keepk be
ause we have not used insertions). Note that we use W 0 instead of W be
ause werefer to i, not i� 1. The se
ond
hoi
e is to get rid of the last ti by inserting it at the endof p1 : : : pj, and then
onvert in the best possible way p1 : : : pj into t1 : : : ti�1, using Wj;k�1deletions (it is k � 1 be
ause we have used one insertion).It is easy to keep W and W 0 in the same matrix, as long as we �ll it for de
reasingvalues of k and inside ea
h k for in
reasing values of j.Something that is interesting for what
omes next is that, if we know that the next stext words do not mat
h against any pattern word, then we
an dire
tly skip them in oneshot. The reason is that the only way to deal with these words is inserting them into thepattern, so for ea
h of them we will have to shift all the Wj;k values to the right. Fasterthan that is to shift virtually, i.e. keep a � value initialized in zero and a

essing Wj;k��every time we need the value of Wj;k. Hen
e, we
an pro
ess the sequen
e of s text wordsby assigning � �+ s.For la
k of spa
e we omit the modi�
ations ne
essary to a

omodate the parti
ularrestri
tions for mat
hing personal and
ompany names.

4.4.2 Operating with Triggered O

urren
esFinally, we explain how we simulate the algorithm of Se
tion 4.4.1 when, for a givenpattern, we are only noti�ed of relevant words that appear as the text is s
anned.We keep for every pattern P a list of up to m+ I pairs (pos1; mask1) : : : (pos`; mask`),where posr is the index of a text word that has mat
hed a word in P and maskr is a bitmask (ofm bits) indi
ating whi
h pattern words have been mat
hed by tposr . The positionsare in in
reasing order in the list, posr < posr+1. After we have pro
essed text word ti,the following invariants hold on the list of pairs stored for every P : (1) Every o

urren
eending before pos1 stored has already been reported. (2) It holds pos`�pos1+1 � m+ I.Sin
e m + I is the maximum possible length of an o

urren
e of P , this means that allthe window
ould be part of a single o

urren
e, and hen
e we still do not have enoughinformation to determine a maximal mat
h starting at pos1.The word mat
hing algorithm pro
esses ea
h text word in turn. Some data are storedat the trie leaves so that ea
h time a word y is found in the trie, we
an identify thepatterns the word y belongs to and its index(es) in those patterns (i.e. those (P; j) su
hthat y = pj). For ea
h of these patterns involved, we have to
arry out some a
tions.First, say that we �nd that a word ti mat
hes y = pj. We start by adding (pos`+1; mask`+1) =(i; fjg) at the end of the list of P (and in
rement ` of
ourse). In fa
t it is possible thatti has already mat
hed some other word of P , in whi
h
ase i = pos`. In this
ase we donot add a new entry to the list but simply add j to the set represented by the bit maskmask`, indi
ating that tj also mat
hes pj.If the enlargement of the window does not make it ex
eed the size m+ I, nothing elseneeds to be done. However, if after the insertion we have that pos` � pos1 + 1 > m + I,then we need to restore the invariants. We have now information on a text area that spansmore than m + I words, whi
h is enough to report at least maximal mat
hes starting atpos1.The idea is then to remove pairs from the beginning of the list until it
overs an areanot larger than m + I. However, prior to deleting ea
h pair, we must make sure thata maximal mat
h
annot start at it. So, while pos` � pos1 + 1 > m + I, we
he
k fora maximal o

urren
e starting at text position pos1. If it is not found, we remove the�rst entry (pos1; mask1) and make the list start at pos2. If, on the other hand, we �nd amaximal mat
h spanning the text area [pos1; pose℄, we report it and make the list startat pose + 1. This last assertion means that our reporting is greedy, i.e. no overlappingsequen
es are reported.Che
king for a maximal o

urren
e is done using the sequential word mat
hing algo-rithm of Se
tion 4.4.1: we initialize the matrix and feed it with the text words of thewindow. The pre
omputed answers to \pj = ti?" are pre
isely in the bit mask maski(so we do not have to really look at the text). We abandon the algorithm only when itholds Wj;I > D for all j (sin
e no o

urren
e
an appear later). This eventually happensbe
ause our window is long enough. When this �nally o

urs, we
he
k whi
h was thelast window position where we found a mat
h, i.e. the last position pose where the matrixsatis�ed Wm;I � D. If this ever happened, then that e is the end of a maximal o

ur-ren
e, otherwise there are no o

urren
es starting at pos1. O

urren
es are reported attheir exa
t text positions thanks to information kept together with every pair.Note that between
onse
utive entries (posr; maskr) and (posr+1; maskr+1) we have

posr+1�posr�1 text words that mat
h no pattern word. Here is where we use our abilityto pro
ess all the gap in one shot.We
an avoid the sequential mat
hing in some
ases. First, if the length of the listof pairs is ` < m �D, then we will need more than D deletions to mat
h it. Se
ond, ifthe a

umulated gap length pos`� pos1� (`� 1) > m+ I then we will need more than Iinsertions. We keep tra
k of those values so as to verify as little as possible.5 Performan
eWe
onsider now the performan
e of our system, both in theory and in pra
ti
e.Analysis. Let us assume that we have a text of N words, where we have to sear
h forM patterns of m words ea
h, permitting I insertions and D deletions when mat
hingphrases. Assume that words have w letters on average. We estimate the
ost of ouralgorithm as follows.The trie of the Mm words has O(Mm) nodes on average [15℄. Ea
h time we traverseit with ba
ktra
king permitting a maximum error threshold we tou
h O((Mm)�) nodes,for some 0 < � < 1 that depends on the threshold and the
osts of the operations(under a simple model of
onstant probability of traversing an edge [1℄). Sin
e we �ll a
olumn of the matrix at ea
h node, we have a total
ost of O(Nw(Mm)�) average timefor re
ognizing pattern words. The spa
e ne
essary for the traversal is that to store thetrie, O(Mm), plus that of the ba
ktra
king. This last one is proportional to the heightof the trie be
ause we need to store only the
olumns of the
urrent path during theba
ktra
king, whi
h gives O(w log(Mm)) [15℄.Let us now
onsider re
ognizing whole patterns. Unlike words, ea
h
omplete patternis in general di�erent from the rest, so we
an
onsider that their probability of o

urring(approximately) in the text is additive. Hen
e, if we have M patterns we expe
t that theywill trigger O(NM) veri�
ations (albeit multiplied by a very small
onstant). Assumingthat every time a word from a pattern appears we add a node to the list of that pattern,and that we are unable to avoid veri�
ations, we have that every node that enters the listneeds to exit it, and in order to exit the list a veri�
ation is ne
essary. The veri�
ationneeds to �ll the W matrix, of size O(Im), a number of times whi
h is at most m + I.Hen
e the total
ost of this level is pessimisti
ally bounded by O(MNIm(m + I)). Thespa
e required is that of one list per pattern, O(M(m+ I)).Hen
e the total
ost of the algorithm is O(N(w(Mm)�+MmI(m+I))) and the spa
eis O(Mm+w log(Mm)+M(m+I)). If we are interested in the behavior of the algorithmwhen the text size N or the number of patterns M grow, and want to assume that theother quantities D, I, m and w remain more or less
onstant, then we
an make thesimpler statement that the algorithm is O(NM�) time to traverse the trie and O(NM)to pro
ess the sequen
es of words. Despite that this is formally O(NM), in pra
ti
e thetime spent at the trie dominates, as pro
essing the sequen
es of words is multiplied by amu
h smaller
onstant. Hen
e in pra
ti
e the algorithm behaves more like O(NM�) for0 < � < 1. The spa
e required is O(M).

Experimental results. We have tested our algorithm in a real
ase (see a brief de-s
ription in the Con
lusions).We took our measures in a development ma
hine, a Sun UltraSpar
-1 of 167 MHzand 64 Mb of RAM, running Solaris 2.5.1. Sin
e there is no doubt that the algorithmis linear time with N , we have �xed a text of 1 Mb size. In this text, we sear
hed the�rst M = 5; 000 names of our test data, the �rst M = 10; 000 names, and so on untilM = 65; 000. Also we have noti
ed that the pro
ess is strongly CPU bound, so we measureuser times, as these turn out to be very
lose to elapsed times.Figure 3 shows the results. We show a plot with all the �gures and also a zoomedversion to appre
iate the
heaper parts of the
ost.

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70

U
se

r
tim

e
(m

in
ut

es
)

Number of patterns (thousands)

Times for 1 Mb of text

Total
Boot
Scan

Trie
Words

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30 40 50 60 70

C
P

U
 ti

m
e

(s
ec

on
ds

)

Number of patterns (thousands)

Times for 1 Mb of text

Boot
Scan

Figure 3: Sear
h time for 1 Mb of text as the number of patterns M grows. On the leftwe show all the times and on the right a detail of the
heaper
osts.The Boot time is that of loading the M patterns from disk and setting up the trieand other data stru
tures to start the sear
h. As it
an be seen, this
ost is negligible
ompared to the rest. Predi
tably, it grows linearly with M and it is independent of N .A least squares estimation yields 0:17 + 6:4� 10�5M se
onds (1.5% of relative error).The S
an time is that of tokenizing the text: reading , separating the words, normal-izing, removing stopwords, keeping positional information to permit reporting the exa
tpositions of the o

urren
es, sear
hing the di
tionaries, et
. This is basi
ally dependenton N , although there is a slight dependen
e onM probably due to less lo
ality of referen
eas M grows. A least squares estimation yields 2:05N + 1:6 � 10�5MN (4% of relativeerror), where N is measured in megabytes (not in words).The Trie time is that of sear
hing every relevant word in the trie of pattern words, withba
ktra
king. This is by far the heaviest part of the pro
ess, and it is
learly sublinear.A least squares estimation yields 5:69NM0:6, with a relative error of 3%.Finally, the Words time is that of verifying potentially relevant sequen
es of words.We argumented that this pro
ess was linear onM , so we now
he
k the hypothesis
NM b,obtaining 0:005NM1:04, whi
h shows that it is e�e
tively linear. Under a model of theform
NM we obtained 0:01NM , with 3.7% of error.Hen
e, the total
ost in our ma
hine to pro
ess M patterns on N Mb of text isN � (2:05 + 5:69M0:6 + 0:01M), dis
arding negligible
ontributions.The
onstants in the result depend on the ma
hine we used and are only illustrativeof the relative importan
e of the main parts of the algorithm and of their growth rate in

terms of N and M . The produ
tion ma
hine in Mat
hsimile is right now an Intel 700MHz ma
hine with 128 Mb of RAM, with a
ommon IDE hard disk. In this ma
hine wesear
h all the 65,000 patterns in 60 Mb of text every day, in an elapsed time of 3 hours,mu
h faster than in our development ma
hine.Let us
ompare this performan
e against that of LikeIt. As reported in [17℄, thattool is able of s
anning the text for one pattern at a rate of 2.5 Mb/se
 on an Intel 200MHz pro
essor. La
king multipattern sear
h
apabilities, the sear
h for M patterns inN megabytes of text would take about 0:4NM se
onds. Extrapolating to our ma
hine of700 MHz, s
anning 60 Mb for 65,000 names would require 5 days.The result also depends on the sear
h parameters. The values reported representa realisti
 s
enario, sin
e they
orrespond to the
urrent real world appli
ation whereMat
hsimile is being used.6 Con
lusionsThe �rst well su

eeded
ommer
ial appli
ation of this software is also
alledMat
hsimile.Despite that more tuning of the parameters is still needed, the
ombination of performan
eand pre
ision/re
all has proven very good in pra
ti
e for this appli
ation, whi
h has beenresponsible for the development of the software and has pushed the improvement of the
ode performan
e and
apabilities to adapt it to new
ir
umstan
es.The obje
tive of this appli
ation is to retrieve lawyers names from oÆ
ial law journalsin Brazil and gather that information for ea
h
ompany, personalized through daily reportsthat
an be retrieved by www, html-mail and wap-enabled
elulars (www.mat
hsimile.
om).Currently, three oÆ
ial publi
ations are s
anned daily: DOSP (Diario O�
ial de SaoPaulo), DOMG (Diario O�
ial de Minas Gerais) and DOPE (Diario O�
ial de Pernam-bu
o). Nevertheless, this tool
an be useful for other appli
ations, like eliminating dupla-
ates in addresses lists or to identify a
lient in software that handles
ustomer
omplaintsvia e-mail.Future plans with Mat
hsimile in
lude sorting the output by de
reasing similaritywith the input and in
orporating new models for word mat
hing where the order betweenwords is not important (useful for
ompany names in some
ases, and for personal nameswith some modi�
ations). On the side of the eÆ
ien
y, we plan to improve it using amore sophisti
ated te
hnique: right now we build a trie of patterns and sear
h every textword sequentially. This avoids repeating the same work for similar pattern pre�xes, butsimilar text words are pro
essed over an over. Using a te
hnique known in
omputationalbiology to �nd all the approximate mat
hes between two tries [2℄, we plan to build a triewith the text words and mat
h it against the trie of pattern words. Sin
e the whole textwill not �t in main memory, the text will be divided in
hunks of appropriate size andea
h
hunk will be pro
essed as a whole trie against the patterns.Referen
es[1℄ R. Baeza-Yates and G. Gonnet. Fast text sear
hing for regular expressions or automatonsear
h ing on a trie. Journal of the ACM, 43(6):915{936, 1996.

[2℄ R. Baeza-Yates and G. Gonnet. A fast algorithm for all-against-all sequen
e mat
hing.In Pro
. String Pro
essing and Information Retrieval (SPIRE'98), pages 16{23. IEEE CSPress, 1998.[3℄ R. Baeza-Yates and G. Navarro. Blo
k-addressing indi
es for approximate text retrieval.Journal of the Ameri
an So
iety for Information S
ien
e (JASIS), 51(1):69{82, January2000.[4℄ F. Damerau. A te
hnique for
omputer dete
tion and
orre
tion of spelling errors. Comm.of the ACM, 7(3):171{176, 1964.[5℄ G. Gonnet. A tutorial introdu
tion to Computational Bio
hemistry using Darwin. Te
hni
alreport, Informatik E.T.H., Zuri
h, Switzerland, 1992.[6℄ K. Kuki
h. Te
hniques for automati
ally
orre
ting words in text. ACM Computing Surveys,24(4):377{439, 1992.[7℄ V. Levenshtein. Binary
odes
apable of
orre
ting spurious insertions and deletions ofones. Problems of Information Transmission, 1:8{17, 1965.[8℄ R. Lowran
e and R. Wagner. An extension of the string-to-string
orre
tion problem.Journal of the ACM, 22:177{183, 1975.[9℄ U. Manber and S. Wu. glimpse: A tool to sear
h through entire �le systems. In Pro
.USENIX Te
hni
al Conferen
e, pages 23{32. USENIX Asso
iation, Berkeley, CA, USA,Winter 1994.[10℄ H. Masters. A study of spelling errors. University of Iowa Studies in Edu
ation, 4(4), 1927.[11℄ G. Navarro. A guided tour to approximate string mat
hing. ACM Computing Surveys,33(1):31{88, 2001.[12℄ G. Navarro, R. Baeza-Yates, E. Sutinen, and J. Tarhio. Indexing methods for approximatestring mat
hing. IEEE Data Engineering Bulletin, 24(4):19{27, 2001. Spe
ial issue onManaging Text Natively and in DBMSs. Invited paper.[13℄ G. Navarro, E. Moura, M. Neubert, N. Ziviani, and R. Baeza-Yates. Adding
ompressionto blo
k addressing inverted indexes. Kluwer Information Retrieval Journal, 3(1):49{77,2000.[14℄ J. Nesbit. The a

ura
y of approximate string mat
hing algorithms. Journal of Computer-Based Instru
tion, 13(3):80{83, 1986.[15℄ R. Sedgewi
k and P. Flajolet. Analysis of Algorithms. Addison-Wesley, 1996.[16℄ H. Shang and T. Merrettal. Tries for approximate string mat
hing. IEEE Transa
tions onKnowledge and Data Engineering, 8(4), August 1996.[17℄ P. Yianilos and K. Kanzelberger. The likeit intelligent string
omparison fa
ility. Te
hni
alreport, NEC Resear
h Institute, 1997.

