
A Compressed Text Index on Secondary

Memory
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Abstract. We introduce a practical disk-based compressed text index
that, when the text is compressible, takes much less space than the suffix
array. It provides very good I/O times for searching, which in particular
improve when the text is compressible. In this aspect our index is unique,
as compressed indexes have been slower than their classical counterparts
on secondary memory. We analyze our index and show experimentally
that it is extremely competitive on compressible texts.

1 Introduction and Related Work

Compressed full-text self-indexing [22] is a recent trend that builds on the dis-
covery that traditional text indexes like suffix trees and suffix arrays can be
compacted to take space proportional to the compressed text size, and moreover
be able to reproduce any text context. Therefore self-indexes replace the text,
take space close to that of the compressed text, and in addition provide indexed
search into it. Although a compressed index is slower than its uncompressed
version, it can run in main memory in cases where a traditional index would
have to resort to the (orders of magnitude slower) secondary memory. In those
situations a compressed index is extremely attractive.

There are, however, cases where even the compressed text is too large to fit
in main memory. One would still expect some benefit from compression in this
case (apart from the obvious space savings). For example, sequentially searching
a compressed text is much faster than a plain text, because much fewer disk
blocks must be scanned [25]. However, this has not been usually the case on
indexed searching. The existing compressed text indexes for secondary memory
are usually slower than their uncompressed counterparts.

A self-index built on a text T1,n = t1t2 . . . tn over an alphabet Σ of size σ,
supports at least the following queries:

– count(P1,m): counts the number of occurrences of pattern P in T .
– locate(P1,m): locates the positions of all those occ occurrences of P1,m.
– extract(l, r): extracts the subsequence Tl,r of T , with 1 ≤ l, r ≤ n.
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The most relevant text indexes for secondary memory follow:

– The String B-tree [7] is based on a combination between B-trees and Patricia
tries. locate(P1,m) takes O(m+occ

b̃
+logb̃ n) worst-case I/O operations, where

b̃ is the disk block size measured in integers. This time complexity is optimal,
yet the string B-tree is not a compressed index. Its static version takes about
5–6 times the text size plus text.

– The Compact Pat Tree (CPT) [4] represents a suffix tree in secondary mem-
ory in compact form. It does not provide theoretical space or time guarantees,
but the index works well in practice, requiring 2–3 I/Os per query. Still, its
size is 4–5 times the text size, plus text.

– The disk-based Suffix Array [2] is a suffix array on disk plus some memory-
resident structures that improve the cost of the search. We divide the suffix
array into blocks of h elements, and for each block store the first m symbols
of its first suffix. It takes at best 4 + m/h times the text size, plus text, and
needs 2(1 + log h) I/Os for counting and ⌈occ/b̃⌉ I/Os for locating (in this
paper log x stands for ⌈log2(x + 1)⌉). This is not yet a compressed index.

– The disk-based Compressed Suffix Array (CSA)[17] adapts the main memory
compressed self-index [24] to secondary memory. It requires n(O(log log σ)+
H0) bits of space (Hk is the kth order empirical entropy of T [18]). It takes
O(m logb̃ n) I/O time for count(P1,m). Locating requires O(log n) access per
occurrence, which is too expensive.

– The disk-based LZ-Index [1] adapts the main-memory self-index [21]. It uses
8nHk(T ) + o(n log σ) bits. It does not provide theoretical bounds on time
complexity, but it is very competitive in practice.

In this paper we present a practical self-index for secondary memory, which is
built from three components: for count, we develop a novel secondary-memory
version of backward searching [8]; for locate we adapt a recent technique to
locally compress suffix arrays [12]; and for extract we adapt a technique to
compress sequences to k-th order entropy while retaining random access [11].
Depending on the available main memory, our data structure requires 2(m− 1)
to 4(m − 1) accesses to disk for count(P1,m) in the worst case. It locates the

occurrences in ⌈occ/b̃⌉ I/Os in the worst case, and on average in cr · occ/b̃
I/Os, 0 < cr ≤ 1 is the compression ratio achieved: the compressed divided
by original text size. Similarly, the time to extract Pl,r is ⌈(r − l + 1)/b⌉ I/Os
in the worst case (where b is the number of symbols on a disk block), multiply-
ing that time by cr on average. With sufficient main memory our index takes
O(Hk log(1/Hk)n log n) bits of space, which in practice can be up to 4 times
smaller than suffix arrays. Thus, our index is the first in being compressed and
at the same time taking advantage of compression in secondary memory, as its
locate and extract times are faster when the text is compressible. Counting time
does not improve with compression but it is usually better than, for example,
disk-based suffix arrays and CSAs. We show experimentally that our index is
very competitive against the alternatives, offering a relevant space/time tradeoff
when the text is compressible.



Algorithm count(P [1, m])
i← m, c← P [m], First← C[c] + 1, Last← C[c + 1];
while (First ≤ Last) and (i ≥ 2) do

i← i− 1; c← P [i];
First← C[c] + Occ(c, First − 1) + 1;
Last← C[c] + Occ(c, Last);

if (Last < First) then return 0 else return Last− First + 1;

Fig. 1. Backward search algorithm to find and count the suffixes in SA prefixed by P

(or the occurrences of P in T ).

2 Background and Notation

We assume that the symbols of T are drawn from an alphabet A = {a1, . . . , aσ}
of size σ. We will have different ways to express the size of a disk block: b will
be the number of symbols, b̄ the number of bits, and b̃ the number of integers in
a block.

The suffix array SA[1, n] of a text T contains all the starting positions of the
suffixes of T , such that TSA[1]...n < TSA[2]...n < . . . < TSA[n]...n, that is, SA gives
the lexicographic order of all suffixes of T . All the occurrences of a pattern P in
T are pointed from an interval of SA.

The Burrows-Wheeler transform (BWT) is a reversible permutation T bwt

of T [3] which puts together characters sharing a similar context, so that k-th
order compression can be easily achieved. There is a close relation between T bwt

and SA: T bwt
i = TSA[i]−1. This is the key reason why one can search using T bwt

instead of SA.
The inverse transformation is carried out via the so-called “LF mapping”,

defined as follows:

– For c ∈ A, C[c] is the total number of occurrences of symbols in T (or T bwt)
which are alphabetically smaller than c.

– For c ∈ A, Occ(c, q) is the number of occurrences of character c in the prefix
T bwt[1, q].

– LF (i) = C[T bwt[i]] + Occ(T bwt[i], i), the “LF mapping”.

Backward searching is a technique to find the area of SA containing the
occurrences of a pattern P1,m by traversing P backwards and making use of the
BWT. It was first proposed for the FM-index [8, 9], a self-index composed of a
compressed representation of T bwt and auxiliary structures to compute Occ(c, q).
Fig. 1 gives the pseudocode to get the area SA[First, Last] with the occurrences
of P . It requires at most 2(m− 1) calls to Occ. Depending on the variant, each
call to Occ can take constant time for small alphabets [8] or O(log σ) time in
general [9], using wavelet trees (see below).

A rank/select dictionary over a binary sequence B1,n is a data structure that
supports functions rankc(B, i) and selectc(B, i), where rankc(B, i) returns the
number of times c appears in prefix B1,i and selectc(B, i) returns the position
of the i-th appearance of c within sequence B.



Both rank and select can be computed in constant time using o(n) bits of
space in addition to B [20, 10], or nH0(B)+o(n) bits [23]. In both cases the o(n)
term is Θ(n log log n/ logn).

Let s be the number of one bits in B1,n. Then nH0(B) ≈ s log n
s , and thus the

o(n) terms above are too large if s is not close to n. Existing lower bounds [19]
show that constant-time rank can only be achieved with Ω(n log log n/ logn)
extra bits. As in this paper we will have s << n, we are interested in techniques
with less overhead over the entropy, even if not of constant-time (this will not
be an issue for us). One such rank dictionary [14] encodes the gaps between
successive 1’s in B using δ-encoding and adds some data to support a binary-
search-based rank. It requires s(log n

s + log n
log s +2 log log n

s )+O(log n) bits of space

and supports rank in O(log s) time. We call this structure GR.
The wavelet tree [13] wt(S) over a sequence S[1, n] is a perfect binary tree
of height ⌈log σ⌉, built on the alphabet symbols, such that the root represents
the whole alphabet and each leaf represents a distinct alphabet symbol. If a
node v represents alphabet symbols in the range Av = [i, j], then its left child vl

represents Avl = [i, i+j
2 ] and its right child vr represents Avr = [ i+j

2 + 1, j]. We
associate to each node v the subsequence Sv of S formed by the characters in
Av. However, sequence Sv is not really stored at the node. Instead, we store a
bit sequence Bv telling whether characters in Sv go left or right, that is, Bv

i = 1
if Sv

i ∈ Avr . The wavelet tree has all its levels full, except for the last one that
is filled left to right.

In this paper S will be T bwt. A plain wavelet tree of S requires n log σ bits of
space. If we compress the wavelet tree using a numbering scheme [23] we obtain
nHk(T ) + o(n log σ) bits of space for any k ≤ α logσ n and any 0 < α < 1 [16].

The wavelet tree permits us to calculate Occ(c, i) using binary ranks over the
bit sequences Bv. Starting from the root v of the wavelet tree, if c belongs to
the right side, we set i ← rank1(i) over vector Bv and move to the right child
of v. Similarly, if c belongs to the left child we update i ← rank0(i) and go to
the left child. We repeat this until reaching the leaf that represents c, where the
current i value is the answer to Occ(c, i).
The locally compressed suffix array (LCSA) [12], is built on well-known
regularity properties that show up in suffix arrays when the text they index is
compressible [22]. The LCSA uses differential encoding on SA, which converts
those regularities into true repetitions. Those repetitions are then factored out
using Re-Pair [15], a compression technique that builds a dictionary of phrases
and permits fast local decompression using only the dictionary (whose size one
can control at will, at the expense of losing some compression). Also, the Re-Pair
dictionary is further compressed with a novel technique. The LCSA can extract
any portion of the suffix array very fast by adding a small set of sampled absolute
values. It is proved in [12] that the size of the LCSA is O(Hk log(1/Hk)n log n)
bits for any k ≤ α logσ n and any constant 0 < α < 1.

The LCSA consists in three substructures: the sequence of phrases SP , the
compressed dictionary CD needed to uncompress the phrases and the absolute
sample values to restore the suffix array values. One disadvantage of the original
structure is the space and time needed to construct it. In [5] they present a



heuristic to overcome this, as it can run with limited main memory and performs
sequential passes on disk. It might not choose the pairs to replace as well as the
original algorithm, but it can trade construction time for precision.

3 A Compressed Secondary Memory Structure

We present a structure on secondary memory, which is able to answer count,
locate and extract queries. It is composed of three substructures, each one re-
sponsible for one type of query, and allowing diverse trade-offs depending on
how much main memory space they occupy.

3.1 Entropy-compressed rank dictionary on secondary memory

As we will require several bitmaps in our structure with few bits set, we describe
an entropy-compressed rank dictionary, suitable for secondary memory, to repre-
sent a binary sequence B1,n. In case it fits in main memory, we use GR (Section
2). Otherwise we will use DEB, the δ-encoded form of B: we encode the gaps
between consecutive 1’s in B as variable-length integers, so that x is represented
using log x + 2 log log x bits. DEB uses at most s log n

s + 2s log log n
s + O(log n)

bits of space [16, Sec. 3.4.1]. Let b̄ be the number of bits contained in a disk
block. We split DEB into blocks of at most b̄ bits: if a δ-encoding spans two
blocks we move it to the next block. Each block is stored in secondary memory
and, at the beginning of block i, we also store the number of 1’s accumulated up
to block i− 1; we call this value OBi. To access DEB, we use in main memory
an array Ba, where Ba[i] is the number of bits of B represented in blocks 1 to
i− 1. Ba uses (s log n

s + 2s log log n
s + O(log n)) log n

b̄
bits of space.

To answer rank1(B, i) with this structure, we carry out the following steps:
(1) We binary search Ba to find j such that Ba[j] ≤ i < Ba[j + 1]. (2) We read
block j from disk. (3) We decompress the δ-encodings in block j until reaching
position i, summing up the bits set. (4) rank1(B, i) will be the previous sum
plus OBi, the accumulator of 1’s stored in the block.

Overall this costs O(log s
b̄
+log log n

s + b̄) = O(log s+log log n+ b̄) CPU time
and just one disk access. When we use these structures in the paper, s will be
Θ(n/b). Table 1 shows some real sizes and times obtained for the structures,
when s = n/b. As it can be seen, we require very little main memory for the
second scheme, and for moderate-size bitmaps even the GR option is good.

3.2 Counting

We run the algorithm of Fig. 1 to answer a counting query. Table C uses σ log n
bits and easily fits in main memory, thus the problem is how to calculate Occ
over T bwt.

We describe four different structures to count depending on how we represent
T bwt. We enumerate the versions from 1 to 4. In versions 1 and 2, we use an
uncompressed form of T bwt and pay one I/O per call to Occ. In versions 3 and



Table 1. Different sizes and times obtained to answer rank, for some relevant choices
of n and b. DEB is stored in secondary memory and is accessed using Ba. Ba and GR

reside in main memory. Tb, Gb, etc. mean terabits, gigabits, etc. TB, GB, etc. mean
terabytes, gigabytes, etc.

Structure Space (bits) CPU time
Real space if s = n/b

n = 1 Tb 1 Gb 1 Gb 1 Mb
for rank b = 32 KB 8 KB 4 KB 4 KB

GR s log n
s

+ s log n

log s
+ 2s log log n

s
+ O(log n) O(log s) 100 MB 354 KB 667 KB 677 B

DEB+ s log n
s

+ 2s log log n
s

+ O(log n) + O(log s + b̄ 93 MB 326 KB 613 KB 600 B

Ba (s log n
s

+ 2s log log n
s

+ O(log n)) log n

b̄
+ log log n) 14 KB 153 B 575 B 1 B

4, we use a compressed form of T bwt and pay one or two I/Os per call to Occ.
In versions 1 and 3, we spend O(b) CPU operations per call to Occ. In versions
2 and 4, this is reduced to O(log σ). Version 4 is omitted from now on as it is
not competitive.

To calculate Occ(c, i), we need to know the number of occurrences of symbol
c before each block on disk. To do so, we store a two-level structure: the first
level stores for every t-th block the number of occurrences of every c from the
beginning, and the second level stores the number of occurrences of every c from
the last t-th block. The first level is maintained in main memory and the second
level on disk, together with the representation of T bwt (i.e., the entry of each
block is stored within the block). Let K be the total number of blocks. We define:

– Ec(j): number of occurrences of symbol c in blocks 0 to (j − 1)· t, with
Ec(0) = 0, 1 ≤ j < ⌊K/t⌋.

– E′
c(j): j goes from 0 to K − 1. For j mod t = 0 we have E′

c(j) = 0, and
for the rest we have that E′

c(j) is the number of occurrences of symbol c in
blocks from ⌊j/t⌋ · t to j − 1.

Summing up all the entries, E uses ⌈K/t⌉·σ log n bits and E′ uses Kσ log t·n
K

bits of space in versions 1 and 2. In version 3, the numbering scheme [23] has a
compression limit n/K ≤ b · log n/(2 log log n). Thus, for version 3, E′ uses at
most K·σ log(t· b log n

2 log log n ) bits.

To use these structures, we first need to know in which block lies T bwt[i]:

– In versions 1 and 2, where the block size is constant, we know directly that
T bwt[i] belongs to block ⌊i/b⌋, where b is the number of symbols that fit in
a disk block.

– In version 3, the block size is variable. Compression ensures that there are
at most n/b blocks. We use a binary sequence EB1,n to mark where each
block starts. Thus the block of T bwt[i] is rank1(EB, i). We use an entropy-
compressed rank dictionary (Section 2) for EB. If we need to use the DEB
variant, we add up one more I/O per access to T bwt (Section 3.1) .

With this sorted out, we can compute Occ(c, i) = Ec(j div t) + E′
c(j) +

Occ′(Bj , c, offset), where j is the block where i belongs, offset is the position of
i within block j, and Occ′(Bj , c, offset) is the number of occurrences of symbol c



Fig. 2. Block propagation over the wavelet tree. Making ranks over the first level of
WT (rank0(12) = 6, rank0(24) = 10 and rank1(i) = i − rank0(i)), we determine
propagation over the second level of WT , and so on.

within block Bj up to offset. Now we explain the three ways to represent T bwt,
and this will give us three different ways to calculate Occ′(Bj , c, offset).

Version 1. We use directly T bwt without any compression. If a disk block can
store b symbols (ie, b log σ bits), we will have K = ⌈n/b⌉ blocks. Occ′(Bj , c, offset)
is calculated by traversing the block and counting the occurrences of c up to
offset.

Version 2. Let b be the number of symbols within a disk block. We divide
the first level of WT = wt(T bwt) into blocks of b bits. Then, for each block, we
gather its propagation over WT by concatenating the subsequences in breadth-
first order, thus forming a sequence of b logσ bits. See Fig. 2. Note that this
propagation generates 2j−1 intervals at level j of WT . Some definitions:

– Bj
i : the i-th interval of level j, with 1 ≤ j ≤ ⌈log σ⌉ and 1 ≤ i ≤ 2j−1.

– Lj
i : the length of interval Bj

i .

– Oj
i /Z

j
i : the number of 1’s/0’s in interval Bj

i .

– Dj = Bj
1 . . . Bj

2j−1 with 1 ≤ j ≤ ⌈log σ⌉: all concatenated intervals from level
j.

– B = D1D2 . . . D⌈log σ⌉: concatenation of all the Dj , with 1 ≤ j ≤ ⌈log σ⌉.

Some relationships hold: (1) Lj
i = Oj

i +Zj
i . (2) Zj

i = rank0(B
j
i , L

j
i ). (3) Lj

i =

Zj−1
(i+1)/2 if i is odd (Bj

i is a left child); Lj
i = Oj−1

i/2 otherwise. (4) |Dj | = L1
1 = b

for j < ⌊log σ⌋, the last level can be different if σ is not a power of 2. With those
properties, Lj

i , Oj
i and Zj

i are determined recursively from B and b. We only
store B plus the structures to answer rank1 on it in constant time [10]. Note
that any rank1(B

j
i ) is answered via two ranks over B.

Fig. 3 shows how we calculate Occ′ in O(log σ) constant-time steps. To nav-
igate the wavelet tree, we use some properties:

1. Block Dj begins at bit (j − 1)· b + 1 of B, and |B| = b logσ.



Algorithm Occ′(B, c, j)
node← 1; ans← j; des← 0; B1

1 = B[1, b];
for level← 1 to ⌈log σ⌉ do

if c belongs to the left subtree of node then

ans← rank0(B
level
node , ans);

len← Zlevel
node ;

node← 2·node− 1;
else ans← rank1(B

level
node , ans);

len← Olevel
node ; des← Zlevel

node ;
node← 2·node;

Blevel
node = B[level · b + des + 1, level · b + des + len];

return ans;

Fig. 3. Algorithm to obtain the number of occurrences of c inside a disk block, for
version 2.

Table 2. Different sizes and times obtained to answer count(P1,m).

Version Main Memory Secondary Memory I/O CPU
1 O( n

bt
·σ log n) n log σ + O( n

b
·σ log(t· b)) 2(m − 1) O(m· b)

2 O( n
bt

·σ log n) n log σ + O( n
b
·σ log(t· b)) 2(m − 1) O(m log σ)

3a O( n
bt

·σ log n + n
b

log n)
nHk(T ) + O(σk+1 log n)

2(m − 1) O(m(b + log n))
+O( n

b
·σ log(t · b log n))

3b O( n
bt

·σ log n + n

b2
log n log b) nHk(T ) + O(σk+1 log n)

4(m − 1) O(m(b + log n))
+O( n

b
·σ log(t · b log n))

2. To know where Bj
i begins, we only need to add to the beginning of Dj the

length of Bj
1, . . . , B

j
i−1. Each Bj

k, with 1 ≤ k ≤ i−1, belongs to a left branch

that we do not follow to reach Bj
i from the root. So, when we descend through

the wavelet tree to Bj
i , every time we take a right branch we accumulate the

number of bits of the left branch (zeroes of the parent).
3. node is the number of the current interval at the current level.
4. We do not calculate Blevel

node , we just maintain its position within B.

Version 3. We compress block B from version 2 using a numbering scheme
[23], yet without any structure for rank. In this case the division of T bwt is
not uniform, but we add symbols from T bwt to the disk block as long as its
compressed WT fits in the block. By doing this, we compress T bwt to nHk +
O(σk+1 log n+n log log n/ log n) bits for any k [16]. To calculate Occ′(B, c, offset),
we decompress block B and apply the same algorithm of version 2, in O(b) time.

In Table 2 we can see the different sizes and times needed for our three
versions. We added the times to do rank on the entropy-compressed bit arrays.

3.3 Locating

Our locating structure will be a variant of the LCSA, see Section 2. The array
SP from LCSA will be split into disk blocks of b̃ integers. Also, we will store in
each block the absolute value of the suffix array at the beginning of the block. For



optimization of I/O, the dictionary will be maintained in main memory. So we
compress the differential suffix array until we reach the desired dictionary size.
Finally, we need a compressed bitmap LB to mark the beginning of each disk
block. LB is entropy-compressed and can reside in main or secondary memory.

For locating every match of a pattern P1,m, first we use our counting sub-
structure to obtain the interval [First, Last] of the suffix array of T (see Section
2). Then we find the block First belongs to, j = rank1(LB, First). Finally, we
read the necessary blocks until we reach Last, uncompressing them using the
dictionary of the LCSA.

We define occ = Last − First + 1 and occ′ = cr· occ, where 0 < cr ≤ 1 is
the compression ratio of SP . This process takes, without counting, ⌈occ′/b̃⌉ I/O
accesses, plus one if we store LB in secondary memory. This I/O cost is optimal
and improves thanks to compression. We perform O(occ+ b̃) CPU operations to
uncompress the interval of SP .

3.4 Extracting

To extract arbitrary portions of the text we use a variant of [11], which com-
presses T blockwise using a semistatic statistical modeler of order k plus an
encoder EN . This compresses the text to nHk(T ) + fEN(n), where fEN (n) is
the redundancy of the encoder. For example, a Huffman coder has redundancy
n, whereas an arithmetic encoder has redundancy 2. The data generated by the
modeler, DM , is maintained in main memory, which requires σk+1 log n bits.
This restricts the maximum possible k to be used: If we have ME bits to store
the data generated by the modeler then k ≤ logσ(ME/ log n)− 1. To store the
structure in secondary memory we split the compressed text into disk blocks of
size b̄ bits (thus the overhead over the entropy is n

b fEN(b̄)). If we store less than
b = b̄/ logσ symbols in a particular disk block, we rather store it uncompressed.
An extra bit per block indicates whether this was the case. Also each block will
contain the context of order k of the first symbol stored in the block (k log σ
bits). To know where a symbol of T is stored we need a compressed rank dictio-
nary ER, in which we mark the beginning of each block. This can be chosen to
be in main memory or in secondary memory, the latter requiring one more I/O
access.

The algorithm to extract Tl,r is: (1) Find the block j = rank1(ER, l) where
Tl is stored. (2) Read block j and decompress it using DM and the context of
the k first symbols. (3) Continue reading blocks and decompressing them until
reaching Tr.

Using this scheme we have at most ⌈(j − i + 1)/b⌉ I/O operations, which on
average is ⌈(j−i+1)Hk(T )/b̄⌉. We add one I/O operation if we use the secondary
memory version of the rank dictionary. The total CPU time is O(j−i+b+log n).

4 Experiments

We consider two text files for the experiments: the text wsj (Wall Street Journal)
from the trec collection from year 1987, of 126 MB, and the 200 MB XML file
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Fig. 4. Compression ratio achieved on XML as a function of the percentage allowed
to the dictionary (CD). Both are percentage over the size of SA, the right plot shows
other texts.

provided in the Pizza&Chili Corpus (http://pizzachili.dcc.uchile.cl). We
searched for 5,000 random patterns, of length from 5 to 50, generated from these
files. As in [6] and [1], we assume a disk page size of 32 KB.

We first study the compressibility we achieve as a function of the dictionary
size, |CD| (as CD must reside in RAM). Fig. 4 shows that the compressibility
depends on the percentage |CD|/|SA| and not on the absolute size |CD|. In
the following, we let our CD use 2% of the suffix array size. For counting we
use version 1 (GR, Section 3.2) with t = log n. With this setting our index uses
19.15 MB of RAM for XML, and 12.54 MB for WSJ (for GR, CD, and DM). It
compresses the SA of XML to 34.30% and that of WSJ to 80.28% of its original
size.

We compared our results against String B-tree [7], Compact Pat Tree (CPT)
[4], disk-based Suffix Array (SA) [2] and disk-based LZ-Index [1]. We add our
results to those of [1, Sec. 4]. We omit the disk-based CSA [17] as it is not
implemented, but that one is strictly worse than ours.

Fig. 5 (left) shows counting experiments. Our structure needs at most 2(m−1)
disk accesses. We show our index with and without the substructures for locating.
Fig. 5 (right) shows locating experiments. For m = 5, we report more occurrences
than those the block could store in raw format.

We can see that the result depends a lot on the compressibility of the text.
In the highly-compressible XML our index occupies a very relevant niche in
the tradeoff curves, whereas in WSJ it is subsumed by String B-trees. Thus,
our index is very competitive on compressible texts. We have used texts up to
200 MB, but our results show that the outcome scales up linearly for the RAM
needed, while the counting cost is at most 2(m−1), the locating cost depends on
the number of occurrences of P . Thus it is very easy to predict other scenarios.

References

1. D. Arroyuelo and G. Navarro. A Lempel-Ziv text index on secondary storage. In
Proc. CPM, LNCS 4580, pages 83–94, 2007.

2. R. Baeza-Yates, E. F. Barbosa, and N. Ziviani. Hierarchies of indices for text
searching. Inf. Systems, 21(6):497–514, 1996.



3. M. Burrows and D. Wheeler. A block sorting lossless data compression algorithm.
Tech.Rep. 124, DEC, 1994.

4. D. Clark and I. Munro. Efficient suffix trees on secondary storage. In Proc. SODA,
pages 383–391, 1996.

5. F. Claude and G. Navarro. A fast and compact web graph representation. In Proc.

SPIRE, pages 105–116, 2007. LNCS 4726.
6. P. Ferragina and R. Grossi. Fast string searching in secondary storage: theoretical

developments and experimental results. In Proc. SODA, pages 373–382, 1996.
7. P. Ferragina and R. Grossi. The string B-tree: A new data structure for string

search in external memory and its applications. J. ACM, 46(2):236–280, 1999.
8. P. Ferragina and G. Manzini. Indexing compressed texts. J. ACM, 52(4):552–581,

2005.
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Fig. 5. Search cost vs. space requirement for the different indexes we tested. Counting
on the left and locating on the right.


