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Abstract. Let D={d1, d2, ...dD} be a given set of D string documents
of total length n. Our task is to index D such that the k most relevant
documents for an online query pattern P of length p can be retrieved
efficiently. There exist linear space data structures of O(n) words for an-
swering such queries in optimal O(p+k) time. In this paper, we describe
a compact index of size |CSA|+n lgD+ o(n lgD) bits with near optimal
time, O(p+k lg∗ n), for the basic relevance metric term-frequency, where
|CSA| is the size (in bits) of a compressed full-text index of D, and lg∗ n
is the iterated logarithm of n.

1 Introduction and Related Work

Top-k document retrieval is the problem of preprocessing a text collection so that,
given a search pattern P [1..p] and a threshold k, we retrieve the k documents
most “relevant” to P , for some definition of relevance. This is the basic problem
of search engines and forms the core of the Information Retrieval (IR) field [5].
In this paper we focus on the popular term frequency as the relevance measure,
that is, the number of times P appears in a document.

The inverted index successfully solves top-k queries in various IR scenarios.
However, they apply to text collections that can be segmented into “words”,
so that only whole words can be queried. This excludes many East Asian lan-
guages such as Chinese and Korean, where automatic segmenting is an open
problem, and is troublesome even in highly synthetic languages such as German
and Finnish. A simple solution for those cases is to treat the text as an uninter-
preted sequence of symbols and look for any substring in those sequences. This
string model is also appealing in other applications like bioinformatics, software
repositories, multimedia databases, and so on. Supporting document retrieval
queries on those general string collections has proved much more challenging.

Sufix trees [28] and arrays [15] are useful tools to search string collections.
These structures solve the pattern matching problem, that is, count or list all the
occ individual occurrences of P in the collection. Obtaining the k most relevant
documents from that set requires time Ω(occ), usually much higher than k. Only
recently [13, 9, 12, 18] was the top-k problem solved satisfactorily, finally reaching
the optimal time O(p+k). Those solutions, like suffix trees, have the drawback of
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requiring O(n lg n) bits of space on a collection of length n, whereas the collection
itself would require no more than n lg σ bits, where σ is the alphabet size. This
renders these indexes impractical on moderate and large text collections.

Compressed Suffix Arrays (CSAs) satisfactorily solve the pattern matching
problem within the size of the compressed text collection, under some entropy
model [17]. They can in addition retrieve any substring of any document, and
hence replace the collection with a compressed version that in addition supports
queries. We call their space |CSA| ≤ n lg σ(1 + o(1)), which can be thought of as
the minimum space in which the text collection can be represented.

A similar result for top-k queries has been sought. Various solutions use
2|CSA|+o(n) bits [24, 12, 7, 3], culminating with the fastest solution so far in this
family, O(p+k lg k lg1+ε n) time by Hon et al. [11]. Recently, asymptotically opti-
mal space |CSA|+o(n) bits was obtained as well [26], being O(p+k lg2 k lg1+ε n)
the best time achieved so far [20].

In all those solutions there is a significant time factor per element returned,
of at least lg k lg1+ε n. It seems unlikely that this factor can disappear in this
type of solutions. Experimental comparisons [6, 19] show that these schemes
are impractically slow compared to those that use n lgD + o(n lgD) bits to
store a so-called document array [16, 27]. We call compact the solutions that use
|CSA| + n lgD + o(n lgD) bits. The best practical results to date [6, 21, 3, 14]
are nearly compact. Their space requirement, 1–3 times the collection size (and
including it), while not optimal, is affordable in many practical situations.

It is therefore relevant to ask which is the best time performance that can be
achieved within compact space. The time-optimal result of Navarro and Nekrich
[18], O(p + k) time, requires O(n(lgD + lg σ)) bits. While of the same order
of compact solutions, the constants are still way too large in practice. There
have been some attempts to achieve truly compact solutions. Hon et al. [10]
obtained O(p+ (lg lg n)6 + k(lg σ lg lg n)1+ε) time, for any constant ε > 0, using
compact space. Alternatively, they obtain time O(p+ (lg lg n)4 + k lg lg n) using
|CSA| + 2n lgD + o(n lgD) bits. Konow and Navarro [14] achieved time O(p +
(lg lg n)2 +k lg lg n) using |CSA|+n(lgD+ 4 lg lg n)(1 +o(1)) bits, but the result
holds only on typical texts, not in the worst case.

In this paper we show that it is possible to get very close to optimal time
within compact space. We prove the following result, where we remark that the
top-k results are not returned in sorted order of relevance.

Theorem 1 There exists a compact index of |CSA|+n lgD+ o(n lgD) bits and
near-optimal O(p + k lg∗ n) query time time, for the (unsorted) top-k frequent
document retrieval problem, where lg∗ n is the iterated logarithm of n.

In Section 5 we show that, with slightly extra space, we can achieve even
O(p+ k lg∗ k) time.

2 The Data Structure

Three main components of our structure are a generalized suffix tree (GST), the
document array, and some precomputed answer lists. These are described next.



Generalized Suffix Tree (GST): Let T = d1d2d3...dD be the text (of length
n) obtained by concatenating all the documents in D. The last character of
each document is $, a special symbol that does not appear anywhere else in T .
Each substring T [i..n], with i ∈ [1..n], is called a suffix of T . The suffix tree
for T (or, equivalently, the generalized suffix tree (GST) of D) is a lexicographic
arrangement of all these n suffixes in a compact trie structure, where the ith
leftmost leaf represents the ith lexicographically smallest suffix. Each edge in
the suffix tree is labeled by a string, and path(x) of a node x (node x refers to
the node with preorder rank x) is the concatenation of edge labels along the
path from the root of GST to node x. Let `i for i ∈ [1..n] represent the (pre-
order rank of) the ith leftmost leaf in GST . Then path(`i) represents the ith
lexicographically smallest suffix of T . A node x is called the locus of a pattern
P , if it is the node closest to the root with path(x) prefixed by P .

The suffix array SA[1..n] is an array of length n, where SA[i] is the starting
position (in T ) of the ith lexicographically smallest suffix of T . An important
property of SA is that the starting positions of all the suffixes with the same
prefix are always stored in a contiguous region of SA. Based on this property,
we define the suffix range of P in SA to be the maximal range [sp, ep] such that
for all i ∈ [sp, ep], SA[i] is the starting point of a suffix of T prefixed by P .

A compressed representation of suffix array is called a Compressed Suffix Ar-
ray (CSA). We will use a recent CSA [1], which obtains high-order entropy com-
pression and can compute the suffix range [sp, ep] of any given pattern P [1..p] in
O(p) time. We also maintain the tree topology of GST in (at most) 4n+o(n) bits
[25], with constant-time support of the operations parent(x) (the parent of node
x), lca(x, y) (the lowest common ancestor of nodes x and y), left-leaf(x)/right-
leaf(x) (the leftmost/rightmost leaf in the subtree rooted at node x), and leaf(i)
(the ith leftmost leaf), and mapping from nodes to their preorder ranks and
back. The total space of this component is |CSA|+O(n) bits.

Document Array (DA): Define a bit-vector B[1..n], such that B[i] = 1 iff
T [i] = $. Then suffix T [i, n] belongs to document dr if r = 1 + rankB(i), where
rankB(i) is the number of 1s in B[1, i]. The document array DA[1..n] is defined
as DA[j] = r if the suffix SA[j] belongs to document dr. Moreover, we say that
the corresponding leaf node `j is marked with document dr. Now,

– rankDA(r, i) returns the number of occurrences of r in DA[1, i];
– selectDA(r, j) returns i where DA[i] = r and rankDA(r, i) = j; and
– accessDA(i) returns DA[i];

Then we have use the following representation for DA [2].

Lemma 1 The document array DA can be stored in n lgD+ o(n lgD) bits and
support queries rankDA, selectDA and accessDA in times O(lg lg n), O(f(n,D))
and O(1) respectively, where f(n,D) = ω(1) is any non-constant function.

The so-called partial rank query can be added to this repertoire [3].

Lemma 2 Operation rankDA(DA[i], i) can be supported in constant time by
storing O(n lg lgD) = o(n lgD) additional bits on top of the DA.



Thus the total space of this component is n lgD + o(n lgD) bits.

Precomputed Answer Lists: We start with the following definitions:

– L(x) is the set of leaves in the subtree of node x in GST .
– L(x\y) = L(x) \ L(y), the leaves in the subtree of x, but not in that of y.
– score(r, x) is the number of leaves in L(x) marked with document dr (i.e.,
|{`i ∈ L(x),DA[i] = r}|).

We use the following scheme to identify a subset Sg of marked nodes in GST
[12, 21]: Let g be a parameter called grouping factor, then mark every gth left-
most leaf in GST , and then mark the lowest common ancestor (LCA) of every
consecutive pair of marked leaves. Then, we have the following lemma [12, 21].

Lemma 3 The above marking scheme ensures the following properties:

1. The number of marked nodes is |Sg| = Θ(n/g).
2. If it exists, the closest marked descendant node y of any unmarked node x is

unique, and |L(x\y)| < 2g.
3. If there exists no marked node in the subtree of x, then |L(x)| < 2g.

Let F (x, k) represent the list (or set) of top-k documents dr, along with
score(r, x), corresponding to a pattern with locus node x in GST . Clearly we
cannot afford to maintain F (x, k) for all possible x’s and k’s. Rather, we will
maintain the lists F (x, z) only for marked nodes x’s (for various g values) and
for k’s that are powers of 2. Then F (x, k) for any x and k will be efficiently
computed using that sampled data. The next section describes how we store and
retrieve the sampled lists.

3 Storing and Retrieving the Lists F (x, z)

The following is a key result in our scheme.

Lemma 4 Let gh = z(lg(h) n)2 for any 1 ≤ h < lg∗ n, where lg(1) n = lg n,

lg(h) n = lg(lg(h−1) n), and lg(lg∗ n) n ≤ 1. Then F (x, z) for all x ∈ Sgh can be

encoded in sh = sh−1 +O(n/ lg(h) n) bits, and F (x, z) for any given x ∈ Sgh can
be decoded in time th = th−1 +O(z), where s1 = O(n/ lg n) and t1 = O(z).

Proof. We use induction. Consider the base case h = 1. For every x ∈ Sg1 , we
maintain the list F (x, z) explicitly (using O(lg n) bits per element), along with
a pointer to the location where it is stored, in s1 = O(|Sg1 |z lg n) = O(n/ lg n)
bits. Thus the list F (x, z), for any x ∈ Sg1 , can be decoded in time t1 = O(z).

Now consider the grouping factor is gh for h ≥ 2. As we cannot afford to
use Θ(lg n) bits per element, we introduce encoding schemes that reduce it to

O(lg(h) n) bits. Thus the overall space for maintaining F (x, z) (in encoded form)

for all x ∈ Sgh can be bounded by O(|Sgh |z lg(h) n) = O(n/ lg(h) n) bits. Instead
of using pointers as in the base case, we mark in a bitmap Bh[1..2n] the node



preorders of GST that belong to Sgh . Therefore the list F (x, z) of a node x ∈ Sgh
is stored in an array at offset rankBh [x]. Since we will only compute rank on
positions x where Bh[x] = 1, an “indexed dictionary” is sufficient [23], which

requires O((n/gh) lg gh + lg lg n) = o(n/ lg(h) n) bits and computes rank in time

O(1). We now show how to encode the list F (x, z), for x ∈ Sgh , in O(lg(h) n)
bits per element, and how to decode it in th−1 +O(z) time.

We will maintain a structure STRh, using sh bits, for each grouping factor
gh, and will decode F (x, z) for x ∈ Sgh recursively, using O(z) time in addition to
the time needed to decode F (y, z) for some y ∈ Sgh−1

, as suggested in Lemma 4.
As we cannot afford to sort the documents within the targeted query time, it
is important to assume a fixed arrangement of documents within any particular
decoded list F (·, ·). That is, each time we decode a specific list, the decoding
algorithm must return the elements in the same order.

Let x be a node in Sgh and y (if it exists) be its highest descendant node in
Sgh−1

. We show how to encode and decode F (x, z). To decode F (x, z), we first
decode the list F (y, z) using STRh−1 in time th−1. From now onwards we have
constant-time access to any element the list F (y, z). The the list F (x, z) will be
partitioned into the following two disjoint lists:

(i) Dold, the documents that are common to F (x, z) and F (y, z).
(ii) Dnew, the documents that are present in F (x, z), but not in F (y, z).

Encoding and decoding document identifers in Dold. We maintain a bit vector
B′[1..z], where B′[i] = 1 iff the ith document in F (y, z) is present in F (x, z).
Therefore Dold can be decoded by listing those elements in F (y, z) (in the same
order as they appear) at positions i where B′[i] = 1. Thus space for maintaining
the encoded information is z bits and the time for decoding is O(z).

Encoding and decoding document identifers in Dnew. For each document dr ∈
Dnew, there exists at least one leaf in L(x\y) that is marked with dr (otherwise
score(r, x) = score(r, y) and dr could not be in F (x, z) and not in F (y, z)).
Therefore, instead of explicitly storing r, it is sufficient to refer to such a leaf.
For this we shall store a bit vector B′′[1..|L(x\y)|] with all its bits in 0, except for
|Dnew| 1’s: for every document dr ∈ Dnew, we set one bit, say B′′[i] = 1, where
the ith leaf in L(x\y) is marked with dr. Since |B′′| = |L(x\y)| < 2gh−1 and the

number of 1’s is at most z, B′′ can be encoded in O(z lg(gh−1/z)) = O(z lg(h) n)
bits with constant time select support [22] (selectB′′(j) is the position of the j-th
1 in B′′). Now, given B′′, the documents in Dnew can be identified in O(z) time
as follows: Find all those (at most z) increasing positions i where B′′[i] = 1 using
select queries. Then, for each such i, find the ith leaf `i′ ∈ L(x\y) in constant
time using the tree operations3. Finally, report dDA[i′] as a document in Dnew

for each such i′ using a constant-time access operation on the document array.

As mentioned before, it is important for our (recursive) encoding/decoding
algorithm to assume a fixed permutation of elements within any list F (·, ·). We

3 Compute the leftmost leaves `ix and `iy , respectively, of x and y, then `i′ is `ix+i−1,
if ix + i− 1 < iy, and `jy+i−(iy−ix) otherwise, where `jy is the rightmost leaf of y.



use the convention that, in F (x, z), the documents in Dold come before the
documents in Dnew. Moreover the documents within Dold and Dnew are in the
same order as the decoding algorithm identified them. In conclusion, the list
of identifiers of documents in F (x, z) can be encoded in O(z lg(h) n) bits and
decoded in O(z) time, assuming constant-time access to any element in F (y, z).
If node y does not exist, we proceed as if F (y, z) = ∅ and F (x, z) = Dnew. We
now consider how to encode the score’s associated with the elements in F (x, z)
(i.e., score(r, x) for all dr ∈ F (x, z)).

Encoding and decoding of scores. Let dri , for i ∈ [1..z], be the ith document in
F (x, z), and fi = score(ri, x). Then, define δi = fi − f ′i ≥ 0, where

f ′i =

{
score(ri, y) if i ≤ |Dold| (i.e., if ri ∈ Dold),
τ = min{score(r, y), r ∈ F (y, z)} if i > |Dold| (i.e., if ri ∈ Dnew).

The following is an important observation: The number of leaves in L(x\y)
marked with document dri is score(ri, x)− score(ri, y), which is same as δi for
i ≤ |Dold|. For i > |Dold|, score(ri, x)−score(ri, y) ≥ δi, otherwise score(ri, y) >
τ and dri would have qualified as a top-z document in F (y, z) (which is a con-
tradiction as dri ∈ Dnew). By combining with the fact that each leaf node is
marked with a unique document, we have the inequality

∑z
i=1 δi ≤ |L(x\y)| <

2gh−1. Therefore, δi for all i ∈ [1..z] can be encoded using a bit vector B′′′ =
10δ110δ210δ3 . . . 10δz of length at most 2gh−1 +z with z 1’s, in O(z lg(gh−1/z)) =

O(z lg(h) n) bits with constant-time select support [22].
The decoding algorithm is described as follows: compute the f ′i ’s for i =

1 . . . z in the ascending order of i. For i ≤ |Dold|, f ′i is given by score associated
with the (selectB′ [i])th document (which is same as dri) in F (y, z). This takes
only O(z) time as the number of constant-time select operations is O(z), and
we have constant-time access to any element and score in F (y, z). Next, τ =
min{score(r, y), r ∈ F (y, z)} can be obtained by scanning the list F (y, z) once.
Thus all the f ′i ’s are computed in O(z) time. Next we decode each δi and add
it to f ′i to obtain fi, for i = 1 . . . z in O(z) time, where δi = selectB′′′(i) −
selectB′′′(i − 1) − 1 is computed in O(1) time. Thus the space for maintaining

the scores is O(z lg(h) n) bits and the time for decoding them is O(z).

Adding over the h levels, the total space is sh = sh−1 + O(n/ lg(h) n) =

O(n/ lg(h) n) bits and the total decoding time is th = th−1 +O(z) = O(zh) (note
that s1 = O(n/ lg n) and t1 = O(z)). This completes the proof. ut

4 Completing the Picture

Let π ∈ [1.. lg∗ n) be an integer such that lg(π−1) n ≥
√

lg∗ n > lg(π) n, then

lg(π) n = ω(1) (note that π = lg∗ n− lg∗
√

lg∗ n = Θ(lg∗ n)). Then, by choosing

gπ as the grouping factor, the space sπ is O(n/ lg(π) n) = o(n) bits. We maintain
lgD such structures corresponding to z = 1, 2, 4, 8, ..., 2blgDc, in o(n lgD) bits



total space. By combining the space bounds of all the components, we obtain
the following lemma.

Lemma 5 The total space requirement of our data structure is |CSA|+n lgD+
o(n lgD) bits.

The next lemma gives the total time to extract the sampled results and hints
how we will use them.

Lemma 6 Given any node q in GST and an integer k, our data structure can
report the list F (q′, k) in O(k lg∗ n) time, where q′ is a node in the subtree of q

with |L(q\q′)| = O(k
√

lg∗ n).

Proof. As the first step, round k to z = 2dlg ke, which is the next highest power
of 2. Then identify the highest node q′, in the subtree of q, that is marked with
respect to the grouping factor gπ: Let `i and `j be the leftmost and rightmost
leaves of q in GST , then q′ = lca(`i′ , `j′) where i′ = gπ ·di/gπe and j′ = gπ ·bj/gπc
(there is no q′ if i′ ≥ j′). This takes constant time on our representation of the
GST topology.

Since gπ = z lg(π) n < z
√

lg∗ n, from Lemma 3 it holds |L(q\q′)| = O(gπ) =

O(z lg(π) n) = O(k
√

lg∗ n). As q′ ∈ Sgπ , the list F (q′, z) can be decoded in time
tπ = O(zπ) = O(z lg∗ n) from the precomputed lists (from Lemma 4). The final
F (q′, k) can be obtained by filtering those documents in F (q′, z) with score at
least θ by a single scan of the list, where θ is the kth highest score in F (q′, z)
(which can be computed in O(z) = O(k) time using the linear-time selection
algorithm [4]). In case q′ does not exist, we report F (q′, k) = ∅, and even in such
a case the inequality condition |L(q)| < 2gπ is guaranteed (from Lemma 3). ut

4.1 Query Answering

The query answering algorithm consists of the following steps:

1. Find the locus node q of the input pattern P in GST by first obtaining the
suffix range [sp, ep] of P using CSA in O(p) time, and then computing the
lowest common ancestor of `sp and `ep in O(1) time.

2. Using Lemma 6, find the node q′ in the subtree of q, where |L(q\q′)| =

O(k
√

lg∗ n) and retrieve the list F (q′, k) in O(k lg∗ n) time.
3. Every document dr in the final output F (q, k) must either belong to F (q′, k),

or it must be that r = DA[i] for some leaf `i ∈ L(q\q′). Let us call Scand the
union of both sets of candidate documents. Then we compute score(r, q) of
each document dr ∈ Scand.

4. Report k documents in Scand with the highest score(r, q) value. In this step,
we first compute the kth highest score θ using the selection algorithm, and
then use θ as a threshold for a document to be an output (more precisely,
we report the k′ < k documents dr ∈ Scand with score(r, q) < θ in a first
pass, and then report the first k − k′ documents dr ∈ Scand we find with
score(r, q) = θ in a second pass). The time is O(|Scand|) = O(k

√
lg∗ n).



The overall time for Steps 1, 2, and 4 is O(p + k lg∗ n). In the remaining
part of this section we show how to handle Step 3 efficiently as well, for the
documents r = DA[i] we find in L(q\q′). Note that score(r, q) can be computed
as rankDA(r, ep) − rankDA(r, sp − 1) using two rank queries on the document
array, but those rank queries are expensive. Instead, we use a more sophisticated
scheme where only the faster select , access, and partial rank queries are used.
This is described next.

4.2 Computing Scores Online

Firstly, we construct a supporting structure, SUP , in O(k lg∗ n) time and oc-
cupying o(n lgD) + O(z lg n) bits, capable of answering the following query in
O(lg lg∗ n) time: for any given r, return score(r, q′) if r ∈ F (q′, k), otherwise
return −1. Let ∆ = Θ(lg∗ n), then structure SUP is a forest of D/∆ balanced
binary search trees T1, T2, . . . , TD/∆. Initially each Ti is empty, hence the initial
space is O(lg n) bits per tree (for maintaining a pointer to the location where
it is stored), adding up to O((D/∆) lg n) = o(n lgD) bits, which we consider
a part of index. Next we shall insert each document dr ∈ F (q′, k), along with
its associated score, into tree Tdr/∆e of SUP . The size of each search tree can
grow up to ∆, hence the total insertion time is O(k lg∆). These insertions will
increase the space of SUP by O(k lg n) bits, which can be justified as it is the
size of the output. Now we can search for any dr in Tr/∆ and, if dr ∈ F (q′, k),
we will retrieve score(r, q′) in O(lg∆) time. Once we finish Step 3, these binary
search trees can be set back to their initial empty state by visiting each docu-
ment dr ∈ F (q′, k) and deleting it from the corresponding tree in total O(k lg∆)
time. This does not impact the total asymptotic query processing time.

An outline of Step 3 follows: We scan each leaf `i ∈ L(q\q′), and compute
score(·, q) of the corresponding document dDA[i]. Note that there can be many
leaves in L(q\q′) marked with the same document, but we compute score(·, q) of
a document only once (i.e., when we encounter it for the first time). After this,
we also scan the documents dr ∈ F (q′, k) and compute score(r, q) if we have
not considered this document in the previous step. However, the scanning of
leaves is performed in a carefully chosen order. Let `sp′ and `ep′ be the leftmost
and rightmost leaves in the subtree of q′, and B[1..D] be a bit vector initialized
to all 0’s (its size is D bits and can be considered a part of index). A detailed
description of Step 3 follows:

3.1 Start scanning the leaves `i for i = sp, sp + 1, . . . , sp′ − 1, in the ascend-
ing order of i, then for i = ep, ep − 1, . . . , ep′ + 1, in the descending or-
der of i, and do the following: if B[DA[i]] = 0, then set it to 1, compute
score(DA[i], q), and store the result (DA[i], score(DA[i], q)) for Step 4. Note
that each time we compute score(DA[i], q), i is either the first or the last
occurrence of DA[i] in DA[sp, ep]. Assume it is the first (the other case is sym-
metric). We use a constant-time partial rank query, x = rankDA(DA[i], i).
Then, by performing successive selectDA(DA[i], j) queries for j = x+ 1, x+
2, . . . , y, where selectDA(DA[i], y) > ep ≥ selectDA(DA[i], y−1), we compute



score(DA[i], q) = y − x. The number of select queries required is precisely
y − x = score(DA[i], q), which can be further reduced as follows:

– If dDA[i] ∈ F (q′, k), retrieve score(DA[i], q′) from SUP in timeO(lg lg∗ n).
As we know that score(DA[i], q′) ≤ score(DA[i], q), we start select queries
from j = x+score(DA[i], q′), so the number of select queries used to find
y is reduced to score(DA[i], q)−score(DA[i], q′) = score(DA[i], L(q\q′)),
that is, the number of leaves in L(q\q′) marked with dDA[i].

– If dDA[i] 6∈ F (q′, k), compute x′ = selectDA(DA[i], x + τ − 1), where we
remind that τ = min{score(r, q′), r ∈ F (q′, k)}. If x′ > ep, we conclude
that score(DA[i], q) < τ , and hence dDA[i] can be discarded from being
a candidate for the final output. On the other hand, if x′ ≤ ep, the
select queries can be started from j = x+ τ , which reduces the number
of select queries to score(DA[i], q) − τ ≤ score(DA[i], L(q\q′)) (since
dDA[i] /∈ F (q′, k), it holds score(DA[i], q′) ≤ τ).

The query time for executing this step can be analyzed as follows: for each i,
we perform a query on SUP . The computation of score(DA[i], q) requires at
most score(DA[i], L(q\q′)) select queries. As we do this computation only
once per distinct document, the total number of select queries is at most∑
r score(r, L(q\q′)) = |L(q\q′)|. By choosing the cost f(n,D) =

√
lg∗ n for

select queries, the total time is O(|L(q\q′)|(f(n,D) + lg lg∗ n)) = O(k lg∗ n).
3.2 Now scan the documents dr ∈ F (q′, k). If B[r] = 0, then there exists no

leaf in L(q\q′) marked with dr. Thus score(r, q) = score(r, q′) and the pair
(r, score(r, q′)) is stored for Step 4. If B[r] = 1 then dr has already been
dealt with in the previous pass. The time for accessing score(r, q′) using
SUP is O(lg lg∗ n), hence this step takes O(k lg lg∗ n) time.

3.3 Reset B to its initial state (all bits set to 0) for supporting queries in future.
By revisiting the leaves in L(q\q′) and the list F (q′, k), we can exactly find
out those locations in B where the corresponding bit is 1. The time for this
step can be bounded by O(|L(q\q′)|+ k) = O(k

√
lg∗ n).

Thus the time for Step 3 is O(k lg∗ n), and the result follows.

5 Reducing the Time to O(p + k lg∗ k)

Note that, when p or k is at least lg lg n, it already holds O(p+ k lg∗ n) = O(p+
k lg∗ k). Therefore, we now concentrate on the case when max(p, k) < lg lg n. We
use the following result [8].

Lemma 7 Given a fixed κ, an array A[1..n] of n indices can be indexed in
O(n lg2 κ) bits for answering the following query in O(k) time, without accessing
A and for any 1 ≤ k ≤ κ: given i, j, and k, output the positions of the k highest
elements in A[i, j].

Let Sδ be the set of nodes in GST with node depth equal to δ. We start with
the description of an O(n lg2 κ)-bit structure for a fixed κ = lg lg n and a fixed



δ < lg lg n, for answering top-k queries for any 1 ≤ k ≤ κ and those patterns with
their locus node belonging to Sδ. First, we construct an array A[1..n] (with all
its elements initialized to zero) as follows: For i = 1 . . . n, if the first occurrence
of document DA[i] in DA[a, b] is at position i, where [a, b] is the suffix range
corresponding to a unique node u ∈ Sδ, then set A[i] = score(DA[i], u). We
do not store this array explicitly, instead we maintain the structure of Lemma 7
over it, requiring O(n lg2 κ) bits space. Now the list of documents F (u, k) for any
locus node u ∈ Sδ can be reported in O(k) time as follows: First perform a top-k
query on the structure of Lemma 7 with the suffix range [sp, ep]. The output will
be a set of k locations j1, j2, . . . , jk ∈ [sp, ep], and then the identifiers of the top-k
documents are DA[j1],DA[j2], . . . ,DA[jk]. By maintaining similar structures for
all the δ ∈ [1, lg lg n), any such top-k query with p < lg lg n can be answered
in O(p+ k) time. The additional space required is o(n(lg lg n)3) bits, which can
be bounded by o(n lg σ) bits if, say, lg σ ≥

√
lg n. Otherwise, we shall explicitly

maintain the top-κ documents corresponding to all patterns of length at most
lg lg n, in decreasing frequency order, using a table of O(σlg lgn lg lg n lgD) =
o(n) bits. The query time in this case is just O(k).

Thus, by combining the cases, we achieve O(p + k lg∗ k) query time and
Theorem 2 follows.

Theorem 2 There exists a compact index of |CSA|+ n lgD + o(n(lg σ + lgD))
bits and near-optimal O(p + k lg∗ k) query time time, for the (unsorted) top-k
frequent document retrieval problem.

6 Conclusions

We have shown that it is possible to obtain almost optimal time for top-k docu-
ment retrieval, O(p+k lg∗ n), using compact space, |CSA|+n lgD+o(n lgD) bits.
By adding o(n lg σ) bits, the time decreases to O(p+k lg∗ k). This is an important
step towards answering the question of which is the minimum space that is nec-
essary to obtain the optimal time, O(p+ k). The other important open question
is which is the minimum time that can be obtained by using the asymptotically
optimal space, |CSA| + o(n) bits. Right now this time is O(p + k lg2 k lg1+ε n)
[20], and it is not clear which is the lower bound.
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