Space-efficient Construction of LZ-index*

Diego Arroyuelo and Gonzalo Navarro

Dept. of Computer Science, University of Chile,
Blanco Encalada 2120, Santiago, Chile.
{darroyue, gnavarro}@ilcc. uchil e. cl

Abstract. A compressed full-text self-indexa data structure that replaces a text
and in addition gives indexed access to it, while taking spaoportional to the
compressed text size. The LZ-index, in particular, requireH (1 + o(1)) bits
of space, where is the text length in characters affi is its k-th order empirical
entropy. Although in practice the LZ-index needs 1.0-1m8ef the text size, its
construction requires much more main memory (around 5 titinegext size),
which limits its applicability to large texts. In this papee present a practical
space-efficient algorithm to construct LZ-index, requirid+€)uH . 4 o(u) bits
of space, for any constafit< ¢ < 1, andO(ou) time, beingo the alphabet size.
Our experimental results show that our method is efficieptattice, needing an
amount of memory close to that of the final index.

1 Introduction and Previous Work

A full-text databasés a system providing fast access to a large mass of textteal Hae
simplest (yet realistic and rather common) scenario is hews. The text collection
is regarded as a unique sequence of charadterg over an alphabel’ of size o,
and the search pattef, _ ,,, as another (short) sequence o¥érThen the text search
problem consists of finding all the:c occurrences of” in T'. To provide fast access,
data structures calléddexesare built on the text. Typical text databases contain nhtura
language texts, DNA or protein sequences, MIDI pitch segesprogram code, etc.

Until a short time ago, the smallest indexes available irciira were the suffix
arrays [21], requiring: log u bits (log meandog, in this paper). Since the text requires
ulog o bits to be represented, this index is usually much larger tha text (typically
4 times the text size). To handle huge texts like the Humano@en(about x 10°
base pairs), one solution is to store the indexes on secpnaamory. However, this
has significant influence on the running time of an applicatas access to secondary
memory is considerably slower.

Several attempts to reduce the space of the suffix trees [@jrays [13,17,19, 1]
focused on reducing the size of the data structures but eadkttt, and did not relate
text compressibility with the size of its index.

A parallel track started at about the same time [15, 14, 10128, 8, 9, 20, 7], with
the distinguishing feature of providingbmpressedndexes, whose sizes are propor-
tional to the compressed text size. Moreover, in most cdlsese indexeseplacethe

* Supported in part by CONICYT PhD Fellowship Program (firsthau) and Fondecyt Grant
1-050493 (second author).

text by being able to reproduce any text substring. This liedaelf-indexing Taking
space proportional to the compressed text, replacingdtpaoviding efficient indexed
access to it, is an unprecedented breakthrough in textingexd compression.

The LZ-index [24-26] is a full-text self-index on these knédased on the Ziv-
Lempel parsing of the text. If the text is parsed intphrasesby the LZ78 algorithm
[29], then the LZ-index take$n logn(1 4 o(1)) bits of space, which is 4 times the size
of the compressed text and also 4 times/tktl order text entropy, i.eluHy, + o((1 +
Hy)u), for anyk = o(logn/log” o) [16, 6]. See the original article for details on its
search algorithms, as we focus only in construction in thjsqp.

However, all these works do not consider the space-effi@denstruction of the
indexes. For example, construction@$-array[28] andFM-index[4] involves build-
ing first the suffix array of the text. Similarly, the LZ-indéxconstructed over a non-
compressed intermediate representation. In both casesie@us about 5 times the text
size. For example, the Human Genome may fit in 1 Gb of main mgmsing these
indexes (and thus it can be operated entirely in RAM on a dps&bmputer), but 15
Gb of main memory are needed to build them! Using secondargiengfor the con-
struction is usually rather inefficient.

The works of T.-W. Lam et al. [18] and W.-K.Hon et al. [12] dedth the space
(and time) efficient construction @S-array The former work presents an algorithm
that use$2H, + 1 + €)u bits of space to build th€S-array whereH, is the0-th order
empirical entropy of the text, andis any positive constant; the construction time is
O(oulog u), which is good enough if the alphabet is small (as in the cABN&\), but
may be impractical in the case of proteins and Oriental laggs, such as Chinese or
Japanese. The second work [12] addresses this problembyingg Hy + 2 + €)u bits
of space an@(u log u) time to build theCS-array Also, they show how to build the
FM-indexfrom CS-arrayin O(u) time.

Our work follows this line of research. We present a prattod efficient algorithm
to construct the LZ-index using little space. Our idea issjglace the (non-compressed)
intermediate representations of the tries that confornmithex by space-efficient coun-
terparts. Basically, we use the balanced parenthesesegpation of Munro and Raman
[23] as an intermediate representation for the tries, bumedify such representation
to allow fast incremental construction directly from th&ttelhe resulting intermedi-
ate data structure consists of a tree whose nodes are srha#icauences of balanced
parentheses, which are easier and cheaper to update. Thss ithspired in the work
of Clark and Munro [3], yet ours differs in numerous techhizspects and practical
considerations (structuring inside the nodes, overflowagament policies, etc.).

Our algorithm requireéi+e)uHj+o(u) bits to build the LZ-index, for any constant
0 < e < 1. This is very close to the space the final LZ-index requiresgerate.
This is thefirst construction algorithm for a self-index requiring spacepanrtional
to Hy, instead ofH,. In practice our algorithm also requires about the same mgmo
as the final index. That is, wherever the LZ-index can be uaedcan build it. The
indexing speed is approximately 5 sec/Mb in a 2GHz machirclwis competitive
with the (non-space-efficient) constructionra¥l-indexand much faster tha@S-array
construction [26]. We argue that our method outperformsiiiire) previous work [12]
when indexing the Human Genome, using about the same inglegarce.

2 The LZ-index Data Structure

Assume that the text’ ., has been partitioned using the LZ78 [29] algorithm into
n—+1blocksT = By ... B, suchthaBy = ¢; Vk # {, By, # By;andVk > 1,3¢ < k,
c € X, B, = By - c. To ensure thaB,, is not a prefix of anotheB;, we append td" a
special character “$# Y. The data structures that conform LZ-index are [26, 25]:

1. LZTrie: is the trie formed by all the blockB, . . . B,,. Given the properties of LZ78
compression, this trie has exactly- 1 nodes, each one corresponding to a string.

2. RevTrie is the trie formed by all the reverse string ... B),. In this trie there
could be internal nodes not representing any block. We lsafieé nodesmpty

3. Node is a mapping from block identifiers to their nodelidiTrie.

4. RNodeis a mapping from block identifiers to their nodeRevTrie

Each of these 4 structures requirelog n(1 + o(1)) = uH(1 + o(1)) bits of space.

For the construction ofZTrie we traverse the text and at the same time build a
normal trie (using one pointer per parent-child relation) of the stsingpresented by
Ziv-Lempel blocks. At step: (assumeB, = B; - ¢), we read the text that follows and
step down the trie until we cannot continue. At this point n@ate a new trie leaf (child
of the trie node of block, by character, and assigning the leaf block numb€r go
to the root again, and go on with stép+ 1 reading the rest of the text. The process
completes when the last block finishes with the text ternoin's”.

Then we compact the normal trie, essentially using the jlaeses representation
of Munro and Raman [23]. We traverse the normal trie in pregndriting an opening
parenthesis when going down to a node, and a closing passthieen going up.

ThelLZTrie structure consists of the above sequence of parenthesea phguence
lets of characters that label each trie edge and a sequdsaoé block identifiers, both
in preorder. We identify a trie node with its opening parenthesis in the representa-
tion. The subtree of contains those nodes (parentheses) enclosed betweerethia@p
parenthesis representingand its matching closing parenthesis.

Once the_ZTrie is built we free the space of the normal trie, and biNlade This
is just an array with the nodes ofLZTrie, using[logn] bits for each. It is built as the
inverse of permutatioits.

To construcRevTriewe traverse.ZTrie in depth-first order, generating each string
stored inLZTrie in constant time, and then inserting it intnarmal trie of reversed
strings We then traverse the trie and represent it using a sequémagentheses and
block identifiersrids. Empty unary nodes are removed only at this step. Finally, we
build the normal reverse trie and bulRNodeas the inverse permutation wds.

In the experiments of the original LZ-index [26, 25], thegast extra space needed
to build LZTrie is that of the normal trie, which is 1.7-2.0 times the texesizhe
indexing space for the normal reverse trie is, in some cddasges the text size. This is,
mainly, because of the empty unary nodes. This space didtaemaximum indexing
space of the algorithm (note that the text itself can be me®a by buffers and hence
does not require significant space). The overall indexiragspvas 4.8-5.8 times the
text size for English text, and 3.4—3.7 times the text sizéfdA. As a comparison, the
construction of a plain suffix array without any extra datacure requires 5 times the
text size.

3 Space-efficient Construction of LZTrie

The main memory requirement to build the LZ-index comes ftbennormal tries used
to build LZTrie andRevTrie We focus on building those tries in little memory, by re-
placing them with space-efficient data structures that stippsertions. These can be
seen as hybrids between normal tries and their final parseshrepresentations.

Let us start with_LZTrie. In its final representation as a linear sequence of balanced
parentheses [23], the insertion of a new node at any posifitme sequence may force
rebuilding the sequence from scratch. To avoid that costywewd on ahierarchical
representation of balanced parentheghebp for short), such that we rebuild only a
small part of the entire sequence to insert a new node.

In a hrbp we cut the trie ipagesthat is, in subsets of trie nodes such that if a node
x is stored in page, then nodey, the parent of, is: (1) also stored iy (enclosing
x), or (2) stored in a page, theparent pageof ¢, and hence is ancestor of all nodes
stored ing. We store irp information indicating that nodgencloses all nodes in In a
hrbp we arrange the pages in a tree, thus the entire trielisgepted by a tree of pages.

We represent a page as a contiguous block of memoryM.et ... < N; be even
integers. We say that a page has sieif it can storeN; parentheses\;/2 nodes),
although its physical size is larger thah bits. Each page of size NV; consists of:V;
bits to represent a subsequence of balanced parentiégédits (theflagg indicating
which opening parentheses (nodes) in a page have theiesutitred in a child page;
[log N;/2] bits to tell the number of nodes stored in the pa@€;/2)[logu] bits to
store the block identifiersds) in the page (in preorder)}V; /2)[log o] bits to store the
charactersléts) in the page (in preorder); and a variable number of poirteichild
pages. The number of pointers varies fromo NV, /2, and it corresponds to the number
of flags with valuel in p. To maintain a constant physical page size, these pointers a
stored in a separately allocated array, and we store a paointieem in the page.

As in the parentheses representatiobstrie, in the hrbp a node encloses its sub-
tree, but not necessarily a node and its subtree are stothdrbihe same page. If the
subtree of the-th opening parenthesis of pages stored in page, thengq is a child
page ofp and thej-th flag inp has the value 1. If the number of flags in 1 beforejthb
flag (not including it) ish, then theh-th pointer ofp points tog. An important property
we enforce is that sibling nodes must be stored all in the gzage.

Initially, the data structure consists of a sole empty pageroot pagg of size Vy.
The construction oEZTrie proceeds as explained in Section 2, but this time the nodes
are inserted in a hrbp dfZTrie, instead of a normal trie. The insertion of a new node
By, = B; - cin the hrbp implies to recompute the page in which the ingeris done.

If the new leaf must becomgth opening parenthesis in the page (counting from left to
right), then we insert(*) ” at the corresponding parentheses position anditieflag

is set to0. Also, cis inserted at positiop within the characters, andis inserted at the
same position within the identifiers.

We do not store information to traverse the parentheseesequn the pages of the
hrbp. Instead, all the navigation inside each page is dangesgially, in a singl€(N;)
time pass: the first child of an opening parenthesis statteatext position (unless that
contains a closing parenthesis, in which case the node & mlthe page), and the next
sibling starts right after the closing parenthesis maglie current position, which is

found sequentially. As we traverse the page, we maintainuhent positiory in flags
idsandlets as well as the courit of 1-bits seen irilags

A page overflowoccurs when inserting a new node in a full pagéf the size ofp
is N;, 1 < i < t, we perform agr ow operation orp, which allocates a new pagé
of size N;,1, copies the content gf to p/, freesp, and replaces the pointer toby a
pointer top’ in the parent op. If the size ofp is IV, instead, we select a subset of nodes
to be copied to a new child page pfnd then deleted from

We only allow the selection of the whole subtree of a node enghge (without
selecting the node itself). This simple way ensures théingjilmodes are always stored
in the same page. As the maximum number of siblings iwe must haveV, > 20 so
that a page with children always has space for its top-levéés at least. We choose the
subtree of maximum size not exceediNg/2 nodes. Itis easy to see that this guarantees
that the size of the new leaf is at least V; /(20) | — 1 nodes.

Assume we have selected in this way the subtree of {ifieopening parenthesis in
the page. The selected subtree is copied to a new Pagéhose size is the minimum
N; suitable to hold the subtree. ASis a new leaf page, all its flags are initialized to
0. Next we add irp a pointer top/, inserted at the currenj+h) position, and set to
1 thej-th bit in flags Finally, we delete fronp the selected subtree. After that, if the
number of parenthesesjndoes not exceedy; for somei < ¢, we perform eshri nk
operation, which is the opposite of ow.

Once we solved the overflow, the insertion of the new node naag ko be done in
p or in p’, but we are sure that there is room for the new pair of parsethi either
page. The following lemma states the condition to achievéndmum fill ratio « in the
pages of the data structure, thus controlling the wastecksfde proof is obvious.

Lemma 1. Let0 < « < 1 be a real number. If each page has the smallest posible size
N; to hold its parentheses, and we defiNe= N;_1/a,i = 2,...,t,and2 < Ny <
2/, then all pages of the data structure have a fill ratio of atsiea

As the trie has: nodes, we neen + n + nlogu + nlogo + nlogu(20/Ny)
bits of storage to represent the parentheses, flags, i@estiiharacters and pointers
to child pages, respectively. The last bound holds becase$ are created with at
least N;/(20) nodes and thus there is at worst one pointer for egh(20) nodes
(except the root). If, in addition, we define thgs as in Lemma 1, in the worst case the
construction algorithm needs(3 + log o + (1 4 20 /N¢) log u) bits of storage. We can
relate this space requerimentify.: asn log u = wH+O(knlog o) foranyk [16], and
sincen < u/log, u, the space i¢2ZNey ;. 4 o(u) for anyk = o(logn/ log® o).

When constructing ZTrie, the navigational cost per character of the tex®{sV;)
in the worst case. Hence, the overall navigational coél(i3’;u). On the other hand,
the cost of rebuilding pages after an insertio®{sV;), with or without page overflows.
As there aren insertions, the total cost (3(/Vyn). However, the constant involved with
page overflows is greater than that of simple insertions thyractice we expect that
larger values oty yield a greater construction time (and a smaller space repgnt).

In general, choosing/; = 20/~ for any constand < v < 1, we getlfT”qu + o(u)
bits of space, which can be ma@e+ e)uH}, + o(u) for any constand < € < 1 by
properly choosing' anda. The construction time i@(%au) = O(ou).

Once we construct the hrbp foZTrie, we build the final version dfZTriein O(n)
time. We perform a preorder traversal on the hrbp, writin@p@ning parenthesis each
time we reach a node, then checking the corresponding flaggrsing the subtree of
the node recursively in preorder (which, depending of thg, flaay be stored in the
same or in a child page), and then writing a closing pareighes

4 Space-efficient Construction oRevTrie

For the space-efficient construction®évTrie we use a hrbp to represent not the orig-
inal reverse trie but itPATRICIA treg[22], which compressesmptyunary paths of
the reverse trie. This yields an important saving of spaced@/not store the skips in
each node since they can be computed using the connectiohditie. We store, in
the nodes of the reverse trie, pointers to nodeszdirie, instead of the corresponding
block identifiers. Each pointer usé®g 2n] bits. This is done to avoid accessNode
when constructing the reverse trie, so we can bNiddieafter both tries have been built
(thus reducing the indexing space). The empty non-unargsiade marked by storing
in them the same pointer tZ Trie stored in their first child.

To construct the reverse trie we travets&lrie in depth-first order, generating each
string B, stored inLZTrie in constant time, and then inserting its revefsginto the
reverse trie. As we compress empty unary paths, the edgbs tfi¢ are labeled with
strings instead of simple characters. TRETRICIAtree stores only the first character
of the string that labels the edge. Given a node the reverse trie, the position of the
character inB] on whichv discriminates is 1 plus the length of the string represented
bywv. If vis not an empty node, then it stores a pointdrZdrie noden,,. The length of
the string is the same as the deptmgfin LZTrie, which can be computed in constant
time [26]. On the other hand, ifis an empty node, we we must use instead a procedure
similar to that used in [26] to compute the string that lalagi€dge of the trie.

The hrbp of the reverse trie requires at leasen’ + n’ + n’log2n + n’logo +
(20 /N¢)n' logn') bits of storage to represent the parentheses, flags, pototer Trie,
characters and pointers to child pages, respectively, avlier> n is the number of
nodes in the reverse trie. As we compress unary paths, 2n, and thus the space is
upper bounded bﬁ%u[ik + o(u). However, in practice we expect thatwill
be much less tha2n (see Section 5 for empirical results).

For each string3! to be inserted in the reverse trie,< ¢ < n, the navigational
cost isO(N;|B?| + | B7|?) in the worst case (when we wotk(N;) per character, and
every traversed node is empty). The total constructionisdst,_, (N:|B!| + |B!'|?).
The sum)_"_, |Br'|? is usuallyO(ulog, u), but in pathological cases it 8(u®/2).

To have a better theoretical bound, we can explicitly stbeeskips, usin@ loglog u
extra bits per node (insertingmptyunary nodes when the skip is exceeded). In this
way, one of eachog? u empty unary nodes could be explicitly represented. In the
worst case there ar@(u) empty unary nodes, of whic@(@) are explicitly rep-
resented. This meam$u) extra bits in the hrbp, and the construction cost is reduced t
Yo (NyBY| + |BY]). As Y ., |BY| = u, the total cost i) (N, u).

After we construct the hrbp for the reverse trie, we constReyTriedirectly from
the hrbp inO(n’) time, replacing the pointers tioZTrie by the corresponding block

identifiers (ids), and then we free the space of the hrbp. If we wdeg n bits for the
rids array,RevTrierequire2u Hy, + o(u) bits of storage. Instead, we can represent the
rids array withn logn bits (i.e., only the non-empty nodes), plus a bitmaofl +
o(1)) bits supporting-ank queries inO(1) time [27]. Thej-th bit of the bitmap is 1 if
the node represented by thi¢h open parenthesis is not an empty node, otherwise the
bitis 0. Therids index corresponding to theth opening parenthesisignk(j). Using
this representatiorRevTrierequiresuHy, + o(u) bits of storage. This was unclear in
the original LZ-index paper [26, 25].
We finally build Nodemapping fromids array in timeO(n) andn logn = uH}, +
o(u) bits of space, anBNodefromrids in O(n’) time andn logn’ = uHy, + o(u) bits.
Now we summarize the construction process, and show in ff@ses the total
space requeriment and the time in each step. Then, we cawiitid a theorem.

1. We build the hrbp oEZTrie from the text (1 + €)uH}, + o(u) bits, O(ou) time).

2. We buildLZTrie from its hrbp (1 + €)uH}y + uHj, + o(u) bits, O(n) time).

3. We free the hrbp dfZTrie and build the hrbp of the reverse trie frdmd Trie ((2 +
e)uHy, + uHy, + o(u) bits, O(ou) time).

4. We buildRevTriefrom its hrbp (2 + ¢)uHy, +uH}y +uHj + o(u) bits, O(n) time).

5. We free the hrbp oRevTrieand buildNodefrom ids (uHjy + uwHy + uHy + o(u)
bits, O(n) time).

6. We buildRNodefromrids (uHy + uwHy + uHy, + uHy + o(u) bits, O(n) time).

Theorem 1. Our space-efficient algorithm to construct LZ-index regairl +¢)uHj,+
o(u) bits of space, reached at step 4 above, &idw) time. This holds for any constant
0 < e < 1and anyk = o(logn/log® 7).

5 Experimental Results

For the experiments we use the filesuned. 88- 91 from theOHSUMEDcollection
[11], as a representative of other text collections we testach as DNA, music, and
others. We use incremental subsets of the file, ranging froktblto 100Mb. We run
our experiments on an AMD Athlon processor at 2GHz, 1024MBAM and 512Kb
of cache, running version 2.6.7-gentoo-r11 of Linux kerkiéd compiled the code with
gcc 3. 3. 4 using optimization option09. Times were obtained using 10 repetitions.

In Fig. 1 we show the construction space ExTrie andRevTrie As expected, the
construction space is smaller as we use a greater value®h average, the construc-
tion space of ZTrie ranges from approximately 0.& (= 0.95) to 0.64 (@« = 0.5) times
the text size, and from approximately 1.00£€ 0.95) to 1.27 ¢ = 0.5) times the size
of the final version ol ZTrie. For construction oRevTriethe space varies from 0.52
(o = 0.95) to 0.65 (v = 0.5) times the text size, and from 1.4& (= 0.95) to 1.85
(a = 0.5) times the size of the fin&evTrie The greater difference amofRgvTrieand
its hrbp is due to the fact that the final version of the triesdoet store the characters.
As a comparison, the original construction algorithm [2@p€led “Original” in the
plots) needs on average 1.82 times the text size to hold tireaildrie and 3.30 times
to hold the normal reverse trie. The sizes as a fraction ditlaétries are 3.62 and 9.87
times, respectively.

LZTrie construction space RevTrie construction space

alpha=0.5 —A&— alpha=0.5 —&— l
160 alpha=0.6 —>%— alpha=0.6 —X—
alpha=0.7 —S&— 300 alpha=0.7 —&—
140 alpha=0.8 —5— alpha=0.8 —5—
4] alpha=0.9 —@— $ 250 alpha=0.9 —@—
B 120 alpha=0.95 —— > alpha=0.95 ——
% 100 Original —&— :.} 200 Original —&—
3 =
= T 150
@ o
& 8
»n » 100
504
0
10 20 30 40 50 60 70 8 90 100 10 20 30 40 50 60 70 80 90 100
Megabytes of text Megabytes of text
Space requirement of LZ-index construction, alpha=0.5 Space requirement of LZ-index construction, alpha=0.95
@ @
2)
5 5
2 2
3 3
> >
g g
= =
£ =
@ ©
N N
2]]
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Megabytes of text Megabytes of text

Fig. 1. Size of the hrbps ofZTrieandRevTrie N; = 2, N; =512.

LZTrie construction time RevTrie construction time LZ-index construction time

apha=05 —B— alpha=05 alpha=05

alpha=0.6 —»— alpha=0.6 —%— 450 [alpha=0.6 —X—
120 alpha=0.7 —6— 300 alpha=0.7 —6— P alpha=0.7 —6—

alpha=0.8 —5— alpha=0.8 —E— 00 alpha=0.8 —E—

100 | alpha=0.9 —@—
alpha=0.95 —m—
Original ——

250 | alpha=0.9 —@—
alpha=0.95 —m—

200 Original —¢— Original —¢—

Seconds of user time
Py
8
Seconds of user time
Seconds of user time
»
]
g

0 0 0
10 20 30 40 50 60 70 8 90 100 10 20 30 40 50 60 70 8 90 100 10 20 30 40 50 60 70 8 90 100
Megabytes of text Megabytes of text Megabytes of text

Fig. 2. Average user time to buildZTrie, RevTrieand the whole LZ-indexV1 = 2, N; = 512.

In the same Fig. 1 (below) we show the space requirementsci s@p of the
construction. The space to construct LZ-index varies frod6Xx = 0.95) to 1.49
(o = 0.5) times the text size, and from 1.08 < 0.95) to 1.02 (v = 0.5) times the
size of the final index (labeled “Step 6” in the plots). Thisfians that the indexing
space is about the same to that needed by the final indexx Eo.5 the maximum is
reached in step 4, as predicted in the analysis. Howeved, for0.95 the maximum is
reached in step 6, mainly because in the experiments theenwhbodes of the reverse
trie is (on average)’ =~ 1.032n, which is much less than the pesimistic theoretic bound
n’ < 2n we used in the space requirement analysis.

In Fig. 2 we show the indexing time for the tries and the whaolgex. The aver-
age indexing rate fdrZTrie varies from 0.805Mb/see= 0.95) to 0.828Mb/secq =
0.5). ForRevTrieit varies from 0.302Mb/see(= 0.95) to 0.309Mb/secq = 0.5). The
whole indexing rate varies from 0.217Mb/sec£ 0.95) to 0.223Mb/secq = 0.5). As
we expected, the indexing rate is greatenasecomes smaller. The original construc-
tion has an average indexing rate of 2.745Mb/set ®rie, 2.752Mb/sec foRevTrie

and 1.310Mb/sec for the whole indexing process. Thus theisticconstruction is 6
times slower in practice, as the upper boun@n) is too pessimistic.

We also tested our algorithm on DNA datawhere the indexing rate is about
0.197Mb/secq = 0.95, N; = 2, N; = 192), using on average 1.19 times the text
size of main memory to index. Extrapolating these resultsaveargue that the human
genome can be indexed in approximately 4.23 hours and usasghan 4 Gb of main
memory. As a comparison, W.-K. Hon et al. [12] argued thay tten index the human
genome in 20 hours (although they do not describe the CPUeahtichine used).

6 Conclusions and Future Work

In this paper we proposed a practical space-efficient alyarto construct LZ-index.
The basic idea is to construct the tries of LZ-index usingespefficient intermediate
representations that allow fast incremental insertionagfes. The algorithm requires
at most(4 + ¢)uHy + o(u) bits (0 < ¢ < 1) to construct LZ-index for the texf; .,

in time O(ou), beingo the alphabet size. This is the first construction algorittira o
compressed full-textindex whose space requirement itetta H;, (thek-th order em-
pirical entropy of the text). In our experiments the condtian required approximately
1.45 times the text size, or 1.02 times the final index sizachvis much better than
the original LZ-index construction algorithm (4-5 timeg tiext size), and the indexing
speed was approximately of 5sec/Mb.

We believe that our intermediate hrbp representation cbelchade searchable, so
that it could be taken as the final index. The result would b&Zdridex supporting
efficient insertion of new text. Those pages could also belleahnin secondary mem-
ory, so as to have an efficient disk-based LZ-index. Furtieeenthe hrbp might have
independent interest as a practical technique to repregeamic general trees in little
space, so we plan to work on making them fully dynamic. Fomtsar future, we plan
to compare our method against previous work [12], both iretand space.

References

1. M. Abouelhoda, E. Ohlebusch, and S. Kurtz. Optimal exaitigsmatching based on suffix
arrays. InProc. SPIRE’02LNCS 2476, pages 31-43, 2002.

2. A Apostolico. The myriad virtues of subword trees dambinatorial Algorithms on Words
NATO ISI Series, pages 85-96. Springer-Verlag, 1985.

3. D. Clark and J. I. Munro. Efficient suffix trees on secondstigrage. InProc. SODA'96
pages 383-391, 1996.

4. P. Ferragina and G. Manzini. Opportunistic data strestwith applications. IrProc
FOCS’0Q pages 390-398, 2000.

5. P. Ferragina and G. Manzini. An experimental study of gmodpinistic index. InProc.
SODA'0], pages 269-278, 2001.

6. P. Ferragina and G. Manzini. On compressing and indexatg. dfechnical Report TR-02-
01, Dipartamento di Informatica, Univ. of Pisa, 2002.

1 52.71Mb fromGenBankHomo Sapiens DNAqt t p: / / www. ncbi . nl m ni h. gov).

~

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

20.

P. Ferragina, G. Manzini, V. Makinen, and G. Navarro. Aghabet-friendly FM-index. In
Proc.SPIRE'04LNCS 3246, pages 150-160. Springer, 2004.

. R. Grossi, A. Gupta, and J. S. Vitter. High-order entropyapressed text indexes. Rmoc.

SODA'03 pages 841-850. SIAM, 2003.

. R. Grossi, A. Gupta, and J.S. Vitter. When indexing eqoatapression: experiments with

compressing suffix arrays and applicationsPtoc. SODA'04 pages 636—645. SIAM, 2004.
R. Grossi and J.S. Vitter. Compressed suffix arrays affiet siees with applications to text
indexing and string matching. roc. STOC’0Qpages 397—-406, 2000.

W. Hersh, C. Buckley, T. Leone, and D. Hickam. Ohsumedineractive retrieval evalua-
tion and new large test collection for researchPhoc. SIGIR'94 pages 192-201, 1994.

W. K. Hon, T. W. Lam, K. Sadakane, and W. K. Sung. Consingatompressed suffix arrays
with large alphabets. IRroc. ISAAC'03LNCS 2906, pages 240-249, 2003.

J. Karkkainen. Suffix cactus: a cross between suffexare suffix array. IfProc. CPM’95
LNCS 937, pages 191-204, 1995.

J. KarkkainenRepetition-based text indexeBhD thesis, Dept. of Computer Science, Uni-
versity of Helsinki, Finland, 1999.

J. Karkkainen and E. Ukkonen. Lempel-Ziv parsing amalisear-size index structures for
string matching. IProc. WSP’96pages 141-155. Carleton University Press, 1996.

R. Kosaraju and G. Manzini. Compression of low entropyngs with Lempel-Ziv algo-
rithms. SIAM Journal on Computing9(3):893-911, 1999.

S. Kurtz. Reducing the space requeriments of suffix tféeshnical Report 98-03, Technis-
che Kakultat, Universitat Bielefeld, Germany, 1998.

T. W. Lam, K. Sadakane, W. K. Sung, and S. M. Yiu. A spacetand efficient algorithm
for constructing compressed suffix arrays Pimc. COCOON 2002pages 401-410, 2002.
V. Makinen. Compact suffix array - a space-efficient-fekt index. Fundamenta Informat-
icag 56(1-2):191-210, 2003.

V. Makinen and G. Navarro. Succinct suffix arrays basedun-length encoding. IRroc.
CPM’'05, LNCS 3537, pages 45-56, 2005.

U. Manber and G. Myers. Suffix arrays: A new method for mre-6tring searchesSIAM
Journal on Computing22(5):935-948, 1993.

D. R. Morrison. Patricia — practical algorithm to retgenformation coded in alphanumeric.
Journal of the ACM15(4):514-534, 1968.

I. Munro and V. Raman. Succinct representation of badnmrentheses, static trees and
planar graphs. IProc. FOCS'97 pages 118-126, 1997.

G. Navarro. Indexing text using the Ziv-Lempel trie Aroc. SPIRE'04LNCS 2476, pages
325-336, 2002.

G. Navarro. Indexing text using the Ziv-Lempel trie. fieical Re-
port TR/DCC-2002-2, Dept. of Computer Science, Univ. of I€hi 2002.
ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/l zi ndex. ps. gz.

G. Navarro. Indexing text using the Ziv-Lempel trdmurnal of Discrete Algorithms (JDA)
2(1):87-114, 2004.

V. Raman and S. Rao. Static dictionaries supporting.remRroc. ISAAC '99LNCS 1741,
pages 18-26, 1999.

K. Sadakane. Compressed text databases with efficieng glgorithms based on the com-
pressed suffix array. IRroc. ISAAC’'0QLNCS 1969, pages 410—421, 2000.

J. Zivand A. Lempel. Compression of individual sequsnda variable—rate codindEEE
Trans. Inform. Theory24(5):530-536, 1978.

