
Smaller and Faster Lempel-Ziv Indices ⋆

Diego Arroyuelo and Gonzalo Navarro

Dept. of Computer Science, Universidad de Chile, Chile.
{darroyue,gnavarro}@dcc.uchile.cl

Abstract. Given a text T [1..u] over an alphabet of size σ = O(polylog(u))
and with k-th order empirical entropy Hk(T), we propose a new com-
pressed full-text self-index based on the Lempel-Ziv (LZ) compression
algorithm, which replaces T with a representation requiring about three
times the size of the compressed text, i.e (3+ ǫ)uHk(T)+ o(u log σ) bits,
for any ǫ > 0 and k = o(log

σ
u), and in addition gives indexed access

to T : it is able to locate the occ occurrences of a pattern P [1..m] in the
text in O((m + occ) log u) time. Our index is smaller than the existing
indices that achieve this locating time complexity, and locates the occur-
rences faster than the smaller indices. Furthermore, our index is able to
count the pattern occurrences in O(m) time, and it can extract any text
substring of length ℓ in optimal O(ℓ/ log

σ
u) time. Overall, our indices

appear as a very attractive alternative for space-efficient indexed text
searching.

1 Introduction

With the huge amount of text data available nowadays, the full-text searching

problem plays a fundamental role in modern computer applications. Full-text
searching consists of finding the occ occurrences of a given pattern P [1..m]
in a text T [1..u], where both P and T are sequences over an alphabet Σ =
{1, 2, . . . , σ}. Unlike word-based text searching, we wish to find any text sub-

string, not only whole words or phrases. This has applications in texts where
the concept of word is not well defined (e.g., Oriental languages), or texts where
words do not exist at all (e.g., DNA, protein, and MIDI pitch sequences).

We assume that the text is large and known in advance to queries, and we
need to perform several queries on it. Therefore, we can construct an index

on the text, which is a data structure allowing efficient access to the pattern
occurrences, yet increasing the space requirement. Our main goal is to provide

fast access to the text using as little space as possible. Classical full-text indices,
like suffix trees and suffix arrays, have the problem of a high space requirement:
they require O(u log u) and u logu bits respectively, which in practice is about
10 and 4 times the text size, not including the text.

Compressed self-indexing is a recent trend in full-text searching, which con-
sists in developing full-text indices that store enough information so as to search

⋆ Supported in part by CONICYT PhD Fellowship Program (first author), and Fonde-
cyt Grant 1-050493 (second author).

and retrieve any part of the indexed text without storing the text itself, while
requiring space proportional to the compressed text size. Because of their com-
pressed nature and since the text is replaced by the index, typical compressed
self-indices are much more smaller than classical indices, allowing one to store
indices of large texts entirely in main memory, in cases where a classical index
would have required to access the much slower secondary storage. There exist
two classical kind of queries, namely: (1) count(T, P), which counts the number
of occurrences of P in T ; (2) locate(T, P), which reports the starting positions of
the occ occurrences of P in T . Self-indices also need operation (3) extract(T, i, j),
which decompresses substring T [i..j], for any text positions i 6 j.

Let Hk(T) denote the k-th order empirical entropy of a sequence of symbols
T [12]. The value uHk(T) provides a lower bound to the number of bits needed to
compress T using any compressor that encodes each symbol considering only the
context of k symbols that precede it in T . It holds that 0 6 Hk(T) 6 Hk−1(T) 6

· · · 6 H0(T) 6 log σ (by log we mean log2 in this paper).

The main types of compressed self-indices [15] are Compressed Suffix Arrays

(CSA) [8, 18], indices based on backward search [6] (which are alternative ways
to compress suffix arrays), and the indices based on the Lempel-Ziv compression
algorithm (LZ-indices for short) [11]. LZ-indices have shown to be very effective
in practice for locating occurrences and extracting text, outperforming other
compressed indices. Compressed indices based on suffix arrays store extra non-
compressible information to carry out these tasks, whereas the extra data stored
by LZ-indices is compressible. Therefore, when the texts are highly compressible,
LZ-indices can be smaller and faster than alternative indices; and in other cases
they offer very attractive space/time trade-offs.

What characterizes the particular niche of LZ-indices is the O(uHk(T)) space
combined with O(log u) time per located occurrence. The smallest LZ-indices
available are those by Arroyuelo et al. [1], which require (2+ǫ)uHk(T)+o(u logσ)
bits of space, for any constant 0 < ǫ < 1 and any k = o(logσ u); however, their
time complexity of O(m2 log m + (m + occ) log u) makes them suitable only for
short patterns, when the quadratic term is less significant. Other LZ-indices, like
a compact version of that by Ferragina and Manzini [6], or the one by Russo
and Oliveira [17], achieve O((m + occ) log u) time. They are, however, relatively
large, at least 5uHk(T) + o(u log σ) bits of space.

In this paper we propose a new LZ-index scheme requiring (3 + ǫ)uHk(T) +
o(u log σ) bits of space, for σ = O(polylog(u)) and any k = o(logσ u), with
an overall locating time of O((m + occ) log u), a counting time of O(m), and
an extracting time of O(ℓ/ logσ u) for a substring of length ℓ. In this way we
achieve the same locating complexity of larger LZ-indices [6, 17]. Note that the
original index in [6] achieves better locate time, O(m + occ), yet it requires
O(uHk(T) logγ) bits of space, for any γ > 0.

The CSA of Sadakane [18] has a locating complexity of O((m + occ) logǫ u),
for any ǫ > 0, however the space requirement is proportional to the zero-th order
empirical entropy plus a non-negligible extra space, ǫ−1uH0(T) + O(u log log σ)
bits. The Alphabet-Friendly FM-index [7], on the other hand, requires uHk(T)+

o(u log σ) bits of space, however its locate complexity is O(m + occ log1+ǫ u),
which is slower than ours. Finally, the CSA of Grossi, Gupta, and Vitter [8] re-
quires ǫ−1uHk(T)+ o(u logσ) bits of space, with a locating time of O((log u)

ǫ

1−ǫ

(log σ)
1−2ǫ

1−ǫ) per occurrence, after a counting time of O(m
log

σ
u+(log u)

1+ǫ

1−ǫ (log σ)
1−3ǫ

1−ǫ),

where 0 < ǫ < 1/2. When ǫ approaches 1/3, the space requirement is about
3uHk(T)+o(u logσ) bits, with a locating time of O(m

log
σ

u +log2 u+occ((log u)1/2

(log σ)1/2)). Thus, using the same space their time per occurrence located is
slightly lower, in exchange for an extra O(log2 u) extra additive factor.

2 Searching in Lempel-Ziv Compressed Texts

Assume that the text T [1..u] has been compressed using the LZ78 algorithm [20]
into n + 1 phrases, T = B0 . . . Bn, such that B0 = ε. The search of a pattern
P [1..m] in a LZ78-compressed text has the additional problem that, as the text
is parsed into phrases, a pattern occurrence can span several (two or more)
consecutive phrases. We call occurrences of type 1 those occurrences contained
in a single phrase (there are occ1 occurrences of type 1), and occurrences of type

2 those occurrences spanning two or more phrases (there are occ2 occurrences
of this type). Next we review the existing Lempel-Ziv self-indices. The first
compressed index based on LZ78 was that of Kärkkäinen and Ukkonen [11],
which has a locating time O(m2 + (m + occ) log u) and a space requirement of
O(uHk(T)) bits [15], plus the text. However, this is not a self-index.

Ferragina and Manzini [6] define the FM-LZI, a compressed self index based
on the LZ78 compression algorithm, requiring O(uHk(T) logγ u) bits of space,
for any constant γ > 0. This index is able to report the occ pattern occurrences
in optimal O(m + occ) time. This is the fastest existing compressed self-index,
achieving the same time complexity as suffix trees, yet requiring o(u log u) bits
and without needing the text to operate. However, the extra O(logγ u) factor
makes this index large in practice. However, we can replace their data structure
for range queries by that of Chazelle [4], such that the resulting version of FM-
LZI requires (5 + ǫ)uHk(T) + o(u log σ) bits of space, for any constant 0 < ǫ <
1 and any k = o(logσ u), and is able of locating the pattern occurrences in
O((m + occ) log u) time.

The LZ-index of Navarro [14] (Nav-LZI for short) has a greater locate time
than that of LZ-indices in general, yet the smallest existing LZ-index is a vari-
ant of the Nav-LZI: the index defined by Arroyuelo et al. [1] (ANS-LZI for
short) requires (2 + ǫ)uHk(T) + o(u logσ) bits of space, and its locate time is
O(m2 log m + (m + occ) log u). Although the locating time per occurrence is
O(log u) as for other LZ-indices, the O(m2 log m) term makes the ANS-LZI at-
tractive only for short patterns.

The key to achieve such a small space requirement is that the Nav-LZI (and
therefore the ANS-LZI) do not use the concept of suffix arrays at all. Rather,
the search is based only in an implicit representation of the text through the
LZ78 parsing of it: the LZTrie, which is the trie representing the LZ78 phrases
of T . As the text is scattered throughout the LZTrie, we have to distinguish

between occurrences spanning two consecutive phrases (occurrences of type 2)
and occurrences spanning more than two phrases (occurrences of type 3). For
occurrences of type 3 we must consider the O(m2) possible substrings of P , search
for all these strings in LZTrie, then form maximal concatenations of consecutive
phrases, to finally check every candidate [14]. All of this takes O(m2 log m) time.

The space of the ANS-LZI can be reduced to (1+ ǫ)uHk(T)+ o(u log σ) bits,
with a locating time of O(m2) on average for patterns of length m > 2 logσ u,
yet without worst-case guarantees at search time.

Russo and Oliveira [17] discard the LZ78 parsing of T and use a so-called
maximal parsing instead, which is constructed for the reversed text. In this way
they avoid the O(m2) checks for the different pattern substrings. The resulting
LZ-index (the RO-LZI) requires (5+ ǫ)uHk(T)+ o(u log σ) bits of space, for any
constant 0 < ǫ < 1 and any k = o(logσ u). The locating time of the index is
O((m + occ) log u). As for all the previous LZ-indices, the extract time for any
text substring of length ℓ is the optimal O(ℓ/ logσ u).

3 Smaller and Faster Lempel-Ziv Indices

In the review of Section 2 we conclude that LZ-indices can be as small as to re-
quire (2+ǫ)uHk(T)+o(u logσ) bits of space yet with a locate time O(m2 log m+
(m+occ) log u), or we can achieve time O((m+occ) log u) for locate with a greater
index requiring (5 + ǫ)uHk(T) + o(u log σ) bits of space. On the other hand, we
can be fast to count only using the FM-LZI: O(m) counting time in the worst
case. We show that we can be fast for all these operations with a significantly
smaller LZ-index.

3.1 Index Definition

As we aim at a small index, we use the ANS-LZI as a base, specifically the
version requiring (1 + ǫ)uHk(T)+ o(u log σ) bits of space, which is composed of:

– LZTrie: is the trie storing the LZ78 phrases B0, . . . , Bn of T . As the set of
LZ78 phrases is prefix-closed, this trie has exactly n + 1 nodes. We repre-
sent the trie structure using the following data structures: (1) par[0..2n]: the
tree shape of LZTrie represented using dfuds [2], requiring 2n+o(n) bits of
storage, allowing us to compute operations parentlz(x) (which gets the par-
ent of node x), childlz(x, i) (which gets the i-th child of x), subtreesizelz(x)
(which gets the size of the subtree of x, including x itself), depthlz(x) (which
gets the depth of x in the trie) and LAlz(x, d) (a level-ancestor query, which
gets the ancestor at depth d of node x), both of which can be computed on
dfuds by using the idea of Jansson et al. [9], and finally ancestorlz(x, y)
(which tells us whether x is an ancestor of node y), all of them in O(1) time.
As in [1], we add the data structure of [19] to extract any text substring of
length ℓ in optimal O(ℓ/ logσ u) time, requiring only o(u log σ) extra bits.
(2) ids[0..n]: is the preorder sequence of LZ78 phrase identifiers. Permuta-
tion ids is represented using the data structure of Munro et al. [13] such

that we can compute ids in O(1) time and its inverse permutation ids−1 in
O(1/ǫ) time, requiring (1 + ǫ)n log n bits for any constant 0 < ǫ < 1. (3)
letts[1..n]: the array storing the edge labels of LZTrie according to a dfuds

traversal of the trie. We solve operation child(x, α) (which gets the child of
node x with label α ∈ {1, . . . , σ}) in constant time as follows (this is slightly
different to the original approach [2]). Suppose that node x has position p
within par. Let k be the number of αs up to position p − 1 in letts, and let
p + i be the position of the (k + 1)-th α in letts. If p + i lies within positions
p and p + degree(x), the child we are looking for is child(x, i + 1), which is
computed in constant time over par; otherwise x has no child labeled α. If
σ = O(polylog(u)), we represent letts using the wavelet tree of [7] in order
to compute k and p + i in constant time by using rankα and selectα respec-
tively, and requiring n log σ + o(n) bits of space. We can also retrieve the
symbol corresponding to node x (i.e., the symbol by which x descend from
its parent) in constant time by letts[rank((par, p)− 1]. Sequence letts is also
used to get the symbols of the text for extract queries.
Overall, LZTrie requires (1 + ǫ)n logn + 2n + n log σ + o(u log σ) bits, which
is (1 + ǫ)uHk(T) + o(u log σ) bits [10], for any k = o(logσ u).

– RevTrie: is the PATRICIA tree of the reversed LZ78 phrases of T . In this
trie there could be internal nodes not representing any phrase. We call these
nodes empty. We compress empty unary nodes, and so we only represent
the empty non-unary nodes. As a result, the number of nodes in this trie
is n 6 n′ 6 2n. The trie is represented using the dfuds representation,
requiring 2n′ + n′ log σ + o(n′) 6 4n + 2n logσ + o(n) bits of space.

– R[1..n]: a mapping from RevTrie preorder positions (for non-empty nodes)
to LZTrie preorder positions, requiring n logn = uHk(T) + o(u log σ) bits.

– TPos[1..u]: a bit vector marking the n phrase beginnings. We represent TPos
using the data structure of [16] for rank and select queries in O(1) time and
requiring uH0(TPos) + o(u) 6 n log log n + o(u) = o(u log σ) bits of space1.

We can compress the R mapping [1], so as to require o(u log σ) bits, by
adding suffix links to RevTrie, which are represented by function ϕ. R(i) (seen
as a function) can be computed in constant time by using ϕ [1]. If we store
the values of ϕ in preorder (according to RevTrie), the resulting sequence can
be divided into at most σ strictly increasing subsequences, and hence it can be
compressed using the δ-code of Elias [5] such that its space requirement is n log σ
bits in the worst case, which is o(u log σ). The overall space requirement of the
three above data structures is (1 + ǫ)uHk + o(u log σ) bits.

To avoid the O(m2 log m) term in the locating complexity, we must avoid
occurrences of type 3 (which make the ANS-LZI slower). Hence we add the
alphabet friendly FM-index [7] of T (AF-FMI(T) for short) to our index. By
itself this self-index is able to search for pattern occurrences, requiring uHk(T)+
o(u log σ) bits of space. However, its locate time per occurrence is O(log1+ǫ u),
for any constant ǫ > 0, which is greater than the O(log u) time per occurrence of

1 rank1(TPos, i) is the number of 1’s in TPos up to position i. select1(TPos, j) yields
the position of the j-th 1 in TPos.

LZ-indices. As AF-FMI(T) is based on the Burrows-Wheeler transform (BWT)
[3] of T , it can be (conceptually) thought as the suffix array of T .

To find occurrences spanning several phrases we define Range, a data struc-
ture for 2-dimensional range searching in the grid [1..u] × [1..n]. For each LZ78

phrase with identifier id, for 0 < id 6 n, assume that the RevTrie node for id
has preorder j, and that phrase (id+ 1) starts at position p in T . Then we store
the point (i, j) in Range, where i is the lexicographic order of the suffix of T
starting at position p.

Suppose that we search for a given string s2 in AF-FMI(T) and get the
interval [i1, i2] in the BWT (equivalently, in the suffix array of T), and that the
search for string sr

1 in RevTrie yields a node such that the preorder interval for
its subtree is [j1, j2]. Then, a search for [i1, i2]×[j1, j2] in Range yields all phrases
ending with s1 such that in the next phrase starts an occurrence of s2.

We transform the grid [1..u]× [1..n] indexed by Range to the equivalent grid
[1..n]× [1..n] by defining bit vector V[1..u], indicating (with a 1) which positions
of AF-FMI(T) index an LZ78 phrase beginning. We represent V with the data
structure of [16] allowing rank queries, and requiring uH0(V)+o(u) = o(u log σ)
bits of storage. Thus, instead of storing the point (i, j) as in the previous def-
inition of Range, we store the point (rank1(V, i), j). The same search of the
previous paragraph now becomes [rank1(V, i1), rank1(V, i2)] × [j1, j2].

As there is only one point per row and column of Range, we can use the data
structure of Chazelle [4], requiring n log n(1+o(1)) = uHk(T)+o(u log σ) bits of
space and allowing us to find the K points in a given two-dimensional range in
time O((K +1) log n). As a result, the overall space requirement of our LZ-index
is (3 + ǫ)uHk(T) + o(u log σ), for any k = o(logσ u) and any constant 0 < ǫ < 1.

3.2 Search Algorithm

Assume that P [1..m] = p1 . . . pm, for pi ∈ Σ. We need to consider two types of
occurrences of P in T .

Locating Occurrences of Type 1. Assume that phrase Bj contains P . If Bj does
not end with P and if Bj = Bℓ · c, for ℓ < j and c ∈ Σ, then by LZ78 properties
Bℓ contains P as well. Therefore we must find the shortest possible phrases
containing P , which according to LZ78 are all phrases ending with P . This work
can be done by searching for P r in RevTrie. Say we arrive at node v. Any node
v′ in the subtree of v (including v itself) corresponds to a phrase terminated
with P . Thus we traverse and report all the subtrees of the LZTrie nodes R(v′)
corresponding to each v′. Total locate time is O(m + occ1).

Locating Occurrences of Type 2. To find the pattern occurrences spanning two
or more consecutive phrases we must consider the m − 1 partitions P [1..i] and
P [i + 1..m] of P , for 1 6 i < m. For every partition we must find all phrases
terminated with P [1..i] such that the next phrase starts at the same position as
an occurrence of P [i + 1..m] in T . Hence, as explained before, we must search

for P r[1..i] in RevTrie and for P [i + 1..m] in AF-FMI(T). Thus, every partition
produces two one-dimensional intervals, one in each of the above structures.

The m− 1 intervals in AF-FMI(T) can be found in O(m) time thanks to the
backward search concept, since the process to count the number of occurrences
of P [2..m] proceeds in m − 1 steps, each one taking constant time: in the first
step we find the BWT interval for pm, then we find the interval for occurrences
of pm−1pm, and so on to finally find the interval for p2 . . . pm = P [2..m]. How-
ever, the work in RevTrie can take time O(m2) if we search for strings P r[1..i]
separately, as done for the ANS-LZI. Fortunately, some work done to search for
a given P r[1..i] can be reused to search for other strings.

We have to search for strings pm−1pm−2 . . . p1; pm−2 . . . p1;. . . ; and p1 in
RevTrie. Note that every pj . . . p1 is the longest proper suffix of pj+1pj . . . p1.
Suppose that we successfully search for P r[1..m−1] = pm−1pm−2 . . . p1, reaching
the node with preorder i in RevTrie, hence finding the corresponding preorder
interval in RevTrie in O(m) time. Now, to find the node representing suffix
pm−2 . . . p1 we only need to follow suffix link ϕ(i) (which takes constant time)
instead of searching for it from the RevTrie root (which would take O(m) time
again). The process of following suffix links can be repeated m − 1 times up
to reaching the node corresponding to string p1, with total time O(m). This is
the main idea to get the m − 1 preorder intervals in RevTrie in time less than
quadratic. The general case is slightly more complicated and corresponds to the
descend and suffix walk method used in the RO-LZI [17]. In the sequel we explain
the way we implement descend and suffix walk in our data structure.

We first prove a couple of properties. First, we know that every non-empty
node in RevTrie has a suffix link [1], yet we need to prove that every RevTrie

node (including empty-non-unary nodes) has also a suffix link.

Property 1. Every empty non-unary node in RevTrie has a suffix link.

Proof. Assume that node with preorder i in RevTrie is empty non-unary, and
that it represents string ax, for a ∈ Σ and x ∈ Σ∗. As node i is an empty
non-unary node, the node has at least two children. In other words, there exist
at least two strings of the form axy and axz, for y, z ∈ Σ∗, y 6= z, both strings
corresponding to non-empty nodes, and hence these nodes have a suffix link.
These suffix links correspond to strings xy and xz in RevTrie. Thus, it must
exist a non-unary node for string x, so every empty node i has a suffix link. ⊓⊔

We store the n′ 6 2n suffix links ϕ in preorder (as explained before), requiring
2n logσ bits of space in the worst case, which is o(u log σ).

The second property is that, although RevTrie is a PATRICIA tree and hence
we store only the first symbol of each edge label, we can get all of it.

Property 2. Any edge label in RevTrie can be extracted in optimal time.

Proof. To extract the label for edge eij between nodes with preorder i and j in
RevTrie, note that the length of the edge label can be computed as depthlz(R[j])−

depthlz(R[i]). We can access the node from where to start the extraction by
x = LAlz(R[j], depthlz(R[j]) − depthlz(R[i])), in constant time. The label of eij

is the label of the root-to-x path (read backwards). ⊓⊔

In this way, every time we arrive to a RevTrie node, the string represented
by that node will match the corresponding prefix of the pattern.

Previously we show that is possible to search for all strings P r[1..i] in time
O(m), assuming that P r[1..m − 1] exists in RevTrie (therefore all P r[1..i] ex-
ist in RevTrie). The general case is as follows. Suppose that, searching for
pm−1pm−2 . . . p1, we arrive at a node with preorder i in RevTrie (hereafter node
i), and we try to descend to a child node with preorder j (hereafter node j).
Assume that node i represents string ax, for a ∈ Σ and x ∈ Σ∗. According
to Property 2, we are sure that ax = pm−1 . . . pt, for some 1 6 t 6 m − 1.
Assume also that edge eij between nodes i and j is labeled yz, for y, z ∈ Σ∗,
z = z1 . . . zq. If we discover that pt−1 . . . pk = y and pk−1 6= z1, then this means
that symbol z1 in the edge label differs from the corresponding symbol pk−1 in
P r[1..m − 1], and so we cannot descend to node j. This means that there are
no phrases ending with P r[1..m− 1], and we go on to consider P r[1..m− 2]. To
reuse the work done up to node i, we follow the suffix link to get the node ϕ(i),
and from this node we descend using y = pt−1 . . . pk. As this substring of P has
been already checked in the previous step, the descent is done checking only the
first symbols of the labels, up to a node such that the next node in the path
represents a string longer than |xy|. At this point the descent is done as usual,
extracting the edge labels and checking with the pattern symbols. In this way
the total amortized time is O(m).

If the search in RevTrie for P r[1..i] yields the preorder interval [x, y], and the
search for P [i + 1..m] in AF-FMI(T) yields interval [x′, y′], the two-dimensional
range [x′, y′]×[x, y] in Range yields all pattern occurrences for the given partition
of P . For every pattern occurrence we get a point (i′, j′). The corresponding
phrase identifier can be found as id = ids(R(j′)), to finally compute the text
position by select1(TPos, id+1)− i. Overall, occurrences of type 2 are found in
O((m + occ2) log n) time.

For count queries we can achieve O(m) time by just using the AF-FMI(T).
For extract queries we use the data structure of Sadakane and Grossi [19] in the
LZTrie to extract any text substring T [p..p + ℓ] in optimal O(ℓ/ logσ u) time:
the identifier for the phrase containing position p can be computed as id =
rank1(TPos, p). Then, by using ids−1 we compute the corresponding LZTrie

node from where to extract the text.

Theorem 1. There exists a compressed full-text self-index requiring (3+ ǫ)uHk

(T)+ o(u logσ) bits of space, for σ = O(polylog(u)), any k = o(logσ u), and any

constant 0 < ǫ < 1, which is able to: report the occ occurrences of pattern P [1..m]
in text T [1..u] in O((m+occ/ǫ) log u) worst-case time; count pattern occurrences

in O(m) time; and extract any text substring of length ℓ in time O(ℓ/(ǫ logσ u)).

References

1. D. Arroyuelo, G. Navarro, and K. Sadakane. Reducing the space requirement of
LZ-index. In Proc. CPM, pp. 319–330, 2006.

2. D. Benoit, E. Demaine, I. Munro, R. Raman, V. Raman, and S.S. Rao. Represent-
ing trees of higher degree. Algorithmica, 43(4):275–292, 2005.

3. M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algo-
rithm. Technical Report 124, Digital Equipment Corporation, 1994.

4. B. Chazelle. A functional approach to data structures and its use in multidimen-
sional searching. SIAM Journal on Computing, 17(3):427–462, 1988.

5. P. Elias. Universal codeword sets and representation of integers. IEEE Trans.
Inform. Theory, 21(2):194–203, 1975.

6. P. Ferragina and G. Manzini. Indexing compressed texts. Journal of the ACM,
54(4):552–581, 2005.

7. P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representa-
tions of sequences and full-text indexes. ACM Transactions on Algorithms (TALG),
3(2):article 20, 2007.

8. R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes.
In Proc. SODA, pp. 841–850, 2003.

9. J. Jansson, K. Sadakane, and W.-K. Sung. Ultra-succinct representation of ordered
trees. In Proc. SODA’07, pp. 575–584, 2007.

10. R. Kosaraju and G. Manzini. Compression of low entropy strings with Lempel-Ziv
algorithms. SIAM Journal on Computing, 29(3):893–911, 1999.

11. J. Kärkkäinen and E. Ukkonen. Lempel-Ziv parsing and sublinear-size index struc-
tures for string matching. In Proc. WSP, pp. 141–155, 1996.

12. G. Manzini. An analysis of the Burrows-Wheeler transform. Journal of the ACM,
48(3):407–430, 2001.

13. I. Munro, R. Raman, V. Raman, and S.S. Rao. Succinct representations of per-
mutations. In Proc. ICALP, LNCS 2719, pp. 345–356, 2003.

14. G. Navarro. Indexing text using the Ziv-Lempel trie. J. Discrete Algorithms,
2(1):87–114, 2004.

15. G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Computing
Surveys, 39(1):article 2, 2007.

16. R. Raman, V. Raman, and S. Rao. Succinct indexable dictionaries with applica-
tions to encoding k-ary trees and multisets. In Proc. SODA, pp. 233–242, 2002.

17. L. Russo and A. Oliveira. A compressed self-index using a Ziv-Lempel dictionary.
In Proc. SPIRE, LNCS 4209, pp. 163–180, 2006.

18. K. Sadakane. New text indexing functionalities of the compressed suffix arrays.
Journal of Algorithms, 48(2):294–313, 2003.

19. K. Sadakane and R. Grossi. Squeezing Succinct Data Structures into Entropy
Bounds. In Proc. SODA, pp. 1230–1239, 2006.

20. J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding.
IEEE Trans. Inform. Theory, 24(5):530–536, 1978.

