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Abstract. A compressed full-text self-indexis a data structure that replaces a text
and in addition gives indexed access to it, while taking space proportional to the
compressed text size. The LZ-index, in particular, requires 4uHk(1 + o(1)) bits
of space, whereu is the text length in characters andHk is itsk-th order empirical
entropy. Although in practice the LZ-index needs 1.0-1.5 times the text size, its
construction requires much more main memory (around 5 timesthe text size),
which limits its applicability to large texts. In this paperwe present a practical
space-efficient algorithm to construct LZ-index, requiring (4+ǫ)uHk +o(u) bits
of space, for any constant0 < ǫ < 1, andO(σu) time, beingσ the alphabet size.
Our experimental results show that our method is efficient inpractice, needing an
amount of memory close to that of the final index.

1 Introduction and Previous Work

A full-text databaseis a system providing fast access to a large mass of textual data. The
simplest (yet realistic and rather common) scenario is as follows. The text collection
is regarded as a unique sequence of charactersT1...u over an alphabetΣ of size σ,
and the search patternP1...m as another (short) sequence overΣ. Then the text search
problem consists of finding all theocc occurrences ofP in T . To provide fast access,
data structures calledindexesare built on the text. Typical text databases contain natural
language texts, DNA or protein sequences, MIDI pitch sequences, program code, etc.

Until a short time ago, the smallest indexes available in practice were the suffix
arrays [21], requiringu log u bits (log meanslog2 in this paper). Since the text requires
u logσ bits to be represented, this index is usually much larger than the text (typically
4 times the text size). To handle huge texts like the Human Genome (about3 × 109

base pairs), one solution is to store the indexes on secondary memory. However, this
has significant influence on the running time of an application, as access to secondary
memory is considerably slower.

Several attempts to reduce the space of the suffix trees [2] orarrays [13, 17, 19, 1]
focused on reducing the size of the data structures but not the text, and did not relate
text compressibility with the size of its index.

A parallel track started at about the same time [15, 14, 10, 28, 4–6, 8, 9, 20, 7], with
the distinguishing feature of providingcompressedindexes, whose sizes are propor-
tional to the compressed text size. Moreover, in most cases,those indexesreplacethe
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text by being able to reproduce any text substring. This is called self-indexing. Taking
space proportional to the compressed text, replacing it, and providing efficient indexed
access to it, is an unprecedented breakthrough in text indexing and compression.

The LZ-index [24–26] is a full-text self-index on these lines, based on the Ziv-
Lempel parsing of the text. If the text is parsed inton phrasesby the LZ78 algorithm
[29], then the LZ-index takes4n logn(1+ o(1)) bits of space, which is 4 times the size
of the compressed text and also 4 times thek-th order text entropy, i.e.4uHk + o((1 +
Hk)u), for anyk = o(log n/ log2 σ) [16, 6]. See the original article for details on its
search algorithms, as we focus only in construction in this paper.

However, all these works do not consider the space-efficientconstruction of the
indexes. For example, construction ofCS-array[28] andFM-index[4] involves build-
ing first the suffix array of the text. Similarly, the LZ-indexis constructed over a non-
compressed intermediate representation. In both cases, one needs about 5 times the text
size. For example, the Human Genome may fit in 1 Gb of main memory using these
indexes (and thus it can be operated entirely in RAM on a desktop computer), but 15
Gb of main memory are needed to build them! Using secondary memory for the con-
struction is usually rather inefficient.

The works of T.-W. Lam et al. [18] and W.-K.Hon et al. [12] dealwith the space
(and time) efficient construction ofCS-array. The former work presents an algorithm
that uses(2H0 +1+ ǫ)u bits of space to build theCS-array, whereH0 is the0-th order
empirical entropy of the text, andǫ is any positive constant; the construction time is
O(σu log u), which is good enough if the alphabet is small (as in the case of DNA), but
may be impractical in the case of proteins and Oriental languages, such as Chinese or
Japanese. The second work [12] addresses this problem by requiring (H0 +2+ ǫ)u bits
of space andO(u log u) time to build theCS-array. Also, they show how to build the
FM-indexfrom CS-arrayin O(u) time.

Our work follows this line of research. We present a practical and efficient algorithm
to construct the LZ-index using little space. Our idea is to replace the (non-compressed)
intermediate representations of the tries that conform theindex by space-efficient coun-
terparts. Basically, we use the balanced parentheses representation of Munro and Raman
[23] as an intermediate representation for the tries, but wemodify such representation
to allow fast incremental construction directly from the text. The resulting intermedi-
ate data structure consists of a tree whose nodes are small subsequences of balanced
parentheses, which are easier and cheaper to update. The idea is inspired in the work
of Clark and Munro [3], yet ours differs in numerous technical aspects and practical
considerations (structuring inside the nodes, overflow management policies, etc.).

Our algorithm requires(4+ǫ)uHk+o(u) bits to build the LZ-index, for any constant
0 < ǫ < 1. This is very close to the space the final LZ-index requires tooperate.
This is thefirst construction algorithm for a self-index requiring space proportional
to Hk instead ofH0. In practice our algorithm also requires about the same memory
as the final index. That is, wherever the LZ-index can be used,we can build it. The
indexing speed is approximately 5 sec/Mb in a 2GHz machine, which is competitive
with the (non-space-efficient) construction ofFM-indexand much faster thanCS-array
construction [26]. We argue that our method outperforms (intime) previous work [12]
when indexing the Human Genome, using about the same indexing space.



2 The LZ-index Data Structure

Assume that the textT1...u has been partitioned using the LZ78 [29] algorithm into
n+1 blocksT = B0 . . . Bn, such thatB0 = ε; ∀k 6= ℓ, Bk 6= Bℓ; and∀k > 1, ∃ℓ < k,
c ∈ Σ, Bk = Bℓ · c. To ensure thatBn is not a prefix of anotherBi, we append toT a
special character “$”6∈ Σ. The data structures that conform LZ-index are [26, 25]:

1. LZTrie: is the trie formed by all the blocksB0 . . . Bn. Given the properties of LZ78
compression, this trie has exactlyn + 1 nodes, each one corresponding to a string.

2. RevTrie: is the trie formed by all the reverse stringsBr
0 . . . Br

n. In this trie there
could be internal nodes not representing any block. We call these nodesempty.

3. Node: is a mapping from block identifiers to their node inLZTrie.
4. RNode: is a mapping from block identifiers to their node inRevTrie.

Each of these 4 structures requiresn log n(1 + o(1)) = uHk(1 + o(1)) bits of space.
For the construction ofLZTrie we traverse the text and at the same time build a

normal trie (using one pointer per parent-child relation) of the strings represented by
Ziv-Lempel blocks. At stepk (assumeBk = Bi · c), we read the text that follows and
step down the trie until we cannot continue. At this point we create a new trie leaf (child
of the trie node of blocki, by characterc, and assigning the leaf block numberk), go
to the root again, and go on with stepk + 1 reading the rest of the text. The process
completes when the last block finishes with the text terminator “$”.

Then we compact the normal trie, essentially using the parentheses representation
of Munro and Raman [23]. We traverse the normal trie in preorder, writing an opening
parenthesis when going down to a node, and a closing parenthesis when going up.

TheLZTrie structure consists of the above sequence of parentheses plus a sequence
letsof characters that label each trie edge and a sequenceids of block identifiers, both
in preorder. We identify a trie nodex with its opening parenthesis in the representa-
tion. The subtree ofx contains those nodes (parentheses) enclosed between the opening
parenthesis representingx and its matching closing parenthesis.

Once theLZTrie is built we free the space of the normal trie, and buildNode. This
is just an array with then nodes ofLZTrie, using⌈log n⌉ bits for each. It is built as the
inverse of permutationids.

To constructRevTriewe traverseLZTrie in depth-first order, generating each string
stored inLZTrie in constant time, and then inserting it into anormal trie of reversed
strings. We then traverse the trie and represent it using a sequence of parentheses and
block identifiers,rids. Empty unary nodes are removed only at this step. Finally, we
build the normal reverse trie and buildRNodeas the inverse permutation ofrids.

In the experiments of the original LZ-index [26, 25], the largest extra space needed
to build LZTrie is that of the normal trie, which is 1.7–2.0 times the text size. The
indexing space for the normal reverse trie is, in some cases,4 times the text size. This is,
mainly, because of the empty unary nodes. This space dictates the maximum indexing
space of the algorithm (note that the text itself can be processed by buffers and hence
does not require significant space). The overall indexing space was 4.8–5.8 times the
text size for English text, and 3.4–3.7 times the text size for DNA. As a comparison, the
construction of a plain suffix array without any extra data structure requires 5 times the
text size.



3 Space-efficient Construction of LZTrie

The main memory requirement to build the LZ-index comes fromthe normal tries used
to build LZTrie andRevTrie. We focus on building those tries in little memory, by re-
placing them with space-efficient data structures that support insertions. These can be
seen as hybrids between normal tries and their final parentheses representations.

Let us start withLZTrie. In its final representation as a linear sequence of balanced
parentheses [23], the insertion of a new node at any positionof the sequence may force
rebuilding the sequence from scratch. To avoid that cost, wework on ahierarchical
representation of balanced parentheses(hrbp for short), such that we rebuild only a
small part of the entire sequence to insert a new node.

In a hrbp we cut the trie inpages, that is, in subsets of trie nodes such that if a node
x is stored in pageq, then nodey, the parent ofx, is: (1) also stored inq (enclosing
x), or (2) stored in a pagep, theparent pageof q, and hencey is ancestor of all nodes
stored inq. We store inp information indicating that nodey encloses all nodes inq. In a
hrbp we arrange the pages in a tree, thus the entire trie is represented by a tree of pages.

We represent a page as a contiguous block of memory. LetN1 < . . . < Nt be even
integers. We say that a page has sizeNi if it can storeNi parentheses (Ni/2 nodes),
although its physical size is larger thanNi bits. Each pagep of sizeNi consists of:Ni

bits to represent a subsequence of balanced parentheses;Ni/2 bits (theflags) indicating
which opening parentheses (nodes) in a page have their subtree stored in a child page;
⌈log Ni/2⌉ bits to tell the number of nodes stored in the page;(Ni/2)⌈logu⌉ bits to
store the block identifiers (ids) in the page (in preorder);(Ni/2)⌈logσ⌉ bits to store the
characters (lets) in the page (in preorder); and a variable number of pointersto child
pages. The number of pointers varies from0 to Ni/2, and it corresponds to the number
of flags with value1 in p. To maintain a constant physical page size, these pointers are
stored in a separately allocated array, and we store a pointer to them in the page.

As in the parentheses representation ofLZTrie, in the hrbp a node encloses its sub-
tree, but not necessarily a node and its subtree are stored both in the same page. If the
subtree of thej-th opening parenthesis of pagep is stored in pageq, thenq is a child
page ofp and thej-th flag inp has the value 1. If the number of flags in 1 before thej-th
flag (not including it) ish, then theh-th pointer ofp points toq. An important property
we enforce is that sibling nodes must be stored all in the samepage.

Initially, the data structure consists of a sole empty page (theroot page) of sizeN1.
The construction ofLZTrie proceeds as explained in Section 2, but this time the nodes
are inserted in a hrbp ofLZTrie, instead of a normal trie. The insertion of a new node
Bk = Bi · c in the hrbp implies to recompute the page in which the insertion is done.
If the new leaf must becomej-th opening parenthesis in the page (counting from left to
right), then we insert “()” at the corresponding parentheses position and thej-th flag
is set to0. Also, c is inserted at positionj within the characters, andk is inserted at the
same position within the identifiers.

We do not store information to traverse the parentheses sequence in the pages of the
hrbp. Instead, all the navigation inside each page is done sequentially, in a singleO(Nt)
time pass: the first child of an opening parenthesis starts atthe next position (unless that
contains a closing parenthesis, in which case the node is a leaf in the page), and the next
sibling starts right after the closing parenthesis matching the current position, which is



found sequentially. As we traverse the page, we maintain thecurrent positionj in flags,
idsandlets, as well as the counth of 1-bits seen inflags.

A page overflowoccurs when inserting a new node in a full pagep. If the size ofp
is Ni, 1 6 i < t, we perform agrow operation onp, which allocates a new pagep′

of sizeNi+1, copies the content ofp to p′, freesp, and replaces the pointer top by a
pointer top′ in the parent ofp. If the size ofp is Nt, instead, we select a subset of nodes
to be copied to a new child page ofp and then deleted fromp.

We only allow the selection of the whole subtree of a node in the page (without
selecting the node itself). This simple way ensures that sibling nodes are always stored
in the same page. As the maximum number of siblings isσ, we must haveNt > 2σ so
that a page with children always has space for its top-level nodes at least. We choose the
subtree of maximum size not exceedingNt/2 nodes. It is easy to see that this guarantees
that the size of the new leafp′ is at least⌊Nt/(2σ)⌋ − 1 nodes.

Assume we have selected in this way the subtree of thej-th opening parenthesis in
the page. The selected subtree is copied to a new pagep′, whose size is the minimum
Ni suitable to hold the subtree. Asp′ is a new leaf page, all its flags are initialized to
0. Next we add inp a pointer top′, inserted at the current (j-th) position, and set to
1 thej-th bit in flags. Finally, we delete fromp the selected subtree. After that, if the
number of parentheses inp does not exceedNi for somei < t, we perform ashrink
operation, which is the opposite ofgrow.

Once we solved the overflow, the insertion of the new node may have to be done in
p or in p′, but we are sure that there is room for the new pair of parentheses in either
page. The following lemma states the condition to achieve a minimum fill ratio α in the
pages of the data structure, thus controlling the wasted space. The proof is obvious.

Lemma 1. Let0 < α < 1 be a real number. If each page has the smallest posible size
Ni to hold its parentheses, and we defineNi = Ni−1/α, i = 2, . . . , t, and2 6 N1 6

2/α, then all pages of the data structure have a fill ratio of at leastα.

As the trie hasn nodes, we need2n + n + n log u + n logσ + n log u(2σ/Nt)
bits of storage to represent the parentheses, flags, identifiers, characters and pointers
to child pages, respectively. The last bound holds because leaves are created with at
leastNt/(2σ) nodes and thus there is at worst one pointer for eachNt/(2σ) nodes
(except the root). If, in addition, we define theNis as in Lemma 1, in the worst case the
construction algorithm needsnα (3 + logσ + (1 + 2σ/Nt) log u) bits of storage. We can
relate this space requeriment toHk: asn log u = uHk+O(kn log σ) for anyk [16], and
sincen 6 u/ logσ u, the space is1+2σ/Nt

α uHk + o(u) for anyk = o(log n/ log3 σ).
When constructingLZTrie, the navigational cost per character of the text isO(Nt)

in the worst case. Hence, the overall navigational cost isO(Ntu). On the other hand,
the cost of rebuilding pages after an insertion isO(Nt), with or without page overflows.
As there aren insertions, the total cost isO(Ntn). However, the constant involved with
page overflows is greater than that of simple insertions, thus in practice we expect that
larger values ofα yield a greater construction time (and a smaller space requirement).
In general, choosingNt = 2σ/γ for any constant0 < γ < 1, we get1+γ

α uHk + o(u)
bits of space, which can be made(1 + ǫ)uHk + o(u) for any constant0 < ǫ < 1 by
properly choosingγ andα. The construction time isO( 1

γ σu) = O(σu).



Once we construct the hrbp forLZTrie, we build the final version ofLZTrie in O(n)
time. We perform a preorder traversal on the hrbp, writing anopening parenthesis each
time we reach a node, then checking the corresponding flag, traversing the subtree of
the node recursively in preorder (which, depending of the flag, may be stored in the
same or in a child page), and then writing a closing parenthesis.

4 Space-efficient Construction ofRevTrie

For the space-efficient construction ofRevTrie, we use a hrbp to represent not the orig-
inal reverse trie but itsPATRICIA tree[22], which compressesemptyunary paths of
the reverse trie. This yields an important saving of space. We do not store the skips in
each node since they can be computed using the connection with LZTrie. We store, in
the nodes of the reverse trie, pointers to nodes ofLZTrie, instead of the corresponding
block identifiers. Each pointer uses⌈log 2n⌉ bits. This is done to avoid access toNode
when constructing the reverse trie, so we can buildNodeafter both tries have been built
(thus reducing the indexing space). The empty non-unary nodes are marked by storing
in them the same pointer toLZTrie stored in their first child.

To construct the reverse trie we traverseLZTrie in depth-first order, generating each
stringBi stored inLZTrie in constant time, and then inserting its reverseBr

i into the
reverse trie. As we compress empty unary paths, the edges of the trie are labeled with
strings instead of simple characters. ThePATRICIAtree stores only the first character
of the string that labels the edge. Given a nodev in the reverse trie, the position of the
character inBr

i on whichv discriminates is 1 plus the length of the string represented
by v. If v is not an empty node, then it stores a pointer toLZTrienodenv. The length of
the string is the same as the depth ofnv in LZTrie, which can be computed in constant
time [26]. On the other hand, ifv is an empty node, we we must use instead a procedure
similar to that used in [26] to compute the string that labelsan edge of the trie.

The hrbp of the reverse trie requires at least1
α (2n′ + n′ + n′ log 2n + n′ log σ +

(2σ/Nt)n
′ log n′) bits of storage to represent the parentheses, flags, pointers toLZTrie,

characters and pointers to child pages, respectively, where n′ > n is the number of
nodes in the reverse trie. As we compress unary paths,n′ 6 2n, and thus the space is
upper bounded by2(1+2σ/Nt)

α uHk + o(u). However, in practice we expect thatn′ will
be much less than2n (see Section 5 for empirical results).

For each stringBr
i to be inserted in the reverse trie,1 6 i 6 n, the navigational

cost isO(Nt|B
r
i | + |Br

i |
2) in the worst case (when we workO(Nt) per character, and

every traversed node is empty). The total construction costis
∑n

i=1 (Nt|B
r
i | + |Br

i |
2).

The sum
∑n

i=1 |B
r
i |

2 is usuallyO(u logσ u), but in pathological cases it isO(u3/2).
To have a better theoretical bound, we can explicitly store the skips, using2 log log u
extra bits per node (insertingemptyunary nodes when the skip is exceeded). In this
way, one of eachlog2 u empty unary nodes could be explicitly represented. In the
worst case there areO(u) empty unary nodes, of whichO( u

log u ) are explicitly rep-
resented. This meanso(u) extra bits in the hrbp, and the construction cost is reduced to∑n

i=1 (Nt|B
r
i | + |Br

i |). As
∑n

i=1 |B
r
i | = u, the total cost isO(Ntu).

After we construct the hrbp for the reverse trie, we construct RevTriedirectly from
the hrbp inO(n′) time, replacing the pointers toLZTrie by the corresponding block



identifiers (rids), and then we free the space of the hrbp. If we usen′ log n bits for the
rids array,RevTrierequires2uHk + o(u) bits of storage. Instead, we can represent the
rids array withn log n bits (i.e., only the non-empty nodes), plus a bitmap of2n(1 +
o(1)) bits supportingrank queries inO(1) time [27]. Thej-th bit of the bitmap is 1 if
the node represented by thej-th open parenthesis is not an empty node, otherwise the
bit is 0. Therids index corresponding to thej-th opening parenthesis isrank(j). Using
this representation,RevTrierequiresuHk + o(u) bits of storage. This was unclear in
the original LZ-index paper [26, 25].

We finally buildNodemapping fromids array in timeO(n) andn log n = uHk +
o(u) bits of space, andRNodefrom rids in O(n′) time andn log n′ = uHk + o(u) bits.

Now we summarize the construction process, and show in parentheses the total
space requeriment and the time in each step. Then, we conclude with a theorem.

1. We build the hrbp ofLZTrie from the text ((1 + ǫ)uHk + o(u) bits,O(σu) time).
2. We buildLZTrie from its hrbp ((1 + ǫ)uHk + uHk + o(u) bits,O(n) time).
3. We free the hrbp ofLZTrie and build the hrbp of the reverse trie fromLZTrie ((2 +

ǫ)uHk + uHk + o(u) bits,O(σu) time).
4. We buildRevTriefrom its hrbp ((2+ ǫ)uHk +uHk +uHk +o(u) bits,O(n) time).
5. We free the hrbp ofRevTrieand buildNodefrom ids (uHk + uHk + uHk + o(u)

bits,O(n) time).
6. We buildRNodefrom rids (uHk + uHk + uHk + uHk + o(u) bits,O(n) time).

Theorem 1. Our space-efficient algorithm to construct LZ-index requires(4+ǫ)uHk+
o(u) bits of space, reached at step 4 above, andO(σu) time. This holds for any constant
0 < ǫ < 1 and anyk = o(log n/ log3 σ).

5 Experimental Results

For the experiments we use the fileohsumed.88-91 from theOHSUMEDcollection
[11], as a representative of other text collections we tested, such as DNA, music, and
others. We use incremental subsets of the file, ranging from 10Mb to 100Mb. We run
our experiments on an AMD Athlon processor at 2GHz, 1024Mb ofRAM and 512Kb
of cache, running version 2.6.7-gentoo-r11 of Linux kernel. We compiled the code with
gcc 3.3.4 using optimization option-O9. Times were obtained using 10 repetitions.

In Fig. 1 we show the construction space forLZTrie andRevTrie. As expected, the
construction space is smaller as we use a greater value ofα. On average, the construc-
tion space ofLZTrie ranges from approximately 0.5 (α = 0.95) to 0.64 (α = 0.5) times
the text size, and from approximately 1.00 (α = 0.95) to 1.27 (α = 0.5) times the size
of the final version ofLZTrie. For construction ofRevTriethe space varies from 0.52
(α = 0.95) to 0.65 (α = 0.5) times the text size, and from 1.47 (α = 0.95) to 1.85
(α = 0.5) times the size of the finalRevTrie. The greater difference amongRevTrieand
its hrbp is due to the fact that the final version of the trie does not store the characters.
As a comparison, the original construction algorithm [26] (labeled “Original” in the
plots) needs on average 1.82 times the text size to hold the normal trie and 3.30 times
to hold the normal reverse trie. The sizes as a fraction of thefinal tries are 3.62 and 9.87
times, respectively.
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Fig. 1. Size of the hrbps ofLZTrieandRevTrie, N1 = 2, Nt = 512.
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Fig. 2. Average user time to buildLZTrie, RevTrieand the whole LZ-index,N1 = 2, Nt = 512.

In the same Fig. 1 (below) we show the space requirements in each step of the
construction. The space to construct LZ-index varies from 1.46 (α = 0.95) to 1.49
(α = 0.5) times the text size, and from 1.00 (α = 0.95) to 1.02 (α = 0.5) times the
size of the final index (labeled “Step 6” in the plots). This confirms that the indexing
space is about the same to that needed by the final index. Forα = 0.5 the maximum is
reached in step 4, as predicted in the analysis. However, forα = 0.95 the maximum is
reached in step 6, mainly because in the experiments the number of nodes of the reverse
trie is (on average)n′ ≈ 1.032n, which is much less than the pesimistic theoretic bound
n′ 6 2n we used in the space requirement analysis.

In Fig. 2 we show the indexing time for the tries and the whole index. The aver-
age indexing rate forLZTrievaries from 0.805Mb/sec (α = 0.95) to 0.828Mb/sec (α =
0.5). ForRevTrieit varies from 0.302Mb/sec (α = 0.95) to 0.309Mb/sec (α = 0.5). The
whole indexing rate varies from 0.217Mb/sec (α = 0.95) to 0.223Mb/sec (α = 0.5). As
we expected, the indexing rate is greater asα becomes smaller. The original construc-
tion has an average indexing rate of 2.745Mb/sec forLZTrie, 2.752Mb/sec forRevTrie,



and 1.310Mb/sec for the whole indexing process. Thus the succinct construction is 6
times slower in practice, as the upper boundO(σn) is too pessimistic.

We also tested our algorithm on DNA data1, where the indexing rate is about
0.197Mb/sec (α = 0.95, N1 = 2, Nt = 192), using on average 1.19 times the text
size of main memory to index. Extrapolating these results wecan argue that the human
genome can be indexed in approximately 4.23 hours and using less than 4 Gb of main
memory. As a comparison, W.-K. Hon et al. [12] argued that they can index the human
genome in 20 hours (although they do not describe the CPU of the machine used).

6 Conclusions and Future Work

In this paper we proposed a practical space-efficient algorithm to construct LZ-index.
The basic idea is to construct the tries of LZ-index using space-efficient intermediate
representations that allow fast incremental insertion of nodes. The algorithm requires
at most(4 + ǫ)uHk + o(u) bits (0 < ǫ < 1) to construct LZ-index for the textT1...u

in time O(σu), beingσ the alphabet size. This is the first construction algorithm of a
compressed full-text index whose space requirement is related toHk (thek-th order em-
pirical entropy of the text). In our experiments the construction required approximately
1.45 times the text size, or 1.02 times the final index size, which is much better than
the original LZ-index construction algorithm (4–5 times the text size), and the indexing
speed was approximately of 5sec/Mb.

We believe that our intermediate hrbp representation couldbe made searchable, so
that it could be taken as the final index. The result would be a LZ-index supporting
efficient insertion of new text. Those pages could also be handled in secondary mem-
ory, so as to have an efficient disk-based LZ-index. Furthermore, the hrbp might have
independent interest as a practical technique to representdynamic general trees in little
space, so we plan to work on making them fully dynamic. For thenear future, we plan
to compare our method against previous work [12], both in time and space.
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