
XQL and Proximal NodesRicardo Baeza-Yates Gonzalo NavarroDepto. de Ciencias de la Computaci�on, Universidad de ChileBlanco Encalada 2120, Santiago 6511224, ChileE-mail: frbaeza,gnavarrog@dcc.uchile.cl �AbstractDespite that several models to structure text documents and to query on this structure havebeen proposed in the past, a standard has emerged only relatively recently with the introductionof XML and its proposed query language XQL, on which we focus in this paper. Although thereexist some implementations of XQL, e�ciency of the query engine is still a problem. We showin this paper that an already existing model, Proximal Nodes, which was de�ned with the goalof e�ciency in mind, can be used as an e�cient query engine behind an XQL front-end.1 IntroductionSearching on structured text is becoming more important with the increasing use of XML [GP98].Although SGML [Int86] existed for a long time, its complexity was the main limitation for a wideruse. By taking advantage of the structure, content queries can be made more precise. This issue isbecoming more and more important, because as the availability of textual data increases, structureand metadata can help in coping with volume explosion. Also, XML data can be seen as themeeting point between the database community (in particular the work on semi-structured dataand query languages for XML) and the information retrieval community (structured text models).Several models have been proposed since the eighties to structure text documents and to queryon this structure as well as on content (see for example a survey from 1996 [BYN96]). The im-portance of the area has grown rapidly with the adoption of XML as a standard to structure text.After the widespread acceptance of XML, most of the research on structured text has not concen-trated anymore on proposing new structuring models but on designing suitable query languagesthat work on XML-structured text. There is not yet a standard for querying XML. Rather, therewere a number of proposals when this work was done (1999). Among those we concentrate on XQL[LRS98], which was one of the strongest candidates to become the standard, and has inuencedthe current uni�ed proposal, Xquery [Con01]. At the end of 1999, also appeared Xpath [Con99],the query language for XML paths, which is inspired in XQL, and hence many of our results arealso valid for Xpath.�This work was supported by Fondecyt Project 1-990627.1

Many of the models proposed to structure and query text documents had the goal of e�ciencyin mind. As a result, several studies on the tradeo� between query language expressiveness and thee�ciency of its implementation were carried out [CM95, BYN96]. On the other hand, to the bestof our knowledge there are no e�cient implementations of XQL, in the sense that the structure isnot fully indexed.In 1995 we designed one of those structured text models, called Proximal Nodes (PN), with thistradeo� in mind [NBY95b, NBY97]. PN occupied a place in the expressiveness/e�ciency graph,where there existed other more expressive and less e�cient models as well as more e�cient and lessexpressive models.Our goal in this paper is to show that PN �ts very well in the XML/XQL scheme. Its structuringmodel matches quite well with XML (indeed, it is a little more powerful), and its query model isjust expressive enough to represent the operations required by XQL. Other structured text modelsproposed are either less e�cient than what is possible or less expressive than what is necessary tosupport XQL.This makes the PN model an excellent alternative to implement XQL. We envision a systemwhich gives access to a XML document database and uses XQL (or another XML query language)as its front-end query language. Queries in XQL are translated into the syntax of the PN model.On the other hand, the XML database is indexed as required by the PN model implementation.Hence, the back end of the engine executes the query inside the PN model and delivers the resultback to the front-end, which in turn represents the result in XML format to the end user. SeeFigure 1.
XML data engine

indexing

engine

querying

PN index

back-end

PN

front-end

XQLvisualization

of results translator

query

userFigure 1: A XML/XQL system backed by the PN model.2

This paper is organized as follows. Section 2 briey introduces the reader to XML and its querylanguages, as well as to the existing structured text models. Section 3 presents the XQL querylanguage. Section 4 presents the PN model in some depth. Section 5 shows how XQL can beimplemented using the PN model. We conclude with some work in progress.2 XML, XQL and Other Structured Text ModelsXML stands for eXtensible Markup Language [GP98] and is a simpli�ed subset of SGML [Int86],a metalanguage for tagging structured text. That is, XML is not a markup language, as HTML is,but a meta-language that is capable of containing markup languages in the same way as SGML.XML allows having human-readable semantic markup, which is also machine-readable. As a result,XML makes it easier to develop and deploy new speci�c markup, enabling automatic authoring,parsing, and processing of networked data.XML does not have many of the restrictions imposed by HTML and, on the other hand, imposesa more rigid syntax on the markup, which becomes important at processing time. In XML, endingtags cannot be omitted. Also, tags for elements that do not have any content, like "BR" and "IMG",are specially marked by a slash before the closing angle bracket. XML also distinguishes upperand lower case, so "img" and "IMG" are di�erent tags (unlike in HTML). In addition, all attributevalues must appear between quotes. That implies that parsing XML without knowledge of the tagsis easier. In particular, using a DTD (data de�nition table, as used in SGML) is optional. If thereis no DTD, the tags are obtained while the parsing is done. With respect to SGML, there are afew syntactic di�erences, and many more restrictions.In 1998 the WWW Consortium requested proposals for a standard query language for XML.Proposed query languages for XML included XQL [LRS98], XML-QL [FDL+99], XGL [CCD+99],Lorel [Wid99], Ozone [LAW99], Quilt [CRF00], and Squeal [SS00]. Based on many of these lan-guages, the WWW Consortium has recently presented Xquery [Con01], the proposed standardfor XML query language. Another recently important issue is the integration of these languageswith information retrieval approaches (for example see [Wid99, FMK00, SM]). There are querylanguages for XML which are more powerful than XQL, as well as for the Web as a database. Acomplete comparison of these languages is presented in this issue [LLD+].Few implementations for XQL have been o�ered, partly because of the rise of newer XML querylanguage proposals. Among these we can mention the inclusion of XQL in Software AG's Tamino,the GMD-IPSI's engine, and a subset included in Microsoft Explorer 5.0 browser[Rob01]. Thereis almost no documentation about the internals of these implementations, but the available onesimply that the XML structure is not fully indexed and sequential search is used in most cases.Before XML appeared, several models to query structured text were proposed. They weredesigned with e�ciency as one of their goals. These approaches are characterized by generallyimposing a hierarchical structure on the database, and by mixing queries on content and structure.Although this structuring is simpler than, for example, hypertext, even in this simpler case theproblem of mixing content and structure is not satisfactorily solved. A survey on this topic can befound in [BYN96].Some of the most prominent examples of these models follow, together with the reasons thatmake them unsuitable as a back-end for XQL. The Hybrid Model proposed in [BY96] is one of3

the oldest and does not permit nesting in the structural components, so hierarchies cannot beexpressed. Moreover, the structure is �xed, which is too poor for XML. PAT Expressions [ST92]permit the dynamic de�nition of di�erent structural components in the text, but these, as well asintermediate results, must be disjoint text areas, so one cannot make the union of chapters andsections. Overlapped lists [CCB95] permit overlapping but still not nesting. Lists of References[Mac91] permits nesting but only the top level elements are returned as the result of a query (so theunion of chapters and sections returns just the chapters). Sgrep and other similar models [DSDT96,JK96] permit nesting and overlapping in the results, but they restrict the query operations to thesimplest containment and proximity ones, which in insu�cient for XQL. In particular they donot permit querying on positional inclusion and direct ancestorship (see later). Parsed Strings[GT87] has di�erent goals, being a data manipulation language rather than a query language. TreeMatching [KM93] o�ers powerful structural matching operators but it is weak at relating textcontent and structure. Due to its power on structural queries, which is unnecessarily powerful forXQL, the implementation of this model is very ine�cient. Newer developments on this model [MS01]obtained polynomial time solutions but they do not seem practical enough for large documentdatabases. Recent work has focused on �ltering techniques [MS99] and other extensions.3 The XQL Query LanguageWe briey describe in this section the capabilities of XQL. We do not intend to give a completeoverview of XQL (see the original references [LRS98] for this sake). Rather, we aim at showingthe type of queries that XQL permits through a running example which is given in Figure 2. Theexample is an extract of a book with a structure of chapters, and sections, where sections cancontain other sections and all have titles. We also permit constructions such as �gures and lists.Di�erent constructions have di�erent attributes. We assume that the reader is familiar enoughwith XML so as to understand the example without further explanation.3.1 Path ExpressionsThe main type of expression in XQL is the so called \path expression", for example"chapter/section/title", which retrieves all the titles that descend directly from sections thatdescend directly from chapters (i.e. titles of top level sections). In our example this query wouldreturn<title>Motivation</title><title>Basic Concepts</title><title>How to Use this Book</title>Transitive inclusion is expressed using a double bar \//", forexample "chapter//section/title" returns titles of sections that descend from a chapter. Inour example this returns<title>Motivation</title><title>Information versus Data Retrieval</title>4

<book publisher="Addison-Wesley" isbn="0-201-39829-X"><author>R. Baeza-Yates</author><author>B. Ribeiro-Beto</author><title>Modern Information Retrieval</title><chapter number="1"><title>Introduction</title><section number="1.1"><title>Motivation</title>Information retrieval (IR) deals with the representation, ...<section number="1.1.1"><title>Information versus Data Retrieval</title>Data retrieval, in the context of an IR system, consists mainly of ...</section><section number="1.1.2"><title>Information Retrieval at the Center of the Stage</title>In the past 20 years, the area of information retrieval has grown ...</section>...<section number="1.2"><title>Basic Concepts</title>The effective retrieval of relevant information is directly affected ...<figure number="1.1" file="ir-system.eps"caption="Interaction of the user with the retrieval system ..."/></section>...<section number="1.6"><title>How to Use this Book</title>Although several people have contributed chapters for this book ...<section number="1.6.1"><title>Teaching Suggestions</title>This textbook can be used in many different areas including ...<list><item title="Information Retrieval"> this is the standard ... </item><item title="Advanced Information Retrieval"> similar to the ... </item>...<item title="Digital Libraries"> this course could start ... </item></list></section></section></chapter></book> Figure 2: Example of a XML formatted document.5

<title>Information Retrieval at the Center of the Stage</title><title>Basic Concepts</title><title>How to Use this Book</title><title>Teaching Suggestions</title>This mechanism is extended to permit \absolute paths", i.e. paths that are evaluated from theroot of the structure tree, e.g. "/book/title" corresponds to the unique element<title>Modern Information Retrieval</title>XQL permits also the use of the wild card where a structural name is expected, for example"book/*/title" to mean titles directly descending from something that descends directly from abook constructor. The answer is the only chapter title in the example<title>Introduction</title>Finally, XQL permits queries of the type "section/section[2]", meaning the second(sub)section contained in a section, as well as ranges such as "chapter/section[2-3]". The�rst example would return<section number="1.1.2"><title>Information Retrieval at the Center of the Stage</title>In the past 20 years, the area of information retrieval has grown .. .</section><section number="1.2"><title>Basic Concepts</title>The effective retrieval of relevant information is directly affected . ..<figure number="1.1" file="ir-system.eps"caption="Interaction of the user with the retrieval system ..."/></section>3.2 FiltersIt is also possible to express that one wants the top level instead of the bottom level nodes. This isdone by using �lters \[]", e.g. "chapter[section/figure]", which selects chapters that containa �gure contained in a section. This returns the whole chapter in our example, since it contains asection that directly contains a �gure.To obtain chapters that directly contain a section that directly contains a �gure, one wouldwrite "chapter[/section/figure]", which in our case would retrieve the same result as beforesince the section containing the �gure is 1.2, a top level one.Similarly, one can express "book[author[0] = "R. Baeza-Yates"]", where the condition isthat the �rst "author" element that descends from the book equals the string "R. Baeza-Yates".The query would return the whole book.One can combine path expressions with �lters, for example "book[author = "B.Ribeiro-Neto"] /figure" would return all the �gures of books written by B. Ribeiro-Neto, inour example 6

<figure number="1.1" file="ir-system.eps"caption="Interaction of the user with the retrieval system ..."/>XQL permits boolean operations inside the �lters. For example, "chapter[figure or title= "Introduction"]" returns chapters that either contain a �gure or have inside a title thatreads "Introduction". Similarly we could ask for chapters that meet both conditions using"chapter[figure and title = "Introduction"]". Finally, "chapter[not figure]" retrieveschapters without �gures.An XQL extension permits to say "any" or "all" inside the condition. The �rst does not alterthe usual semantics, e.g. both "chapter[figure]" and "chapter[any figure]" retrieve chaptersthat contain (any) �gures. The second construction, "all", makes sense for predicates of equalityor inequality and requires it to hold for all the relevant constructors inside the element. For example"book[all author != "A. Moffat"]" requires that no author �eld inside the book be equal to"A. Moffat".3.3 Other FeaturesAttributes Another widely used feature of XQL are the attributes of the nodes. Each structuralnode in XML can have a number of attributes, which have a name and a value; and it is possibleto restrict the matches to those having some attribute and even to those where some attribute hassome property. Contrary to a sub�eld, an attribute cannot have any internal structure.For example "book[@publisher = "Addison-Wesley"]" selects the books whose attribute"publisher" is "Addison-Wesley", while "book[@isbn]" selects books where there is an "isbn"�eld. It is possible to use all the boolean operators and other �lters on attribute values.Semijoins XQL permits comparing the content of absolute paths. For example "book[@author= @me]", where "@me" is an attribute that descends directly from the root of the hierarchy.This can be done only for absolute paths, so that the reference can have just one value acrossthe whole collection.Methods XQL is designed to be embedded in Perl, and as such it imports many of the Perl'sfunctions. Some of the functions of interest are: text(), which corresponds to the textual contentof a node; value(), which is similar to text() except that it can be cast to other types such asinteger or oat; and other aggregate functions such as the number of structural components belowa given node.Set Operations XQL permits set operations such as union, intersection and di�erence. Forexample "figure union list" returns all the �gures and lists in the books.Proximity Operations Despite that the standard XQL does not permit it, some implementa-tions allow a kind of \followed by" operation, e.g. return sections followed by a �gure. Unfortunatelytheir description is not very clear. 7

4 The Proximal Nodes ModelThe Proximal Nodes Model (PN) [Nav95, NBY95b, NBY97] presents a good compromise betweenexpressiveness and e�ciency. It does not de�ne a speci�c language, but a model in which it isshown that a number of useful operators can be included, while achieving good e�ciency. Manyindependent structures can be de�ned on the same text, each one being a strict hierarchy, but al-lowing overlaps between areas delimited by di�erent hierarchies (e.g. chapters/sections/paragraphsand pages/lines). A query can relate di�erent hierarchies, but returns a subset of the nodes of oneof them only (i.e. nested elements are allowed in the answers, but not overlaps). Each node hasan associated segment, which is the area of the text it comprises. The segment of a node includesthat of its descendants. Text matching queries are modeled as returning nodes from a special \texthierarchy".The model speci�es a fully compositional language with three types of operators: (1) textpattern-matching; (2) to retrieve structural components by name (e.g. all chapters); and (3) tocombine other results. The main idea behind the e�cient evaluation of these operations is a bottom-up approach, by �rst searching the queries on contents and then going up the structural part. Twoindices are used, for text and for structure, meant to e�ciently solve queries of type 1 and 2 withouttraversing the whole database. To make operations of type 3 e�cient, only operations that relate\nearby" nodes are allowed. Nearby nodes are those whose segments are more or less proximal.This way, the answer is built by traversing both operands in synchronization, leading in most casesto a constant amortized cost per processed element.As we show next, many useful operators �t into this model. There is a separate text matchingsublanguage, which is independent of the model. In [NBY95a, Nav95], the expressiveness of thismodel is compared against others and found competitive or superior to most of them. This modelcan be e�ciently implemented, needing linear time for most operations and in all practical cases(this is supported by analysis and experimental results). The time to solve a query is proportionalto the sum of the sizes of the intermediate results (and not the size of the database).Two di�erent implementations of the model are proposed. A full evaluation version solves thequery syntax tree recursively, that is, both operands of the root are (recursively) solved completelyand then the root operator is applied to both arguments, which are by this time fully evaluated.A lazy evaluation version regards the query syntax tree as en entity that survives across the wholeevaluation, to which one requests results one by one. Upon receiving a request, any node of thissyntax tree requests in turn results from its operand subtrees until it has enough information todeliver one result. In our experiments the lazy version worked better for more complicated queriesand worse for simpler queries.The Proximal Nodes model permits any operation in which the fact that a node belongs or notto the �nal result can be determined by the identity and text position of itself and of nodes (in theoperands) which are \proximal" to it, as explained.Figure 3 shows the scheme of a possible set of operations. There are basic extraction operators(forming the basis of querying on structure and on contents), and operators to combine resultsfrom others, which are classi�ed in a number of groups: those which operate by considering in-cluded elements, including elements, nearby elements, by manipulating sets and by direct structuralrelationships.We explain in some detail those that are relevant for the case of a single hierarchy, which8

after, after(k)

before, before(k)

Distances

Direct structural

parent(k)

[s] child

Set manipulation

+, -, is

same

By included elements

with(k)

Content
Basis

expr.
Match

matchesBasis
Structure

Constructor

All on matches

Opers

Composition
Operations

collapse, subtract...

in

[s] in

By including elements

Figure 3: Possible operations for our model, classi�ed by type. We have removed those that arerelevant when several hierarchies exist, which is not the case in XML.includes the XML model.� Matching sublanguage: Is the only one which accesses the text content of the database, andis orthogonal to the rest of the language.{ Matches: The matching language generates a set of disjoint segments, which are intro-duced in the model as belonging to a special \text hierarchy". All the text answersgenerate at lists. For example, "information" generates the at set of all segments of11 letters where that word appears in the text. Note that the matching language couldallow much more complex expressions (e.g. regular expressions).{ Operations on matches: Are applicable only to subsets of the text hierarchy, and maketransformations to the segments. We see this point and the previous one as the mech-anism for generating match queries, and we do not restrict our language to any sub-language for this. As an example, M collapse M 0 superimposes both sets of matches,merging them when an overlap results; and M subtract M 0 removes from the �rstset the text positions belonging to the second set, shortening, removing and cuttingsegments as required.� Basic structure operators: Are the other kind of leaves of the query syntax tree, which refer tobasic structural components. 9

{ Name of structural component: (\Constructor" queries). Is the set of all nodes of thegiven type. For example, chapter retrieves all the chapters in a book.{ Name of hierarchy: (\All" queries). Is the set of all nodes of the hierarchy. The samee�ect can be obtained by summing up (\+" operator) all the node types of the hierarchy.� Included-In operators: Select elements from the �rst operand which are included in one of thesecond.{ Free inclusion: Select any included element. \P in Q" is the set of nodes of P whichare included in a node of Q. For example, figure in section selects all �gures insidesections.{ Positional inclusion: Select only those elements included at a given position. In order tode�ne position, only the top-level included elements for each including node are consid-ered. \[s] P in Q" is the same as in, but only qualifying the nodes which descend froma Q-node in a position (from left to right) considered in s. The language for expressingpositions (i.e. values for s) is also independent. We consider that �nite unions of i..j,last � i..last�j, and i..last�j would su�ce for most purposes. The range of possiblevalues is 1..last. For example, [3..5] section in section retrieves the 3rd, 4th and5th sections from all sections. If sections include other sections, only the top-level onesare considered.� Including operators: Select from the �rst operand the elements including elements from thesecond one. \P with(k) Q" is the set of nodes of P which include at least k nodes of Q. If(k) is not present, we assume 1. For example, section with(5) "information" selects thesections in which the word \information" appears �ve or more times.� Direct structure operators: Select elements from the �rst operand based on direct structuralcriteria, i.e. by direct parentship in the structure tree corresponding to the hierarchy.{ \[s] P child Q" is the set of nodes of P which are children (in the hierarchy) of somenode of Q, at a position considered in s (that is, the s-th children). If [s] is not present,we assume 1::last. For example, title child chapter retrieves the titles of all chapters(and not titles of sections inside chapters).{ \P parent(k) Q" is the set of nodes of P which are parents (in the hierarchy) of atleast k nodes of Q. If (k) is not present, we assume 1. For example, chapter parent(3)section selects chapters with three or more top-level sections.� Distance operators: Select from the �rst operand elements which are at a given distance ofsome element of the second operand, under certain additional conditions.{ \P after/before Q (C)" is the set of nodes of P whose segments begin/end after/beforethe end/beginning of a segment in Q. If there is more than one P -candidate for a nodeof Q, the nearest one to the Q-node is considered (if they are at the same distance, thenone of them includes the other and we select the including one). In order for a P -node to10

be considered a candidate for a Q-node, the minimal node of C containing them must bethe same, or must not exist in both cases. For example, list after figure (chapter)retrieves the nearest lists following �gures, inside the same chapter.{ \P after/before(k) Q (C)" is the set of all nodes of P whose segments begin/endafter/before the end/beginning of a segment in Q, at a distance of at most k text symbols(not only nearest ones). C plays the same role as above. For example, "information"before (10) "retrieval" (section) selects the words \information" that are followedby \retrieval" at a distance of at most 10 symbols, inside the same section.� Set manipulation operators: Manipulate both operands as sets, implementing union, di�erence,and intersection under di�erent criteria.{ \P + Q" is the union of P and Q. For example, figure + list is the set of all �guresand lists. To make a union on text segments, use collapse.{ \P � Q" is the set di�erence of P and Q. For example, chapter � (chapter withfigure) are the chapters with no �gures. To subtract text segments, we resort tooperations on matches.{ \P is Q" is the intersection of P and Q. For example, ([1] section in chapter) is ([3]section in book) selects the sections which are �rst (top-level) sections of a chapterand at the same time third (top-level) section of the book. To intersect text segmentsuse same.{ \P same Q" is the set of nodes of P whose segments are the same segment of a nodein Q. For example, title same "Introduction" gets the titles that say (exactly)\Introduction".Except for set manipulation ones, the model also permits the negated version of all the operators.For example, P not withQ is the same as P�(P with Q), although the evaluation is more e�cient.Clearly inclusion can be determined by the text area covered by a node, and the fact that anelement in A quali�es or not depends only on elements of B that include it or are included in it.Direct ancestorship can be determined by the identity of the nodes and appropriate informationon the hierarchical relations between nodes. Note that just the information on text areas coveredis not enough to discern between direct and general inclusion. Distance operations can be carriedout by just considering the areas covered and by examining nearby elements of the three operands.Finally, set manipulation needs nothing more than the identity of the nodes and depend on nearbynodes of the other operands.The Proximal Nodes model proposes an implementation where an index is built on the structureof the text separated from the normal index for the text content. The structural index is basicallythe hierarchy tree with pointers to know the parent, �rst child and next sibling of each node. Inaddition, implicit lists for each di�erent structural element are maintained, so that one can traversethe complete tree or the subtree of all the nodes of a given type.At query time, each node of the query syntax tree is converted into an intermediate result fromthe leaves to the root (other evaluation orders are considered but here we explain this one forclarity). The intermediate results are trees which are subsets of the whole hierarchy. Leaves which11

are structural elements are solved by using the structure index directly; those which correspond topure queries on the text content are solved with the classical index on content (e.g. an inverted�le) and translated into a list of text segments that match the query. This list is a particular caseof a tree of answers.Finally, internal query nodes correspond to operations that are carried out once their operandshave been solved and converted into trees of nodes. As de�ned by the model, all the allowedoperations can be solved by a synchronized linear traversal over the operands, so that the totaltime to solve a query is proportional to the total size of the intermediate results.5 Implementing XQL Operations using Proximal NodesWe show in this section how the XQL query language can be implemented using the PN model.We start by considering the XML structure and then pay attention to each XQL feature in turn.In passing, we show more in detail why other models are not suitable for implementing XQL.5.1 Interpreting the XML StructureThe �rst problem when mapping XQL over the PN query language is whether the two structuringmodels are the same. First, PN permits several hierarchies and XML just one, so we will not use theextended PN features. Second, XML permits arbitrary hyperlinks to other parts of the structure,i.e. de�ning reference points and later referencing them, so that the referenced node is assumedto be duplicated at the referencing point. This permits XML building an arbitrary graph, whenloops and hence in�nite paths may exist. The PN model does not permit expressing this kind ofstructure, so we assume that references are either disregarded or physically duplicated when theydo not form cycles.Both solutions imply that PN is insu�cient to express XML references. On the other hand, theonly query models able to deal with this kind of structure are graph query languages such as Hy+[CM93], which are not e�cient enough to handle large text databases. We strongly believe that noe�cient XML query language can incorporate this feature.The �nal feature where XML and the PN model di�er is in the attributes. PN does not permitattributes to be attached to structural nodes. A lot of attention is given to attributes in theXML/XQL literature.Let us consider again Figure 2. We have for example that the book has some attributes such as"publisher" and "isbn", as well as some unique �elds such as "title". Should the publisher bean attribute or a unique �eld? Let us consider the sections, which have an attribute "number" anda unique �eld "title". Could the number be a �eld? The answer is that choosing that a givenpiece of information is an attribute or a �eld is a matter of design decision, except that attributesmust (1) be unique and (2) have no internal structure. Therefore, any attribute can be convertedinto a �eld. An alternative for the �rst lines of the example of Figure 2 is<book><publisher>Addison-Wesley</publisher><isbn>0-201-39829-X</isbn><author>R. Baeza-Yates</author> 12

<author>B. Ribeiro-Beto</author><title>Modern Information Retrieval</title><chapter number="1">...Hence, the indexer that reads the XML data and builds the index needed for PN will treatattributes just as �elds, as any other descendant of the node. In this sense the PN model is indeedmore general than XQL since it does not need to make such distinctions. The tags are used fordiscovering the structure of the text, but these words are not indexed as part of the content of thedocuments.Figure 4 shows the hierarchical representation of the PN index for our example of Figure 2. Asit can be seen, all the text regions are included in the hierarchy and the tags are used to delimit theextent of the structural nodes. Observe also how attributes and �elds are treated the same way.5.2 Path ExpressionsAt a �rst sight, the XQL query language looks rather di�erent from the presented query language.Typical XQL expressions are of the formchapter=section=titlewhere the \/" represents direct inclusion. However, the above expression is translated directly intoa Proximal Nodes query title child section child chapterthat is, the lowest level elements are selected. Despite that it looks as a navigational operation (i.e.enter into chapters, then move to sections, then to titles), we can regard it as a search operationfor nodes of a certain type and certain ancestors.The \/" operation is the most basic one in XQL, and it immediately outrules many alternativemodels to query structured text based on positional information only, since they cannot query bydirect ancestorship. Transitive inclusion can also be expressed using a double bar \//", and it canbe translated into the in operation in Proximal Nodes.The most navigational-looking feature of XQL is its ability to express absolute paths, i.e. pathsthat are evaluated from the root of the structure tree. This can be simulated by adding an extrasingle root R node to the hierarchy and adding \child R" to those queries.The use of wild cards for structural names is permitted in XQL, so one can write"book/*/title" to mean titles directly descending from something that descends directly froma book. The wild card can be replaced by the Proximal Nodes feature that permits using \All" asa node name, whose result is the whole hierarchy.XQL permits queries of the type X=Y [k], meaning the k-th Y contained in each X . Thiscorresponds exactly to the positional inclusion feature of Proximal Nodes, which cannot be foundin any other existing model. In both models this can be extended to arbitrary ranges of values,and to indices relative to the �rst or to the last included element.13

 file="ir−system.eps"
 caption="Interaction of the user with the retrieval system ..."
 />
 </section>
 ...
 <section
 number="1.6"
 >
 <title>How to Use this Book</title>
 Although several people have contributed chapters for this book ...
 <section
 number="1.6.1"
 >
 <title>Teaching Suggestions</title>
 This textbook can be used in many different areas including ...
 <list>
 <item
 title="Information Retrieval"
 >

 <item
 title="Advanced Information Retrieval"
 >
 similar to the ...
 </item>
 ...
 <item
 title="Digital Libraries"
 >
 this course could start ...
 </item>
 </list>
 </section>
 </section>
 </chapter>
</book>

number

title
author
author

isbn
publisher

number

title

title

number

title

number

title

number

title

number

number

number

title

title

title

title

title

caption
file

 </item>
 this is the standard ...

item

item

item

figure

section

section

chapter

book

section

section

section

section

<book
 publisher="Addison−Wesley"
 isbn="0−201−39829−X"
>
 <author>R. Baeza−Yates</author>
 <author>B. Ribeiro−Beto</author>
 <title>Modern Information Retrieval</title>
 <chapter
 number="1"
 >
 <title>Introduction</title>
 <section
 number="1.1"
 >
 <title>Motivation</title>
 Information retrieval (IR) deals with the representation, ...
 <section
 number="1.1.1"
 >
 <title>Information versus Data Retrieval</title>
 Data retrieval, in the context of an IR system, consists mainly of ...
 </section>
 <section
 number="1.1.2"
 >
 <title>Information Retrieval at the Center of the Stage</title>
 In the past 20 years, the area of information retrieval has grown ...
 </section>

 <section
 number="1.2"
 >
 <title>Basic Concepts</title>
 The effective retrieval of relevant information is directly affected ...
 <figure
 number="1.1"

 ... </section>

Figure 4: Structural representation of our example, as it is stored by the PN index.14

5.3 FiltersIt is also possible to express that one wants the top level instead of the bottom level nodes. Thisis done by using �lters \[]", e.g. chapter[section=figure]which selects chapters that contain a �gure contained in a section. This is easily translated intochapter with (figure child section)Similarly, one can express "book[author[0] = "R. Baeza-Yates"]", where the condition ison the �rst \author" element that descends from the book. This can be translated into positionalinclusion as ([1] author in book) same "R: Baeza� Yates"XQL permits boolean operations inside the �lters, and this requires more care. First,\X [Y or Z]" (which selects the X elements that contain some Y or some Z element) can beconverted into X [Y + Z]. On the other hand, \X [Y and Z]" requires that X contains bothsome Y and some Z, which can be converted into (X [Y])[Z]. Finally X [not Y], which selects theX elements containing no Y element, can be rewritten as X � X [Y], although Proximal Nodespermits the negated variants of the containment operations (e.g. not with), and this has a moree�cient implementation.An XQL extension permits to say any or all inside the condition. While any maintains thenormal semantics, all requires extra care. For example, "book[all author != "A. Moffat"]"requires that no author �eld inside the book be equal to "A. Moffat". This cannot be directlyexpressed in Proximal Nodes but it can be converted using double negation: X [all Y] = X �X [not Y].5.4 AttributesAnother widely used feature of XQL are the attributes of the nodes. This seems to deviate signi�-cantly from simplifying models. Each structural node can have a number of attributes, which havea name and a value; and it is possible to restrict the matches to those having some attribute andeven to those where some attribute has some property. For examplebook[@publisher = "Addison� Wesley"]selects the books whose attribute "publisher" is "Addison-Wesley". The key observation is thatan attribute appears in the text inside the text region of its node and is clearly identi�ed by itsname. Hence, as explained, it is not hard for the indexer to identify it and to treat it just as anyother descendant of the node. The previous query can be thus translated intobook parent (publisher same "Addison� Wesley")where "Addison-Wesley" is a content query that will return all the text segments where that stringappears, and "publisher" will return all the text areas that correspond to "publisher" attributes.15

Their intersection yields precisely the desired result. Note that we have treated the attribute asa normal �eld. In this sense the Proximal Nodes model is indeed more general than XQL sinceit does not need to make such distinctions. For example, XQL treats as a di�erent operation thequery for structural elements whose text value is equal to some constant, while in Proximal Nodesthis is exactly the same query we have just considered.5.5 SemijoinsA somewhat special feature allowed by XQL is to permit taking as constants the content of absolutepaths. For example "book[@author = @me]", where "@me" is an attribute that descends directlyfrom the root. This is not contemplated in the Proximal Nodes model, but can be easily �xed atthe query processing phase, by detecting such cases, getting the text directly from the �le, andreplacing the reference by the text constant.The key issue is that this can be done only for absolute paths, so that the reference can havejust one value. The generalized feature is called a \semijoin" and is not supported neither by XQLnor by Proximal Nodes. The semijoin would allow selecting chapters whose title is mentioned inthe bibliography section of a given book. Note that this violates the condition of Proximal Nodesmodel: the fact that a book quali�es or not cannot be determined considering the text areas ofthe titles of the books, but one needs to compare the content of the titles with those found in thebibliography of the other book. This is hard to implement e�ciently [CM95, BYN96].5.6 MethodsAs XQL is embedded in Perl, it imports many of Perl's functions. Of course this is not general andcannot be expected to be supported by an abstract model such as Proximal Nodes. However, themost used methods are indeed supported. First, text() corresponds to the textual content of anode, which is a basic method for Proximal Nodes. Second, value() is similar to text() but it canbe cast to other types such as integer or oat. This permits putting, say, numerical conditions onthe content of a given attribute. Despite that this cannot be solved by a text index, the ProximalNodes model can coexist with many independent content indexes, and therefore a di�erent indexable to answer such questions could be built on the numerical values found in the text and it couldgracefully coexist with the rest of the system [NBY97]. This index should receive a condition, say\� 30", and return all the text areas containing numbers smaller than 30.Proximal Nodes permits some conditions on XQL aggregate functions as well, such as selectingelements including (directly or transitively) at least k elements of some kind.5.7 Set OperationsFinally, XQL permits set operations, which are directly translated into Proximal Nodes operations.It is interesting to mention that XQL requires the answer to be the set of structural nodes thatsatisfy the query. This also matches with the Proximal Nodes semantics, while some other modelsreturn only top-level or bottom-level elements. 16

5.8 Followed ByAlthough not included in the XQL proposal, some implementations of XQL permit a kind of \fol-lowed by" operation. Unfortunately their description is not very clear, and this is not a coincidence.As shown in [CM95], the semantics of a \followed by" operation is problematic for many models.In Proximal Nodes this has been carefully designed so that either the element preceding theother or the element following the other are selected. However, it is not possible later to operatethe result to know, say, which is the smallestX containing Y followed by Z. Once we have selectedthe Y 's that are followed by Z, we lose information on which was the Z that made each Y tobe selected, and therefore we cannot guarantee that the smallest X that contains the selected Ywill also contain the corresponding Z. The Proximal Nodes model tries to �x the problem bypermitting, at the moment of executing the operation, to specify X , so that we force that thesmallest X that contains Y must contain Z. This, however, does not totally solve the problem.An alternative solution is to return a \supernode" that has the necessary extension to containY and Z. However, this node is fake and does not �t well in the hierarchy, which yields consistencyproblems for later operations. The models that are able to handle this well [CCB95, JK96] do notrely on a strict hierarchy of nodes but permit their overlapping. Those models, for example, cannotcope with direct inclusion.As shown in [CM95], it is quite di�cult to �nd a satisfactory and consistent de�nition of a\followed by" operation in a hierarchical model.A reasonable solution when there is just one hierarchy is to return the lowest level nodes thatcontain Y followed by Z. In this case we can later obtain nodes of some set which also containthe pair (Y; Z) by asking which of them contain some of those lowest level nodes. Of course thoselowest level nodes can be larger than desired, but they still have this useful minimality property.6 ConclusionsWe have considered the problem of e�ciently implementing XQL. In the best of our knowledge,current implementations could not cope with large document databases. Given that there has beenconsiderable research in the past on e�ciently implementing structured text query languages, it isnatural to study which of the models already created are suitable for mapping XQL queries ontoit. From the existing models we are aware of, the Proximal Nodes (PN) model seems to be the onethat �ts best. We have shown how to e�ciently map XQL query onto PN operations. We believethat other XML query languages can also be implemented e�ciently following the same ideas ofthis paper, including languages that are more expressive than XQL such as Xquery. Other featuressuch as XML references, on the other hand, are probably hard to deal with e�ciently.Based on the results of this paper, we are currently designing a prototype for Xquery, using PNas the underlying model. This software is able of parsing XML in order to obtain the structuralinformation, using that information to build a PN index, applying the PN query algorithms (sim-pli�ed to the case of a single hierarchy) and displaying the results. Several issues, such as algebraicquery optimization and design of e�cient access plans given the query tree, are open and subjectof future work. 17

References[BY96] R. Baeza-Yates. An extended model for full-text databases. Journal of Brazilian CSSociety, 3(2):57{64, April 1996.[BYN96] R. Baeza-Yates and G. Navarro. Integrating contents and structure in text retrieval.ACM SIGMOD Record, 25(1):67{79, March 1996. ftp://sunsite.dcc.uchile.cl/-pub/users/gnavarro/sigmod96.ps.gz.[CCB95] C. Clarke, G. Cormack, and F. Burkowski. An algebra for structured text search and aframework for its implementation. The Computer Journal, 1995.[CCD+99] S. Ceri, A. Comai, E. Damiani, P. Fraternali, S. Paraboschi, and T. Letizia. XML-GL:a graphical language for querying and restructuring XML documents. In WWW8, 1999.[CM93] M. Consens and A. Mendelzon. Hy+: A hygraph-based query and visualization system.In Proc. ACM SIGMOD'93, pages 511{516, 1993. Video presentation summary.[CM95] M. Consens and T. Milo. Algebras for querying text regions. In Proc. PODS'95, 1995.[Con99] WWW Consortium. Xpath 1.0: XML path language. Technical report, WWW Con-sortium, 1999. www.w3.org/TR/xpath.html.[Con01] WWW Consortium. Xquery 1.0: An XML query language. Technical report, WWWConsortium, 2001. www.w3.org/TR/xquery/.[CRF00] Donald D. Chamberlin, Jonathan Robie, and Daniela Florescu. Quilt: An XML querylanguage for heterogeneous data sources. In WebDB (Informal Proceedings), pages 53{62, 2000.[DSDT96] T. Dao, R. Sacks-Davis, and J. Thom. Indexing structured text for queries on contain-ment relationships. In Proc. of the 7th Australasian Database Conference, 1996.[FDL+99] D. Florescu, A. Deutsch, A. Levy, D. Suciu, and M. Fernandez. A query lan-guage for XML. In Eighth International World Wide Web Conference, 1999.http://www.w3.org/TR/1998/NOTE-xml-ql-19980819.[FMK00] D. Florescu, I. Manolescu, and D. Kossmann. Integrating keyword search into XMLquery processing. In WWW9, Amsterdam, May 2000.[GP98] C. Goldfarb and P. Prescod. The XML Handbook. Prentice-Hall, Oxford, 1998.[GT87] G. Gonnet and F. Tompa. Mind Your Grammar: a new approach to modelling text. InProc. VLDB'87, pages 339{346, 1987.[Int86] International Standards Organization. Information Processing | Text and O�ce Sys-tems | Standard Generalized Markup Language (SGML), 1986. ISO 8879-1986.18

[JK96] J. Jaakkola and P. Kilpel�ainen. Using sgrep for querying structured text �les. Tech-nical Report C-1996-83, Dept. of Computer Science, Univ. of Helsinki, Finland, 1996.Software available at http://www.cs.helsinki.fi/u/jjaakkol/sgrep.html.[KM93] P. Kilpel�ainen and H. Mannila. Retrieval from hierarchical texts by partial patterns. InProc. ACM SIGIR'93, pages 214{222, 1993.[LAW99] T. Lahiri, S. Abiteboul, and J. Widom. Ozone: Integrating structured and semistruc-tured data. In Seventh International Workshop on Database Programming Languages,Kinloch Rannoch, Scotland, September 1999.[LLD+] R. Luk, H.V. Leong, T. Dillon, A. Chan, W.B. Croft, and J. Allan. Improving indexstructures for structured document retrieval. JASIS. This issue.[LRS98] J. Lapp, J. Ro-bie, and D. Schac. XML query language (XQL). In QL'98 - The Query LanguagesWorkshop, December 1998. http://www.w3.org/TandS/QL/QL98/pp/xql.html.[Mac91] I. MacLeod. A query language for retrieving information from hierarchic text structures.The Computer Journal, 34(3):254{264, 1991.[MS99] H. Meuss and C. Strohmaier. Improving index structures for structured documentretrieval. In 21st Annual Colloquium on IR Research (IRSG'99), 1999.[MS01] H. Meuss and K. Schulz. Complete answer aggregates for tree-like databases: A novelapproach to combine querying and navigation. ACM Transactions on Information Sys-tems, 2001. To appear.[Nav95] G. Navarro. A language for queries on structure and contents of textual data-bases. Master's thesis. Dept. of Computer Science, Univ. of Chile. ftp://-sunsite.dcc.uchile.cl/pub/users/gnavarro/thesis95.ps.gz, 1995.[NBY95a] G. Navarro and R. Baeza-Yates. Expressive power of a new model for struc-tured text databases. In Proc. PANEL'95, pages 1151{1162, 1995. ftp://-sunsite.dcc.uchile.cl/pub/users/gnavarro/clei95.ps.gz.[NBY95b] G. Navarro and R. Baeza-Yates. A language for queries on structure and con-tents of textual databases. In Proc. ACM SIGIR'95, pages 93{101, 1995. ftp://-sunsite.dcc.uchile.cl/pub/users/gnavarro/sigir95.ps.gz.[NBY97] G. Navarro and R. Baeza-Yates. Proximal Nodes: a model to query document databasesby content and structure. ACM TOIS, 15(4):401{435, Oct 1997.[Rob01] J. Robie. XQL FAQ, 2001. www.ibiblio.org/xql/.[SM] Torsten Schlieder and Holger Meuss. Querying and ranking xml documents. JASIS.This issue. 19

[SS00] E. Spertus and L.A. Stein. Squeal: A structured query language for the Web. InWWW9, Amsterdam, May 2000.[ST92] A. Salminen and F. Tompa. PAT expressions: an algebra for text search. In COM-PLEX'92, pages 309{332, 1992.[Wid99] J. Widom. Data management for XML: Research directions. IEEE Data EngineeringBulletin, 22(3):44{52, 1999.

20

