
Approximate Regular Expression Searhingwith Arbitrary Integer Weights?Gonzalo NavarroDept. of Computer Siene, Univ. of Chile. gnavarro�d.uhile.l.Abstrat. We present a bit-parallel tehnique to searh a text of lengthn for a regular expression of m symbols permitting k di�erenes in worstase time O(mn= logk s), where s is the amount of main memory thatan be alloated. The algorithm permits arbitrary integer weights andmathes the best previous omplexities, but it is muh simpler and fasterin pratie. In our way, we de�ne a new reurrene for approximatesearhing where the urrent values depend only on previous values.1 Introdution and Related WorkThe need to searh for regular expressions arises in many text-based appliations,suh as text retrieval, text editing and omputational biology, to name a few. Aregular expression (RE) is a generalized pattern omposed of (i) basi strings,(ii) union, onatenation and Kleene losure of other REs [1℄. We all m thelength of our RE, not ounting operator symbols. The alphabet is denoted by�, and n is the length of the text.The traditional tehnique to searh for a RE [1℄ �rst builds a nondeterministi�nite automaton (NFA) and then onverts it to a deterministi �nite automaton(DFA), whih is �nally used to searh the text in O(n) time. This is worst-aseoptimal in terms of n. The main problem has been always the preproessing timeand spae requirement to ode the DFA, whih an be as high as O(22mj�j) ifthe lassial Thompson's NFA onstrution algorithm [10℄ is used. Thompson'sonstrution produes up to 2m states, but it has interesting properties, suh asensuring a linear number of edges and onstant in/out-degree.An alternative NFA onstrution is Glushkov's [3, 2℄. Although it does notprovide the same regularities of Thompson's, this onstrution has other usefulproperties, suh as produing the minimum number of states (m+1) and that allthe edges arriving at a node are labeled by the same harater. The orrespondingDFA needs only O(2mj�j) spae, whih is signi�antly less than the worst aseusing Thompson's NFA. Nevertheless, this is still exponential in m.Two tehniques have been lassially used to ope with the spae problem.The �rst is to use lazy DFAs, where the states are built only when they arereahed. This ensures that no more than O(n) extra spae is neessary. Theseond hoie [10℄ is to diretly use the NFA instead of onverting it to deter-ministi. This requires only O(m) spae, but the searh time beomes O(mn).Both approahes are slow in pratie if the RE is large.? Partially supported by Fondeyt grant 1-020831.

Newer tehniques have provided better spae-time tradeo�s by using hybridsbetween the NFA and the DFA. Based on the Four Russians tehnique, whihpreomputes large tables that permit proessing several automaton states inone shot, it has been shown that O(mn= log s) searh time is possible usingO(s) spae [4℄. The use of Thompson's automaton is essential for this approahwhih, however, is rather ompliated. Simpler solutions obtaining the sameomplexities have been obtained later using bit-parallelism, a tehnique to pakseveral NFA states in a single mahine word and update them as a single state. A�rst solution [12℄, based on Thompson's onstrution, uses a table of size O(22m)that an be split into t tables of size O(22m=t) eah, at a searh ost of O(tn)table inspetions. A seond solution [8℄ uses Glushkov's automaton and uses ttables of size O(2m=t) eah, whih is muh more eÆient in spae usage. In bothases, O(mn= log s) searh time is obtained using O(s) spae.Several appliations in omputational biology, data mining, text retrieval,et. need an even more sophistiated form of searhing: An integer threshold kis given, so that we have to report the text substrings that an math the REafter performing several harater insertions, deletions and substitutions, whosetotal ost or weight does not exeed k. Eah operation may have a di�erentweight depending on the haraters involved. This problem is alled \approxi-mate regular expression searhing", as opposed to \exat" searhing.Instead of being just ative or inative, every NFA node has now k+2 possiblestates, aording to the weight of the di�erenes needed to math the text (0 tok, or more than k). If one applies the lassial DFA onstrution algorithm, thespae requirement raises to O((k+2)2m) using Thompson's NFA and O((k+2)m)using Glushkov's NFA. A dynami programming based solution with O(mn) timeand O(m) spae exists [5℄. Although this is an ahievement beause it retainsthe time omplexity of the exat searh version and handles real-valued weights,it is still slow. The Four Russians tehnique has been graefully extended tothis problem [13℄, obtaining O(mn= logk s) time using O(s) spae. Again, thisalgorithm is rather ompliated.Sine bit-parallel solutions have, for many related problems, yielded fast andsimple solutions, one may wonder what have they ahieved here. For the aseof unitary osts (that is, all the weights are 1), bit-parallel solutions exist whihresort to simulating k + 1 opies of the NFA used for exat searhing. Theyahieve O(ktn) time using O(22m=t) spae [12℄ or O(2m=t) spae [6℄. This yieldsO(kmn= log s) time using O(s) spae, inferior to the ahievement of the FourRussians tehnique. Despite this worse omplexity, bit-parallel solutions are byfar the fastest for moderate sized REs. Yet, they are restrited to unitary osts.The aim of this paper is to overome the tehnial problems that have pre-vented the existene of a simple O(mn= logk s) time and O(s) spae bit-parallelsolution to approximate RE searhing with arbitrary integer weights. We buildover Glushkov's NFA and represent the state of the searh usingmd1+log2(k+2)ebits. We then use t tables of size O((k + 2)m=t) and reah O(tn) searh time.We use the following terminology for bit-parallel algorithms. A bit mask isa sequene of bits, where the lowest bit is written at the right. Typial bit

operations are in�x \j" (bitwise or), in�x \&" (bitwise and), pre�x \�" (bitomplementation), and in�x \<<" (\>>"), whih moves the bits of the �rstargument (a bit mask) to higher (lower) positions in an amount given by theargument on the right. Additionally, one an treat the bit masks as numbers andobtain spei� e�ets using the arithmeti operations \+", \�", et. Exponen-tiation is used to denote bit repetition, e.g., 031 = 0001, and [x℄` represents aninteger x using ` bits. Finally, X � x, where X is a bit mask and x is a number,is the exat result of the multipliation, that is, a bit mask where x appears inthe plaes where X has 1's.An extended version of this paper, with all the details, an be found in [7℄.2 A Bit-Parallel Exat Searh AlgorithmWe desribe in this setion the exat bit-parallel solution we build on [8℄. Thelassial algorithm to produe a DFA from an NFA [1℄ onsists in making eahDFA state represent a set of NFA states that may be ative at some point. Ourway to represent the states of a DFA (i.e., the sets of states of an NFA) is a bitmask of O(m) bits. The bit mask has in 1 the bits that belong to the set. Weuse set notation or bit mask notation indistintly.Glushkov's NFA onstrution algorithm an be found in [3, 2℄. We just re-mark some of its properties. Given a RE of m haraters (not ounting operatorsymbols), the algorithm de�nes m + 1 positions numbered 0 to m (one per po-sition of a harater of � in the RE, plus an initial position 0). Then, the NFAhas exatly one state per position, the initial state orresponding to position 0.Two tables are built: B(�), the set of positions of the RE that ontain harater�; and Follow(x), the set of NFA states that an be reahed from state x inone transition1. From these two tables, the transition funtion of the NFA isomputed: Æ : f0 : : :mg �� ! }(f0 : : :mg), suh that y 2 Æ(x; �) if and only iffrom state x we an move to state y by harater �. The algorithm gives also aset of �nal states, Last, whih again will be represented as a bit mask.Important properties of Glushkov's onstrution follow. (1) The NFA is "-free. (2) All the arrows leading to a given NFA state are labeled by the sameharater: the one at the orresponding position. (3) The initial state does notreeive any transition. (4) Æ(x; �) = Follow(x) \ B(�).Property (4) permits a very ompat representation of the DFA transitions.The onstrution algorithm is written so that tables B and Follow representthe sets of states as bit masks. We use B as is and build a large table J , thedeterministi version of Follow. That is, J is a table that, for every bit mask Drepresenting a set of states, stores J [D℄ = Si2D Follow(i). Then, by Property(4) it holds that, if the urrent set of ative states is D and we read text harater�, then the new set of ative states is J [D℄ \ B[�℄. For searh purposes, weset state 0 in J [D℄ for every D and in B[�℄ for every �, and report every text1 This is omputed from the RE, sine the NFA does not yet exist. Also, for simpliity,we assume that Follow(0) = First, the states reahable from the initial state.

position j where D \ Last 6= ;. (In fat, state 0 needs not be represented, sineit is always ative when searhing.)Hene we need only O(2m + j�j) spae instead of the O(2mj�j) spae ofthe lassial representation. Spae-time tradeo�s are ahieved by splitting tableJ . The splitting is done as follows. We build two tables J1 and J2, whih givethe set of states reahed from states 0 : : : ` and ` + 1 : : :m, respetively, with` = b(m + 1)=2. Then, if we aordingly split the urrent set of states D intoleft and right submasks, D = D1 : D2, we have J [D℄ = J1[D1℄ [J2[D2℄. TablesJ1 and J2 need only O(2m=2) spae eah. This generalizes to using t tables, for anoverall spae requirement of O(t2m=t) and a searh ost of O(tn) table aesses.3 A New Reurrene for Approximate SearhingWe start with an exat formulation for our problem. Let R be a RE generatinglanguage L(R) � ��. Let m be the number of haraters belonging to � in R.Let T1:::n 2 �� be the text, a sequene of n symbols. The problem is, given R,T , and k 2 N, to report every text position j suh that, for some j0 � j andP 2 L(R), ed(Tj0:::j ; P) � k. The edit distane, ed(A;B), is the minimum sum ofweights of a sequene of harater insertions, deletions and substitutions neededto onvert A into B. The weights are represented by a funtion !, where !(a; b)is the ost to substitute harater a by harater b in the text, !(a; ") is the ostto delete text harater a, and !("; b) is the ost to insert harater b in the text.Funtion ! satis�es !(a; a) = 0, nonnegativity, and triangle inequality.The lassial dynami programming solution for approximate string mathing[9℄, for the ase where R is a simple string P1:::m, reomputes for every textposition j a vetor C0:::m, where Ci = minj0�j ed(Tj0:::j ; P1:::i). Hene every textposition j where Cm � k is reported. C is initialized as Ci = i and then updatedto C 0 at text position j using dynami programming:C 0i min(!(Tj ; Pi) + Ci�1; !(Tj ; ") + Ci; !("; Pi) + C 0i�1)where C 00 = 0. The �rst omponent refers to a harater mathing or substi-tution, the seond to deleting a text harater, and the third to inserting aharater in the text. If we have a general RE R built using Glushkov's algo-rithm, with positions 1 to m, this generalizes as follows. We all Li the set ofstrings reognized by the automaton if we assume that the only �nal state is i.Then Ci = minj0�j;P2Li ed(Tj0:::j ; P) is omputed as follows:C 0i min(Si(Tj) + mini02Follow�1(i)Ci0 ; D(Tj) + Ci; Ii + mini02Follow�1(i)C 0i0) (1)where Si(a) = !(a;Ri), D(a) = !(a; "), Ii = !(";Ri), and Ri is the only hara-ter suh that B(Ri) = fig: Thanks to Property (2), we know that all the edgesarriving at state i are labeled by the same harater, Ri. C0 is always 0 beauseit refers to the initial state, so L0 = f"g.Note that the main di�erene in the generalization is that, in the ase of asingle pattern, every state i has a unique predeessor, state i�1. Here, the set of

predeessor states, Follow�1(i), an be arbitrarily omplex. In the third ompo-nent of Reurrene (1) (insertions in the text) we have a potential dependeneproblem, beause in order to ompute C 0 for state i we need to have already om-puted C 0 for states that preede i, in an automaton that an perfetly ontainyles. There are good previous solutions to this irular dependene problem[5℄, but these are not easy to apply in a bit-parallel ontext.We present a new solution now. We will use the form i(r) in minimization ar-guments, whose range is as follows: i(0) = i and i(r+1) 2 Follow�1(i(r)). Also, wewill denote Si(r) = Si(r) (Tj) and D = D(Tj). Let us now unfold Reurrene (1):C 0i min (Si +mini(1) Ci(1) ; D + Ci;Ii +mini(1) min(Si(1) +mini(2) Ci(2) ; D + Ci(1) ; Ii(1) +mini(2) C 0i(2)))where after a few manipulations we obtainC 0i min (D + Ci;mini(1) (Si + Ci(1));mini(1) (Ii + Si(1) +mini(2) Ci(2));mini(1) (Ii +D + Ci(1));mini(1) (Ii + Ii(1) +mini(2) C 0i(2)))The term mini(1) (Ii + D + Ci(1)) an be removed beause, by de�nition ofCi, Ci � mini(1) Ii + Ci(1) (third omponent of Reurrene (1) applied to theomputation of C), and we have already D+Ci in the minimization. We fatorout all the minimizing operators and getC 0i min(D + Ci; mini(1);i(2) min(Si + Ci(1) ; Ii + Si(1) + Ci(2) ; Ii + Ii(1) + C 0i(2)))By unfolding C 0i(2) and doing the same manipulations again we getC 0i min(D + Ci; mini(1) ;i(2) ;i(3)min (Si + Ci(1) ; Ii + Si(1) + Ci(2) ;Ii + Ii(1) + Si(2) + Ci(3) ; Ii + Ii(1) + Ii(2) + C 0i(3)))and we an ontinue until the latter term exeeds k + C 0i(r+1) , whih is notinteresting anymore. The resulting reurrene does not depend anymore on C 0,and will beome our working reurrene:C 0i min(D + Ci; minr�0 mini(1):::i(r) X0�u<r Ii(u) + Si(r) + Ci(r+1)) (2)4 A Bit-Parallel Approximate Searh AlgorithmWe will represent the Ci vetor in a bit mask. Eah ell Ci will range in theinterval 0 : : : k + 1, so we will need ` = dlog2(k + 2)e bits to represent it. Thereason is that, if a ell value is larger than k + 1, we an assume that its valueis k + 1 and the outome of the searh will be the same [11℄. For tehnialreasons that are made lear soon, we will need an extra bit per ell, whih

CalWeights (!; B; k; m; `)1. I 0(1+`)m2. For 2 � Do3. D[℄ (0[min(!(; "); k + 1)℄`)m4. S[℄ 0(1+`)m5. For i 2 1 : : :m Do6. If B[℄ & 0m�i10i�1 6= 0m Then7. I I j 0(1+`)(m�i)0[min(!(";); k + 1)℄`0(1+`)(i�1)8. For 0 2 � Do9. S[0℄ S[0℄ j 0(1+`)(m�i)0[min(!(0;); k + 1)℄`0(1+`)(i�1)Fig. 1. Computation of tables I, D and S from ! and B.will always be zero. Sine C0 is always 0, it does not need to be represented.Hene we need m(1 + `) bits overall. The bit mask will represent the sequeneof ells C = 0[Cm℄` 0[Cm�1℄` : : : 0[C2℄` 0[C1℄`. We use as many omputer wordsas needed to store C (a single ell will not be split among omputer words).From the parsing of the RE, we reeive the tables B and Follow, where thesets are represented as bit masks of length m+ 1 (see previous work for details[8℄). We will preproess B so as to produe bit-parallel versions of Ii, D and Si.These will be alled I , D[�℄ and S[�℄, respetively. The omputation of thesevalues from ! and B is shown in Figure 1.We use a table J (an extended version of previous simpler table J), whihmaps bit masks of length m(1+ `) into bit masks of length m(1 + `), as follows:J [0[Cm℄` 0[Cm�1℄` : : : 0[C2℄` 0[C1℄` ℄ = 0[Mm℄` 0[Mm�1℄` : : : 0[M2℄` 0[M1℄`where Mi = mini02Follow�1(i)Ci0That is, for eah searh state C, J indiates how the values in C propagatethrough NFA edges. If several states i0 propagate to a single state i, we hoosethe minimum value. We aount for the zeros propagated from the unrepresentedinitial state 0.Let us now onsider Reurrene (2). Assume that C is our urrent searhstate. The �rst part of the minimum (D + Ci) is easily obtained in bit-parallel,as E C + (0[D℄`)m. If D turns out to be larger than k + 1 we set D = k + 1.The result of the sum an give us values as large as 2(k + 1) in the ounters.Our extra bit per ell an hold the overow, but we have to replae the valuesof the overown ounters by k + 1 in order to ontinue our proess. We detetthe overown ounters by preomputing W (10`)m and doing Z E & W .Then, Z Z � (Z >> `) will be a sequene of all-0 or all-1 ells, where theall-1 ones orrespond to the overown ounters. These are restored to k + 1 bydoing E (E & � Z) j (0[k + 1℄`)m & Z).

Let us all H the seond, omplex part of the main minimum of Reur-rene (2). One we obtain H , we have to obtain C 0 Min(E;H), where Mintakes the element-wise minimum over two sequenes of values, in bit-parallel.Bit-parallel minimum an be obtained with a tehnique similar to the oneused above to restore overown values. Say that we have to omputeMin(X;Y),where X and Y ontain several ounters (nonnegative integers) properly aligned.We need the extra highest bit per ounter, whih is always zero. We use maskW and perform the operation Z ((X j W)� Y) & W . The result is that, inZ, eah highest bit is set if and only if the ounter of X is larger than that ofY . We now ompute Z Z � (Z >> `), so that the ounters where X is largerthan Y have all their bits set in Z, and the others have all the bits in zero. Wenow hoose the minima as Min(X;Y) (Y & Z) j (X & � Z).We fous now on the most omplex part: the omputation of H . Let us on-sider A = J [C℄+S[Tj ℄, and assume that we have again solved overow problemsin A2. The i-th element ofA is, by de�nintion of J ,Ai = Si+mini02Follow�1(i) Ci0 .Now, onsider J [A℄ + I . Its i-th value isIi + mini02Follow�1(i)Ai0 = Ii + mini02Follow�1(i)(Si0 + mini002Follow�1(i0)Ci00)= mini(1) ;i(2)(Ii + Si(1) + Ci(2))If we ompute J [J [A℄+I ℄+I , we have that its i-th value is mini(1) ;i(2);i(3) (Ii+Ii(1) +Si(2) +Ci(3)), and so on. Let us de�ne f(A) = J [A℄ + I and f (r)(A) as theresult of taking r times f over A. Then, we have thatf (r)(A) = mini(1):::i(r)(X0�u<r Ii(u) + Si(r) + Ci(r+1))and hene the H we look for isH [A℄ = Min�A; f(A); f (2)(A); f (3)(A); : : :�To onlude, we have to report every text position where it holds Ci � kfor a �nal state i. The parsing yields an (m + 1)-bits long mask of �nal states,Last. We will preompute a mask F = 0[Fm℄` 0[Fm�1℄` : : : 0[F2℄` 0[F1℄`, so thatFi = 1 if i is �nal and Fi = 0 otherwise3. Hene, we have a math if and only ifC & (F � (2` � 1)) 6= F � (k + 1). Note that F � x is a bit mask of m ountersXi suh that Xi = x if Fi = 1 and Xi = 0 otherwise.Figure 2 gives the searh ode. To initialize C we take H over an initial statewhere all the ounters are k + 1. Glushkov Parse is in harge of parsing theRE and delivering tables B, Follow and bit mask Last. We then preompute allthe tables using Preproess.The preproessing is given in Figure 3. Although it looks ompliated, it isoneptually simple. Funtion Expand takes a sequene of m+ 1 bits, ignores2 The extra work for this an be avoided by preomputing all the alloated ells of H,as it will be lear soon.3 We assume that the initial state is not �nal, as otherwise the problem is trivial.

Searh (T1:::n; R; k; !)1. (B;Follow; Last;m) Glushkov Parse(R)2. (D; S; J;H;F; `) Preproess(B; Follow; Last;m; k; !)3. C H[(0[k + 1℄`)m℄4. For j 2 1 : : : n Do5. A J [C℄ + S[Tj ℄6. C Min(C +D[Tj ℄; H[A℄)7. If C & (F � (2` � 1)) 6= F � (k + 1) Then Report text position jFig. 2. Searh algorithm. We disregard the restoring of overows after additions.the �rst, and introdues ` zero bits between eah pair of bits, so as to alignthem to our representation. J is omputed by ranging over all the (k + 2)mpossible searh states, starting with a state where all the ounters are k+1 andthen omputing all the possible values for state i, with the invariant that allthe possible values of states < i (with states larger than i having value k + 1)are already omputed. G is a bit mask that traverses all these possible values,and urr is the urrent value of state i in G. J [G℄ is omputed as the minimumbetween what we already have with value k + 1 for state i and the urr valuefor the states in Follow[i℄. Next omputes the next value for G. The proessingfor H is very similar, exept that we �rst ompute h[i; v℄ as the desired value ofH [A℄ when the i-th value of A is v and the rest is k + 1. Then, we build all theombinations of A using h with the same tehnique as before. Note that we donot return I beause it is embedded in the omputation of H .5 Analysis and Spae-Time Tradeo�sThe searh time of our algorithm is learlyO(n). The preproessing time inludesO(j�j2m) for CalWeights and O(k2m2) to ompute h (sine for eah of thekm ells we iterate as long as we redue some ounter, whih an happen onlym(k+1) times). However, the dominant preproessing omplexity is the O((k+2)m) spae and time needed to �ll J and H . If this turns out to be exessive, wean horizontally split tables J and H .Let J be a table built over m ounters. Let C = C1 : C2 be a splitting ofmask C into two submasks, a left and a right submask. If we de�ne J1 and J2so that they propagate ounters only from the �rst and seond half of mask C,respetively, then J [C1 : C2℄ = Min(J1[C1℄; J2[C2℄) beause of the de�nitionof J . (Note that J1 and J2 an propagate values to states of any half.) Thesame is valid for H : we an split the argument A into two halves A1 and A2,and preproess the propagations of values from the �rst and seond half in H1and H2, so that H [A1 : A2℄ = Min(H1[A1℄; H2[A2℄). In general, we an splitJ and H into t tables J1 : : : Jt and H1 : : : Ht, suh that Ji and Hi address theounters roughly from (i� 1)m=t to im=k� 1, that is, m=t ounters. Eah suhtable has (k + 2)m=t entries, for a total spae requirement of O(t(k + 2)m=t).

Expand(X; m; `)1. EX 0(1+`)m2. For i 2 1 : : :m Do3. If X & 0m�i10i 6= 0m+1 Then EX EX j 0(m�i)(1+`)0`10(i�1)(1+`)4. Return EXNext(G; `; m; lim)1. For i 2 1 : : :m Do2. val (G >> (1 + `)(i� 1)) & 0(1+`)(m�1)01`3. If val < lim Then4. G G+ 0(1+`)(m�i�1)0`10(1+`)(i�1)5. Return G6. G G & 1(1+`)(m�i�1)01+`1(1+`)(i�1)Preproess (B; Follow; Last; m; k; !)1. ` dlog2(k + 2)e2. (I;D; S) CalWeights (!; B; k; m; `)3. F Expand(Last;m; `)// Computation of J4. For i 2 0 : : :m Do EFollow[i℄ Expand(Follow[i℄; m; `)5. J [(0[k + 1℄`)m℄ (0[k + 1℄`)m � (EFollow[0℄� (k + 1))6. For i 2 1 : : :m Do7. G (0[k + 1℄`)m�i0(1+`)i8. For j 2 0 : : : (k + 2)i � 1 Do9. urr (G >> (1 + `)(i� 1)) & 0(1+`)(m�1)01`10. J [G℄ Min(J [G+ 0(1+`)(m�i)0[k + 1� urr℄`0(1+`)(i�1)℄;(0[k + 1℄`)m � (EFollow[i℄� (k + 1� urr)))11. G Next(G; `;m; k + 1)// Computation of H12. For i 2 1 : : :m Do13. For v 2 0 : : : k + 1 Do14. h[i; v℄ (0[k + 1℄`)m�i0[v℄`(0[k + 1℄`)i�115. While h[i; v℄ 6=Min(h[i; v℄; J [h[i; v℄℄ + I) Do16. h[i; v℄ Min(h[i; v℄; J [h[i; v℄℄ + I)17. H[(0[k + 1℄`)m℄ (0[k + 1℄`)m18. For i 2 1 : : :m Do19. G (0[k + 1℄`)m�i0(1+`)i20. For j 2 0 : : : (k + 2)i � 1 Do21. urr (G >> (1 + `)(i� 1)) & 0(1+`)(m�1)01`22. H[G℄ Min(H[G+ 0(1+`)(m�i)0[k + 1� urr℄`0(1+`)(i�1)℄; h[i; urr℄)23. G Next(G; `;m; k + 1)24. Return (D; S; J;H;F; `)Fig. 3. Our preproessing.

Now, in order to perform eah transition, we need to pay for t table aessesso as to ompute J [C1 : C2 : : : : Ct℄ = Min(J1[C1℄; J2[C2℄; : : : Jt[Ct℄) andH [A1 : A2 : : : : At℄ =Min(H1[A1℄; H2[A2℄; : : : Ht[At℄), whih makes the searhtime O(tn). If we have O(s) spae, then we solve for s = t(k + 2)m=t, to obtaina searh time of O(tn) = O(mn= logk s).6 ConlusionsWe have presented a bit-parallel algorithm to solve the problem of approximatesearhing for regular expressions with arbitrary integer weights. The algorithmis simple and has the same omplexity of the best previous solution, namelyO(mn= logk s) time with O(s) spae. For lak of spae we annot present ourexperimental results in this paper, but they are available in [7℄. There we showthat, in pratie, our algorithm learly outperforms all previous solutions.In our way, we have found a new reurrene for the problem, where the ur-rent values depend only on previous values. This is usually the main ompliationwhen ombining the irular dependene of the lassial reurrene (urrent val-ues depending on urrent values) with the possible yles of the automaton. Webelieve that our solution an be useful in other senarios, for example the simplerproblem of approximate string mathing with integer weights.Referenes1. A. Aho, R. Sethi, and J. Ullman. Compilers: Priniples, Tehniques and Tools.Addison-Wesley, 1985.2. G. Berry and R. Sethi. From regular expression to deterministi automata. Theor.Comp. Si., 48(1):117{126, 1986.3. V. Glushkov. The abstrat theory of automata. Russ. Math. Surv., 16:1{53, 1961.4. E. Myers. A four-russian algorithm for regular expression pattern mathing. J. ofthe ACM, 39(2):430{448, 1992.5. E. Myers and W. Miller. Approximate mathing of regular expressions. Bull. Math.Biol., 51:7{37, 1989.6. G. Navarro. Nr-grep: a fast and exible pattern mathing tool. Software Pratieand Experiene, 31:1265{1312, 2001.7. G. Navarro. Approximate regular expression searhing with arbitrary integerweights. Teh.Rep. TR/DCC-2002-6, Dept. of Computer Siene, Univ. of Chile,July 2002. ftp.d.uhile.l/pub/users/gnavarro/aregexp.ps.gz.8. G. Navarro and M. RaÆnot. Compat DFA representation for fast regular expres-sion searh. In Pro. WAE'01, LNCS 2141, pages 1{12, 2001.9. P. Sellers. The theory and omputation of evolutionary distanes: Pattern reog-nition. J. of Algorithms, 1(4):359{373, 1980.10. K. Thompson. Regular expression searh algorithm. CACM, 11(6):419{422, 1968.11. E. Ukkonen. Finding approximate patterns in strings. J. of Algorithms, 6:132{137,1985.12. S. Wu and U. Manber. Fast text searhing allowing errors. CACM, 35(10):83{91,1992.13. S. Wu, U. Manber, and E. Myers. A subquadrati algorithm for approximateregular expression mathing. J. of Algorithms, 19(3):346{360, 1995.

