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Indexing highly repetitive texts — such as genomic databases, software repositories and versioned text collections — has become
an important problem since the turn of the millennium. A relevant compressibility measure for repetitive texts is r, the number
of runs in their Burrows-Wheeler Transforms (BWTs). One of the earliest indexes for repetitive collections, the Run-Length
FM-index, used O(r) space and was able to efficiently count the number of occurrences of a pattern of length m in a text of
length n (in O(m log logn) time, with current techniques). However, it was unable to locate the positions of those occurrences
efficiently within a space bounded in terms of r. In this paper we close this long-standing problem, showing how to extend the
Run-Length FM-index so that it can locate the occ occurrences efficiently (in O(occ log logn) time) within O(r) space. By raising
the space to O(r log logn) our index counts the occurrences in optimal time, O(m), and locates them in optimal time as well,
O(m + occ). By further raising the space by an O(w/ log σ) factor, where σ is the alphabet size and w = Ω(logn) is the RAM
machine size in bits, we support count and locate in O(dm log(σ)/we) and O(dm log(σ)/we+ occ) time, which is optimal in the
packed setting and had not been obtained before in compressed space. We also describe a structure using O(r log(n/r)) space
that replaces the text and extracts any text substring of length ` in the almost-optimal time O(log(n/r) + ` log(σ)/w). Within
that space, we similarly provide access to arbitrary suffix array, inverse suffix array, and longest common prefix array cells in
time O(log(n/r)), and extend these capabilities to full suffix tree functionality, typically in O(log(n/r)) time per operation. Our
experiments show that ourO(r)-space index outperforms the space-competitive alternatives by 1–2 orders of magnitude in time.
Competitive implementations of the original FM-index are outperformed by 1–2 orders of magnitude in space and/or 2–3 in time.

Additional Key Words and Phrases: Repetitive string collections; Compressed text indexes; Burrows-Wheeler Transform; Com-
pressed suffix trees

1. INTRODUCTION
The data deluge has become a pervasive problem in most organizations that aim to collect and pro-
cess data. We are concerned about string (or text, or sequence) data, formed by collections of symbol
sequences. This includes natural language text collections, DNA and protein sequences, source code
repositories, semistructured text, and many others. The rate at which those sequence collections are
growing is daunting, in some cases outpacing Moore’s Law by a significant margin [Sthephens et al.
2015]. A key to handle this growth is the fact that the amount of unique material does not grow at
the same pace of the sequences. Indeed, the fastest-growing string collections are in many cases highly
repetitive, that is, most of the strings can be obtained from others with a few modifications. For ex-
ample, most genome sequence collections store many genomes from the same species, which in the
case of, say, humans differ by 0.1% [Przeworski et al. 2000] (there is some discussion about the exact
percentage). The 1000-genomes project1 uses a Lempel-Ziv-like compression mechanism that reports

1http://www.internationalgenome.org
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compression ratios around 1% [Fritz et al. 2011] (i.e., the compressed space is two orders of magnitude
less than the uncompressed space). Versioned document collections and software repositories are an-
other natural source of repetitiveness. For example, Wikipedia reports that, by June 2015, there were
over 20 revisions (i.e., versions) per article in its 10 TB content, and that p7zip2 compressed it to about
1%. They also report that what grows the fastest today are the revisions rather than the new articles,
which increases repetitiveness.3 A study of GitHub (which surpassed 20 TB in 2016)4 reports a ratio
of commit (new versions) over create (brand new projects) around 20.5

Version management systems offer a good solution to the problem of providing efficient access to
the documents of a versioned collection, at least when the versioning structure is known. They factor
out repetitiveness by storing the first version of a document in plain form and then the edits of each
version of it. It is much more challenging, however, to provide more advanced functionalities, such as
counting or locating the positions where a string pattern occurs across the collection.

An application field where this need is most pressing is bioinformatics. The FM-index [Ferragina
and Manzini 2005; Ferragina et al. 2007] was extremely successful in reducing the size of classical
data structures for pattern searching, such as suffix trees [Weiner 1973] or suffix arrays [Manber
and Myers 1993], to the statistical entropy of the sequence while emulating a significant part of their
functionality. The FM-index has had a surprising impact far beyond the boundaries of theoretical
computer science: if someone now sends his or her genome to be analyzed, it will almost certainly
be sequenced on a machine built by Illumina6, which will produce a huge collection of quite short
substrings of that genome, called reads. Those reads’ closest matches will then be sought in a reference
genome, to determine where they most likely came from in the newly-sequenced target genome, and
finally a list of the likely differences between the target and the reference genomes will be reported.
The searches in the reference genome will be done almost certainly using software such as Bowtie7,
BWA8, or Soap29, all of them based on the FM-index.10

Genomic analysis is already an important field of research, and a rapidly growing industry [Schatz
and Langmead 2013]. As a result of dramatic advances in sequencing technology, we now have datasets
of tens of thousands of genomes (e.g., the 100,000-human-genomes project11 was completed in Decem-
ber 2018). Unfortunately, current software based on FM-indexes cannot handle such massive datasets:
they use 2 bits per base at the very least [Keel and Snelling 2018]. Even though the FM-index can rep-
resent the sequences within their statistical entropy [Ferragina et al. 2007], this measure is insensitive
to the repetitiveness of those datasets [Kreft and Navarro 2013, Lem. 2.6], and thus the FM-indexes
would grow proportionally to the sizes of the sequences. Using current tools, indexing a set of 100,000
human genomes would require 75 TB of storage at the very least, and the index would have to reside
in main memory to operate efficiently. To handle such a challenge we need, instead, compressed text
indexes whose size is proportional to the amount of unique material in those huge datasets.

1.1. Related work
Mäkinen and Navarro [2005] pioneered the research on indexing and searching repetitive string col-
lections [Sirén et al. 2008; Mäkinen et al. 2009; Mäkinen et al. 2010]. They regard the collection as a
single concatenated text T [1 . . n] with separator symbols, and note that the number r of runs (i.e., max-
imal substrings formed by a single symbol) in the Burrows-Wheeler Transform (BWT) [Burrows and
Wheeler 1994] of the text is relatively very low on repetitive texts. Their index, Run-Length FM-Index
(RLFM-index), uses O(r) words of space and can count the number of occurrences of a pattern P [1 . .m]
in time O(m log n) and even less. However, they are unable to locate where those positions are in T

2http://p7zip.sourceforge.net
3https://en.wikipedia.org/wiki/Wikipedia:Size of Wikipedia
4https://blog.sourced.tech/post/tab vs spaces
5http://blog.coderstats.net/github/2013/event-types, see the ratios of push/create and commit/push.
6https://www.illumina.com. Over 94% of the human genomes in SRA [Kodama et al. 2012] were sequenced by Illumina.
7http://bowtie-bio.sourceforge.net
8http://bio-bwa.sourceforge.net
9http://soap.genomics.org.cn

10Ben Langmead, personal communication.
11https://www.genomicsengland.co.uk/the-100000-genomes-project
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unless they add a set of samples that require Θ(n/s) words in order to offer O(s log n) time to locate
each occurrence. On repetitive texts, either this sampled structure is orders of magnitude larger than
the O(r)-size basic index, or the locating time is extremely high.

Many proposals since then aimed at reducing the locating time by building on other compression
methods that perform well on repetitive texts: indexes based on the Lempel-Ziv parse [Lempel and Ziv
1976] of T , with size bounded in terms of the number z of phrases [Kreft and Navarro 2013; Gagie
et al. 2014; Nishimoto et al. 2015; Belazzougui et al. 2015a; Navarro 2017; Bille et al. 2018; Chris-
tiansen and Ettienne 2018]; indexes based on the smallest context-free grammar (or an approximation
thereof) that generates T and only T [Kieffer and Yang 2000; Charikar et al. 2005], with size bounded
in terms of the size g of the grammar [Claude and Navarro 2010; 2012; Gagie et al. 2012; Navarro
2019]; and indexes based on the size e of the smallest automaton (CDAWG) [Blumer et al. 1987] rec-
ognizing the substrings of T [Belazzougui et al. 2015a; Takagi et al. 2017; Belazzougui and Cunial
2017a]. Table I summarizes the pareto-optimal achievements. We do not consider in this paper indexes
based on other repetitiveness measures that only apply in restricted scenarios, such as those based
on Relative Lempel-Ziv [Kuruppu et al. 2010; Do et al. 2014; Belazzougui et al. 2014; Farruggia et al.
2018] or on alignments [Na et al. 2013a; Na et al. 2013b].

There are a few known asymptotic bounds between the repetitiveness measures r, z, g, and e:
z ≤ g = O(z log(n/z)) [Rytter 2003; Charikar et al. 2005; Jeż 2016], e = Ω(max(r, z, g)) [Belazzougui
et al. 2015a; Belazzougui and Cunial 2017b] and, very recently, r = O(z log2 n) [Kempa and Kociumaka
2019]. Examples of string families are known that show that r is not comparable with z and g [Belaz-
zougui et al. 2015a; Prezza 2016]. Experimental results [Mäkinen et al. 2010; Kreft and Navarro 2013;
Belazzougui et al. 2015a; Claude et al. 2016], on the other hand, suggest that in typical repetitive texts
it holds z < r ≈ g � e.

For highly repetitive texts, one hopes to have a compressed index not only able to count and lo-
cate pattern occurrences, but also to replace the text with a compressed version that nonetheless can
efficiently extract any substring T [i . . i + `]. Indexes that, implicitly or not, contain a replacement of
T , are called self-indexes. As can be seen in Table I, self-indexes with O(z) space require up to O(z)
time per extracted character, and none exists within O(r) space. Good extraction times are instead
obtained with O(g), O(z log(n/z)), or O(e) space. A lower bound for grammar-based representations
[Verbin and Yu 2013] shows that Ω((log n)1−ε/ log g) time, for any constant ε > 0, is needed to access
one random position within O(poly(g)) space. This bound shows that various current techniques using
structures bounded in terms of g or z [Bille et al. 2015; Belazzougui et al. 2015c; Gagie et al. 2015;
Belazzougui et al. 2015b] are nearly optimal (note that g = Ω(log n), thus the space of all these struc-
tures is O(poly(g))). In an extended article [Chen et al. 2012, Thm. 6], the authors give a lower bound
in terms of r, for binary texts on a RAM machine of w = Θ(log n) bits: Ω((log n)1−ε) for some constant ε
when using O(poly(r log n)) space.

In more sophisticated applications, especially in bioinformatics, it is desirable to support a more
complex set of operations, which constitute a full suffix tree functionality [Gusfield 1997; Ohlebusch
2013; Mäkinen et al. 2015]. While Mäkinen et al. [2010] offered suffix tree functionality, they had the
same problem of needing Θ(n/s) space to achieve O(s log n) time for most suffix tree operations. Only
recently a suffix tree of size O(e) supports most operations in time O(log n) [Belazzougui et al. 2015a;
Belazzougui and Cunial 2017b], where e refers to the e measure of T plus that of T reversed.

Summarizing Table I and our discussion, the situation on repetitive text indexing is as follows.

(1) The RLFM-index is the only structure able to count the occurrences of P in T in time O(m log n).
However, it does not offer efficient locating within O(r) space.

(2) The only structure that in practice is clearly smaller than the RLFM-index, using O(z) space [Kreft
and Navarro 2013], has unbounded locate time. Structures using potentially competitive space,
O(g), have an Ω(m2) one-time overhead in the locate time [Claude and Navarro 2010; 2012; Gagie
et al. 2012; Navarro 2019].

(3) Structures offering lower locate times require Ω(z log(n/z)) space [Gagie et al. 2014; Nishimoto
et al. 2015; Bille et al. 2018; Christiansen and Ettienne 2018; Navarro 2019], Θ(r + z) space [Be-
lazzougui et al. 2015a] (where r is the sum of r for T and its reverse), or Ω(e) space [Belazzougui
et al. 2015a; Takagi et al. 2017; Belazzougui and Cunial 2017a].
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Table I. Previous and our new results on counting, locating, extracting, and supporting suffix tree functionality. We simplified some formulas with
tight upper bounds. The variables are the text size n, pattern length m, number of occurrences occ of the pattern, alphabet size σ, extracted
length `, Lempel-Ziv parsing size z, grammar size g, BWT runs r, CDAWG size e, and machine word length in bits w. Variable h ≤ z is the
depth of the dependency chain in the Lempel-Ziv parse, ε > 0 is an arbitrarily small constant, and s is a parameter. Symbols r or e mean r or e
of T plus r or e of its reverse. The z of Kreft and Navarro [2013] refers to the Lempel-Ziv variant that does not allow overlaps between sources
and targets, but their index actually works in either variant.

Index Space Count time
Navarro [2019, Thm. 6] O(z log(n/z)) O(m logn+m log2+ε(n/z))
Navarro [2019, Thm. 5] O(g) O(m2 +m log2+ε g)

Mäkinen et al. [2010, Thm. 17] O(r) O(m( log σ
log log r

+ (log logn)2))

This paper (Lem. 2.1) O(r) O(m log logw(σ + n/r))
This paper (Thm. 4.10) O(r log logw(σ + n/r)) O(m)
This paper (Thm. 4.11) O(rw logσ logw n) O(dm log(σ)/we)

Index Space Locate time
Kreft and Navarro [2013, Thm. 4.11] O(z) O(m2h+ (m+ occ) log z)
Christiansen and Ettienne [2018, Thm. 2(3)] O(z log(n/z)) O(m+ logε z + occ(logε z + log logn))
Christiansen and Ettienne [2018, Thm. 2(1)] O(z log(n/z) + z log log z) O(m+ occ(logε z + log logn))
Bille et al. [2018, Cor. 1] O(z log(n/z) log log z) O(m(1 + logε z/ log(n/z)) + occ log logn)
Bille et al. [2018, Cor. 1] O(z(log(n/z) + log log z) log log z) O(m+ occ log logn)
Claude and Navarro [2012, Thm. 1] O(g) O(m2 log logg n+ (m+ occ) log g)
Gagie et al. [2012, Thm. 4] O(g + z log log z) O(m2 + (m+ occ) log logn)

Mäkinen et al. [2010, Thm. 20] O(r + n/s) O((m+ s · occ)( log σ
log log r

+ (log logn)2))

Belazzougui et al. [2015a, Thm. 3] O(r + z) O(m(log z + log logn) + occ(logε z + log logn))
This paper (Thm. 3.6) O(r) O((m+ occ) log logw(σ + n/r))
This paper (Thm. 4.10) O(r log logw(σ + n/r)) O(m+ occ)
This paper (Thm. 4.11) O(rw logσ logw n) O(dm log(σ)/we+ occ)
Belazzougui and Cunial [2017a, Thm. 1] O(e) O(m+ occ)

Structure Space Extract time
Kreft and Navarro [2013, Thm. 4.11] O(z) O(` h)
Belazzougui et al. [2015b, Thm. 2] O(z log(n/z)) O((1 + `/ logσ n) log(n/z))
Belazzougui et al. [2015c, Thm. 1] O(g) O(logn+ `/ logσ n)
Belazzougui et al. [2015c, Thm. 2] O(g logε n log(n/g)) O(logn/ log logn+ `/ logσ n)

Mäkinen et al. [2010, Thm. 20] O(r + n/s) O((s+ `)( log σ
log log r

+ (log logn)2))

This paper (Thm. 5.1) O(r log(n/r)) O(log(n/r) + ` log(σ)/w)
Belazzougui and Cunial [2017a, Thm. 1] O(e) O(logn+ `)

Structure Space Typical suffix tree operation time
Mäkinen et al. [2010, Thm. 30] O(r + n/s) O(s( log σ

log log r
+ (log logn)2))

This paper (Thm. 6.1) O(r log(n/r)) O(log(n/r))
Belazzougui and Cunial [2017b, Thm. 1] O(e) O(logn)

(4) Self-indexes with efficient extraction require Ω(z log(n/z)) space [Rytter 2003; Charikar et al. 2005;
Gagie et al. 2015; Belazzougui et al. 2015b; Bille et al. 2018], Ω(g) space [Bille et al. 2015; Belaz-
zougui et al. 2015c], or Ω(e) space [Takagi et al. 2017; Belazzougui and Cunial 2017a].

(5) The only efficient compressed suffix tree requires Θ(e) space [Belazzougui and Cunial 2017b].
(6) Only a few of all these indexes have been implemented, as far as we know [Mäkinen et al. 2010;

Claude and Navarro 2010; Kreft and Navarro 2013; Belazzougui et al. 2015a].

1.2. Contributions
Efficiently locating the occurrences of P in T within O(r) space has been a bottleneck and an open
problem for almost a decade. In this paper we finally give a solution to this problem. Our precise
contributions, largely detailed in Tables I and II, are the following. Our results hold in the RAM model
with a machine word of w = Ω(log n) bits.
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Table II. Our contributions. For any “Count + Locate”, we can do only “Count” in the time given by setting occ = 0.

Functionality Space (words) Time
Count + Locate (Lem. 2.1, Thm. 3.6) O(r) O(m log logw(σ + n/r) + occ log logw(n/r))
Count + Locate (Lem. 3.7) O(r log logw(n/r)) O(m log logw(σ + n/r) + occ)
Count + Locate (Thm. 4.10) O(r log logw(σ + n/r)) O(m+ occ)
Count + Locate (Thm. 4.11) O(rw logσ logw n) O(dm log(σ)/we+ occ)
Extract (Thm. 5.1) O(r log(n/r)) O(log(n/r) + ` log(σ)/w)
Access SA, ISA, LCP (Thm. 5.4–5.8) O(r log(n/r)) O(log(n/r) + `)
Count + Locate (Thm. 5.9) O(r log(n/r)) O(m+ occ)
Suffix tree (Thm. 6.1) O(r log(n/r)) O(log(n/r)) for most operations

(1) We improve the counting time of the RLFM-index to O(m log logw(σ + n/r)), where σ ≤ r is the
alphabet size of T , while retaining the O(r) space, in Lemma 2.1.

(2) We show in Theorem 3.6 how to locate each occurrence in time O(log logw(n/r)), within O(r) space.
We reduce that time to O(1) by using slightly more space, O(r log logw(n/r)), in Lemma 3.7.

(3) By using O(r log logw(σ+n/r)) space, we obtain in Theorem 4.10 optimal locate time in the general
setting, O(m + occ), as well as optimal counting time, O(m). This had been obtained before only
with space bounds O(e) [Belazzougui and Cunial 2017a] or O(e) [Takagi et al. 2017].

(4) By increasing the space to O(rw logσ logw n), we obtain in Theorem 4.11 optimal locate time,
O(dm log(σ)/we + occ), and optimal counting time, O(dm log(σ)/we), in the packed setting (i.e., the
pattern symbols come packed in blocks of w/ log σ symbols per word). This had not been achieved
so far by any compressed index, but only by uncompressed ones [Navarro and Nekrich 2017].

(5) We give the first structure built on BWT runs that replaces T while retaining direct access, in The-
orem 5.1. It extracts any substring of length ` in time O(log(n/r) + ` log(σ)/w), using O(r log(n/r))
space. As discussed, even the additive penalty is near-optimal [Chen et al. 2012, Thm. 6].

(6) Within the same O(r log(n/r)) space, we also show in Theorems 5.4–5.8 how to access ` consecu-
tive cells of the suffix array, inverse suffix array, and longest common prefix array of T , in time
O(log(n/r) + `). With the recent bound r = O(z log2 n) [Kempa and Kociumaka 2019], we also have
this functionality in O(z log3 n) ⊆ O(g log3 n) space, which was not achieved before.

(7) For completeness, Theorem 5.9 shows that we can also obtain optimal locating and counting time
within O(r log(n/r)) space, which on little-compressible texts can be less than O(r log logw(σ+n/r)).

(8) We give the first compressed suffix tree whose space is bounded in terms of r, O(r log(n/r)) words,
in Theorem 6.1. It implements most navigation operations in time O(log(n/r)). There exist only
comparable suffix trees within O(e) space [Belazzougui and Cunial 2017b], taking O(log n) time for
most operations. Again, with the recent bound r = O(z log2 n) [Kempa and Kociumaka 2019], we
also provide suffix tree functionality in O(z log3 n) space.

(9) We provide a proof-of-concept implementation of the most basic index (the one locating within O(r)
space), and show that it outperforms all the other implemented alternatives by orders of magnitude
in space or in time to locate pattern occurrences.

Contribution 1 is a simple update of the RLFM-index [Mäkinen et al. 2010] with newer data struc-
tures for rank and predecessor queries [Belazzougui and Navarro 2015]. We present it in Section 2,
together with a review of the basic concepts needed to follow the paper.

Contribution 2 is one of the central parts of the paper, and is obtained in Section 3 in two steps.
The first uses the fact that we can carry out the classical RLFM-index counting process for P in a
way that we always know the position of one occurrence in T [Prezza 2016; Policriti and Prezza 2018];
we give a simpler proof of this fact in Lemma 3.2. The second shows that, if we know the position in
T of one occurrence of the BWT, then we can quickly obtain the preceding and following ones with
an O(r)-size sampling. This is achieved by using the BWT runs to induce phrases in T (which are
somewhat analogous to the Lempel-Ziv phrases [Lempel and Ziv 1976]) and showing that the positions
of occurrences within phrases can be obtained from the positions of their preceding phrase boundary.
The time O(1) is obtained by using an extended sampling.
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For Contributions 3 and 4, we use in Section 4 the fact that the RLFM-index on a text regarded as a
sequence of metasymbols of length s, with the s possible shifts, has O(rs) runs, so that we can process
the pattern by chunks of s symbols. The optimal packed time is obtained by enlarging the samplings.

In Section 5, Contribution 5 uses an analogue of the Block Tree [Belazzougui et al. 2015b] built
on the BWT-induced phrases, which satisfy the property that any distinct string has an occurrence
overlapping a border between phrases. Contribution 6 is obtained by showing that direct access to
the suffix array SA, inverse suffix array ISA, and array LCP of T , can be supported in a similar way
because they inherit the same repetitiveness properties of the text.

Section 5 also includes Contribution 7, which is relevant only when r > n/ log n. For those values of
r, the allowed space enables us to use semi-succinct representations of O(n log log n) bits, on which we
obtain optimal counting and locating.

Contribution 8 needs, in addition to accessing the arrays SA, ISA, and LCP , some sophisticated oper-
ations on the LCP array [Fischer et al. 2009] that are not well supported by Block Trees. In Section 6,
we implement suffix trees by building a run-length context-free grammar [Nishimoto et al. 2016] of
size O(r log(n/r)) on the differential LCP array, and then implementing the required operations on it.

The results of Contribution 9 are shown in Section 7. Our experimental results show that our simple
O(r)-space index outperforms the alternatives by 1–2 orders of magnitude in time when locating the
occurrences of a pattern, while being simultaneously smaller or nearly as small. Our implementation
is also 1–2 orders of magnitude smaller and/or 2–3 orders of magnitude faster than current implemen-
tations of the original FM-index on repetitive datasets. The only compact structure outperforming our
index in space, the CDAWG, is 60 times larger and thus out of scale in this scenario.

We conclude in Section 8 with a discussion of the impact of the work and open problems.
In Appendix A we describe construction algorithms for all our data structures, achieving construction

spaces bounded in terms of r for the simpler and most practical structures.
This article extends the conference version presented in SODA 2018 [Gagie et al. 2018b]. The ex-

tension entails, on the one hand, a significant improvement in Contributions 3 and 4: in Section 4,
optimal time locating is now obtained in a much simpler way and in less space. Further, optimal time
counting is obtained as well, which is new. Contribution 6, that is, the machinery to support suffix tree
functionality in Section 6, is also new. We also present an improved implementation in Section 7, with
better experimental results. Finally, the construction algorithms in Appendix A are new as well.

2. BASIC CONCEPTS
A string is a sequence S[1 . . `] = S[1]S[2] · · ·S[`], of length ` = |S|, of symbols (or characters, or letters)
chosen from an alphabet [1 . . σ] = {1, 2, . . . , σ}, that is, S[i] ∈ [1 . . σ] for all 1 ≤ i ≤ `. We use S[i . . j] =
S[i] · · ·S[j], with 1 ≤ i, j ≤ `, to denote a substring of S, which is the empty string ε if i > j. A prefix of
S is a substring of the form S[1 . . i] (also written S[. . i]) and a suffix is a substring of the form S[i . . `]
(also written S[i . .]). The juxtaposition of strings and/or symbols represents their concatenation.

We will consider indexing a text T [1 . . n], which is a string over alphabet [1 . . σ] terminated by the
special symbol $ = 1, that is, the lexicographically smallest one, which appears only at T [n] = $. This
makes any lexicographic comparison between suffixes well defined.

Our computation model is the transdichotomous RAM, with a word of w = Ω(log n) bits, where all
the standard arithmetic and logic operations can be carried out in constant time. In this article we
generally measure space in words and assume logarithms to the base 2 by default.

2.1. Suffix trees and suffix arrays
The suffix tree [Weiner 1973] of T [1 . . n] is a compacted trie where all the n suffixes of T have been
inserted. By compacted we mean that chains of degree-1 nodes are collapsed into a single edge that is
labeled with the concatenation of the individual symbols that labeled the collapsed edges. The suffix
tree has n leaves and less than n internal nodes. By representing edge labels with pointers to T , the
suffix tree uses O(n) space, and can be built in O(n) time [Weiner 1973; McCreight 1976; Ukkonen
1995; Farach-Colton et al. 2000].

The suffix array [Manber and Myers 1993] of T [1 . . n] is an array SA[1 . . n] storing a permutation
of [1 . . n] so that, for all 1 ≤ p < n, the suffix T [SA[p] . .] is lexicographically smaller than the suffix
T [SA[p+ 1] . .]. Thus SA[p] is the starting position in T of the pth lexicographically smallest suffix of T .
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The suffix array can be regarded as an array collecting the suffix tree leaves. It uses n words of space
and can be built in O(n) time without building the suffix tree [Kim et al. 2005; Ko and Aluru 2005;
Kärkkäinen et al. 2006].

All the occurrences of a pattern string P [1 . .m] in T can be easily spotted in the suffix tree or array.
In the suffix tree, we descend from the root matching the successive symbols of P with the strings
labeling the edges. If P is in T , the symbols of P will be exhausted at a node v or inside an edge leading
to a node v; this node is called the locus of P , and all the occ leaves descending from v are the suffixes
starting with P , that is, the starting positions of the occurrences of P in T . By using perfect hashing to
store the first characters of the edge labels descending from each node v, we reach the locus in optimal
time O(m) and the space is still O(n). If P comes packed using w/ log σ symbols per computer word,
we can descend in time O(dm log(σ)/we) [Navarro and Nekrich 2017], which is optimal in the packed
model. In the suffix array, all the suffixes starting with P form a range SA[sp . . ep], which is binary
searched for in time O(m log n), or O(m+ log n) with additional structures [Manber and Myers 1993].

The inverse permutation of SA, ISA[1 . . n], is called the inverse suffix array, so that ISA[i] is the
lexicographical position of the suffix T [i . .] among all the suffixes of T .

Another important concept related to suffix arrays and trees is the longest common prefix ar-
ray. Let lcp(S, S′) be the length of the longest common prefix between two strings S 6= S′, that is,
S[1 . . lcp(S, S′)] = S′[1 . . lcp(S, S′)] but S[lcp(S, S′) + 1] 6= S′[lcp(S, S′) + 1]. Then we define the longest
common prefix array LCP [1 . . n] as LCP [1] = 0 and LCP [p] = lcp(T [SA[p − 1] . .], T [SA[p] . .]). The LCP
array uses n words and can be built in O(n) time [Kasai et al. 2001].

2.2. Self-indexes
A self-index is a data structure built on T [1 . . n] that provides at least the following functionality:

Count. Given a pattern P [1 . .m], compute the number occ of occurrences of P in T .
Locate. Given a pattern P [1 . .m], return the occ positions where P occurs in T .
Extract. Given a range [i . . i+ `− 1], return T [i . . i+ `− 1].

The last operation allows a self-index to replace T , that is, it is not necessary to store T since any
desired substring can be extracted from the self-index. This can be trivially obtained by including a
copy of T as a part of the self-index, but it is challenging when the self-index must use little space.

In principle, suffix trees and arrays can be regarded as self-indexes that can count in time O(m)
or O(dm log(σ)/we) (suffix tree, by storing occ in each node v) and O(m log n) or O(m + logn) (suffix
array, with occ = ep − sp + 1), locate each occurrence in O(1) time, and extract in time O(d` log(σ)/we)
(because they maintain a plain copy of T ). However, they use O(n log n) bits, much more than the
n log σ bits needed to represent T in plain form. We are interested in compressed self-indexes [Navarro
and Mäkinen 2007; Navarro 2016], which use the space required by a compressed representation of
T (under some compressibility measure) plus some redundancy (at worst o(n log σ) bits). We describe
later the FM-index, a particular self-index of interest to us.

2.3. The Burrows-Wheeler Transform
The Burrows-Wheeler Transform (BWT) of T [1 . . n] [Burrows and Wheeler 1994] is a string BWT [1 . . n]
defined as BWT [p] = T [SA[p] − 1] if SA[p] > 1, and BWT [p] = T [n] = $ if SA[p] = 1. That is, BWT has
the same symbols of T in a different order, and is a reversible transform.

The array BWT is obtained from T by first building SA, although it can be built directly, in O(n) time
and within O(n log σ) bits of space [Munro et al. 2017]. To obtain T from BWT [Burrows and Wheeler
1994], one considers two arrays, L[1 . . n] = BWT and F [1 . . n], which contains all the symbols of L (or
T ) in ascending order. Alternatively, F [p] = T [SA[p]], so F [p] follows L[p] in T . We need a function that
maps any L[p] to the position q of that same character in F . The formula is LF (p) = C[c] + rank[p],
where c = L[p], C[c] is the number of occurrences of symbols less than c in L, and rank[p] is the number
of occurrences of symbol L[p] in L[1 . . p]. A simple O(n)-time pass on L suffices to compute arrays C and
rank using O(n log σ) bits of space. Once they are computed, we reconstruct T [n] = $ and T [n − k] ←
L[LF k−1(1)] for k = 1, . . . , n−1, in O(n) time as well. Note that LF is a permutation with a single cycle.
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2.4. Compressed suffix arrays and FM-indexes
Compressed suffix arrays [Navarro and Mäkinen 2007] are a particular case of self-indexes that simu-
late SA in compressed form. Therefore, they aim to obtain the suffix array range [sp . . ep] of P , which is
sufficient to count since P then appears occ = ep − sp + 1 times in T . For locating, they need to access
the content of cells SA[sp], . . . ,SA[ep], without having SA stored.

The FM-index [Ferragina and Manzini 2005; Ferragina et al. 2007] is a compressed suffix array that
exploits the relation between the string L = BWT and the suffix array SA. It stores L in compressed
form (as it can be easily compressed to the high-order empirical entropy of T [Manzini 2001]) and adds
sublinear-size data structures to compute (i) any desired position L[p], (ii) the generalized rank function
rankc(L, p), which is the number of times symbol c appears in L[1 . . p]. Note that these two operations
permit, in particular, computing rank[p] = rankL[p](L, p), which is called partial rank. Therefore, they
compute

LF (p) = C[L[p]] + rankL[p](L, p).

For counting, the FM-index resorts to backward search. This procedure reads P backwards and at
any step knows the range [spj , epj ] of P [j . .m] in T . Initially, we have the range [spm+1 . . epm+1] = [1 . . n]
for P [m + 1 . .m] = ε. Given the range [spj+1 . . epj+1], one obtains the range [spj . . epj ] from c = P [j]
with the operations

spj = C[c] + rankc(L, spj+1 − 1) + 1,

epj = C[c] + rankc(L, epj+1).

Thus the range [sp . . ep] = [sp1 . . ep1] is obtained with O(m) computations of rank, which dominates the
counting complexity.

For locating, the FM-index (and most compressed suffix arrays) stores sampled values of SA at regu-
larly spaced text positions, say multiples of s. Thus, to retrieve SA[p], we find the smallest k for which
SA[LF k(p)] is sampled, and then the answer is SA[p] = SA[LF k(p)] + k. This is because function LF
virtually traverses the text backwards, that is, it drives us from L[p], which precedes suffix SA[p], to its
position F [q], where the suffix SA[q] starts with L[p], that is, SA[q] = SA[p]− 1:

SA[LF (p)] = SA[p]− 1.

Since it is guaranteed that k < s, each occurrence is located with s accesses to L and computations of
LF , and the extra space for the sampling is O((n log n)/s) bits, or O(n/s) words.

For extracting, a similar sampling is used on ISA, that is, we sample the positions of ISA that are
multiples of s. To extract T [i . . i+ `− 1] we find the smallest multiple of s in [i+ ` . . n], j = s · d(i+ `)/se,
and extract T [i . . j]. Since ISA[j] = p is sampled, we know that T [j − 1] = L[p], T [j − 2] = L[LF (p)], and
so on. In total we require at most `+ s accesses to L and computations of LF to extract T [i . . i+ `− 1].
The extra space of this second sampling is also O(n/s) words.

For example, using a representation [Belazzougui and Navarro 2015] that accesses L and computes
partial ranks in constant time (so LF is computed in O(1) time), and computes rank in the optimal
time O(log logw σ), an FM-index can count in time O(m log logw σ), locate each occurrence in O(s) time,
and extract ` symbols of T in time O(s + `), by using O(n/s) space on top of the empirical entropy of
T [Belazzougui and Navarro 2015]. There exist even faster variants [Belazzougui and Navarro 2014],
but they do not rely on backward search.

2.5. The Run-Length FM-index
One of the sources of the compressibility of BWT is that symbols are clustered into r ≤ n runs, which
are maximal substrings formed by the same symbol. Mäkinen and Navarro [2005] proved a (relatively
weak) bound on r in terms of the high-order empirical entropy of T and, more importantly, designed
an FM-index variant that uses O(r) words of space, called Run-Length FM-index or RLFM-index. They
later experimented with several variants of the RLFM-index, where the one called RLFM+ [Mäkinen
et al. 2010, Thm. 17] corresponds to the original RLFM-index [Mäkinen and Navarro 2005].

The structure stores the run heads, that is, the first positions of the runs in BWT , in a data structure
E = {1} ∪ {1 < p ≤ n,BWT [p] 6= BWT [p− 1]} that supports predecessor searches. Each element e ∈ E
has associated the value e.v = |{e′ ∈ E, e′ ≤ e}|, which is its position in a string L′[1 . . r] that stores
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the run symbols. Another array, D[0 . . r], stores the cumulative lengths of the runs after stably sorting
them lexicographically by their symbols (with D[0] = 0). Let array C ′[1 . . σ] count the number of runs
of symbols smaller than c in L. One can then simulate

rankc(L, p) = D[C ′[c] + rankc(L
′, q.v − 1)] + [if L′[q.v] = c then p− q + 1 else 0],

where q = pred(E, p), at the cost of a predecessor search (pred) in E and a rank on L′. By using up-to-
date data structures, the counting performance of the RLFM-index can be stated as follows.

LEMMA 2.1. The Run-Length FM-index of a text T [1 . . n] whose BWT has r runs can occupy O(r)
words and count the number of occurrences of any pattern P [1 . .m] in O(m log logw(σ + n/r)) time. It
also computes any LF (p) and access to any symbol BWT [p] in time O(log logw(n/r)).

PROOF. We use the RLFM+ [Mäkinen et al. 2010, Thm. 17], using the structure of Belazzougui
and Navarro [2015, Thm. 10] for the sequence L′ (with constant access time) and the predecessor
data structure described by Belazzougui and Navarro [2015, Thm. 14] to implement E (instead of the
bitvector used in the original RLFM+). The RLFM+ also implements D with a bitvector, but we use a
plain array. The sum of both operation times is O(log logw σ + log logw(n/r)), which can be written as
O(log logw(σ + n/r)). To access BWT [p] = L[p] = L′[pred(E, p).v] we only need a predecessor search on
E, which takes time O(log logw(n/r)), and a constant-time access to L′. Finally, we compute LF faster
than a general rank query, since we only need the partial rank query

rankL[p](L, p) = D[C ′[L′[q.v]] + rankL′[q.v](L
′, q.v)− 1] + (p− q + 1),

which is correct since L[p] = L′[q.v]. The operation rankL′[q.v](L
′, q.v) can be supported in constant

time using O(r) space, by just recording all the answers, and therefore the time for LF on L is also
dominated by the predecessor search on E (to compute q), which takes O(log logw(n/r)) time.

To provide locating and extracting functionality, Mäkinen et al. [2010] use the sampling mechanism
we described for the FM-index. Therefore, although they can efficiently count within O(r) space, they
need a much larger space,O(n/s), to support these operations in time proportional to s. Despite various
efforts [Mäkinen et al. 2010], this has been a bottleneck in theory and in practice since then.

We will generally assume that σ is the effective alphabet of T , that is, the σ symbols appear in T .
This implies that σ ≤ r ≤ n. If this is not the case, we can map T to an effective alphabet [1 . . σ′] before
indexing it. A mapping of σ′ ≤ r words then stores the actual symbols when extracting a substring of
T is necessary. For searches, we have to map the m positions of P to the effective alphabet. By storing
a perfect hash or a deterministic dictionary [Ružić 2008] of O(σ′) = O(r) words, we map each symbol
of P in constant time. On the other hand, to handle packed symbols we must use tables of size O(2εw),
for any constant ε > 0, to translate Θ(w/ log σ) symbols in constant time (in either direction). Note that
the packed setting is asymptotically relevant only when σ is small, log σ = o(w), and thus it is unlikely
that we use it with large σ = ω(r). Only under this combination the assumption σ ≤ r requires us to
spend O(2εw) extra space and construction time.

2.6. Compressed suffix trees
Suffix trees provide a much more complete functionality than self-indexes, and are used to solve com-
plex problems especially in bioinformatic applications [Gusfield 1997; Ohlebusch 2013; Mäkinen et al.
2015]. A compressed suffix tree is regarded as an enhancement of a compressed suffix array (which, in
a sense, represents only the leaves of the suffix tree). Such a compressed representation must be able
to simulate the operations on the classical suffix tree (see Table IV later in the article), while using
little space on top of the compressed suffix array. The first such compressed suffix tree [Sadakane 2007]
used O(n) extra bits, and there are several variants using o(n) extra bits [Fischer et al. 2009; Fischer
2010; Russo et al. 2011; Gog and Ohlebusch 2013; Abeliuk et al. 2013].

Instead, there are no compressed suffix trees using O(r polylog(n)) space. An extension of the RLFM-
index [Mäkinen et al. 2010] still needs O(n/s) space to carry out most of the suffix tree operations in
time O(s log n). Most variants designed for repetitive text collections [Abeliuk et al. 2013; Navarro and
Ordóñez 2016; Farruggia et al. 2018; Cáceres and Navarro 2019] are heuristic and do not offer worst-
case guarantees. The only exception is the compressed suffix tree of Belazzougui and Cunial [2017b],
which uses space O(e) and supports most operations in time O(log n).
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3. LOCATING IN BWT-RUNS BOUNDED SPACE
In this section we show that, if the BWT of a text T [1 . . n] has r runs, then we can have an index using
O(r) space that not only efficiently finds the interval SA[sp . . ep] of the occurrences of a pattern P [1 . .m]
(as was already known in the literature, see Section 2.5) but that can locate each such occurrence in
time O(log logw(n/r)) on a RAM machine of w bits. Further, the time per occurrence becomes constant
if the space is raised to O(r log logw(n/r)).

We start with Lemma 3.2, which shows that the typical backward search process can be enhanced
so that we always know the position of one of the values in SA[sp . . ep]. We give a simplification of
the previous proof [Prezza 2016; Policriti and Prezza 2018]. Lemma 3.5 then shows how to efficiently
obtain the two cells of SA that surround the value of one cell we know. This allows us to extend the first
known cell in both directions, until obtaining the whole interval SA[sp . . ep]. Theorem 3.6 summarizes
the main result of this section.

Later, Lemma 3.7 shows how this process can be accelerated by using more space. We extend the idea
in Lemma 3.8, obtaining LCP values in the same way we obtain SA values. While not of immediate
use for locating, this result is useful later in the article and also has independent interest.

Definition 3.1. We say that a text character T [i] is sampled if and only if i = 1 or T [i] is the first
or last character in its BWT run. That is, T [1], T [SA[n] − 1], and T [SA[1] − 1] = T [n − 1] are sampled
and, if p > 1 and BWT [p] 6= BWT [p− 1], then T [SA[p− 1]− 1] and T [SA[p]− 1] are sampled. In general,
T [i] is s-sampled if i = 1 or i = SA[p]− 1 and p is at distance at most s from a BWT run border, where
sampled characters are assumed to be at distance 1.

LEMMA 3.2. We can store O(r) words such that, given P [1 . .m], in time O(m log logw(σ + n/r)) we
can compute the interval SA[sp, ep] of the occurrences of P in T and also return the position p and content
SA[p] of at least one cell in the interval [sp, ep].

PROOF. We store a RLFM-index and predecessor structures Rc storing the position in BWT of all
the sampled characters equal to c, for each c ∈ [1 . . σ]. Each BWT position p ∈ Rc is associated with its
corresponding text position, that is, we store pairs 〈p,SA[p]− 1〉 in the structures Rc. These structures
take a total of O(r) words.

The interval of characters immediately preceding occurrences of the empty string is the entire
BWT [1 . . n], which clearly includes P [m] as the last character in some run (unless P does not occur
in T ). It follows that we find an occurrence of P [m] in predecessor time by querying pred(RP [m], n).

Assume we have found the interval BWT [sp, ep] containing the characters immediately preceding
all the occurrences of some (possibly empty) suffix P [j + 1 . .m] of P , and we know the position and
content of some cell SA[p] in the corresponding interval, sp ≤ p ≤ ep. Since SA[LF (p)] = SA[p] − 1, if
BWT [p] = P [j] then, after the next application of LF -mapping, we still know the position and value
of some cell SA[p′] corresponding to the interval BWT [sp′, ep′] for P [j . .m], namely p′ = LF (p) and
SA[p′] = SA[p]− 1.

On the other hand, if BWT [p] 6= P [j] but P still occurs somewhere in T (i.e., sp′ ≤ ep′), then there is
at least one P [j] and one non-P [j] in BWT [sp, ep], and therefore the interval intersects an extreme of a
run of copies of P [j], thus holding a sampled character. Then, a predecessor query pred(RP [j], ep) gives
us the desired pair 〈p′,SA[p′]− 1〉 with sp ≤ p′ ≤ ep and BWT [p′] = P [j].

Therefore, by induction, when we have computed the BWT interval for P , we know the position and
content of at least one cell in the corresponding interval in SA.

To obtain the desired time bounds, we concatenate all the universes of the Rc structures into a single
one of size σn, and use a single structure R on that universe: each 〈p,SA[p − 1]〉 ∈ Rc becomes 〈(c −
1)n+p,SA[p]−1〉 in R, and a search pred(Rc, q) becomes pred(R, (c−1)n+q)− (c−1)n. Since R contains
2r elements on a universe of size σn, we can have predecessor searches in time O(log logw(nσ/r)) and
space O(r) [Belazzougui and Navarro 2015, Thm. 14]. This is the same O(log logw(σ + n/r)) time we
obtained in Lemma 2.1 to carry out the normal backward search operations on the RLFM-index.

Lemma 3.2 gives us a toehold in the suffix array, and we now show that this is all we need. We first
show that, given the position and contents of one cell of the suffix array SA of a text T , we can compute
the contents of the neighbouring cells in O(log logw(n/r)) time. It follows that, once we have counted
the occurrences of a pattern in T , we can locate them all in O(log logw(n/r)) time each.
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Fig. 1. Illustration of Lemma 3.5. Since BWT [p] = T [k] and i is the predecessor of k, the cells p− 1, p, and p+ 1 would travel
together through consecutive applications of LF , reaching the positions N [i] = 〈x, y〉 after k − i steps. Thus it must be that
BWT [p− 1] = T [x+ k − i] and BWT [p+ 1] = T [y + k − i].

Definition 3.3. ([Kärkkäinen et al. 2009]) Let permutation φ be defined as φ(i) = SA[ISA[i] − 1] if
ISA[i] > 1 and φ(i) = SA[n] otherwise.

That is, given a text position i = SA[p] pointed from suffix array position p, φ(i) = SA[ISA[SA[p]]−1] =
SA[p− 1] gives the value of the preceding suffix array cell. Similarly, φ−1(i) = SA[p+ 1].

Definition 3.4. We parse T into phrases such that T [i] is the first character in a phrase if and only
if T [i] is sampled.

LEMMA 3.5. We can store O(r) words such that functions φ and φ−1 are evaluated in
O(log logw(n/r)) time.

PROOF. We store an O(r)-space predecessor data structure P± with O(log logw(n/r)) query time
[Belazzougui and Navarro 2015, Thm. 14] for the starting phrase positions i of T (i.e., the sampled
text positions). We also store, associated with such values i ∈ P±, the positions in T next to the
characters immediately preceding and following the corresponding position BWT [q], that is, N [i] =
〈SA[q − 1],SA[q + 1]〉 for i = SA[q]− 1 (for q = 1 and q = n we store 〈null,SA[q + 1]〉 and 〈SA[q − 1], null〉,
respectively).

Suppose we know SA[p] = k+1 and want to know SA[p−1] and SA[p+1]. This is equivalent to knowing
the position BWT [p] = T [k] and wanting to know the positions in T of BWT [p− 1] and BWT [p+ 1]. To
compute these positions, we find in P± the position i in T of the first character of the phrase containing
T [k], take the associated positions N [i] = 〈x, y〉, and return SA[p−1] = x+k− i and SA[p+1] = y+k− i.

To see why this works, let SA[p − 1] = j + 1 and SA[p + 1] = l + 1, that is, j and l are the positions
in T of BWT [p − 1] = T [j] and BWT [p + 1] = T [l]. Note that, for all 0 ≤ t < k − i, T [k − t] is not
the first nor the last character of a run in BWT . Thus, by definition of LF , LF t(p − 1), LF t(p), and
LF t(p + 1), that is, the BWT positions of T [j − t], T [k − t], and T [l − t], are contiguous and within a
single run, thus T [j − t] = T [k − t] = T [l − t]. Therefore, for t = k − i− 1, T [j − (k − i− 1)] = T [i+ 1] =
T [l − (k − i + 1)] are contiguous in BWT , and thus a further LF step yields that BWT [q] = T [i] is
immediately preceded and followed by BWT [q− 1] = T [j− (k− i)] and BWT [q+ 1] = T [l− (k− i)]. That
is, N [i] = 〈SA[q − 1],SA[q + 1]〉 = 〈j − (k − i) + 1, l − (k − i) + 1〉 and our answer is correct. Figure 1
illustrates the proof.

We then obtain the main result of this section.

THEOREM 3.6. We can store a text T [1 . . n], over alphabet [1 . . σ], in O(r) words, where r is the
number of runs in the BWT of T , such that later, given a pattern P [1 . .m], we can count the occurrences
of P in T in O(m log logw(σ + n/r)) time and (after counting) report their occ locations in overall time
O(occ · log logw(n/r)).
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3.1. Larger and faster
The following lemma shows that the above technique can be generalized. The result is a space-time
tradeoff allowing us to list each occurrence in constant time at the expense of a slight increase in space
usage. This will be useful later in the article, in particular to obtain optimal-time locating. To obtain
it, we enhance the sampling P± of Lemma 3.5 to ensure that we find s consecutive samples. For this
reason, we must store separately the sampled positions preceding and following run borders.

LEMMA 3.7. Let s > 0. We can store a data structure of O(rs) words such that, given SA[p], we can
compute SA[p− j] and SA[p+ j] for j = 1, . . . , s′ and any s′ ≤ s, in O(log logw(n/r) + s′) time.

PROOF. Consider all BWT positions q1 < · · · < qt of s-sampled characters, and let W [1 . . t] be an
array such that W [k] is the text position corresponding to qk, for k = 1, . . . , t. Now let q+1 < · · · < q+t+
be the BWT positions having a run border at most s positions after them, and q−1 < · · · < q−t− be the
BWT positions having a run border at most s positions before them; note t+, t− ≤ t. We store the text
positions corresponding to q+1 < · · · < q+t+ and q−1 < · · · < q−t− in two predecessor structures P+ and P−,
respectively, of size O(rs). We store, for each i ∈ P+ ∪ P−, its position f(i) in W , that is, W [f(i)] = i.

To answer queries given SA[p], we first compute its P+-predecessor i < SA[p] inO(log logw(n/r)) time,
and retrieve f(i). Then, it holds that SA[p + j] = W [f(i) + j] + (SA[p] − i), for j = 0, . . . , s. Computing
SA[p− j] is symmetric; we just use P− instead of P+.

To see why this procedure is correct, consider the range SA[p . . p+ s]. We distinguish two cases.
(i) BWT [p . . p + s] contains at least two distinct characters. Then, SA[p] − 1 ∈ P+ (because p is

followed by a run break at most s positions away), and is therefore the immediate predecessor of SA[p].
Moreover, all BWT positions [p . . p+ s] are in q1, . . . , qt (since they are at distance at most s from a run
break), and their corresponding text positions are therefore contained in a contiguous range of W (i.e.,
W [f(SA[p]− 1) . . f(SA[p]− 1) + s]). The claim follows.

(ii) BWT [p . . p+s] contains a single character; we say it is unary. Then SA[p]−1 /∈ P+, since there are
no run breaks in BWT [p . . p + s]. Moreover, by the LF formula, the LF mapping applied on the unary
range BWT [p . . p+s] gives a contiguous range BWT [LF (p) . .LF (p+s)] = BWT [LF (p) . .LF (p)+s]. Note
that this corresponds to a parallel backward step on text positions SA[p] → SA[p] − 1, . . . ,SA[p + s] →
SA[p + s] − 1. We iterate the application of LF until we end up in a range BWT [LF δ(p) . .LF δ(p + s)]

that is not unary. Then, SA[LF δ(p)]− 1 is the immediate predecessor of SA[p] in P+, and δ + 1 is their
distance. This means that with a single predecessor query on P+ we “skip” all the unary BWT ranges
BWT [LF k(p) . .LF k(p+ s)] for k = 1, . . . , δ− 1 and, as in case (i), we retrieve the contiguous range in W
containing the values SA[p]− δ, . . . ,SA[p+ s]− δ; we then add δ to obtain the desired SA values.

3.2. Accessing LCP

Lemma 3.7 can be further extended to entries of the LCP array, which we will use later in the article.
Given SA[p], we compute LCP [p] and its s adjacent entries (note that we do not need to know p, but
SA[p]). For s = 0 this is known as the permuted LCP (PLCP) array [Sadakane 2007]. Our result can
indeed be seen as an extension of a PLCP representation by Fischer et al. [2009]. In Section 6.2 we use
different structures that enable the classical access, that is, compute LCP [p] from p, not from SA[p].

LEMMA 3.8. Let s > 0. We can store a data structure of O(rs) words such that, given SA[p], we can
compute LCP [p− j + 1] and LCP [p+ j], for j = 1, . . . , s′ and any s′ ≤ s, in O(log logw(n/r) + s′) time.

PROOF. The proof follows closely that of Lemma 3.7, except that now we sample LCP entries corre-
sponding to suffixes following s-sampled BWT positions. Let us define q1 < · · · < qt, q+1 < · · · < q+t+ , and
q−1 < · · · < q−t− , as well as the predecessor structures P+ and P−, exactly as in the proof of Lemma 3.7.
We store LCP ′[1 . . t] = LCP [q1], . . . ,LCP [qt]. We also store, for each i ∈ P+ ∪ P−, its corresponding
position f(i) in LCP ′, that is, LCP ′[f(i)] = LCP [ISA[i+ 1]].

To answer queries given SA[p], we first compute its P+-predecessor i < SA[p] in O(log logw(n/r))
time, and retrieve f(i). It then holds that LCP [p+ j] = LCP ′[f(i) + j]− (SA[p]− i− 1), for j = 1, . . . , s.
Computing LCP [p− j] for j = 0, . . . , s− 1 is symmetric (using P− instead of P+).

To see why this procedure is correct, consider the range SA[p . . p+s]. We distinguish again two cases.
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(i) BWT [p . . p+ s] contains at least two distinct characters. Then, as in case (i) of Lemma 3.7, SA[p]−
1 ∈ P+ and is therefore the immediate predecessor i = SA[p]− 1 of SA[p]. Moreover, all BWT positions
[p . . p+s] are in q1, . . . , qt, and therefore values LCP [p . . p+s] are explicitly stored in a contiguous range
in LCP ′ (i.e., LCP ′[f(i) . . f(i)+s]). Note that SA[p]−i = 1, so LCP ′[f(i)+j]−(SA[p]−i−1) = LCP ′[f(i)+j]
for j = 0, . . . , s. The claim follows.

(ii) BWT [p . . p + s] contains a single character, so it is unary. Then we reason exactly as in case
(ii) of Lemma 3.7 to define δ so that i′ = SA[LF δ(p)] − 1 is the immediate predecessor of SA[p] in
P+ and, as in case (i) of this proof, retrieve the contiguous range LCP ′[f(i′) . . f(i′) + s] containing
the values LCP [LF δ(p) . .LF δ(p + s)]. Since the skipped BWT ranges are unary, it is not hard to see
that LCP [LF δ(p + j)] = LCP [p + j] + δ for j = 1, . . . , s (note that we do not include j = 0 because
we cannot exclude that, for some k < δ, LF k(p) is the first position in its run). From the equality
δ = SA[p] − i′ − 1 = SA[p] − SA[LF δ(p)] (that is, δ is the distance between SA[p] and its predecessor
minus one or, equivalently, the number of LF steps virtually performed), we then compute LCP [p+j] =
LCP ′[f(i′) + j]− δ for j = 1, . . . , s.

As a simplification that does not change our asymptotic bounds (but that we consider in the im-
plementation), note that it is sufficient to sample only the last (or the first) characters of BWT runs.
In this case, our toehold in Lemma 3.2 will be the last cell SA[ep] of our current range SA[sp . . ep]: if
BWT [ep] = P [j], then the next toehold is ep′ and its position is SA[ep] − 1. Otherwise, there must be
a run end (i.e., a sampled position) in SA[sp . . ep], which we find with pred(RP [j], ep), and this stores
SA[ep′]. Therefore, we only need to store N [i] = SA[q − 1] in Lemma 3.5 and just P− in Lemmas 3.7
and 3.8, thus reducing the space for sampling. This was noted simultaneously by several authors after
our conference paper [Gagie et al. 2018b] and published independently [Bannai et al. 2018]. For this
paper, our definition is better suited as the sampling holds crucial properties — see the next section.

4. COUNTING AND LOCATING IN OPTIMAL TIME
In this section we show how to obtain optimal counting and locating time in the unpacked — O(m)
and O(m + occ) — and packed — O(dm log(σ)/we) and O(dm log(σ)/we + occ) — scenarios, by using
O(r log logw(σ + n/r)) and O(rw logσ logw n) space, respectively. To improve upon the times of Theorem
3.6 we process P by chunks of s symbols on a text T ∗ formed by chunks as well, and resort to the faster
locating of Lemma 3.7.

4.1. A RLFM-index on chunks
Given an integer s ≥ 1, let us define texts T k[1 . . dn/se] for k = 0, . . . , s − 1, so that T k[i] = T [k + (i −
1)s + 1 . . k + is], where we assume T is padded with s − 1 + dn/se · s − n < 2s − 1 copies of $. That is,
T k is T devoid of its first k symbols and then seen as a sequence of metasymbols formed by s original
symbols. We then define a new text T ∗ = T 0 T 1 · · ·T s−1. The text T ∗ has length n∗ = s · dn/se < n + s
and its alphabet is of size at most σs. The order between the metasymbols of T ∗ is defined according to
the lexicographic order of their corresponding length-s strings.

Note that each suffix in T ∗ has a corresponding suffix in T from where it is extracted.

Definition 4.1. Suffix T ∗[i∗ . . n∗] corresponds to suffix T [i . . n] iff the concatenation of the symbols
forming the metasymbols in T ∗[i∗ . . n∗] is equal to the suffix T [i . . n], if we compare them up to the first
occurrence of $.

The next observation specifies the algebraic transformation between the positions in T ∗ and T .

OBSERVATION 1. Suffix T ∗[i∗ . . n∗] corresponds to suffix T [i . . n] iff i = ((i∗ − 1) mod dn/se) · s +
di∗/dn/see.

We exploit the property that corresponding suffixes of T and T ∗ have the same lexicographic rank.

LEMMA 4.2. For any suffixes T ∗[i∗ . . n∗] and T ∗[j∗ . . n∗] corresponding to T [i . . n] and T [j . . n], re-
spectively, it holds that T ∗[i∗ . . n∗] ≤ T ∗[j∗ . . n∗] iff T [i . . n] ≤ T [j . . n].

PROOF. Consider any i∗ 6= j∗, otherwise the result is trivial because i = j. We proceed by induction
on n∗−i∗. If this is zero, then T [i∗ . . n∗] = T [n∗] = T s−1[dn/se] = T [s−1+(dn/se−1)s+1 . . s−1+dn/ses] =
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$s is always ≤ T [j∗ . . n∗] for any j∗. Further, by Observation 1, i = dn/se · s, which is the rightmost
suffix of T (extended with $s) and it is formed by all $s, and thus it is ≤ T [j . . n] for any j.

Now, given a general pair T ∗[i∗ . . n∗] and T ∗[j∗ . . n∗], consider the first metasymbols T ∗[i∗] and T ∗[j∗].
If they are different, then the comparison depends on which of them is lexicographically smaller. Sim-
ilarly, since T ∗[i∗] = T [i . . i+ s− 1] and T ∗[j∗] = T [j . . j + s− 1], the comparison of the suffixes T [i . . n]
and T [j . . n] depends on which is smaller between the substrings T [i . . i+ s− 1] 6= T [j . . j+ s− 1]. Since
the metasymbols T ∗[i∗] and T ∗[j∗] are ordered lexicographically, the outcome of the comparison is the
same. If, instead, T ∗[i∗] = T ∗[j∗], then also T [i . . i + s − 1] = T [j . . j + s − 1]. The comparison in T ∗ is
then decided by the suffixes T ∗[i∗ + 1 . . n∗] and T ∗[j∗ + 1 . . n∗], and in T by the suffixes T [i+ s . . n] and
T [j + s . . n]. By Observation 1, the suffixes T ∗[i∗ + 1 . . n∗] and T ∗[j∗ + 1 . . n∗] almost always correspond
to T [i+s . . n] and T [j+s . . n], and then by the inductive hypothesis the result of the comparisons is the
same. The case where T ∗[i∗ + 1 . . n∗] or T ∗[j∗ + 1 . . n∗] do not correspond to T [i + s . . n] or T [j + s . . n]
arises when i∗ or j∗ are a multiple of dn/se, but in this case they correspond to some T k[dn/se], which
contains at least one $. Since i∗ 6= j∗, the number of $s must be distinct, and then the metasymbols
cannot be equal.

An important consequence of Lemma 4.2 is that the suffix arrays SA∗ and SA of T ∗ and T , respec-
tively, list the corresponding suffixes in the same order (the positions of the corresponding suffixes in
T ∗ and T differ, though). Thus we can find suffix array ranges in SA via searches on SA∗. More pre-
cisely, we can use the RLFM-index of T ∗ instead of that of T . The following result is the key to bound
the space usage of our structure.

LEMMA 4.3. If the BWT of T has r runs, then the BWT of T ∗ has r∗ = O(rs) runs.

PROOF. Kempa [2019, see before Thm. 3.3] shows that the number of s-runs in the BWT of T , that
is, the number of maximal runs of equal substrings of length s preceding the suffixes in lexicographic
order, is at most s · r. Since SA and SA∗ list the corresponding suffixes in the same order, the number of
s-runs in T essentially corresponds to the number of runs in T ∗, formed by the length-s metasymbols
preceding the same suffixes. The only exceptions are the s metasymbols that precede some metasymbol
T k[1] in T ∗. Other O(s) runs can appear because we have padded T with O(s) copies of $, and thus T
has O(s) further suffixes. Still, the total is r∗ = rs+O(s) = O(rs).

4.2. Mapping the alphabet
The alphabet size of T ∗ is σs, which can be large. Depending on σ and s, we could even be unable
to handle the metasymbols in constant time. Note, however, that the effective alphabet of T ∗ must be
σ∗ ≤ r∗ = O(rs), which will always be in O(n2) for any s ≤ n. Thus we can always manage metasymbols
in [1 . . σ∗] in constant time. We use a compact trie of height s to convert the existing substrings of length
s of T into numbers in [1 . . σ∗], respecting the lexicographic order. The trie uses perfect hashing to find
the desired child in constant time, and the strings labeling the edges are represented as pointers to an
area storing all the distinct substrings of length s in T . We now show that this area is of length O(rs).

Definition 4.4. We say that a text substring T [i . . j] is primary iff it contains at least one sampled
character (see Definition 3.1).

LEMMA 4.5. Every text substring T [i . . j] has a primary occurrence T [i′ . . j′] = T [i . . j].

PROOF. We prove the lemma by induction on j− i. If j− i = 0, then T [i . . j] is a single character, and
every character has a sampled occurrence i′ in the text. Now let j − i > 0. By the inductive hypothesis,
T [i+ 1 . . j] has a primary occurrence T [i′ + 1 . . j′]. If T [i] = T [i′], then T [i′ . . j′] is a primary occurrence
of T [i . . j]. Assume then that T [i] 6= T [i′]. Let [sp, ep] be the BWT range of T [i + 1 . . j]. Then there
are two distinct symbols in BWT [sp, ep], and thus there must be a run of T [i]’s ending or beginning
in BWT [sp, ep], say at position sp ≤ q ≤ ep. Thus it holds that BWT [q] = T [i] and the text position
i′′ = SA[q]− 1 is sampled. We then have a primary occurrence T [i′′ . . j′′] = T [i . . j].

LEMMA 4.6. There are at most 2rs distinct s-mers in the text, and they are all contained in a string
of length 4rs.
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PROOF. From Lemma 4.5, every distinct s-mer appearing in the text has a primary occurrence.
It follows that, in order to count the number of distinct s-mers, we can restrict our attention to the
regions of size 2s − 1 overlapping the at most 2r sampled positions. Each sampled position overlaps
with s s-mers, so the claim easily follows.

The compact trie then has size O(rs), since it has σ∗ ≤ r∗ = O(rs) leaves and no unary paths, and
the area containing the distinct strings is also of size O(rs). The structure maps any metasymbol to
the new alphabet [1 . . σ∗], by storing the corresponding symbol in every leaf. Every internal trie node v
also stores the first and last symbols of [1 . . σ∗] stored at leaves descending from it, vmin and vmax.

We then build the RLFM-index of T ∗ on the mapped alphabet [1 . . σ∗], and the structures using space
proportional to the alphabet size become bounded by space O(σ∗) = O(r∗) rather than O(σs).

4.3. Counting in optimal time
Let us start with the base FM-index. Recalling Section 2.4, the FM-index of T ∗ consists of an array
C∗[1 . . σ∗] and a string L∗[1 . . n∗], where C∗[c] tells the number of times metasymbols less than c occur
in T ∗, and where L∗ is the BWT of T ∗, with the (meta)symbols mapped to [1 . . σ∗].

To use this FM-index, we process P by metasymbols too. We define two patterns, P ∗ ·LP and P ∗ ·RP ,
with P ∗[1 . .m∗] = P [1 . . s]P [s + 1 . . 2s] · · ·P [bm/s − 1c · s + 1 . . bm/sc · s], LP = P [bm/sc · s + 1 . .m] ·
$s−(m mod s), and RP = P [bm/sc · s + 1 . .m] · @s−(m mod s), @ being the largest symbol in the alphabet.
That is, P ∗ ·PL and P ∗ ·PR are P padded with the smallest and largest alphabet symbols, respectively,
and then regarded as a sequence of m∗ + 1 = bm/sc + 1 metasymbols. This definition and Lemma 4.2
ensure that the suffixes of T starting with P correspond to the suffixes of T ∗ starting with strings
lexicographically between P ∗ · PL and P ∗ · PR.

We use the trie to map the symbols of P ∗ to the alphabet [1 . . σ∗]. If a metasymbol of P ∗ is not found,
it means that P does not occur in T . To map the symbols LP and RP , we descend by the symbols
P [bm/sc · s+ 1 . .m] and, upon reaching trie node v, we use the precomputed limits vmin and vmax as the
mappings of LP and RP , respectively. Overall, we map P ∗, LP and RP in O(m) time.

We can then apply backward search almost as in Section 2.4, but with a twist for the last symbols of
P ∗ · PL and P ∗ · PR: We start with the range [spm∗ , epm∗ ] = [C∗[vmin] + 1, C∗[vmax + 1]], and then carry
out m∗ − 1 steps, for j = m∗ − 1, . . . , 1, as follows, c being the mapping of P ∗[j]:

spj = C∗[c] + rankc(L
∗, spj+1 − 1) + 1,

epj = C∗[c] + rankc(L
∗, epj+1).

The resulting range, [sp, ep] = [sp1, ep1], corresponds to the range of P in T , and is obtained with
2(m∗ − 1) ≤ 2m/s operations rankc(L, i).

A RLFM-index (Section 2.5) on T ∗ stores, instead of C∗ and L∗, structures E, L′, D, and C ′, of total
size O(σ∗ + r∗) = O(r∗). These simulate the operation rankc(L

∗, i) in the time of a predecessor search
on E and rank and access operations on L′. These add up to O(log logw(σ∗ + n∗/r∗)) time. We can still
retain C∗ to carry out the first step of our twisted backward search on LP and RP in constant time,
and then switch to the RLFM-index.

LEMMA 4.7. Let T [1 . . n], on alphabet [1 . . σ], have a BWT with r runs, and let s ≤ n be a positive
integer. Then there exists a data structure using O(rs) space that counts the number of occurrences
of any pattern P [1 . .m] in T in O(m + (m/s) log logw(σ + n/r)). In particular, a structure using space
O(r log logw(σ + n/r)) counts in time O(m).

PROOF. We build the mapping trie, the RLFM-index on T ∗ using the mapped alphabet, and the
arrayC∗ of the FM-index of T ∗. All these requireO(σ∗+r∗) = O(r∗) space, which isO(rs) by Lemma 4.3.
To count the number of occurrences of P , we first compute P ∗, LP , and RP on the mapped alphabet
with the trie, in time O(m). We then carry out the backward search, which requires one constant-time
step to find [spm∗ , epm∗ ] and then 2(m∗ − 1) ≤ 2m/s steps requiring rankc(L, i), which is simulated by
the RLFM-index in time O(log logw(σ∗+n∗/r∗)). Since σ∗ ≤ σs, n∗ ≤ n+s, and r∗ ≥ r, we can write that
time as O(log logw(σs+n/r)) ⊆ O(log s+ log logw(σ+n/r)). The term O(log s) vanishes when multiplied
by 2m/s because there is an O(m) additive term.
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4.4. Locating in optimal time
To locate in optimal time, we will use the toehold technique of Lemma 3.2 on T ∗ and P ∗. The only twist
is that, when we look for LP and RP in our trie, we must store in the internal trie node v we reach by
P [bm/sc · s+ 1 . .m] the position p in SA∗, and the value SA∗[p], of some metasymbol starting with that
string. From then on, we do exactly as in Lemma 3.2, so we can recover the interval SA∗[sp, ep] of P ∗
in T ∗ with the values p and SA∗[p] of some sp ≤ p ≤ sp. Since, by Observation 1, we can easily convert
any position SA∗[p] to the corresponding position SA[p] in T , we have the following result.

LEMMA 4.8. We can store O(rs) words such that, given P [1 . .m], in time O(m + (m/s) log logw(σ +
n/r)) we can compute the interval SA[sp, ep] of the occurrences of P in T , and also return the position p
and content SA[p] of at least one cell in the interval [sp, ep].

We now use the structures of Lemma 3.7 on the original text T and with the same value of s. Thus,
once we obtain some value SA[p] within the interval, we return the occurrences in SA[sp . . ep] by chunks
of s′ ≤ s elements, in time O(s′ + log logw(n/r)). This allows us to retrieve the occ occurrences in time
O(occ+ (1 + occ/s) log logw(n/r)).

LEMMA 4.9. We can store O(rs) words such that, given P [1 . .m], we can count its occurrences
in O(m + (m/s) log logw(σ + n/r)) time and (after counting) locate them in overall time O(occ + (1 +
occ/s) log logw(n/r)).

In particular, by choosing s = log logw(σ + n/r), the times obtained are O(m) for counting and
O(m + log logw(n/r) + occ) for locating. The additive term O(log logw(n/r)) is relevant when m, occ <
log logw(n/r), and it corresponds to the first predecessor search in P+ and P− performed when start-
ing to locate the occurrences in Lemma 3.7. Since the term matters only when m < s, that is, pat-
terns that fit in a single metasymbol, we can handle this case using the internal trie used to map
metasymbols. Note that the SA range for those short patterns, corresponding to some trie node v, is
[C∗[vmin] + 1, C∗[vmax + 1]], where vmin and vmax are stored at v. We are also storing at v a position p in
that range and SA∗[p], which can be converted into SA[p] by Observation 1. In addition, we will store
the result of the predecessor search for SA[p] in P+ and P−. As a result, the first s occurrences of short
patterns are obtained without the predecessor search overhead. We then have the following result.

THEOREM 4.10. We can store a text T [1 . . n], over alphabet [1 . . σ], in O(r log logw(σ + n/r)) words,
where r is the number of runs in the BWT of T , such that later, given a pattern P [1 . .m], we can count
the occurrences of P in T in O(m) time and (after counting) locate their occ positions in overall time
O(occ).

4.5. RAM-optimal counting and locating
We now describe how to obtain RAM-optimal time, that is, we replacem by dm log(σ)/we in the counting
and locating times. First, observe that the counting time in the previous section was O(m+(m/s) log s+
(m/s) log logw(σ+n/r)), which simplified to O(m+(m/s) log log(σ+n/r)) because (m/s) log s = O(m). In
the RAM-optimal setting, this simplification can no longer be applied since we cannot bound log(s)/s
by O(log(σ)/w) for any value of s if σ is small. Our solution is to use Lemma 4.9 with s = (w/ log σ) ·
log logw n = w logσ logw n and to use a different bound for the predecessor search time: we upper-bound
O(log logw(σ∗ + n∗/r∗)) by O(log logw n), because σ∗ ≤ r∗ ≤ n∗ ≤ n + s = O(n). The term log(s)/s
therefore disappears and the search time O((m/s) log logw n) becomes the optimal O(1 +m log(σ)/w).

There is, however, a remaining O(m) time coming from traversing the trie in order to obtain the
mapped alphabet symbols of P ∗, PL, and PR. To reduce it, we replace our trie by a more sophisticated
structure, which is described by Navarro and Nekrich [2017, Sec. 2], built on the O(rs) distinct strings
of length s. Let d = bw/ log σc. The structure is like our compact trie but it also stores, at selected nodes,
perfect hash tables that allow descending by d symbols in O(1) time. This is sufficient to find the locus
of a string of length s in O(ds/de) = O(ds log(σ)/we) time, except for the last s mod d symbols. For those,
the trie also stores weak prefix search (wps) structures [Belazzougui et al. 2018] on the selected nodes,
which allow descending by up to d− 1 symbols in constant time.

The wps structures, however, may fail if the string has no locus, so we must include a verification
step. Such verification is done in RAM-optimal time by storing the strings of length 2s − 1 extracted
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around sampled text positions in packed form, in our memory area associated with the edges. The
space of the whole data structure is O(1) words per compact trie node, so in our case it is O(rs). We
then map P ∗, PL, and PR, in time O(dm log(σ)/we).

We therefore obtain O(m log(σ)/w + log logw(n/r) + occ) time for locating, where the middle term
comes from the first predecessor search in the P+ or P− structures of T (not T ∗). Analogously to the
previous subsection, the additive term O(log logw(n/r)) may only matter if m log(σ)/w < log logw(n/r),
which implies m < s, and thus it can be solved in the same way, by storing in the trie nodes the
precomputed results of predecessor searches in P+ and P−.

THEOREM 4.11. We can store a text T [1 . . n], over alphabet [1 . . σ], in O(rw logσ logw n) words, where
r is the number of runs in the BWT of T , such that later, given a pattern P [1 . .m], we can count the
occurrences of P in T in O(dm log(σ)/we) time and (after counting) report their occ locations in overall
time O(occ).

5. ACCESSING THE TEXT, THE SUFFIX ARRAY, AND RELATED STRUCTURES
In this section we show how we can provide direct access to the text T , the suffix array SA, its inverse
ISA, and the longest common prefix array LCP . The latter operations enable functionalities that go
beyond the basic counting, locating, and extracting that are required for self-indexes, and will be used
to enable a full-fledged compressed suffix tree in Section 6.

We introduce a representation of T that uses O(r log(n/r)) space and can retrieve any substring of
length ` in time O(log(n/r) + ` log(σ)/w). The second term is optimal in the packed setting and, as
explained in the Introduction, the O(log(n/r)) additive penalty is also near-optimal in general. The
structure exploits Lemma 4.5, that is, all the distinct substrings appear around phrase boundaries.

For the other arrays, we exploit the fact that the runs that appear in the BWT of T induce equal
substrings in the differential suffix array, its inverse, and longest common prefix arrays, DSA, DISA,
and DLCP , where we store the difference between each cell and the previous one. That is, an analogous
of Lemma 4.5 holds on those arrays as well. Therefore, all the solutions will be variants of the one that
extracts substrings of T . The extraction time in these arrays will be O(log(n/r) + `).

The O(r log(n/r)) space we use for these structures (and for the suffix tree in Section 6) is generally
higher than the O(r log logw(σ + n/r)) space we used for optimal searching in Section 4. Since it may
be interesting to have all the functionality in O(r log(n/r)) space, we close this section showing how
optimal search times can also be obtained in space O(r log(n/r)), in the particular cases where this
space is less than O(r log logw(σ + n/r)).

5.1. Accessing T

Our structure to extract substrings of T is a variant of Block Trees [Belazzougui et al. 2015b] built
around Lemma 4.5.

THEOREM 5.1. Let T [1 . . n] be a text over alphabet [1 . . σ]. We can build a data structure of
O(r log(n/r)) words that extracts any length-` substring of T in O(log(n/r) + ` log(σ)/w) time.

PROOF. We describe a data structure supporting the extraction of α = (w/ log σ) log(n/r) packed
characters in O(log(n/r)) time. To extract a text substring of length ` we divide it into d`/αe blocks
and extract each block with the proposed data structure. Overall, this will take O((1 + `/α) log(n/r)) =
O(log(n/r) + ` log(σ)/w) time.

Our data structure is stored in O(log(n/r)) levels. For simplicity, we assume that r divides n
and that n/r is a power of two. The top level (level 0) is special: we divide the text into r blocks
T [1 . . n/r], T [n/r + 1 . . 2n/r], . . . , T [n − n/r + 1 . . n] of size n/r. For levels l > 0, we let sl = n/(r · 2l−1)
and, for every sampled position i, we consider the two non-overlapping blocks of length sl: X1

l,i =

T [i − sl . . i − 1] and X2
l,i = T [i . . i + sl − 1]. Each such block Xk

l,i, for k = 1, 2, is composed of two half-
blocks,Xk

l,i = Xk
l,i[1 . . sl/2]Xk

l,i[sl/2+1 . . sl]. We moreover consider three additional consecutive and non-
overlapping half-blocks, starting in the middle of the first, X1

l,i[1 . . sl/2], and ending in the middle of the
last,X2

l,i[sl/2+1 . . sl], of the 4 half-blocks just described: T [i−sl+sl/4 . . i−sl/4−1], T [i−sl/4 . . i+sl/4−1],
and T [i+sl/4 . . i+sl−sl/4−1]. Figure 2 illustrates how half-blocks distribute around sampled positions.
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ii’

level

level l

l +1

Fig. 2. Illustration of the proof of Theorem 5.1. Extracting the grayed square, we have arrived at a block around sampled
position i in level l. Due to its size, the square must be contained in a half-block. This half-block (in thick line) has a copy
crossing a sampled position i′ (we show this copy with a dashed line). Thus the extraction task is translated to level l+ 1, inside
another block of half the length. Since the square is still small enough, it must fall inside some half-block of level l + 1 (also in
thick line). This continues until the last level, where the symbols are stored directly.

From Lemma 4.5, blocks at level l = 0 and each half-block at level l > 0 have a primary occurrence
covered by blocks at level l + 1. Such an occurrence can be fully identified by the coordinate 〈i′, off 〉,
where i′ is a sampled position (actually we store a pointer ptr to the data associated with the sampled
position i′), and 0 < off ≤ sl+1 indicates that the occurrence starts at position i′ − sl+1 + off of T .

Let l∗ be the smallest number such that sl∗ < 4α = 4(w/ log σ) log(n/r). Then l∗ is the last level of
our structure. We now list all the information that is explicitly stored in our data structure:

— At level l∗, we explicitly store a packed string with the characters contained in the blocks. This uses
in total O(r · sl∗ log(σ)/w) = O(r log(n/r)) words of space.

— The r blocks at level 0 and the seven half-blocks surrounding every sampled position at each other
level 0 < l < l∗ − 1 store instead the pair of coordinates 〈i′, off 〉 of their primary occurrence in the
next level. These pointers use up to O(r · l∗) = O(r log(n/r)) words of space.

— Finally, each half-block at level l∗−1 stores a pointer to the string of explicitly stored characters (i.e.
the position in that string where the half-block appears). These pointers use O(r) words of space.

Let S = T [j . . j + α − 1] be the text substring to be extracted. Note that we can assume n/r ≥ α;
otherwise all the text can be stored in plain packed form using n log(σ)/w < αr log(σ)/w = O(r log(n/r))
words and we do not need any data structure. It follows that S either spans two blocks at level 0, or
it is contained in a single block. The former case can be solved with two queries of the latter, so we
assume, without losing generality, that S is fully contained inside a block at level 0. To retrieve S, we
map it down to the next levels (using the stored coordinates of primary occurrences of half-blocks) as
a contiguous text substring as long as this is possible, that is, as long as it fits inside a single half-
block. Note that, because of the way half-blocks overlap, this is always possible as long as α ≤ sl/4 (see
Figure 2). By definition, then, we arrive in this way precisely at level l∗, where characters are stored
explicitly and we can return the packed text substring.

5.2. Accessing SA

Let us define the differential suffix array DSA[p] = SA[p] − SA[p − 1] for all p > 1, and DSA[1] = SA[1].
The next lemmas show that the runs of BWT induce analogous repeated substrings in DSA.

LEMMA 5.2. Let [p − 1, p] be within a BWT run. Then LF (p − 1) = LF (p) − 1 and DSA[LF (p)] =
DSA[p].

PROOF. Since p is not the first position in a BWT run, it holds that BWT [p− 1] = BWT [p], and thus
LF (p−1) = LF (p)−1 follows from the formula of LF . Therefore, if q = LF (p), we have SA[q] = SA[p]−1
and SA[q − 1] = SA[LF (p− 1)] = SA[p− 1]− 1; therefore DSA[q] = DSA[p].
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LEMMA 5.3. Let [p − 1 . . p + s] be within a BWT run, for some 1 < p ≤ n and 0 ≤ s ≤ n − p. Then
there exists q 6= p such that DSA[q . . q + s] = DSA[p . . p+ s] and [q − 1 . . q + s] contains the first position
of a BWT run.

PROOF. By Lemma 5.2, it holds that DSA[p′ . . p′ + s] = DSA[p . . p+ s], where p′ = LF (p). If DSA[p′ −
1 . . p′ + s] contains the first position of a BWT run, we are done. Otherwise, we apply Lemma 5.2
again on [p′ . . p′ + s], and repeat until we find a range that contains the first position of a run. This
search eventually terminates because there are r > 0 run beginnings, there are only n− s+ 1 distinct
ranges, and the sequence of visited ranges, [LF k(p) . .LF k(p)+s], forms a single cycle; recall Section 2.3.
Therefore our search will visit all the existing ranges before returning to [p . . p+ s].

This means that there exist 2r positions in DSA, namely those [q, q + 1] where BWT [q] is the first
position of a run, such that any substring DSA[p . . p+ s] has a copy covering some of those 2r positions.
This is analogous to the property proved in Lemma 4.5, which enabled efficient access on T . We now
exploit it to access cells in SA by building a similar structure on DSA.

THEOREM 5.4. Let the BWT of a text T [1 . . n] contain r runs. Then there exists a data structure using
O(r log(n/r)) words that retrieves any ` consecutive values of its suffix array SA in time O(log(n/r) + `).

PROOF. We describe a data structure supporting the extraction of α = log(n/r) consecutive cells in
O(log(n/r)) time. To extract ` consecutive cells of SA, we divide it into d`/αe blocks and extract each
block independently. This yields the promised time complexity.

Our structure is stored in O(log(n/r)) levels. As before, let us assume that r divides n and that
n/r is a power of two. At the top level (l = 0), we divide DSA into r blocks DSA[1 . . n/r],DSA[n/r +
1 . . 2n/r], . . . ,DSA[n − n/r + 1 . . n] of size n/r. For levels l > 0, we let sl = n/(r · 2l−1) and, for every
position q that starts a run in BWT , we consider the two non-overlapping blocks of length sl: X1

l,q =

DSA[q− sl + 1 . . q] and X2
l,q = DSA[q+ 1 . . q+ sl].12 Each such block Xk

l,q, for k = 1, 2, is composed of two
half-blocks, Xk

l,q = Xk
l,q[1 . . sl/2]Xk

l,q[sl/2 + 1 . . sl]. We moreover consider three additional consecutive
and non-overlapping half-blocks, starting in the middle of the first, X1

l,q[1 . . sl/2], and ending in the
middle of the last, X2

l,q[sl/2 + 1 . . sl], of the 4 half-blocks just described: DSA[q − sl + sl/4 + 1 . . q −
sl/4], DSA[q − sl/4 + 1 . . q + sl/4], and DSA[q + sl/4 + 1 . . q + sl − sl/4].

From Lemma 5.3, blocks at level l = 0 and each half-block at level l > 0 have an occurrence covered
by blocks at level l+1. Let the half-blockX of level l (blocks at level 0 are analogous) have an occurrence
containing position q∗ ∈ {q, q + 1}, where q starts a run in BWT . Then we store the pointer 〈q∗, off , δ〉
associated with X, where 0 < off ≤ sl+1 indicates that the occurrence of X starts at position q∗−sl+1 +
off of DSA, and δ = SA[q− sl+1]− SA[q∗− sl+1 + off − 1] (we also store the pointer to the data structure
of the half-block of level l + 1 containing the position q∗).

Additionally, every level-0 block X ′ = DSA[q′ + 1 . . q′ + sl] stores the value S(X ′) = SA[q′] (assume
SA[0] = 0 throughout), and every half-block X ′ = DSA[q′ + 1 . . q′ + sl+1/2] corresponding to the area
X1
l+1,qX

2
l+1,q = DSA[q − sl+1 + 1 . . q + sl+1] stores the value ∆(X ′) = SA[q′]− SA[q − sl+1].

Let l∗ be the smallest number such that sl∗ < 4α = 4 log(n/r). Then l∗ is the last level of our structure.
At this level, we explicitly store the sequence of DSA cells of the areas X1

l∗,qX
2
l∗,q, for each q starting

a run in BWT . This uses in total O(r · sl∗) = O(r log(n/r)) words of space. The pointers stored for the
O(r) blocks at previous levels also add up to O(r log(n/r)) words.

Let S = SA[p . . p+α−1] be the sequence of cells to be extracted. This range either spans two blocks at
level 0, or it is contained in a single block. In the former case, we decompose it into two queries that are
fully contained inside a block at level 0. To retrieve a range contained in a single block or half-block, we
map it down to the next levels using the pointers from blocks and half-blocks, as a contiguous sequence
as long as it fits inside a single half-block. This is always possible as long as α ≤ sl/4. By definition,
then, we arrive in this way precisely to level l∗, where the symbols of DSA are stored explicitly and we
can return the sequence.

12Note that this symmetrically covers both positions q and q + 1; in Theorem 5.1, one extra unnecessary position is covered
with X1

l,q , for simplicity.
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Fig. 3. Illustration of Theorem 5.4. The area to extract (a gray square) is inside the thick half-block (X), which points inside
another area around position q in the next level. The sum of DSA over the offset from the beginning of the area to the mapped
block (in thick dashed line) is stored in field δ of X, in negative (hence the direction of the arrow). The squared area is mapped
to a smaller half-block, X′, which records in ∆(X′) the sum of DSA between the beginning of the area and X′ (see the other
dashed arrow). By adding δ + ∆(X′), we map from the first thick block to the second.

We need, however, the contents of SA[p . . p + α − 1], not of DSA[p . . p + α − 1]. To obtain the former
from the latter, we need only the value of SA[p]. During the traversal, we will maintain a value f with
the invariant that, whenever the original position DSA[p] has been mapped to a position X[p′] in the
current block X, it holds that SA[p] = f +X[1] + . . .+X[p′]. This invariant must be maintained when
we use pointers, where the original DSA values in a block X are obtained from a copy that appears
elsewhere in DSA.

The invariant is initially valid by setting f to the S(X) value associated with the level-0 block X that
contains SA[p]. When we follow a pointer 〈q∗, off , δ〉 from a block X and choose X ′, starting at q′ + 1,
from the 7 half-blocks that cover the target, we update f ← f + δ+ ∆(X ′) = f + (SA[q− sl+1]− SA[q∗−
sl+1 + off − 1]) + (SA[q′] − SA[q − sl+1]) = f + SA[q′] − SA[q∗ − sl+1 + off − 1]. This correctly adds to f
the differences between the start of (the copy of) X and the start of X ′. When we arrive at a block X
at level l∗, we scan O(α) symbols until reaching the first value of the desired position X[p′]. The values
X[1], . . . , X[p′] scanned are also summed to f . At the end, we have that SA[p] = f . See Figure 3.

5.3. Accessing ISA and LCP

A similar method can be used to access inverse suffix array cells, ISA[i]. Let us define DISA[i] = ISA[i]−
ISA[i − 1] for all i > 1, and DISA[1] = ISA[1]. The role of the runs in BWT will now be played by the
phrases in ISA, which will be defined analogously as in the proof of Lemma 3.5: Phrases in ISA start
at the positions SA[p] such that a new run starts in BWT [p] (here, last positions of runs do not start
phrases). Instead of LF , we use the cycle φ(i) of Definition 3.3. We make use of the following lemmas.

LEMMA 5.5. Let [i − 1 . . i] be within a phrase of ISA. Then it holds that φ(i − 1) = φ(i) − 1 and
DISA[i] = DISA[φ(i)].

PROOF. Consider the pair of positions T [i−1 . . i] within a phrase. Let them be pointed from SA[p] = i
and SA[q] = i − 1, therefore ISA[i] = p, ISA[i − 1] = q, and LF (p) = q. Now, since i is not a phrase
beginning, p is not the first position in a BWT run. Therefore, BWT [p − 1] = BWT [p], from which it
follows that LF (p − 1) = LF (p) − 1 = q − 1. Now let SA[p − 1] = j, that is, j = φ(i). Then φ(i − 1) =
SA[ISA[i − 1] − 1] = SA[q − 1] = SA[LF (p − 1)] = SA[p − 1] − 1 = j − 1 = φ(i) − 1. It also follows that
DISA[i] = p− q = DISA[j] = DISA[φ(i)].

LEMMA 5.6. Let [i− 1 . . i+ s] be within a phrase of DISA, for some 1 < i ≤ n and 0 ≤ s ≤ n− i. Then
there exists j 6= i such that DISA[j . . j + s] = DISA[i . . i+ s] and [j − 1 . . j + s] contains the first position
of a phrase.
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PROOF. By Lemma 5.5, it holds that DISA[i′ . . i′ + s] = DISA[i . . i + s], where i′ = φ(i). If DISA[i′ −
1 . . i′ + s] contains the first position of a phrase, we are done. Otherwise, we apply Lemma 5.5 again
on [i′ . . i′ + s], and repeat until we find a range that contains the first position of a phrase. Just as in
Lemma 5.2, this search eventually terminates because φ is a permutation with a single cycle.

We can then use on DISA exactly the same data structure we defined to access SA in Theorem 5.4,
and obtain a similar result for ISA.

THEOREM 5.7. Let the BWT of a text T [1 . . n] contain r runs. Then there exists a data structure
using O(r log(n/r)) words that retrieves any ` consecutive values of its inverse suffix array ISA in time
O(log(n/r) + `).

Finally, by combining Theorem 5.4 and Lemma 3.8, we also obtain access to array LCP without
knowing the corresponding text positions. Note that we do not build on DLCP ; this array and its
repetitiveness properties will be used in Section 6.

THEOREM 5.8. Let the BWT of a text T [1 . . n] contain r runs. Then there exists a data structure
using O(r log(n/r)) words that retrieves any ` consecutive values of its longest common prefix array
LCP in time O(log(n/r) + `).

PROOF. Build the structure of Theorem 5.4, as well as the one of Lemma 3.8 with s = log(n/r).
Then, to retrieve LCP [p . . p + s′ − 1] for any 0 ≤ s′ ≤ s, we first compute SA[p] in time O(log(n/r))
using Theorem 5.4 and then, given SA[p], we compute LCP [p . . p + s′ − 1] using Lemma 3.8 in time
O(log logw(n/r) + s′). Adding both times gives O(log(n/r)).

To retrieve an arbitrary sequence of cells LCP [p . . p+ `− 1], we use the method above by chunks of s
cells, plus a possibly smaller final chunk. As we use d`/se chunks, the total time is O(log(n/r) + `).

5.4. Optimal counting and locating in O(r log(n/r)) space
The O(r log(n/r)) space we need for accessing T is not comparable with the O(r log logw(σ+n/r)) space
we need for optimal counting and locating. The latter is in general more attractive, because the former
is better only when r = ω(n/ logεw σ) for any constant ε > 0, which means that the text is not very
compressible. Anyway, we show how to obtain optimal counting and locating within spaceO(r log(n/r)).

By the discussion above, we only have to care about the case r ≥ n/ log n. In such a case, it holds that
r log(n/r) ≥ (n log log n)/ log n,13 and thus we are allowed to use Θ(n log log n) bits of space. We can then
make use of a result of Belazzougui and Navarro [2014, Lem. 6]. They show how we can enrich the
O(n)-bit compressed suffix tree of Sadakane [2007] so that, using O(n(log tSA + log log σ)) bits, one can
find the interval SA[sp . . ep] of P in timeO(m+tSA) plus the time to extract a substring of lengthm from
T .14 Since we provide tSA = O(log(n/r)) in Theorem 5.4 and extraction time O(log(n/r)+m log(σ)/w) in
Theorem 5.1, this arrangement uses O(n(log log(n/r) + log log σ)) ⊆ O(n log logn) bits, and it supports
counting in time O(m+ log(n/r)).

Once we know the interval, apart from counting, we can use Theorem 5.4 to obtain SA[p] for any
sp ≤ p ≤ ep in time O(log(n/r)), and then use the structure of Lemma 3.7 with s = log(n/r) to extract
packs of s′ ≤ s consecutive SA entries in time O(log logw(n/r) + s′) ⊆ O(log(n/r) + s). Overall, we can
locate the occ occurrences of P in time O(m+ log(n/r) + occ).

Finally, to remove the O(log(n/r)) term in the time complexities, we must speed up the searches for
patterns shorter than log(n/r). We index them using a compact trie as that of Section 4.2. We store in
each explicit trie node (i) the number of occurrences of the corresponding string, to support counting,
and (ii) a position p where it occurs in SA, the value SA[p], and the result of the predecessor queries
on P+ and P−, as required for locating in Lemma 3.7, so that we can retrieve any number s′ ≤ s of
consecutive entries of SA in time O(s′). By Lemma 4.6, the size of the trie and of the text substrings
explicitly stored to support path compression is O(r log(n/r)).

13Since r log(n/r) grows with r up to r = n/e (with e = 2.718...), at which point the space is Θ(n), we obtain the lower bound
by evaluating it at the smallest allowed value, r = n/ logn.

14The O(n log log σ) bits of the space are not explicit in their lemma, but are required in their Section 5, which is used to
prove their Lemma 6.
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Table III. Suffix tree operations.

Operation Description
Root() Suffix tree root.
Locate(v) Text position i of leaf v.
Ancestor(v, w) Whether v is an ancestor of w.
SDepth(v) String depth for internal nodes, i.e., length of string represented by v.
TDepth(v) Tree depth, i.e., depth of tree node v.
Count(v) Number of leaves in the subtree of v.
Parent(v) Parent of v.
FChild(v) First child of v.
NSibling(v) Next sibling of v.
SLink(v) Suffix-link, i.e., if v represents a · α then the node that represents α, for a ∈ [1 . . σ].
WLink(v, a) Weiner-link, i.e., if v represents α then the node that represents a · α.
SLinki(v) Iterated suffix-link.
LCA(v, w) Lowest common ancestor of v and w.
Child(v, a) Child of v by letter a.
Letter(v, i) The ith letter of the string represented by v.
LAQS (v, d) String level ancestor, i.e., the highest ancestor of v with string-depth ≥ d.
LAQT (v, d) Tree level ancestor, i.e., the ancestor of v with tree-depth d.

THEOREM 5.9. We can store a text T [1 . . n], over alphabet [1 . . σ], in O(r log(n/r)) words, where r
is the number of runs in the BWT of T , such that later, given a pattern P [1 . .m], we can count the
occurrences of P in T in O(m) time and (after counting) report their occ locations in overall time O(occ).

6. A RUN-LENGTH COMPRESSED SUFFIX TREE
In this section we show how to implement a compressed suffix tree within O(r log(n/r)) words, which
supports a large set of navigation operations in time O(log(n/r)). The only exceptions are going to
a child by some letter and performing level ancestor queries, which cost O(log(n/r) log σ) and up to
O(log(n/r) log n), respectively. The first compressed suffix tree for repetitive collections was built on
runs [Mäkinen et al. 2010], but just like the self-index, it needed Θ(n/s) space to obtain O(s log n) time
in key operations like accessing SA. Other compressed suffix trees for repetitive collections appeared
later [Abeliuk et al. 2013; Navarro and Ordóñez 2016; Farruggia et al. 2018; Cáceres and Navarro
2019], but they do not offer formal space guarantees (see later). The only one offering time guarantees
uses O(e) words and supports a number of operations in time typically O(log n) [Belazzougui and
Cunial 2017b]. Their space measure is not comparable with O(r log(n/r)).

6.1. Compressed suffix trees without storing the tree
Fischer et al. [2009] showed that a rather complete suffix tree functionality, consisting of all the op-
erations in Table III, can be efficiently supported by a representation where suffix tree nodes v are
identified with the suffix array intervals SA[vl . . vr] they cover. Their representation builds on the fol-
lowing primitives:

(1) Access to arrays SA and ISA, in time we call tSA.
(2) Access to array LCP , in time we call tLCP .
(3) Three special queries on LCP :

(a) Range Minimum Query,

RMQ(p, q) = arg min
p≤k≤q

LCP [k],

choosing the smallest position upon ties, in time we call tRMQ.
(b) Previous/Next Smaller Value queries,

PSV(p) = max({q < p,LCP [q] < LCP [p]} ∪ {0}),
NSV(p) = min({q > p,LCP [q] < LCP [p]} ∪ {n+ 1}),

in time we call tSV.

An interesting finding of Fischer et al. [2009] related to our results is that the array PLCP , which
stores the LCP values in text order, can be stored in O(r) words and accessed efficiently; therefore we
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can compute any LCP value in time tSA (see also Fischer [2010]). We obtained a generalization of this
property in Section 3.2. Fischer et al. [2009] also show how to represent the array TDE [1 . . n], where
TDE [i] is the tree-depth of the lowest common ancestor of the (i − 1)th and ith suffix tree leaves (and
TDE [1] = 0). They represent its values in text order in an array PTDE , which just like PLCP can be
stored in O(r) words and accessed efficiently, thereby giving access to TDE in time tSA. They use TDE
to compute operations TDepth and LAQT efficiently.

Abeliuk et al. [2013] show that primitives RMQ, PSV, and NSV can be implemented using a simpli-
fied variant of range min-Max trees (rmM-trees) [Navarro and Sadakane 2014], consisting of a perfect
binary tree on top of LCP where each node stores the minimum LCP value in its subtree. The three
primitives are then computed in logarithmic time. They define the extended primitives

PSV′(p, d) = max({q < p,LCP [q] < d} ∪ {0}),
NSV′(p, d) = min({q > p,LCP [q] < d} ∪ {n+ 1}),

and compute them in time tSV′ , which in their setting is the same tSV of the basic PSV and NSV
primitives. The extended primitives are used to simplify some of the operations of Fischer et al. [2009].

The resulting time complexities are given in the second column of Table IV, where tLF is the time
to compute function LF or its inverse, or to access a position in BWT . Operation WLink, not present
in Fischer et al. [2009], is trivially obtained with two LF -steps. We note that most times appear mul-
tiplied by tLCP in Fischer et al. [2009] because their RMQ, PSV, and NSV structures do not store LCP
values inside, so they need to access the array all the time; this is not the case when we use rmM-
trees. The time of LAQS is due to improvements obtained with the extended primitives PSV′ and NSV′

[Abeliuk et al. 2013].15 The time for Child(v, a) is obtained by binary searching among the σ minima of
LCP [vl, vr], and extracting the desired letter (at position SDepth(v)+1) to compare with a. Each binary
search operation can be done with an extended primitive RMQ′(p, q,m) that finds the mth left-to-right
occurrence of the minimum in a range. This is easily done in tRMQ′ = tRMQ time on a rmM-tree by stor-
ing, in addition, the number of times the minimum of each node occurs below it [Navarro and Sadakane
2014], but it may be not so easy to do on other structures. Finally, the complexities of TDepth and LAQT

make use of array TDE . While Fischer et al. [2009] use an RMQ operation to compute TDepth, we note
that TDepth(v) = 1 + max(TDE [vl],TDE [vr + 1]), because the suffix tree has no unary nodes (they used
this simpler formula only for leaves).16

An important idea of Abeliuk et al. [2013] is that they represent LCP differentially, that is, the
array DLCP [1 . . n], where DLCP [i] = LCP [i] − LCP [i − 1] if i > 1 and DLCP [1] = LCP [1], using a
context-free grammar (CFG). Further, they store the rmM-tree information in the nonterminals, that
is, a nonterminal X expanding to a substring D = DLCP [p . . q] stores the (relative) minimum

m(X) = min
1≤k≤|D|

k∑
i=1

D[i] = min
p≤k≤q

k∑
i=p

DLCP [i] =

(
min
p≤k≤q

LCP [k]

)
− LCP [p− 1]

of any LCP segment having those differential values, and its position inside the segment,

p(X) = arg min
1≤k≤|D|

k∑
i=1

D[i] =

(
arg min

p≤k≤q
LCP [k]

)
− (p− 1).

Thus, instead of a perfect rmM-tree, they conceptually use the parse tree as an rmM-tree. They show
how to adapt the algorithms on the perfect rmM-tree to run on the grammar, and thus solve primitives
RMQ, PSV′, and NSV′, in time proportional to the grammar height.

15They also use these primitives for NSibling, mentioning that the original formula has a bug. Since we obtain better tRMQ

than tSV′ time, we rather prefer to fix the original bug [Fischer et al. 2009]. The formula fails for the penultimate child of its
parent. To compute the next sibling of [vl, vr] with parent [wl, wr], the original formula [vr + 1, u] with u = RMQ(vr + 2, wr)− 1
(used only if vr < wr − 1) must now be checked as follows: if u < wr and LCP [vr + 1] 6= LCP [u+ 1], then correct it to u = wr .

16We observe that LAQT can be solved exactly as LAQS , with the extended PSV′/NSV′ operations, now defined on the array
TDE instead of on LCP . However, an equivalent to Lemma 6.2 for the differential TDE array does not hold, and therefore we
cannot use that solution within the desired space bounds.
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Table IV. Complexities of suffix tree operations. Letter(v, i) can also be solved in
time O(i · tLF ) = O(i log logw(n/r)).

Operation Generic Our
Complexity Complexity

Root() 1 1
Locate(v) tSA log(n/r)
Ancestor(v, w) 1 1
SDepth(v) tRMQ + tLCP log(n/r)
TDepth(v) tSA log(n/r)
Count(v) 1 1
Parent(v) tLCP + tSV log(n/r)
FChild(v) tRMQ log(n/r)
NSibling(v) tLCP + tRMQ log(n/r)
SLink(v) tLF + tRMQ + tSV log(n/r)
WLink(v) tLF log logw(n/r)
SLinki(v) tSA + tRMQ + tSV log(n/r)
LCA(v, w) tRMQ + tSV log(n/r)
Child(v, a) tLCP + (tRMQ′ + tSA + tLF ) log σ log(n/r) log σ
Letter(v, i) tSA + tLF log(n/r)
LAQS (v, d) tSV′ log(n/r) + log log r
LAQT (v, d) (tRMQ + tLCP ) logn log(n/r) logn

Abeliuk et al. [2013], and also Fischer et al. [2009], claim that the grammar produced by RePair
[Larsson and Moffat 2000] is of size O(r log(n/r)). This is an incorrect result borrowed from González
and Navarro [2007] (also in González et al. [2014]), where it was claimed for DSA. The proof fails for a
reason we describe in our technical report [Gagie et al. 2017, App. A].

We now start by showing how to build a grammar of size O(r log(n/r)) and height O(log(n/r)) for
DLCP . This grammar is of an extended type called run-length context-free grammar (RLCFG) [Nishi-
moto et al. 2015], which allows rules of the form X → Y t that count as size 1. We then show how
to implement the operations RMQ and NSV/PSV in time O(log(n/r)) on the resulting RLCFG, and
NSV′/PSV′ in time O(log(n/r)+log logw r). Finally, although we cannot implement RMQ′ in time below
Θ(log n), we show how the specific Child operation can be implemented in time O(log(n/r) log σ).

Note that, although we could represent DLCP using a Block-Tree-like structure as we did in Sec-
tion 5 for DSA and DISA, we have not devised a way to implement the more complex operations we
need on DLCP using such a Block-Tree-like data structure within polylogarithmic time.

Using the results we obtain in this and previous sections, that is, tSA = O(log(n/r)), tLF =
O(log logw(n/r)), tLCP = tSA + O(log logw(n/r)) = O(log(n/r)), tRMQ = tSV = O(log(n/r)), tSV ′ =
O(log(n/r) + log logw r), and our specialized algorithm for Child, we obtain our result.

THEOREM 6.1. Let the BWT of a text T [1 . . n], over alphabet [1 . . σ], contain r runs. Then a com-
pressed suffix tree on T can be represented using O(r log(n/r)) words, and it supports the operations
with the complexities given in the third column of Table IV.

6.2. Representing DLCP with a run-length grammar
In this section we show that the differential array DLCP can be represented by a RLCFG of size
O(r log(n/r)). We first prove a lemma analogous to those of Section 5.

LEMMA 6.2. Let [p − 2, p] be within a BWT run. Then LF (p − 1) = LF (p) − 1 and DLCP [LF (p)] =
DLCP [p].

PROOF. Let i = SA[p], j = SA[p − 1], and k = SA[p − 2]. Then LCP [p] = lcp(T [i . .], T [j . .]) and
LCP [p − 1] = lcp(T [j . .], T [k . .]). We know from Lemma 5.2 that, if q = LF (p), then LF (p − 1) = q − 1
and LF (p − 2) = q − 2. Also, SA[q] = i − 1, SA[q − 1] = j − 1, and SA[q − 2] = k − 1. Therefore,
LCP [LF (p)] = LCP [q] = lcp(T [SA[q] . .], T [SA[q − 1] . .) = lcp(T [i − 1 . .], T [j − 1 . .]). Since p is not the
first position in a BWT run, it holds that T [j − 1] = BWT [p − 1] = BWT [p] = T [i − 1], and thus
lcp(T [i− 1 . .], T [j− 1 . .]) = 1 + lcp(T [i . .], T [j . .]) = 1 + LCP [p]. Similarly, LCP [LF (p)− 1] = LCP [q− 1] =
lcp(T [SA[q−1] . .], T [SA[q−2] . .) = lcp(T [j−1 . .], T [k−1 . .]). Since p−1 is not the first position in a BWT
run, it holds that T [k − 1] = BWT [p− 2] = BWT [p− 1] = T [j − 1], and thus lcp(T [j − 1 . .], T [k − 1 . .]) =
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1 + lcp(T [j . .], T [k . .]) = 1 + LCP [p− 1]. Therefore DLCP [q] = LCP [q]− LCP [q− 1] = (1 + LCP [p])− (1 +
LCP [p− 1]) = DLCP [p].

It follows that, if there are r runs in BWT , then we can define a bidirectional macro scheme [Storer
and Szymanski 1982] of size O(r) on DLCP (in fact, the same holds for T , DSA, and DISA).

Definition 6.3. A bidirectional macro scheme (BMS) of size b on a sequence S[1 . . n] is a partition
S = S1 · · ·Sb such that each St is of length 1 (and is represented as an explicit symbol) or it appears
somewhere else in S (and is represented by a pointer to that other occurrence). Let f(i), for 1 ≤ i ≤ n,
be defined arbitrarily if S[i] is an explicit symbol, and f(i) = j + i′ − 1 if S[i] = St[i

′] is inside some St
that is represented as a pointer to S[j . . j′]. A correct BMS must satisfy that, for any i, there is a k ≥ 0
such that fk(i) is an explicit symbol.

Note that f(i) maps the position S[i] to the source from which it is to be obtained. The last condition
then ensures that we can recover any symbol S[i] by following the chain of copies until finding an
explicitly stored symbol. Finally, note that all the f values inside a block are consecutive: if St = S[i . . i′]
has a pointer to S[j . . j′], then f([i . . i′]) = [j . . j′].

LEMMA 6.4. Let p1 < · · · < pr be the positions that start runs in BWT , and assume p0 = −2 and
pr+1 = n + 1. Then, the partition formed by (1) all the explicit symbols DLCP [pi + k] for 1 ≤ i ≤ r and
k ∈ {0, 1, 2}, and (2) all the nonempty regions DLCP [pi + 3 . . pi+1 − 1] for all 0 ≤ i ≤ r, pointing to
DLCP [LF (pi + 3) . .LF (pi+1 − 1)], is a BMS of size at most 4r + 1.

PROOF. By Lemma 6.2, it holds that LF (pi + 3 + k) = LF (pi + 3) + k and DLCP [pi + 3 + k] =
DLCP [LF (pi + 3) + k] for all 0 ≤ k ≤ pi+1 − pi − 4, so the partition is well defined and the copies are
correct. To see that it is a BMS, it is sufficient to notice that LF is a permutation with one cycle on
[1 . . n], and therefore LF k(p) will eventually reach an explicit symbol, for some 0 ≤ k < n.

We now make use of the following result.

LEMMA 6.5 ([GAGIE ET AL. 2018A, THM. 1]). Let S[1 . . n] have a BMS of size b. Then there exists
a RLCFG of size O(b log(n/b)) that generates S.

Since DLCP has a BMS of size at most 4r + 1, the following corollary is immediate.

LEMMA 6.6. Let the BWT of T [1 . . n] have r runs. Then there exists a RLCFG of size O(r log(n/r))
that generates its differential LCP array, DLCP .

6.3. Supporting the primitives on the run-length grammar
We describe how to compute the primitives RMQ and PSV/NSV on the RLCFG of DLCP , in time
tRMQ = tSV = O(log(n/r)). The extended primitives PSV′/NSV′ are solved in time tSV ′ = O(log(n/r) +
log logw r). While analogous procedures have been described before on CFGs and trees [Abeliuk et al.
2013; Navarro and Sadakane 2014], the extension to RLCFGs and the particular structure of our
grammar requires a complete description.

The RLCFG built in Lemma 6.5 [Gagie et al. 2018a] is of height O(log(n/r)) and has one initial rule
S → X1 · · ·XO(r). The other rules are of the form X → Y1Y2 or X → Y t for t > 2. All the right-hand
symbols can be terminals or nonterminals.

The data structure we use is formed by a sequence DLCP ′ = X1 · · ·XO(r) capturing the initial rule
of the RLCFG, and an array of the other O(r log(n/r)) rules. For each nonterminal X expanding to a
substring D = DLCP [p . . q], we store its length l(X) and its total difference d(X):

l(X) = |D| = q − p+ 1

d(X) = D[1] + · · ·+D[l(X)] = LCP [q]− LCP [p− 1].

For terminals X, we assume l(X) = 1 and d(X) = X. We also store a cumulative length array L[0] = 0
and L[x] = L[x− 1] + l(Xx) that can be binary searched to find the symbol of DLCP ′ that contains any
desired position DLCP [p]. To ensure that this binary search takes time O(log(n/r)) when r = ω(n/r),
we can store a sampled array of positions S[1 . . r], where S[t] = x if L[x− 1] < t · (n/r) ≤ L[x] to narrow
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0 3 4 2 3 1 2 0 3 5 5 8

0 3 1−2 1−2 1−2 3 2 0 3DLCP

LCP

D B B B C D

A

Fig. 4. Example LCP and DLCP arrays, with a grammar built on DLCP as follows: D → 03, B → 1(−2), C → 32, A → B3,
and S → DACD, so DLCP ′[1 . . 4] = DACD. Our arrays are L[0 . . 4] = 〈0, 2, 8, 10, 12〉 and A[0 . . 4] = 〈0, 3, 0, 5, 8〉. Further,
l(D) = l(B) = l(C) = 2, l(A) = 6, l(S) = 12, d(D) = 3, d(B) = −1, d(C) = 5, d(A) = −3, d(S) = 8. To compute LCP [p = 7], we
first binary search L to find that x = 2 satisfies 2 = L[x− 1] < p ≤ L[x] = 8; therefore we must look inside DLCP ′[x] = A with
local offset p← p−L[x−1] = 5 and with initial value f ← A[x−1] = 3. Since A→ B3 and l(B) = 2, the position p = 5 must be
inside the dl(B)/pe = 3rd B. We then skip t′ = dl(B)/pe− 1 = 2 copies of B with p← p− t′ · l(B) = 1 and f ← f + t′ · d(B) = 1.
We now enter into B with offset p = 1. Since B → 1(−2) and p ≤ l(1) = 1, we enter into the 1. Since this is a terminal symbol,
we just answer f + d(1) = 1 + 1 = 2 = LCP [7]. For RMQs, we additionally store the values m(D) = 0, m(B) = −1, m(C) = 3,
m(A) = −3, m(S) = 0, p(D) = 1, p(B) = 2, p(C) = 1, p(A) = 6, p(S) = 1, and the array M [1 . . 4] = 〈0, 0, 3, 5〉.

down the binary search to a range of O(n/r) entries of L. Finally, we store a cumulative differences
array A[0] = 0 and A[x] = A[x− 1] + d(Xx). Note A[x] = LCP [L[x]] for all x > 0.

Accessing LCP . Although we have already provided access to any LCP [p] in Section 5.3, it is also
possible to do it with these structures, and it is illustrative for some more complex operations that
follow: We first find x by binary searching L for p, possibly with the help of S, so that L[x − 1] <
p ≤ L[x]. The position p is then inside the symbol Xx = DLCP ′[x], which expands to the substring
Dx = DLCP [L[x− 1] + 1 . . L[x]]. The local offset of p inside Xx is p− L[x− 1]. It then holds that

LCP [p] = A[x− 1] + LCP [p]− LCP [L[x− 1]] = A[x− 1] +Dx[1] + · · ·+Dx[p− L[x− 1]].

Thus we set p ← p − L[x − 1] as the local offset sought inside Dx and set f ← A[x − 1] to initialize our
cumulative computation. We then enter recursively into nonterminal X = Xx. If its rule is X → Y1Y2,
we continue by Y1 if p ≤ l(Y1); otherwise position p is inside Y2. Before continuing by Y2, however, we
must first skip Y1: we set f ← f + d(Y1) and p← p− l(Y1).

If, instead, the rule is X → Y t, we must simulate entering into the dp/l(Y )eth copy of Y : we compute
t′ = dp/l(Y )e, set f ← f + (t′−1) ·d(Y ), p← p− (t′−1) · l(Y ), and continue by Y . When we finally arrive
at a terminal X, the answer is f + d(X).

All this process takes time O(log(n/r)), the height of the RLCFG. Figure 4 illustrates it.

Answering RMQ. To answer this query, we store a few additional structures. We define an array

M [x] = min
L[x−1]<k≤L[x]

LCP [k] = LCP [L[x− 1]] +m(Xx) = A[x− 1] +m(Xx),

of size O(r) with the minimum value in the area of LCP expanded by Xx = DLCP ′[x]. Note that the
leftmost position in that area where the minimum M [x] is reached is L[x−1]+p(Xx). We do not need to
store M but just a succinct data structure RMQM , which requires just O(r) bits and finds the leftmost
position of a minimum in any range M [x . . y] in constant time, without need to access M [Fischer and
Heun 2011]. We also store, for each nonterminal X, the values m(X) and p(X) (for terminals X, we
can store m(X) and p(X) or compute them on the fly). If we wanted to find RMQ(p, q) on LCP where
LCP [p . . q] is exactly aligned with DLCP ′[x . . y] (i.e., DLCP ′[x . . y] expands to DLCP [p . . q]), then the
answer would simply be L[z − 1] + p(Xz), with z = RMQM (x, y).

To compute general RMQ(p, q) queries on LCP , we first use L and S to find x and y such
that DLCP [p . . q] contains the expansion of DLCP ′[x + 1 . . y − 1], whereas DLCP ′[x . . y] expands to
DLCP [p′ . . q′] with p′ < p ≤ q < q′. Therefore, DLCP [p . . q] is formed by three parts, each of which can
be empty: (i) a leftmost part that partially overlaps the expansion of DLCP ′[x], (ii) a central part that
corresponds to the whole expansion of DLCP [x+1 . . y−1], and (iii) a rightmost part that partially over-
laps the expansion of DLCP ′[y]. We first obtain in constant time the minimum position of the central
part, z = RMQM (x+1, y−1), and then the minimum value in area (ii) is A[z−1]+m(Xz), as explained.
To complete the query, we must compare this value with the minima in Xx〈p − p′ + 1, l(Xx)〉 (area (i))
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Fig. 5. A scheme of the way RMQ(p, q) queries are handled.

and Xy〈1, l(Xy) + q− q′〉 (area (iii)), where X〈a, b〉 refers to the substring D[a . . b] in the expansion D of
X. A relevant special case in this scheme is that the whole DLCP [p . . q] can be inside a single symbol
DLCP ′[x] expanding to DLCP [p′ . . q′], in which case the query boils down to finding the minimum value
in Xx〈p− p′ + 1, l(Xx) + q − q′〉.

We now describe how to find the minimum in Xw〈a, b〉. Let us disregard the rules X → Y t for a
moment. Similarly as done for accessing LCP , we descend by the rules that generate the expansion of
Xw towards the positions a and b of the expansion of Xw. As we descend, we identify the O(log(n/r))
maximal nodes Z1, . . . , Zk′ of the grammar tree that cover the range [1 . . a−1] (i.e., the node of Z1 every
time we descend from Z → Z1Z2 towards Z2 in the path to a). We also identify the O(log(n/r)) maximal
nodes Y1, . . . , Yk that cover the range [a . . b] (i.e., after we reach the lowest node Y ∗ shared by the paths
towards a and b, we collect the nodes Y2 whenever we descend from Y → Y1Y2 towards Y1 in the path
to a, and the nodes Y1 whenever we descend from Y → Y1Y2 towards Y2 in the path to b).

We then find the minimum among m(Y1), d(Y1) +m(Y2), d(Y1) +d(Y2) +m(Y3), . . ., in O(k) time. Once
the minimum value d(Y1) + · · · + d(Ys−1) + m(Ys) is identified, we obtain its absolute value by adding
A[w− 1] + d(Z1) + · · ·+ d(Zk′). The absolute position of that minimum is L[w− 1] + l(Z1) + · · ·+ l(Zk′) +
l(Y1) + · · ·+ l(Ys−1) + p(Ys).

Our grammar also has rules of the form X → Y t, and thus the maximal coverage Y1, . . . , Yk may
include a part of these rules, say Y t

′
for some 1 ≤ t′ < t. We can then compute m(Y t

′
) in constant time,

as follows. If d(Y ) > 0, then the minimum of m(Y ), d(Y )+m(Y ), d(Y )+d(Y )+m(Y ), . . . is clearly m(Y ),
that is, the minimum occurs in the first copy of Y . If d(Y ) = 0, then the minimum occurs in every copy
of Y , but the leftmost is still in the first copy. In both cases, then, it holds that m(Y t

′
) = m(Y ) and

p(Y t
′
) = p(Y ). Instead, if d(Y ) < 0, the minimum is (t′ − 1) · d(Y ) +m(Y ), which occurs in the last copy

of Y , and therefore we have m(Y t
′
) = (t′ − 1) · d(Y ) +m(Y ) and p(Y t

′
) = (t′ − 1) · l(Y ) + p(Y ). We may

also need to compute l(Y t
′
) = t′ · l(Y ) and d(Y t

′
) = t′ · d(Y ); these computations may also be needed if

run-length rules appear in the sequence Z1, . . . , Zk′ .
Once we have the (up to) three minima from the cases (i), (ii), and (iii), the absolute position of the

smallest of the absolute values is RMQ(p, q). The total time is tRMQ = O(log(n/r)). Figure 5 shows a
scheme of the process and Figure 4 gives some example values m(·), p(·), and array M .

Answering PSV/NSV and PSV′/NSV′. These queries are solved analogously as RMQs. We describe
NSV′(p, d), since PSV′(p, d) is similar. Let DLCP [p . .] be included in the expansion of DLCP ′[x . .], which
expands to DLCP [p′ . .] (for the largest possible p′ ≤ p). We subtract LCP [p − 1] = A[x − 1] + d(Z1) +
· · ·+ d(Zk′) from d to put it in relative form, where as before the nonterminals Zi cover X〈1, a− 1〉. We
now consider Xx〈p− p′+ 1, l(Xx)〉 = X〈a, b〉, obtaining as before the O(log(n/r)) maximal nonterminals
Y1, Y2, . . . , Yk that cover X〈a, b〉, and find the first Ys where d(Y1) + · · · + d(Ys−1) + m(Ys) < d. We then
subtract d(Y1) + · · ·+ d(Ys−1) from d, add l(Y1) + · · ·+ l(Ys−1) to p, and continue recursively inside Ys to
find the precise point where the cumulative differences fall below d.

The recursive traversal from Ys works as follows. If Ys → Y1Y2, we first see if m(Y1) < d. If so, we
continue recursively on Y1; otherwise, we subtract d(Y1) from d, add l(Y1) to p, and continue recursively
on Y2. If, instead, the rule is Ys → Y t, we proceed as follows. If d(Y ) ≥ 0, then the answer, if any, must
lie inside the first copy of Y , because as seen before the first copy of Y contains an occurrence of the
smallest value of Ys. Thus, we recursively continue on Y . If d(Y ) < 0, instead, we must find the copy t′
inside which the cumulative differences fall below d. This is the smallest t′ such that (t′ − 1) · d(Y ) +
m(Y ) < d, that is, t′ = max(1, 2 + b(d − m(Y ))/d(Y )c). Thus we subtract (t′ − 1) · d(Y ) from d, add
(t′− 1) · l(Y ) to p, and continue with Y . Finally, when we arrive at a terminal X, it holds that m(X) < d
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and the answer to the query is the current value of p. All of this process takes time O(log(n/r)), the
height of the grammar.

It might be, however, that we traverse Y1, Y2, . . . , Yk, that is, the whole Xx〈p− p′ + 1, l(Xx)〉, and still
do not find a value below d. We then must find where we fall below (the current value of) d inside
DLCP ′[x + 1 . .]. Once this search identifies the leftmost position DLCP ′[z] where the answer lies, we
complete the search on Xz〈1, l(Xz)〉 as before, for d← d−A[z − 1] +A[x].

The search problem can be regarded as follows: Given the arrayB[z] = A[z]+m(Xz), find the leftmost
position z > x such that B[z] < A[x] + d. Navarro and Sadakane [2014, Sec. 5.1] show that this query
can be converted into a weighted ancestor query on a tree: given nodes with weights that decrease
toward the root, the query gives a node v and a weight h and seeks for its nearest ancestor with weight
< h. In our case, the tree has O(r) nodes and the weights are LCP values, in the range [0 . . n− 1].

Kopelowitz and Lewenstein [2007, Sec. 3.2] show how this query can be solved in O(r) space and
the time of a predecessor query plus O(log∗ r). Those predecessor queries are done on universes of size
n where there can be arbitrarily few elements. However, we can resort to binary search if there are
O(n/r) elements, within the allowed time O(log(n/r)). Therefore, the predecessor queries have to be
implemented only on sets of Ω(n/r) elements. By using the structure of Belazzougui and Navarro [2015,
Thm. 14], the predecessor time is O(log logw r). Therefore, we obtain time tSV′ = O(log(n/r) + log log r).

This time can be reduced to tSV = O(log(n/r)) for the simpler primitives PSV/NSV as follows: When
r is so large that log(n/r) < log log r, which is covered by r > n/ log n, the allowed Θ(r log(n/r)w) bits
of space are actually Ω(n log log n). We are then entitled to use O(n) bits of space, within which we can
solve queries PSV and NSV in O(1) time [Fischer et al. 2009, Thm. 3].

6.4. Supporting operation Child
To solve Child(v, a) we binary search the O(σ) positions where the minimum occurs in LCP [vl + 1 . . vr],
and choose the one that descends by letter a. Each check for a takes O(log(n/r)) time, as explained, so
we aim at obtaining time O(log(n/r) log σ).

To implement this operation efficiently, we store for each nonterminal X the number n(X) of times
m(X) occurs inside the expansion of X. To do the binary search on LCP [p . . q] (with p = vl + 1 and
q = vr), we first compute RMQ(p, q) as in the previous section, cutting the interval into areas (i), (ii),
and (iii), and finding the absolute position and value of the (leftmost occurrence of the) minimum in
each area. The global minimum µ = LCP [RMQ(p, q)] may have occurrences inside each of the three
areas, Xx〈p − p′ + 1, l(Xx)〉, DLCP ′[x + 1 . . y − 1], and Xy〈1, l(Xy) + q − q′〉 (the values p′, q′, x, and y
are those we computed to obtain RMQ(p, q)). By computing the letter corresponding to the leftmost
occurrence of µ inside DLCP ′[x+ 1 . . y−1], and Xy〈1, l(Xy) + q− q′〉, we determine in which of the three
areas we must binary search for a.

Searching inside a nonterminal. To process Xw〈a, b〉 (cases (i) and (iii)) we first determine how many
occurrences of µ it contains. We initialize a counter c = 0 and scan again Z1, . . . , Zk′ , converting µ ←
µ−A[w−1]−d(Z1)−· · ·−d(Zk′) into relative form. We then scan Y1, . . . , Yk. For each Ys, if d(Y1) + · · ·+
d(Ys−1) +m(Ys) = µ, then the local minimum inside Ys is indeed µ, so we add up all of its occurrences
inside Ys, c← c+ n(Ys). To process Y t

′
in constant time, we have already seen how to compute m(Y t

′
).

Further, remind that, if µ occurs in Y t
′
, then it occurs only in the first copy of Y if d(Y ) > 0, only in the

last if d(Y ) < 0, and in every copy if d(Y ) = 0. Thus, n(Y t
′
) = n(Y ) if d(Y ) 6= 0 and t′ · n(Y ) if d(Y ) = 0.

After we compute c in O(log(n/r)) time, we binary search the c occurrences of µ in Xw〈a, b〉. For each
of the O(log c) = O(log σ) steps of this binary search, we must find a specific occurrence of µ, and then
compute the corresponding letter to compare with a and decide the direction of the search. As said, we
can compute the corresponding letter in time O(log(n/r)). We now show how a specific occurrence of µ
is found within the same time complexity.

Finding a specific occurrence inside a nonterminal. Assume we want to find the c′th occurrence of
µ in Xw〈a, b〉. We initialize p ← L[w − 1] + l(Z1) + · · · + l(Zk′) and scan Y1, . . . , Yk again. For each Ys,
if d(Y1) + · · · + d(Ys−1) + m(Ys) = µ, we subtract c′ ← c′ − n(Ys). When the result is less than 1, the
occurrence sought is inside Ys. We then add l(Y1) + · · ·+ l(Ys−1) to p, subtract d(Y1) + · · ·+ d(Ys−1) from
µ, restore c′ ← c′ + n(Ys), and recursively search for µ inside Ys.
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Let Ys → Y1Y2. If m(Y1) 6= µ, we continue on Y2 with p ← p + l(Y1) and µ ← µ − d(Y1). If m(Y1) = µ
and n(Y1) ≥ c′, we continue on Y1 because it contains the occurrence sought. Otherwise, Y1 contains
occurrences of µ but not the one sought. We then continue on Y2 with p← p+ l(Y1), µ← µ− d(Y1), and
c′ ← c′ − n(Y1). On the other hand, if Ys → Y t, we do as follows.

— If d(Y ) > 0, then µ can only occur in the first copy of Y . Thus, if m(Y ) 6= µ, we just skip Y t with
p ← p + t · l(Y ) and µ ← µ − t · d(Y ). If m(Y ) = µ, instead, we see if n(Y ) ≥ c′. If so, then we enter
into Y ; otherwise we skip Y t with p← p+ t · l(Y ), µ← µ− t · d(Y ), and c′ ← c′ − n(Y ).

— The case where d(Y ) < 0 is similar, except that when we enter into Y , it is the last one of Y t, and
thus we set p← p+ (t− 1) · l(Y ) and µ← µ− (t− 1) · d(Y ).

— Finally, if d(Y ) = 0, the minimum of Y appears many times. If m(Y ) 6= µ, we skip Y t with p ←
p+ t · l(Y ) and µ← µ− t ·d(Y ). Otherwise, if t ·n(Y ) < c′, we must also skip Y t, updating p and µ, and
also c′ ← c′ − t · n(Y ). Otherwise, we must enter into the t′th occurrence of Y , where t′ = dc′/n(Y )e,
by continuing on Y with p← p+ (t′ − 1) · l(Y ), µ← µ− (t′ − 1) · d(Y ) and c′ ← c′ − (t′ − 1) · n(Y ).

Searching the central area. If the desired letter is inside area (ii), then any minimum in DLCP ′[x +
1 . . y − 1] is an occurrence of µ. The classical RMQM data structure gives us the leftmost one, thus we
would be forced to sequentially search for the letter sought, in worst-case time O(σ). To simulate a
binary search, we would like that, if there are many occurrences of µ in M [x+ 1 . . y − 1], the structure
RMQM returns us the median of the positions, not the leftmost. Such a data structure is not known,
however, but fortunately there is one offering an approximation that still leads to logarithmic search
times. Fischer and Heun [2010] presented a data structure that uses O(r) bits on top of M (i.e., we
need to represent M explicitly, using O(r) space) and finds a position of µ in M [x + 1 . . y − 1] whose
rank among all the positions of µ in M [x+ 1 . . y − 1] is a fraction between 1/16 and 15/16 of the total.

For each position z where M [z] = µ, returned by the data structure, we know that Xz contains some
occurrence(s) of µ. We obtain the leftmost position L[z − 1] + p(Xz) of µ, find the associated letter,
compare it with a, and determine if the binary search on DLCP ′[x + 1 . . y − 1] goes left or right. Since
there are O(σ) minima in DLCP ′[x + 1 . . y − 1], the search takes O(log(n/r) log σ) time. Once we have
finally determined that a, if it occurs, must occur inside some Xz, we process it as done on Xw〈a, b〉 to
determine the exact occurrence, if it exists.

7. EXPERIMENTAL RESULTS
We implemented our simplest scheme, that is, Theorem 3.6, and compared it with the state of the art.

7.1. Implementation
We implemented the simplified version described by Bannai et al. [2018] of the structure of Theorem
3.6 using the sdsl library [Gog et al. 2014].17 For the RLFM-index, we used the implementation of
L′, E, D, and R (Lemmas 2.1 and 3.2) described by Prezza [2016, Thm. 28] (suffix array sampling
excluded), taking (1 + ε)r(log(n/r) + 2) + r log σ bits of space (lower-order terms omitted for readability)
for any constant ε > 0 fixed at construction time and supporting O(log(n/r) + log σ)-time LF mapping.
In our implementation, we chose ε = 0.5. This structure employs Huffman-compressed wavelet trees
(sdsl’s wt huff) to represent the array L′, as in our experiments they turned out to be comparable in
size and faster than the structure of Golynski et al. [2006], which is implemented in sdsl’s wt gmr.

Our locate machinery is implemented as follows. We store one gap-encoded bitvector First[1 . . n]
marking with a bit set the text positions 1 and those that are the first in their BWT run (note that
First[i] refers to text position i, not BWT position). First is implemented using sdsl’s sd vector,
takes r(log(n/r) + 2) bits of space (lower-order terms omitted), and answers queries in O(log(n/r))
time. We also store a vector FirstToRun[1 . . r] such that text position First.select1(i) belongs to the
FirstToRun[i]-th BWT run. FirstToRun is a packed integer vector stored in r log r bits. Finally, we
explicitly store r suffix array samples in a vector Samples[1 . . r]: Samples[p] is the text position corre-
sponding to the last letter in the p-th BWT run. Samples is also a packed vector, using r log n bits.

Let SA[sp . . ep] be the range of our query pattern. The RLFM-index and vector Samples are
sufficient to find the range [sp . . ep] and locate SA[ep] using the simplified toe-hold lemma [Ban-

17https://github.com/simongog/sdsl-lite
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nai et al. 2018], since Samples supplies the second component of the pairs in R, SA[p]. Moreover,
with First and FirstToRun we obtain the functionality of P± (Lemma 3.5): it holds that φ(i) =
Samples[FirstToRun[First.rank1(i)]− 1] + ∆, where ∆ = i− First.predecessor(i). Note that φ is eval-
uated in just O(log(n/r)) time. Notably, this time drops to O(1) in the average case, if the bits set in
First are uniformly distributed. This is because sdsl’s sd vector breaks the bitvector into r equal-
sized buckets and solves queries inside each bucket (which in the average case contains just O(1) bits
set). Occurrences SA[ep−1],SA[ep−2], . . . ,SA[sp] are then retrieved as φk(SA[ep]), for k = 1, . . . , ep−sp.

Overall, our index takes at most ((1 + ε) log(n/r) + 2 log n + log σ + 4 + 2ε) r bits of space for any
constant ε > 0 (lower-order terms omitted for readability) and, after counting, locates each pattern
occurrence in O(log(n/r)) time. The space of our index essentially coincides with the information-
theoretic minimum needed for storing the run-length encoded BWT and 2r text positions in plain
format (which is r log(n/r) + r log σ+ 2r log n bits); therefore it is close to the optimum, since our locate
strategy requires storing 2r text positions. From now on, we refer to our index as r-index; the code is
publicly available18.

7.2. Experimental Setup
We compared r-index with the state-of-the-art index for each compressibility measure: lzi19 [Kreft
and Navarro 2013; Claude et al. 2016] (z), slp19 [Claude and Navarro 2010; Claude et al. 2016] (g),
rlcsa20 [Mäkinen et al. 2009; Mäkinen et al. 2010] (r), and cdawg21 [Belazzougui et al. 2015a] (e). We
also included hyb22 [Ferrada et al. 2013; Ferrada et al. 2018], which combines a Lempel-Ziv index with
an FM-index, with parameter M = 8, which is optimal for our experiment, and two implementations 23

of the FM-index from sdsl: fmi-rrr, which combines a Huffman-shaped topology with RRR compressed
bitvectors [Raman et al. 2007], and fmi-suc, which combines a Huffman-shaped topology with succinct
bitvectors. We tested rlcsa, fmi-rrr, and fmi-suc using different suffix array sample rates in order to
highlight the space-time trade-off introduced by this component.

We measured memory usage and locate times per occurrence of all indexes on 1000 patterns of
length 8 extracted from four repetitive datasets, which are also published with our implementation:

DNA. A synthetic dataset of 629,145 copies of a human DNA sequence of length 1000 where each
position was mutated with probability 10−3 (typical rate in human DNA [Przeworski et al. 2000]);
boost. A dataset consisting of concatenated versions of the GitHub’s boost library;
einstein. A dataset consisting of concatenated versions of Wikipedia’s English Einstein page;
world leaders. A collection of all pdf files of CIA World Leaders from 2003 to 2009 downloaded
from the Pizza&Chili corpus.

Table V shows the main characteristics of the datasets: the length n, the alphabet size σ, the number
of runs r in their BWT, the number z of Lempel-Ziv phrases24, the size of g the grammar generated by
Repair25, and the sum e between the number of CDAWG nodes and edges (only for DNA, where cdawg
can be built). Note the varying degrees of repetitiveness: boost is the most repetitive dataset, followed
by DNA and einstein, which are similar, and then followed by the least repetitive one, world leaders. It
can be seen that g ≥ z by a factor of 1.3–2.8 and r ≥ g by a factor of 1.0–1.8. Therefore, we could expect
in general that the indexes based on grammars or on Lempel-Ziv parsing are smaller than r-index,
but as we see soon, the differences are not that large.

Memory usage (Resident Set Size, RSS) was measured using /usr/bin/time between index loading
time and query time. This choice was motivated by the fact that, due to the datasets’ high repetitive-
ness, the number occ of pattern occurrences was very large. This impacts sharply on the working space
of indexes such as lzi and slp, which report the occurrences in a recursive fashion. When consider-

18https://github.com/nicolaprezza/r-index
19https://github.com/migumar2/uiHRDC
20https://github.com/adamnovak/rlcsa
21https://github.com/mathieuraffinot/locate-cdawg
22https://github.com/hferrada/HydridSelfIndex
23https://github.com/nicolaprezza/FMI
24Using code requested to the authors of an efficient Lempel-Ziv parser [Kärkkäinen et al. 2013].
25Using the “balanced” version offered at http://www.dcc.uchile.cl/gnavarro/repair.tgz
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Table V. The main characteristics of our dataset. The numbers in parentheses are rough approximations to the
bits/symbol achievable by the associated compressors by using one 4-byte integer per run, phrase, right-hand-side
grammar symbol, or CDAWG edge/node.

Dataset n σ r z g e
DNA 629,140,006 10 1,287,508 (0.065) 551,237 (0.028) 727,671 (0.037) 248,489,728 (12.638)
boost 629,145,600 96 62,025 (0.003) 22,747 (0.001) 63,480 (0.003) -
einstein 629,145,600 194 958,671 (0.049) 292,117 (0.015) 631,239 (0.032) -
world leaders 46,968,181 89 573,487 (0.391) 175,740 (0.120) 507,525 (0.346) -

●

●

●

0.1 0.2 0.3 0.4 0.5 0.6 0.7

DNA − light indexes

RSS (bits/symbol)

tim
e/

oc
c 

(lo
g 1

0(
ns

))

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

4 6 8 10 12

DNA − heavy indexes

RSS (bits/symbol)

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

●r−index rlcsa lzi cdawg slp hyb fmi−rrr fmi−suc

Fig. 6. Locate time per occurrence and working space (in bits per symbol) of the indexes. The y-scale measures nanoseconds per
occurrence reported and is logarithmic. To improve readability, we separate light and heavy indexes in two plots, corresponding
to two compression regimes.

ing this extra space, these indexes always use more space than r-index, but we prefer to emphasize
the relation between the index sizes and their associated compressibility measure. The only existing
implementation of cdawg works only on DNA files, so we tested it only on the DNA dataset.

7.3. Results
Figures 6 to 9 summarize the results of our experiments. Due to the very diverse compression regimes
of the tested indexes, we separate them in two plots per dataset to improve readability.

On all the datasets, the time per occurrence of r-index is 100–300 nanoseconds per occurrence,
outperforming all the indexes based on Lempel-Ziv or grammars by a factor of 10 to 100. These indexes
are generally smaller, using 45%–95% (lzi), 80%–105% (slp), and 45%–100% (hyb) of the space of
r-index, at the expense of being orders of magnitude slower, as said: 20–100 (lzi), 8–50 (slp), and
7–11 (hyb) times. Comparing with the bits per symbol of Table V, we note that the space of r-index is
2–4 words per run, whereas lzi and hyb use 3–6 words per Lempel-Ziv phrase and slp uses 4–6 words
per symbol on the right-hand-side of a rule. The low space per run of r-index compared to the indexes
based on z or g shrink the space gap one could expect from comparing the measures r, z, and g.

Further, r-index dominates all practical space-time tradeoffs of rlcsa, fmi-rrr, and fmi-suc. Using
the same space, rlcsa is 20–500 times slower than rindex; letting it use 1.7–4.4 times the space of
r-index, it is still 5–100 times slower. The lightest FM-index, fmi-rrr, is dominated in space by rlcsa
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Fig. 7. Locate time per occurrence and working space (in bits per symbol) of the indexes. The y-scale measures nanoseconds per
occurrence reported and is logarithmic. To improve readability, we separate light and heavy indexes in two plots, corresponding
to two compression regimes. Cdawg works only on DNA, thus it is not displayed.

on all datasets except world leaders, the least repetitive one. In all cases, rlcsa is also faster than
fmi-rrr. This is because, unlike fmi-rrr, rlcsa implements heuristics to locate multiple occurrences
at once. Interestingly, on most datasets fmi-rrr falls in the high-compression regime of dictionary-
compressed indexes. This is because the BWT runs translate into 0/1 runs on the wavelet tree bitvec-
tors, and those runs are compressed by a factor of Θ(log log n/ log n) by the RRR representation [Raman
et al. 2007].26 Instead, fmi-suc only offers global frequency compression, and thus it is up to an order of
magnitude larger than fmi-rrr (while being faster by just a factor of 2 in most cases). In all cases, the
comparison between the three FM-indexes and r-index shows that the regular sampling mechanism
of the FM-index is completely outperformed on repetitive data.

Only cdawg is faster than r-index (almost twice as fast), but it is 60 times larger (indeed, way larger
than the FM-indexes), which leaves it out of the range of “small” indexes.

7.4. Scalability
We now evaluate the space performance of the indexes on a real collection of Influenza nucleotide
sequences from NCBI27. It is formed by 641,444 sequences, of total size 0.95 GB after removing the
headers and newlines. We built the indexes on 100 prefixes of the dataset, whose sizes increased evenly
from 1% to 100% of the sequences. As the prefixes grew, they became more repetitive; we measured
how the bits per symbol used by the indexes decreased accordingly.

Figure 10 shows the rate between the measures r, z, g and the prefix length n. In this collection the
repetitiveness is not as high as in the previous datasets (it is similar to world leaders), but still r
reaches 1% of n, and g and z reach about a half and a quarter of r, respectively. After a sharp initial
reduction within the first 10% of the collection, the ratios continue decreasing slowly but steadily.
These ratios are likely to stabilize at some function of the mutation rate of the sequences.

26One of the original RLFM-index variants, called RLBW, aimed to exploit this property, but it was outperformed by the
variant implemented here as rlcsa. Still, it performed better than the original RLFM+ [Mäkinen et al. 2010].

27ftp://ftp.ncbi.nih.gov/genomes/INFLUENZA/influenza.fna.gz, the description is in the parent directory.
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Fig. 8. Locate time per occurrence and working space (in bits per symbol) of the indexes. The y-scale measures nanoseconds per
occurrence reported and is logarithmic. To improve readability, we separate light and heavy indexes in two plots, corresponding
to two compression regimes. Cdawg works only on DNA, thus it is not displayed.

Figure 11 shows the evolution of the index sizes. As a repetition-insensitive variant, we also include
a classical succinct FM-index (fm-index), with a typical sampling rate of dlg ne positions for locating,
plain bitvectors for the wavelet trees and for marking the sampled SA positions, and a rank imple-
mentation using 1.25 bits per input bit. As we add more and more similar sequences, all the indexes
(except the FM-index) decrease in relative size (bps), as expected. On the complete collection, fm-index
still uses 4.75 bits per symbol (bps), whereas r-index has decreased to 0.88 bps (about 2.4 words per
run), hyb to 0.52 bps (about 5.5 words per phrase, 60% of r-index), slp to 0.49 bps (about 1.9 words per
symbol, 56% of r-index), and lzi to 0.22 bps (about 2.3 words per phrase, 25% of r-index). We remind
that, in exchange, the r-index is 10–100 times faster than those indexes, and that it uses 18% of the
space of the classic fm-index (a factor that decreases as the collection grows).

This not-so repetitive collection shows that r (and thus r-index) is more sensitive than g and z to the
decrease in repetitiveness. In particular, g and z are always O(n/ logσ n), and thus the related indexes
always use O(n log σ) bits. Instead, r can be as large as n [Prezza 2016], so in the worst case r-index
can use Θ(n log n) bits. Note, in particular, that the other indexes are below the 2 bps of the raw data
after processing just 3% of the collection; r-index breaks this barrier only after 8%.

7.5. Comparison with state-of-the-art bioinformatic software
There are currently two bioinformatics groups collaborating on the further development of the r-index:
those of Christina Boucher at the University of Florida and of Ben Langmead at Johns Hopkins Uni-
versity. We note that Ben Langmead was the first author of Bowtie [Langmead et al. 2009; Langmead
and Salzberg 2012], one of the most popular short-read aligners based on the FM-index. Their re-
sults show that the r-index can index much larger DNA datasets than those we considered here, such
as a 120-GB file containing 2000 human chromosome 19 haplotypes, and demonstrate the r-index’s
potential as a tool in bioinformatics.

For example, Kuhnle et al. [2019] study practical methods to build the r-index. They show that
Bowtie can index up to 250 chromosome 19 haplotypes (around 14.5 billion bases, each chromosome
being around 58 million bases long), whereas the r-index can index over 1000 (59 billion bases). The
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Fig. 9. Locate time per occurrence and working space (in bits per symbol) of the indexes. The y-scale measures nanoseconds per
occurrence reported and is logarithmic. To improve readability, we separate light and heavy indexes in two plots, corresponding
to two compression regimes. Cdawg works only on DNA, thus it is not displayed.
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prefixes of a repetitive collection of genomic data.

r-index takes from 250 MB to index 1 chromosome (35 bps, no repetitiveness) to 550 MB to index 1000
chromosomes (0.08 bps). That is, the r-index roughly doubles its space as the collection becomes 1000
times larger. Instead, Bowtie grows linearly: it uses 25 MB to index 1 chromosome (3.46 bps) and 7
GB to index 250 (4 bps). Both indexes reach the same size on 10 chromosomes, and from then on the
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Fig. 11. Index sizes (in bits per symbol, bps) for the same prefixes of Figure 10.

r-index takes over. The r-index is also built using 1–2 orders of magnitude less space and time than
Bowtie.

Note that the bits per symbol reached by the r-index in this collection, 0.08 bps, is much lower than
the 0.88 bps achieved on the Influenza dataset of our experiments above. This corresponds to the much
lower mutation rates of human genomes compared to bacteria.

The r-index is also faster at locating when indexing more than 100 chromosomes. On 250 chro-
mosomes, for example, all the occurrences of a random substring of length 100 appearing in all the
chromosomes are located in 900 microseconds by Bowtie and in 500 microseconds by the r-index.

8. CONCLUSIONS
We have closed the long-standing problem of efficiently locating the occurrences of a pattern in a
text using an index whose space is bounded by the number of equal-letter runs in the Burrows-
Wheeler transform (BWT) of the text. The occ occurrences of a pattern P [1..m] in a text T [1..n] over
alphabet [1..σ] whose BWT has r runs can be counted in time O(m log logw(σ + n/r)) and then lo-
cated in O(occ log logw(n/r)) time, on a w-bit RAM machine, using an O(r)-space index. Using space
O(r log logw(σ + n/r)), the counting and locating times are reduced to O(m) and O(occ), respectively,
which is optimal in the general setting. Further, using O(rw logσ logw n) space we can also obtain opti-
mal time in the packed setting, replacing O(m) by O(dm log(σ)/we) in the counting time. Our findings
also includeO(r log(n/r))-space structures to access consecutive entries of the text, suffix array, inverse
suffix array, and longest common prefix array, in optimal time plus a per-query penalty of O(log(n/r)).
We upgraded those structures to a full-fledged compressed suffix tree working in O(r log(n/r)) space
and carrying out most navigation operations in time O(log(n/r)). All the structures are built in times
ranging from O(n) worst-case to O(nw1+ε) expected time and O(n) space, and many can be built in the
same asymptotic space of the final structure with a single pass over the text.

The number of runs in the BWT is an important measure of the compressibility of highly repetitive
text collections, which can be compressed by orders of magnitude by exploiting the repetitiveness.
While the first index of this type [Mäkinen et al. 2009; Mäkinen et al. 2010] managed to exploit the
BWT runs, it was not able to locate occurrences efficiently. This gave rise to many other indexes based
on other measures, like the size z of a Lempel-Ziv parse [Lempel and Ziv 1976], the size g of a context-
free grammar [Kieffer and Yang 2000], the size e of the smallest compact automaton recognizing the
text substrings [Blumer et al. 1987], etc. While the complexities are not always comparable [Gagie
et al. 2018a], the experimental results show that our proof-of-concept implementation outperforms all
the space-efficient alternatives by one or two orders of magnitude in locating time.
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This work triggered several other lines of research. From the idea of cutting the text into phrases
defined by the BWT run ends, we showed that a run-length context-free grammar (RLCFG) of size
O(r log(n/r)) can be built on the text by using locally consistent parsing [Jeż 2015]. This was gen-
eralized to a RLCFG built on top of any bidirectional macro scheme (BMS) [Storer and Szymanski
1982], which allowed us to prove bounds on the Lempel-Ziv approximation to the optimal BMS, as well
as several other related bounds between compressibility measures [Gagie et al. 2018a; Navarro and
Prezza 2018]. Also, the idea that at least one occurrence of any text substring must cross a phrase
boundary led Kempa and Prezza [2018] to the concept of string attractor, a set of γ text positions with
such a property. They prove that string attractors subsume the other measures of repetitiveness (i.e.,
γ ≤ min(r, z, g, e)), and design universal data structures of size O(γ log(n/γ)) for accessing the com-
pressed text, analogous to ours. Navarro and Prezza [2019] then extend these ideas to the first self-
index on attractors, of size O(γ log(n/γ)), locating in time O(m log n + occ logε n). Very recently, Chris-
tiansen et al. [2019] obtained, within O(γ log(n/γ)) space, counting and locating time O(m + log2+ε n)
and O(m + (occ + 1) logε n), respectively. Further, they obtained optimal times O(m) and O(m + occ),
by raising the space to O(γ log(n/γ) log n) and O(γ log(n/γ) logε n), respectively. We obtain such optimal
times within space O(r logσ logw n) or O(r log(n/r)), which are incomparable with those (we can only
ensure O(γ log(n/γ)) ⊆ O(r log(n/r))). We note that the optimal time in the packed setting we achieve
in O(r logσ logw n) space had been obtained only in Θ(n) space.

On the other hand, some questions remain open, in particular regarding the operations that can be
supported within O(r) space. We have shown that this space is not only sufficient to represent the text,
but also to efficiently count and locate pattern occurrences. We required, however, O(r log(n/r)) space
to provide random access to the text. This raises the question of whether efficient random access is
possible within O(r) space. For example, recalling Table I, random access in sublinear time is possible
within O(g) or O(z log(n/z)) space; we can also access within space O(γ log(n/γ)), as said above [Kempa
and Prezza 2018]. All these spaces are incomparable with r. A more specific question, but still intrigu-
ing, is whether we can provide random access to the suffix array of the text in O(r) space: note that we
can return the cells that result from a pattern search within this space, but accessing an arbitrary cell
requires O(r log(n/r)) space, and this translates into the size required by a suffix tree. On the other
hand, the recent result r = O(γ log2 n) [Kempa and Kociumaka 2019] implies that we offer suffix tree
functionality in space O(γ log3 n) ⊆ O(z log3 n).

Finally, we have worked with the groups of Christina Boucher and Ben Langmead in order to use
the r-index on real bioinformatic software, which involves several practical challenges. The coopera-
tion has already produced results: a paper [Boucher et al. 2018] at the 2018 Workshop on Algorithms
in Bioinformatics (WABI) that was invited to, and has now been published [Boucher et al. 2019] in, a
special issue of Algorithms in Molecular Biology; and a paper [Kuhnle et al. 2019] at the 2019 Confer-
ence on Research in Computational Molecular Biology (RECOMB) that was invited as two articles — a
standard academic article and a brief manual for the software, both of which are now accepted — to a
special issue of the Journal of Computational Biology. Some of these results are already mentioned in
Section 7.5. We keep collaborating to add more functionality to their implementation of the r-index,
such as combining it with variation graphs and other graph-based pan-genomic indexes, extending it
to find maximal exact matches, or adding efficient techniques to insert new sequences in an existing
index; there is already some progress in the last two directions [Bannai et al. 2018]. Another important
practical aspect is, as explained in Section 7, making the index less sensitive to lower repetitiveness
scenarios, as it could be the case of indexing short sequences (e.g., sets of reads) or metagenomic col-
lections. We are working on a hybrid with the classic FM-index to handle in different ways the areas
with higher and lower repetitiveness. Finally, extending our index to enable full suffix tree function-
ality will require, despite our theoretical achievements in Section 6, a significant amount of algorithm
engineering to obtain good practical space figures.
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FISCHER, J., MÄKINEN, V., AND NAVARRO, G. 2009. Faster entropy-bounded compressed suffix trees. Theoretical Computer

Science 410, 51, 5354–5364.
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A. CONSTRUCTION
In this appendix we analyze the working space and time required to build all our data structures.
Table VI summarizes the results. The working space does not count the space needed to read the text
in online form, right-to-left. Times are worst-case unless otherwise stated. Expected cases hold with
high probability (w.h.p.), which means over 1− 1/nc for any fixed constant c.

A.1. Dictionaries and predecessor structures
A dictionary mapping t keys from a universe of size u to an interval [1 . . O(t)] can be implemented as
a perfect hash function using O(t) space and searching in constant worst-case time. Such a function
can be built in O(t) space and expected time [Fredman et al. 1984]. A construction that takes O(t)
time w.h.p. [Willard 2000] starts with a distributor hash function that maps the keys to an array of
buckets B[1 . . t]. Since the largest bucket contains O(log t/ log log t) keys w.h.p., we can build a fusion

40



Table VI. Construction time and space for our different data structures, for any constant ε > 0. All the expected times (“exp.”) hold w.h.p.
as well. Variable B is the block size in the external memory model, where Sort(n) denotes the I/O complexity of sorting n integers.

Structure Construction time Construction space
Basic counting and locating (Lem. 2.1) O(n log r) O(r)

or O(n) O(n)
Fast locating (Thm. 3.6 + Lem. 3.7, s = log logw(n/r)) O(n(log r + log logw(n/r))) O(r log logw(n/r))

or O(n) O(n)
Optimal counting and locating (Thm. 4.10) O(n(log r + log logw(n/r))) O(r log logw(σ + n/r))

or O(n+ r(log log σ)3) O(n)
RAM-optimal counting and locating (Thm. 4.11) O(n(log r + log logw(n/r))) O(rw logσ logw n)

+O(rw2(log logw n)3) exp.
or O(n+ rw1+ε) exp. O(n)

Text substrings (Thm. 5.1) O(n(log r + log logw(n/r))) O(r log(n/r))
or O(n) O(n)

Accessing SA, ISA, and LCP (Thm. 5.4, 5.7 & 5.8) O(n(log r + log logw(n/r))) O(r log(n/r))
or O(n) O(n)

Optimal counting/locating, O(r log(n/r)) space (Thm. 5.9) O(n+ r log(n/r)(log log σ)2) exp. O(n) (only if r = ω(n/ logεw σ))
Suffix tree (Thm. 6.1) O(n+ r log logw r) O(n)

with O(Sort(n) + log(n/r)) I/Os O(n(log r + log logw(n/r))) O(B + r log(n/r))
with O(n/B + log(n/r)) I/Os, no TDepth & LAQT O(n(log r + log logw(n/r))) O(B + r log(n/r))

tree [Fredman and Willard 1993] on each bucket, which requires linear space and construction time,
and constant query time.

If we are interested in deterministic construction time, we can resort to the so-called deterministic
dictionaries, which use O(t) space and can be built in time O(t(log log t)2) [Ružić 2008].

A minimum perfect hash function (mphf) maps the keys to the range [1 . . t]. This is trivial using O(t)
space (we just store the mapped value), but it is also possible to store a mphf within O(t) bits, building
it in O(t) expected time and O(t) space [Belazzougui et al. 2009b]. Such expected time holds w.h.p. as
well if they use a distributor function towards t′ = O(t/ log t) buckets. For each bucket Bi, i ∈ [1 . . t′],
they show that w.h.p. O(log t) trials are sufficient to find a perfect hash function σ(i) for Bi, adding
up to O(t) time w.h.p. Further, the indexes σ(i) found distribute geometrically (say, with a constant
parameter p), and the construction also fails if their sum exceeds λ · t/p for some constant λ of our
choice. The probability of that event is exponentially decreasing with t′ for any λ > 1 [Janson 2017].

A monotone mphf (mmphf), in addition, preserves the order of the keys. A mmphf can be stored in
O(t log log u) bits while answering in constant time. Its construction time and space is as for a mphf
[Belazzougui et al. 2009a, Sec. 3] (see also Belazzougui et al. [2011, Sec. 3]). Therefore, all the expected
cases we mention related to building perfect hash functions of any sort hold w.h.p. as well. Alterna-
tively, their construction time can turn into worst-case w.h.p. of being correct.

The predecessor structure we use [Belazzougui and Navarro 2015, Thm. 14] uses O(t) words and
answers in time O(log logw(u/t)). Its low-space version [Belazzougui and Navarro 2015, Sec. A.1 &
A.2], using O(t log(u/t)) bits, does not use hashing. It is a structure of O(log logw(u/t)) layers, each
being a bitvector of O(t) bits. Its construction takes O(t log logw(u/t)) worst-case time and O(t) space.

Finally, note that if we can use O(u) bits, then we can build a constant-time predecessor structure in
O(u) time, by means of rank queries on a bitvector.

A.2. Our basic structure
The basic structures of Section 2.5 can be built in O(r) space. We start by using an O(r)-space construc-
tion of the run-length encoded BWT that scans T once, right to left, in O(n log r) time [Prezza 2016]
(see also Ohno et al. [2018] and Kempa [2019]). The text T is not needed anymore from now on.

We then build the predecessor structure E that enables the LF -steps in time O(log logw(n/r)). The
construction takes O(r log logw(n/r)) ⊆ O(n) time and O(r) space, as seen above. The positions p that
start or end BWT runs are easily collected in O(r) time from the run-length encoded BWT .

The structures to compute rank on L′ in time O(log logw σ) [Belazzougui and Navarro 2015] also use
predecessor structures. These are organized in r/σ chunks of size σ. Each chunk has σ lists of positions
in [1 . . σ] of lengths `1, . . . , `σ, which add up to σ. The predecessor structure for the ith list is then built
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over a sample of `i/ logw σ elements, in time O((`i/ logw σ) log logw(σ logw(σ)/`i)). Added over all the
lists, this is O((σ/ logw σ) log logw σ) ⊆ O(σ). The total construction time of this structure is then O(r).

In total, the basic structures can be built in O(n log r) time and O(r) space. Of course, if we can use
O(n) construction space, then we easily obtain O(n) construction time, by building the suffix array in
linear time and then computing the structures from it.

A.3. Fast locating
Structure E collects the starts of runs. In Section 3 we build two extended versions that collect starts
and ends of runs. The first is a predecessor structure R (Lemma 3.2), which organizes the O(r) run
starts and ends separated by their character, on a universe of size σn. The second uses two predecessor
structures (Lemmas 3.5 and 3.7), called P+ and P− in Lemma 3.7, which contain the BWT positions
at distance at most s from run borders.

To build both structures, we simulate a backward traversal of T (using LF -steps from the position of
the symbol $) to collect the text positions of all the run starts and ends (for R), or all the elements at
distance at most s from a run start or end (for P+ and P−). We use predecessor and successor queries on
E (the latter are implemented without increasing the space of the predecessor structure) and accesses
to L′ to determine whether the current text position must be stored, and where. The traversal alone
takes time O(n log logw(n/r)) for the LF -steps.

The predecessor structure R is built in O(r) space and O(r log log(σn/r)) ⊆ O(n log log σ) ⊆ O(n log r)
time (since σ ≤ r). The structures P+ and P− contain O(rs) elements in a universe of size n, and thus
are built in O(rs) space and time O(rs log log(n/(rs))) ⊆ O(n) (we never index more than n elements).

Overall, the structure of Theorem 3.6, enhanced as in Lemma 3.7, can be built in O(rs) space and
O(n log r+n log logw(n/r)) time. If we can use O(n) space for the construction, then the LF -steps can be
implemented in O(1) time and the traversal requires O(n) time. In this case, the structures R, P+ and
P− can also be built in O(n) time, since the predecessor searches can be implemented with bitvectors.

For the structure of Lemma 3.8 we follow the same procedure, building the structures P+ and P−.
The classical algorithm to build the base LCP array [Kasai et al. 2001] uses O(n) time and space.
Within this space we can also build the predecessor structures in O(n) time, as before. Note that
this structure is not needed for Theorem 3.6, but in later structures. Using those, we will obtain a
construction of LCP using less space (see Section A.6).

A.4. Optimal counting and locating
The first step of this construction is to build the compact trie that contains all the distinct substrings
of length s of T . All these lie around sampled text positions, so we can simulate a backward traversal
of T using E and L′, as before, while maintaining a window of the last s symbols seen. Whenever we
hit a run start or end in L, we collect the next s − 1 symbols as well, forming a substring of length
2s − 1, and from there we restart the process, remembering the last s symbols seen.28 This traversal
costs O(n log logw(n/r)) time as before.

The memory area where the edges of the compact trie will point is simply the concatenation of
all the areas of length 2s − 1 we obtained. We now collect the s substrings of length s from each of
these areas, and radix-sort the O(rs) resulting strings of length s, in time O(rs2). After the strings are
sorted, if we remove duplicates (getting σ∗ distinct strings) and compute the longest common prefix
of the consecutive strings, we easily build the compact trie structure in a single O(σ∗)-time pass. We
then assign consecutive mapped values to the σ∗ leaves and also assign the values vmin and vmax to
the internal nodes. By recalling the suffix array and text positions each string comes from, we can also
assign the values p and SA[p] (or SA∗[p]) to the trie nodes. Further, we precompute the queries for SA[p]
in the structures P+ and P− in time O(σ∗ log logw(n/(rs)) ⊆ O(rs log logw(n/(rs)) ⊆ O(n).

To finish, we must create the perfect hash functions on the children of each trie node. There are
O(rs) children in total but each set stores at most σ children, so the total deterministic time to create
the dictionaries is O(rs(log log σ)2). In total, we create the compact trie in time O(n log logw(n/r)+rs2 +
rs(log log σ)2) and space O(rs).

28If we hit other run starts or ends when collecting the s− 1 additional symbols, we form a single longer text area including
both text samples; we omit the details.
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The construction of the RLFM-index of T ∗ can still be done within this space, without explicitly
generating T ∗, as follows. For each position L[i], the BWT of T , we perform s LF -steps to obtain the
metasymbol corresponding to L∗[i], which we use to traverse the compact trie in order to find the
mapped symbol L∗[i]. Since the values of L∗ are obtained in increasing order, we can easily compress
its runs on the fly, in O(rs) space. The BWT of T ∗ is then obtained in time O(ns log logw(n/r)). We can
improve the time by obtaining this BWT run by run instead of symbol by symbol: We start from each
run L[x1, y1] and compute x2 = LF (x1). From it, we find the end y2 of the run x2 belongs in L. The run
for s = 2 is then L[x1, x1 + min(y1 − x1, y2 − x2)]. We repeat the process s times until obtaining all xk
and yk, 1 ≤ k ≤ s. The next run of L∗ is then L∗[x1, x1 + min1≤k≤s(yk − xk)]. The computation of each
yk from xk = LF k−1(x1) can be done by finding the predecessor of xk in E and associating with each
element in E the length of the run it heads, which is known when building E. In this way, the cost to
compute the BWT of T ∗ decreases to O(r∗s log logw(n/r)) ⊆ O(rs2 log logw(n/r)).

From the BWT, the other structures of the RLFM-index of T ∗ are built as in Section A.2, in time
O(r∗ log logw(n/r∗)) ⊆ O(n) and space O(r∗) ⊆ O(rs). The array C∗ is also built in O(r∗) ⊆ O(rs) time
and O(σ∗) ⊆ O(rs) space.

To finish, we need to build the structure of Lemma 3.7, which as seen in Section A.3 is built in
O(rs) space and O(n log logw(n/r)) time. With s = log logw(σ+n/r), the total construction time is upper
bounded by O(n log logw(n/r) + r log log(σ + n/r)3) ⊆ O(n log logw(n/r) + r(log log σ)3) and the construc-
tion space by O(rs). When added to the O(n log r) time to build the BWT of T , the total simplifies to
O(n(log r + log logw(n/r))) because σ ≤ r.

If we can use O(n) space for the construction, the LF -steps can be implemented in constant time. We
can generate T ∗ explicitly and use linear-time and linear-space suffix array construction algorithms, so
all the structures are built in time O(n). The compact trie can be built by pruning at depth s the suffix
tree of T , which is built in O(n) time. We still need to build the perfect hash functions for the children,
in deterministic time O(rs(log log σ)2). Added to O(n), the total simplifies to O(n+ r(log log σ)3).

When building the RAM-optimal version, the value of s grows to w logσ logw n. Further, the compact
trie must be changed by the structure of Navarro and Nekrich [2017, Sec. 2]. In their structure, they
jump by logσ n symbols, whereas we jump by w/ log σ symbols. Their perfect hash functions, involving
O(rs) elements, can be built in time O(rs log log(rs)2), whereas their weak prefix search structures
[Belazzougui et al. 2018, Thm. 6] are built in expected time O(rswε) for any constant ε > 0. For the
value of s used in this case, the time can be written as O(rw1+ε). Overall, the total construction time
is in O(n(log r + log logw(n/r)) + rw2(log logw n)3). The construction space stays in O(rs). If we can use
O(n) space, the expected construction time becomes O(n+ rs(log log(rs)2) + rw1+ε) ⊆ O(n+ rw1+ε).

A.5. Access to the text
The structure of Theorem 5.1 can be built as follows. We first collect the text positions of starts and
ends of BWT runs. Each sampled position induces a constant number of half-blocks at each of the
O(log(n/r)) levels (there are also r blocks of level 0). For each block or half-block, we must find its
primary occurrence. We first find all their text endpoints in BWT with an LF -guided scan of T of
time O(n log logw(n/r)), after which we can read each block or half-block backwards in O(log logw(n/r))
time per symbol. For each of them, we follow the method described in Lemma 4.5 to find its primary
occurrence in O(log logw(σ + n/r)) time per symbol, doing the backward search as we extract its sym-
bols backwards too. Since at level l there are O(r) blocks or half-blocks of length O(n/(r · 2l−1)), the
total length of all the blocks and half-blocks adds up to O(n), and the total time to find the primary
occurrences is O(n log logw(σ + n/r)).

We also need to fill in the text at the leaves of the structure. In the last level, then, we traverse the
blocks in order to store their symbols in the structure, not to find their primary occurrence.

Therefore, the structure of Theorem 5.1 is built in O(n log logw(σ+n/r)) time and O(r log(n/r)) work-
ing space, once the basic structure of Lemma 2.1 is built.

In case of havingO(n) space for construction, we can replace predecessor structures with rank queries
on bitvectors of n bits, but we still have the O(log logw σ) time for rank on L′. Thus the total time is
O(n log logw σ). This is the most intuitive construction, yet we will slightly improve it in Section A.6.
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A.6. Suffix array access
The other structures of Section 5 give access to cells of the suffix array (SA), its inverse (ISA), and the
longest common prefix array (LCP ).

The structure of Theorem 5.4 is analogous to that of Theorem 5.1: it has O(log(n/r)) levels and
O(r) blocks or half-blocks of length sl = n/(r · 2l−1) at each level l. However, its domain is the suffix
array cells and the way to find a primary occurrence of each block is different. At each level, we start
with any interval of length sl and compute LF on its left extreme. This leads to another interval
of length sl. We repeat the process until completing the cycle and returning to the initial interval.
Along the way, we collect all the intervals that correspond to blocks or half-blocks of this level. Each
time the current interval contains or immediately follows a sampled BWT position in E, we make it
the primary occurrence of all the blocks or half-blocks collected so far (all those must coincide with
the content of the current block or half-block), and reinitialize an empty set of collected blocks. This
process takes O(n log logw(n/r)) time for a fixed level. We can perform a single traversal for all the
levels simultaneously, storing all the blocks in a dictionary using the left extreme as their search key.
As we traverse BWT , we collect the blocks of all lengths starting at the current position p. Further, we
find the successor of p− 1 in E to determine the minimum length of the blocks that cover or follow the
nearest sampled position, and all the sufficiently long collected blocks find their primary occurrence
starting at p. The queries on E also amount to O(n log logw(n/r)) time.

This multi-level process requires a dictionary of all the O(r log(n/r)) blocks and half-blocks.
If we implement it as a predecessor structure, it takes O(r log(n/r)) space, it is constructed in
O(r log(n/r) log logw(n/r)) time, and answers the O(n) queries in time O(n log logw(n/r)). The collected
segments can be stored separated by length, and the O(log(n/r)) lengths having collected blocks can
be marked in a small bitvector, where we find the nonempty sets over some length in constant time.

We also need to fill the DSA cells of the leaves of the structure. This can be done with an additional
traversal of BWT , filling in the SA values at the required positions whenever we reach them in the
traversal. We can then easily convert SA to DSA values in the leaves. This does not add extra time or
space, asymptotically.

A.7. Inverse suffix array, and again text access
The construction of the structures of Theorem 5.7 is analogous to that of Section A.6. This time, the
domain of the blocks and half-blocks are the text positions and, instead of traversing with LF , we must
use φ. This corresponds to traversing BWT right to left, keeping track of the corresponding position in
T . We can maintain the text position using our basic structure of Lemma 3.5. Then, if the current text
position is i, we can use the predecessor structures on T to find the first sampled position following
i − 1, to determine which collected blocks have found their primary occurrence. We can similarly fill
the required values DISA by traversing BWT right-to-left and writing the appropriate ISA values.
Therefore, we can build the structures within the same cost as Theorem 5.4.

In both cases, if we have O(n) space available for construction, we can build the structures in O(n)
time, since LF can be computed in constant time and all the dictionaries and predecessor structures
can be implemented with bitvectors. We can also use these ideas to obtain a slightly faster construction
for the structures of Theorem 5.1, which extract substrings of T .

LEMMA A.1. Let T [i− 1 . . i] be within a phrase. Then it holds that φ(i− 1) = φ(i)− 1 and T [i− 1] =
T [φ(i)− 1].

PROOF. The fact that φ(i − 1) = φ(i) − 1 is already proved in Lemma 5.5. From that proof it also
follows that T [i− 1] = BWT [p] = BWT [p− 1] = T [j − 1] = T [φ(i)− 1].

LEMMA A.2. Let T [i− 1 . . i+ s] be within a phrase, for some 1 < i ≤ n and 0 ≤ s ≤ n− i. Then there
exists j 6= i such that T [j − 1 . . j + s− 1] = T [i− 1 . . i+ s− 1] and [j − 1 . . j + s] contains the first position
of a phrase.

PROOF. The proof is analogous to that of Lemma 5.6. By Lemma A.1, it holds that T [i′−1 . . i′+s−1] =
T [i − 1 . . i + s − 1], where i′ = φ(i). If T [i′ − 1 . . i′ + s] contains the first position of a phrase, we are
done. Otherwise, we apply Lemma A.1 again on [i′ − 1 . . i′ + s], and repeat until we find a range that
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contains the first position of a phrase. This search eventually terminates because φ is a permutation
with a single cycle.

We can then find the primary occurrences for all the blocks in Theorem 5.1 analogously as for DISA
(Theorem 5.7). We traverse T with φ (i.e., we traverse BWT right to left, using Lemma 3.5 to compute φ
each time). This time we index the blocks and half-blocks using their right extreme, collecting all those
that end at the current position i of T . Then, at each position i, we use the predecessor structures
on T to find the nearest sampled position preceding i + 1, to determine which collected blocks and
half-blocks have found their primary occurrence. We can similarly fill the required values of T with a
final traversal of BWT , accessing L′. Therefore, we can build these structures within the same cost of
Theorem 5.7.

A.8. Longest common prefix array
Finally, the construction for LCP access in Theorem 5.8 is a direct combination of Theorem 5.4 (i.e.,
SA) and Lemma 3.8 (i.e., PLCP extension, with s = log(n/r)). In Section A.3 we saw how to build
the latter in O(n) time and space. Within O(n) space, we can also build the structure of Theorem 5.8
in O(n) time. We can, however, build the structure of Lemma 3.8 within O(r log(n/r) + rs) space if
we first build SA, ISA, and the extraction structure. The classical linear-time algorithm [Kasai et al.
2001] is as follows: we compare T [SA[2] . .] with T [SA[1] . .] until they differ; the number ` of matching
symbols is LCP [2]. Now we jump to compute LCP [Ψ(2)], where Ψ(p) = ISA[(SA[p] mod n) + 1] is the
inverse of LF [Grossi and Vitter 2006]. Note that LCP [Ψ(2)] = lcp(T [SA[Ψ(2)] . .], T [SA[Ψ(2) − 1] . .]) =
lcp(T [SA[2]+1 . .], T [SA[Ψ(2)−1] . .]) and, if ` > 0, this is at least `−1 because T [SA[2]+1 . .] already shares
the first `− 1 symbols with some lexicographically smaller suffix, T [SA[1] + 1 . .]. Thus the comparison
starts from the position ` onwards: LCP [Ψ(2)] = `−1+lcp(T [SA[Ψ(2)]+`−1 . .], T [SA[Ψ(2)−1]+`−1 . .]).
This process continues until the cycle Ψ visits all the positions of LCP .

We can simulate this algorithm, traversing the whole virtual array LCP [1 . . n] but writing only the
O(rs) relevant cells, that is, those at distance s from a run border. We first build P+ and P− as for
Lemma 3.8. We then traverse T backwards virtually, using LF , in time O(n log logw(n/r)), spotting the
positions in P± = P+ ∪ P−. Say we find p ∈ P± and the previous p′ ∈ P± was found d steps ago. This
means that p′ = Ψd(p) is the next relevant suffix after p along the LCP algorithm. We store next[f(p)] =
〈p′, d〉, where next is a table aligned with LCP ′. Once this pass is complete, we simulate the algorithm
starting at the last relevant p value we found: we compute LCP [p] = ` and store LCP ′[f(p)] = `.
Then, if next[f(p)] = 〈p′, d〉, we set p = p′ and ` = max(1, ` − d). Along the process, we carry out
O(rs) string comparisons for a total of O(n) symbols. Each string comparison takes time O(log(n/r))
in order to compute ISA. We extract the desired substrings of T by chunks of log(n/r) symbols, so
that comparing ` symbols costs O(` + log(n/r)). Overall, the traversal takes time O(n + rs log(n/r)),
plus the O(n log logw(n/r)) time to compute next. Added to the O(n log r + n log logw(n/r)) time needed
in Section A.3 to build the sampling structures, we have a total time of O(n log r + n log logw(n/r) +
rs log(n/r)), within O(r log(n/r) + rs) space. For s = log(n/r), as required in Theorem 5.8, the space is
O(r log(n/r)) and the time is O(n log r+n log logw(n/r)), because O(rs log(n/r)) = O(r log2(n/r)) ⊆ O(n).

A.9. Optimal counting and locating in space O(r log(n/r))

To obtain optimal counting and locating in space O(r log(n/r)), we only need to care about the case
r ≥ n/ log n, so the allowed space becomes Ω(n log log n) bits.29 In this case we use an O(n)-bit com-
pressed suffix tree enriched with the structures of Belazzougui and Navarro [2014, Lem. 6]. This
requires, essentially, the suffix tree topology represented with parentheses, edge lengths (capped to
O(log log n) bits), and mmphfs on the first letters of the edges towards the nodes’ children. The paren-
theses and edge lengths are obtained directly left-to-right, with a sequential pass over LCP [Kasai
et al. 2001; Sadakane 2007]. If we use O(n) space for the construction, the first letters are obtained
directly from the suffix array and the text, all in O(n) time. The construction of the mmphfs on (over-
all) O(n) elements can be done in O(n) expected time. The compressed suffix tree includes, in addition,

29In fact, the condition is r = ω(n/ logεw σ), which would allow us using any space in O(n log1−ε n), for example, but we do
not know of a representation larger and better than the one we are using.
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the structures to extract substrings of T and entries of SA, and a compact trie on the distinct strings
of length log(n/r) in T . With O(n) space, these and the other structures of Section A.4 are built in
O(n+ rs(log log σ)2) = O(n+ r log(n/r)(log log σ)2) expected time.

A.10. Suffix tree
The suffix tree needs the compressed representations of SA, ISA, and LCP . While these can be built in
O(r log(n/r)) space, the suffix tree construction will be dominated by the O(n) space used to build the
RLCFG on DLCP in Lemmas 6.5 and 6.6. Thus, we build SA, ISA, and LCP in O(n) time and space.

Starting from the plain array DLCP [1 . . n], the RLCFG is built in O(log(n/r)) passes of the O(n)-time
algorithm of Jeż [2015]. This includes identifying the repeated pairs, which can also be done in O(n)
time via radix sort. The total time is also O(n), because the lengths of the strings compressed in the
consecutive passes decrease exponentially.

All the fields l, d, p, m, n, etc. stored for the nonterminals are easily computed in O(r log(n/r)) ⊆ O(n)
time, that is, O(1) per nonterminal. The arrays L, A, and M are computed in O(r) time and space. The
structure RMQM is built in O(r) time and bits [Fischer and Heun 2011]. Finally, the structures that
solve PSV′ and NSV′ queries on DLCP ′ (construction of the tree for the weighted level-ancestor queries
[Fischer and Heun 2011], the data structure on this tree [Kopelowitz and Lewenstein 2007], and the
simplification for PSV/NSV with large r [Fischer et al. 2009]), as well as the approximate median of
the minima [Fischer and Heun 2010], are built in O(r) time and space, as shown by their authors.

This does not count the construction of the predecessor data structures for the weighted level-
ancestor queries, however. This requires creating several structures with O(r) elements in total, on
universes of size n, having at least n/r elements in each structure. The total construction time is
then O(r log logw r). Note that these predecessor structures are needed for PSV′/NSV′, but also for
PSV/NSV; the special O(log(n/r))-time solution we use for the latter applies only when r is large.

In addition, the suffix tree requires the construction of the compressed representation of PTDE
[Fischer et al. 2009]. This is easily done in O(n) space and time by traversing a classical suffix tree.

External memory. We note that, with O(n/B + log(n/r)) I/Os (where B is the external memory block
size), we can build most of the suffix tree in main memory space O(B + r log(n/r)). The main bottle-
neck is the algorithm of Jeż [2015]. The algorithm starts with two sequential passes on DLCP , first
identifying runs of equal cells (to collapse them into one symbol using a rule of the form X → Y t)
and second collecting all the distinct pairs of consecutive symbols (to create some rules of the form
X → Y Z). Both kinds of rules will add up to O(r) per pass, so the distinct pairs can be stored in a bal-
anced tree in main memory using O(r) space. Once the pairs to replace are defined (in O(r) time [Jeż
2015]), the algorithm traverses the text once again, doing the replacements. The new array is of length
at most (3/4)n; repeating this process O(log(n/r)) times will yield an array of size O(r), and then we
can finish. By streaming the successively smaller versions of the array to external memory, we obtain
the promised I/Os and main memory space. The computation time is dominated by the cost of building
the structures SA, ISA, and LCP in O(r log(n/r)) space: O(n(log r + log logw(n/r)). The balanced tree
operations add another O(n log r) time to this complexity.

The other obstacle is the construction of PTDE , needed for the operations TDepth and LAQT . This
array can be built in additional O(Sort(n)) I/Os, O(n) computation, and O(r) main memory space by
emulating the linear-time algorithm to build the suffix tree topology from the LCP array [Kasai et al.
2001]. This algorithm traverses LCP left to right, and maintains a stack of the internal nodes in the
current rightmost path of the suffix tree, each with its string depth (the stack is easily maintained on
disk with O(n/B) I/Os). Each new LCP [p] cell represents a new suffix tree leaf. For each such leaf, we
pop nodes from the stack until we find a node whose string depth is ≤ LCP [p]. The sequence of stack
sizes is the array TDE . We write those TDE entries to disk as they are generated, left to right, in the
format 〈TDE [p],SA[p]〉. Once this array is generated on disk, we sort it by the second component, and
then the sequence of first components is the array PTDE . This array is then read from disk left to
right, as we simultaneously fill the run-length compressed bitvector that represents it in O(r) space
[Fischer et al. 2009]. The left-to-right traversal of LCP and SA is done in O(n) time by accessing their
compressed representation by chunks of log(n/r) cells, using Theorems 5.4 and 5.8 with s = log(n/r).
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