
Approximate Regular Expression Sear
hingwith Arbitrary Integer Weights?Gonzalo NavarroDept. of Computer S
ien
e, Univ. of Chile. gnavarro�d

.u
hile.
l.Abstra
t. We present a bit-parallel te
hnique to sear
h a text of lengthn for a regular expression of m symbols permitting k di�eren
es in worst
ase time O(mn= logk s), where s is the amount of main memory that
an be allo
ated. The algorithm permits arbitrary integer weights andmat
hes the best previous
omplexities, but it is mu
h simpler and fasterin pra
ti
e. In our way, we de�ne a new re
urren
e for approximatesear
hing where the
urrent values depend only on previous values.1 Introdu
tion and Related WorkThe need to sear
h for regular expressions arises in many text-based appli
ations,su
h as text retrieval, text editing and
omputational biology, to name a few. Aregular expression (RE) is a generalized pattern
omposed of (i) basi
 strings,(ii) union,
on
atenation and Kleene
losure of other REs [1℄. We
all m thelength of our RE, not
ounting operator symbols. The alphabet is denoted by�, and n is the length of the text.The traditional te
hnique to sear
h for a RE [1℄ �rst builds a nondeterministi
�nite automaton (NFA) and then
onverts it to a deterministi
 �nite automaton(DFA), whi
h is �nally used to sear
h the text in O(n) time. This is worst-
aseoptimal in terms of n. The main problem has been always the prepro
essing timeand spa
e requirement to
ode the DFA, whi
h
an be as high as O(22mj�j) ifthe
lassi
al Thompson's NFA
onstru
tion algorithm [10℄ is used. Thompson's
onstru
tion produ
es up to 2m states, but it has interesting properties, su
h asensuring a linear number of edges and
onstant in/out-degree.An alternative NFA
onstru
tion is Glushkov's [3, 2℄. Although it does notprovide the same regularities of Thompson's, this
onstru
tion has other usefulproperties, su
h as produ
ing the minimum number of states (m+1) and that allthe edges arriving at a node are labeled by the same
hara
ter. The
orrespondingDFA needs only O(2mj�j) spa
e, whi
h is signi�
antly less than the worst
aseusing Thompson's NFA. Nevertheless, this is still exponential in m.Two te
hniques have been
lassi
ally used to
ope with the spa
e problem.The �rst is to use lazy DFAs, where the states are built only when they arerea
hed. This ensures that no more than O(n) extra spa
e is ne
essary. These
ond
hoi
e [10℄ is to dire
tly use the NFA instead of
onverting it to deter-ministi
. This requires only O(m) spa
e, but the sear
h time be
omes O(mn).Both approa
hes are slow in pra
ti
e if the RE is large.? Partially supported by Fonde
yt grant 1-020831.

Newer te
hniques have provided better spa
e-time tradeo�s by using hybridsbetween the NFA and the DFA. Based on the Four Russians te
hnique, whi
hpre
omputes large tables that permit pro
essing several automaton states inone shot, it has been shown that O(mn= log s) sear
h time is possible usingO(s) spa
e [4℄. The use of Thompson's automaton is essential for this approa
hwhi
h, however, is rather
ompli
ated. Simpler solutions obtaining the same
omplexities have been obtained later using bit-parallelism, a te
hnique to pa
kseveral NFA states in a single ma
hine word and update them as a single state. A�rst solution [12℄, based on Thompson's
onstru
tion, uses a table of size O(22m)that
an be split into t tables of size O(22m=t) ea
h, at a sear
h
ost of O(tn)table inspe
tions. A se
ond solution [8℄ uses Glushkov's automaton and uses ttables of size O(2m=t) ea
h, whi
h is mu
h more eÆ
ient in spa
e usage. In both
ases, O(mn= log s) sear
h time is obtained using O(s) spa
e.Several appli
ations in
omputational biology, data mining, text retrieval,et
. need an even more sophisti
ated form of sear
hing: An integer threshold kis given, so that we have to report the text substrings that
an mat
h the REafter performing several
hara
ter insertions, deletions and substitutions, whosetotal
ost or weight does not ex
eed k. Ea
h operation may have a di�erentweight depending on the
hara
ters involved. This problem is
alled \approxi-mate regular expression sear
hing", as opposed to \exa
t" sear
hing.Instead of being just a
tive or ina
tive, every NFA node has now k+2 possiblestates, a

ording to the weight of the di�eren
es needed to mat
h the text (0 tok, or more than k). If one applies the
lassi
al DFA
onstru
tion algorithm, thespa
e requirement raises to O((k+2)2m) using Thompson's NFA and O((k+2)m)using Glushkov's NFA. A dynami
 programming based solution with O(mn) timeand O(m) spa
e exists [5℄. Although this is an a
hievement be
ause it retainsthe time
omplexity of the exa
t sear
h version and handles real-valued weights,it is still slow. The Four Russians te
hnique has been gra
efully extended tothis problem [13℄, obtaining O(mn= logk s) time using O(s) spa
e. Again, thisalgorithm is rather
ompli
ated.Sin
e bit-parallel solutions have, for many related problems, yielded fast andsimple solutions, one may wonder what have they a
hieved here. For the
aseof unitary
osts (that is, all the weights are 1), bit-parallel solutions exist whi
hresort to simulating k + 1
opies of the NFA used for exa
t sear
hing. Theya
hieve O(ktn) time using O(22m=t) spa
e [12℄ or O(2m=t) spa
e [6℄. This yieldsO(kmn= log s) time using O(s) spa
e, inferior to the a
hievement of the FourRussians te
hnique. Despite this worse
omplexity, bit-parallel solutions are byfar the fastest for moderate sized REs. Yet, they are restri
ted to unitary
osts.The aim of this paper is to over
ome the te
hni
al problems that have pre-vented the existen
e of a simple O(mn= logk s) time and O(s) spa
e bit-parallelsolution to approximate RE sear
hing with arbitrary integer weights. We buildover Glushkov's NFA and represent the state of the sear
h usingmd1+log2(k+2)ebits. We then use t tables of size O((k + 2)m=t) and rea
h O(tn) sear
h time.We use the following terminology for bit-parallel algorithms. A bit mask isa sequen
e of bits, where the lowest bit is written at the right. Typi
al bit

operations are in�x \j" (bitwise or), in�x \&" (bitwise and), pre�x \�" (bit
omplementation), and in�x \<<" (\>>"), whi
h moves the bits of the �rstargument (a bit mask) to higher (lower) positions in an amount given by theargument on the right. Additionally, one
an treat the bit masks as numbers andobtain spe
i�
 e�e
ts using the arithmeti
 operations \+", \�", et
. Exponen-tiation is used to denote bit repetition, e.g., 031 = 0001, and [x℄` represents aninteger x using ` bits. Finally, X � x, where X is a bit mask and x is a number,is the exa
t result of the multipli
ation, that is, a bit mask where x appears inthe pla
es where X has 1's.An extended version of this paper, with all the details,
an be found in [7℄.2 A Bit-Parallel Exa
t Sear
h AlgorithmWe des
ribe in this se
tion the exa
t bit-parallel solution we build on [8℄. The
lassi
al algorithm to produ
e a DFA from an NFA [1℄
onsists in making ea
hDFA state represent a set of NFA states that may be a
tive at some point. Ourway to represent the states of a DFA (i.e., the sets of states of an NFA) is a bitmask of O(m) bits. The bit mask has in 1 the bits that belong to the set. Weuse set notation or bit mask notation indistin
tly.Glushkov's NFA
onstru
tion algorithm
an be found in [3, 2℄. We just re-mark some of its properties. Given a RE of m
hara
ters (not
ounting operatorsymbols), the algorithm de�nes m + 1 positions numbered 0 to m (one per po-sition of a
hara
ter of � in the RE, plus an initial position 0). Then, the NFAhas exa
tly one state per position, the initial state
orresponding to position 0.Two tables are built: B(�), the set of positions of the RE that
ontain
hara
ter�; and Follow(x), the set of NFA states that
an be rea
hed from state x inone transition1. From these two tables, the transition fun
tion of the NFA is
omputed: Æ : f0 : : :mg �� ! }(f0 : : :mg), su
h that y 2 Æ(x; �) if and only iffrom state x we
an move to state y by
hara
ter �. The algorithm gives also aset of �nal states, Last, whi
h again will be represented as a bit mask.Important properties of Glushkov's
onstru
tion follow. (1) The NFA is "-free. (2) All the arrows leading to a given NFA state are labeled by the same
hara
ter: the one at the
orresponding position. (3) The initial state does notre
eive any transition. (4) Æ(x; �) = Follow(x) \ B(�).Property (4) permits a very
ompa
t representation of the DFA transitions.The
onstru
tion algorithm is written so that tables B and Follow representthe sets of states as bit masks. We use B as is and build a large table J , thedeterministi
 version of Follow. That is, J is a table that, for every bit mask Drepresenting a set of states, stores J [D℄ = Si2D Follow(i). Then, by Property(4) it holds that, if the
urrent set of a
tive states is D and we read text
hara
ter�, then the new set of a
tive states is J [D℄ \ B[�℄. For sear
h purposes, weset state 0 in J [D℄ for every D and in B[�℄ for every �, and report every text1 This is
omputed from the RE, sin
e the NFA does not yet exist. Also, for simpli
ity,we assume that Follow(0) = First, the states rea
hable from the initial state.

position j where D \ Last 6= ;. (In fa
t, state 0 needs not be represented, sin
eit is always a
tive when sear
hing.)Hen
e we need only O(2m + j�j) spa
e instead of the O(2mj�j) spa
e ofthe
lassi
al representation. Spa
e-time tradeo�s are a
hieved by splitting tableJ . The splitting is done as follows. We build two tables J1 and J2, whi
h givethe set of states rea
hed from states 0 : : : ` and ` + 1 : : :m, respe
tively, with` = b(m + 1)=2
. Then, if we a

ordingly split the
urrent set of states D intoleft and right submasks, D = D1 : D2, we have J [D℄ = J1[D1℄ [J2[D2℄. TablesJ1 and J2 need only O(2m=2) spa
e ea
h. This generalizes to using t tables, for anoverall spa
e requirement of O(t2m=t) and a sear
h
ost of O(tn) table a

esses.3 A New Re
urren
e for Approximate Sear
hingWe start with an exa
t formulation for our problem. Let R be a RE generatinglanguage L(R) � ��. Let m be the number of
hara
ters belonging to � in R.Let T1:::n 2 �� be the text, a sequen
e of n symbols. The problem is, given R,T , and k 2 N, to report every text position j su
h that, for some j0 � j andP 2 L(R), ed(Tj0:::j ; P) � k. The edit distan
e, ed(A;B), is the minimum sum ofweights of a sequen
e of
hara
ter insertions, deletions and substitutions neededto
onvert A into B. The weights are represented by a fun
tion !, where !(a; b)is the
ost to substitute
hara
ter a by
hara
ter b in the text, !(a; ") is the
ostto delete text
hara
ter a, and !("; b) is the
ost to insert
hara
ter b in the text.Fun
tion ! satis�es !(a; a) = 0, nonnegativity, and triangle inequality.The
lassi
al dynami
 programming solution for approximate string mat
hing[9℄, for the
ase where R is a simple string P1:::m, re
omputes for every textposition j a ve
tor C0:::m, where Ci = minj0�j ed(Tj0:::j ; P1:::i). Hen
e every textposition j where Cm � k is reported. C is initialized as Ci = i and then updatedto C 0 at text position j using dynami
 programming:C 0i min(!(Tj ; Pi) + Ci�1; !(Tj ; ") + Ci; !("; Pi) + C 0i�1)where C 00 = 0. The �rst
omponent refers to a
hara
ter mat
hing or substi-tution, the se
ond to deleting a text
hara
ter, and the third to inserting a
hara
ter in the text. If we have a general RE R built using Glushkov's algo-rithm, with positions 1 to m, this generalizes as follows. We
all Li the set ofstrings re
ognized by the automaton if we assume that the only �nal state is i.Then Ci = minj0�j;P2Li ed(Tj0:::j ; P) is
omputed as follows:C 0i min(Si(Tj) + mini02Follow�1(i)Ci0 ; D(Tj) + Ci; Ii + mini02Follow�1(i)C 0i0) (1)where Si(a) = !(a;Ri), D(a) = !(a; "), Ii = !(";Ri), and Ri is the only
hara
-ter su
h that B(Ri) = fig: Thanks to Property (2), we know that all the edgesarriving at state i are labeled by the same
hara
ter, Ri. C0 is always 0 be
auseit refers to the initial state, so L0 = f"g.Note that the main di�eren
e in the generalization is that, in the
ase of asingle pattern, every state i has a unique prede
essor, state i�1. Here, the set of

prede
essor states, Follow�1(i),
an be arbitrarily
omplex. In the third
ompo-nent of Re
urren
e (1) (insertions in the text) we have a potential dependen
eproblem, be
ause in order to
ompute C 0 for state i we need to have already
om-puted C 0 for states that pre
ede i, in an automaton that
an perfe
tly
ontain
y
les. There are good previous solutions to this
ir
ular dependen
e problem[5℄, but these are not easy to apply in a bit-parallel
ontext.We present a new solution now. We will use the form i(r) in minimization ar-guments, whose range is as follows: i(0) = i and i(r+1) 2 Follow�1(i(r)). Also, wewill denote Si(r) = Si(r) (Tj) and D = D(Tj). Let us now unfold Re
urren
e (1):C 0i min (Si +mini(1) Ci(1) ; D + Ci;Ii +mini(1) min(Si(1) +mini(2) Ci(2) ; D + Ci(1) ; Ii(1) +mini(2) C 0i(2)))where after a few manipulations we obtainC 0i min (D + Ci;mini(1) (Si + Ci(1));mini(1) (Ii + Si(1) +mini(2) Ci(2));mini(1) (Ii +D + Ci(1));mini(1) (Ii + Ii(1) +mini(2) C 0i(2)))The term mini(1) (Ii + D + Ci(1))
an be removed be
ause, by de�nition ofCi, Ci � mini(1) Ii + Ci(1) (third
omponent of Re
urren
e (1) applied to the
omputation of C), and we have already D+Ci in the minimization. We fa
torout all the minimizing operators and getC 0i min(D + Ci; mini(1);i(2) min(Si + Ci(1) ; Ii + Si(1) + Ci(2) ; Ii + Ii(1) + C 0i(2)))By unfolding C 0i(2) and doing the same manipulations again we getC 0i min(D + Ci; mini(1) ;i(2) ;i(3)min (Si + Ci(1) ; Ii + Si(1) + Ci(2) ;Ii + Ii(1) + Si(2) + Ci(3) ; Ii + Ii(1) + Ii(2) + C 0i(3)))and we
an
ontinue until the latter term ex
eeds k + C 0i(r+1) , whi
h is notinteresting anymore. The resulting re
urren
e does not depend anymore on C 0,and will be
ome our working re
urren
e:C 0i min(D + Ci; minr�0 mini(1):::i(r) X0�u<r Ii(u) + Si(r) + Ci(r+1)) (2)4 A Bit-Parallel Approximate Sear
h AlgorithmWe will represent the Ci ve
tor in a bit mask. Ea
h
ell Ci will range in theinterval 0 : : : k + 1, so we will need ` = dlog2(k + 2)e bits to represent it. Thereason is that, if a
ell value is larger than k + 1, we
an assume that its valueis k + 1 and the out
ome of the sear
h will be the same [11℄. For te
hni
alreasons that are made
lear soon, we will need an extra bit per
ell, whi
h

Cal
Weights (!; B; k; m; `)1. I 0(1+`)m2. For
 2 � Do3. D[
℄ (0[min(!(
; "); k + 1)℄`)m4. S[
℄ 0(1+`)m5. For i 2 1 : : :m Do6. If B[
℄ & 0m�i10i�1 6= 0m Then7. I I j 0(1+`)(m�i)0[min(!(";
); k + 1)℄`0(1+`)(i�1)8. For
0 2 � Do9. S[
0℄ S[
0℄ j 0(1+`)(m�i)0[min(!(
0;
); k + 1)℄`0(1+`)(i�1)Fig. 1. Computation of tables I, D and S from ! and B.will always be zero. Sin
e C0 is always 0, it does not need to be represented.Hen
e we need m(1 + `) bits overall. The bit mask will represent the sequen
eof
ells C = 0[Cm℄` 0[Cm�1℄` : : : 0[C2℄` 0[C1℄`. We use as many
omputer wordsas needed to store C (a single
ell will not be split among
omputer words).From the parsing of the RE, we re
eive the tables B and Follow, where thesets are represented as bit masks of length m+ 1 (see previous work for details[8℄). We will prepro
ess B so as to produ
e bit-parallel versions of Ii, D and Si.These will be
alled I , D[�℄ and S[�℄, respe
tively. The
omputation of thesevalues from ! and B is shown in Figure 1.We use a table J (an extended version of previous simpler table J), whi
hmaps bit masks of length m(1+ `) into bit masks of length m(1 + `), as follows:J [0[Cm℄` 0[Cm�1℄` : : : 0[C2℄` 0[C1℄` ℄ = 0[Mm℄` 0[Mm�1℄` : : : 0[M2℄` 0[M1℄`where Mi = mini02Follow�1(i)Ci0That is, for ea
h sear
h state C, J indi
ates how the values in C propagatethrough NFA edges. If several states i0 propagate to a single state i, we
hoosethe minimum value. We a

ount for the zeros propagated from the unrepresentedinitial state 0.Let us now
onsider Re
urren
e (2). Assume that C is our
urrent sear
hstate. The �rst part of the minimum (D + Ci) is easily obtained in bit-parallel,as E C + (0[D℄`)m. If D turns out to be larger than k + 1 we set D = k + 1.The result of the sum
an give us values as large as 2(k + 1) in the
ounters.Our extra bit per
ell
an hold the over
ow, but we have to repla
e the valuesof the over
own
ounters by k + 1 in order to
ontinue our pro
ess. We dete
tthe over
own
ounters by pre
omputing W (10`)m and doing Z E & W .Then, Z Z � (Z >> `) will be a sequen
e of all-0 or all-1
ells, where theall-1 ones
orrespond to the over
own
ounters. These are restored to k + 1 bydoing E (E & � Z) j (0[k + 1℄`)m & Z).

Let us
all H the se
ond,
omplex part of the main minimum of Re
ur-ren
e (2). On
e we obtain H , we have to obtain C 0 Min(E;H), where Mintakes the element-wise minimum over two sequen
es of values, in bit-parallel.Bit-parallel minimum
an be obtained with a te
hnique similar to the oneused above to restore over
own values. Say that we have to
omputeMin(X;Y),where X and Y
ontain several
ounters (nonnegative integers) properly aligned.We need the extra highest bit per
ounter, whi
h is always zero. We use maskW and perform the operation Z ((X j W)� Y) & W . The result is that, inZ, ea
h highest bit is set if and only if the
ounter of X is larger than that ofY . We now
ompute Z Z � (Z >> `), so that the
ounters where X is largerthan Y have all their bits set in Z, and the others have all the bits in zero. Wenow
hoose the minima as Min(X;Y) (Y & Z) j (X & � Z).We fo
us now on the most
omplex part: the
omputation of H . Let us
on-sider A = J [C℄+S[Tj ℄, and assume that we have again solved over
ow problemsin A2. The i-th element ofA is, by de�nintion of J ,Ai = Si+mini02Follow�1(i) Ci0 .Now,
onsider J [A℄ + I . Its i-th value isIi + mini02Follow�1(i)Ai0 = Ii + mini02Follow�1(i)(Si0 + mini002Follow�1(i0)Ci00)= mini(1) ;i(2)(Ii + Si(1) + Ci(2))If we
ompute J [J [A℄+I ℄+I , we have that its i-th value is mini(1) ;i(2);i(3) (Ii+Ii(1) +Si(2) +Ci(3)), and so on. Let us de�ne f(A) = J [A℄ + I and f (r)(A) as theresult of taking r times f over A. Then, we have thatf (r)(A) = mini(1):::i(r)(X0�u<r Ii(u) + Si(r) + Ci(r+1))and hen
e the H we look for isH [A℄ = Min�A; f(A); f (2)(A); f (3)(A); : : :�To
on
lude, we have to report every text position where it holds Ci � kfor a �nal state i. The parsing yields an (m + 1)-bits long mask of �nal states,Last. We will pre
ompute a mask F = 0[Fm℄` 0[Fm�1℄` : : : 0[F2℄` 0[F1℄`, so thatFi = 1 if i is �nal and Fi = 0 otherwise3. Hen
e, we have a mat
h if and only ifC & (F � (2` � 1)) 6= F � (k + 1). Note that F � x is a bit mask of m
ountersXi su
h that Xi = x if Fi = 1 and Xi = 0 otherwise.Figure 2 gives the sear
h
ode. To initialize C we take H over an initial statewhere all the
ounters are k + 1. Glushkov Parse is in
harge of parsing theRE and delivering tables B, Follow and bit mask Last. We then pre
ompute allthe tables using Prepro
ess.The prepro
essing is given in Figure 3. Although it looks
ompli
ated, it is
on
eptually simple. Fun
tion Expand takes a sequen
e of m+ 1 bits, ignores2 The extra work for this
an be avoided by pre
omputing all the allo
ated
ells of H,as it will be
lear soon.3 We assume that the initial state is not �nal, as otherwise the problem is trivial.

Sear
h (T1:::n; R; k; !)1. (B;Follow; Last;m) Glushkov Parse(R)2. (D; S; J;H;F; `) Prepro
ess(B; Follow; Last;m; k; !)3. C H[(0[k + 1℄`)m℄4. For j 2 1 : : : n Do5. A J [C℄ + S[Tj ℄6. C Min(C +D[Tj ℄; H[A℄)7. If C & (F � (2` � 1)) 6= F � (k + 1) Then Report text position jFig. 2. Sear
h algorithm. We disregard the restoring of over
ows after additions.the �rst, and introdu
es ` zero bits between ea
h pair of bits, so as to alignthem to our representation. J is
omputed by ranging over all the (k + 2)mpossible sear
h states, starting with a state where all the
ounters are k+1 andthen
omputing all the possible values for state i, with the invariant that allthe possible values of states < i (with states larger than i having value k + 1)are already
omputed. G is a bit mask that traverses all these possible values,and
urr is the
urrent value of state i in G. J [G℄ is
omputed as the minimumbetween what we already have with value k + 1 for state i and the
urr valuefor the states in Follow[i℄. Next
omputes the next value for G. The pro
essingfor H is very similar, ex
ept that we �rst
ompute h[i; v℄ as the desired value ofH [A℄ when the i-th value of A is v and the rest is k + 1. Then, we build all the
ombinations of A using h with the same te
hnique as before. Note that we donot return I be
ause it is embedded in the
omputation of H .5 Analysis and Spa
e-Time Tradeo�sThe sear
h time of our algorithm is
learlyO(n). The prepro
essing time in
ludesO(j�j2m) for Cal
Weights and O(k2m2) to
ompute h (sin
e for ea
h of thekm
ells we iterate as long as we redu
e some
ounter, whi
h
an happen onlym(k+1) times). However, the dominant prepro
essing
omplexity is the O((k+2)m) spa
e and time needed to �ll J and H . If this turns out to be ex
essive, we
an horizontally split tables J and H .Let J be a table built over m
ounters. Let C = C1 : C2 be a splitting ofmask C into two submasks, a left and a right submask. If we de�ne J1 and J2so that they propagate
ounters only from the �rst and se
ond half of mask C,respe
tively, then J [C1 : C2℄ = Min(J1[C1℄; J2[C2℄) be
ause of the de�nitionof J . (Note that J1 and J2
an propagate values to states of any half.) Thesame is valid for H : we
an split the argument A into two halves A1 and A2,and prepro
ess the propagations of values from the �rst and se
ond half in H1and H2, so that H [A1 : A2℄ = Min(H1[A1℄; H2[A2℄). In general, we
an splitJ and H into t tables J1 : : : Jt and H1 : : : Ht, su
h that Ji and Hi address the
ounters roughly from (i� 1)m=t to im=k� 1, that is, m=t
ounters. Ea
h su
htable has (k + 2)m=t entries, for a total spa
e requirement of O(t(k + 2)m=t).

Expand(X; m; `)1. EX 0(1+`)m2. For i 2 1 : : :m Do3. If X & 0m�i10i 6= 0m+1 Then EX EX j 0(m�i)(1+`)0`10(i�1)(1+`)4. Return EXNext(G; `; m; lim)1. For i 2 1 : : :m Do2. val (G >> (1 + `)(i� 1)) & 0(1+`)(m�1)01`3. If val < lim Then4. G G+ 0(1+`)(m�i�1)0`10(1+`)(i�1)5. Return G6. G G & 1(1+`)(m�i�1)01+`1(1+`)(i�1)Prepro
ess (B; Follow; Last; m; k; !)1. ` dlog2(k + 2)e2. (I;D; S) Cal
Weights (!; B; k; m; `)3. F Expand(Last;m; `)// Computation of J4. For i 2 0 : : :m Do EFollow[i℄ Expand(Follow[i℄; m; `)5. J [(0[k + 1℄`)m℄ (0[k + 1℄`)m � (EFollow[0℄� (k + 1))6. For i 2 1 : : :m Do7. G (0[k + 1℄`)m�i0(1+`)i8. For j 2 0 : : : (k + 2)i � 1 Do9.
urr (G >> (1 + `)(i� 1)) & 0(1+`)(m�1)01`10. J [G℄ Min(J [G+ 0(1+`)(m�i)0[k + 1�
urr℄`0(1+`)(i�1)℄;(0[k + 1℄`)m � (EFollow[i℄� (k + 1�
urr)))11. G Next(G; `;m; k + 1)// Computation of H12. For i 2 1 : : :m Do13. For v 2 0 : : : k + 1 Do14. h[i; v℄ (0[k + 1℄`)m�i0[v℄`(0[k + 1℄`)i�115. While h[i; v℄ 6=Min(h[i; v℄; J [h[i; v℄℄ + I) Do16. h[i; v℄ Min(h[i; v℄; J [h[i; v℄℄ + I)17. H[(0[k + 1℄`)m℄ (0[k + 1℄`)m18. For i 2 1 : : :m Do19. G (0[k + 1℄`)m�i0(1+`)i20. For j 2 0 : : : (k + 2)i � 1 Do21.
urr (G >> (1 + `)(i� 1)) & 0(1+`)(m�1)01`22. H[G℄ Min(H[G+ 0(1+`)(m�i)0[k + 1�
urr℄`0(1+`)(i�1)℄; h[i;
urr℄)23. G Next(G; `;m; k + 1)24. Return (D; S; J;H;F; `)Fig. 3. Our prepro
essing.

Now, in order to perform ea
h transition, we need to pay for t table a

essesso as to
ompute J [C1 : C2 : : : : Ct℄ = Min(J1[C1℄; J2[C2℄; : : : Jt[Ct℄) andH [A1 : A2 : : : : At℄ =Min(H1[A1℄; H2[A2℄; : : : Ht[At℄), whi
h makes the sear
htime O(tn). If we have O(s) spa
e, then we solve for s = t(k + 2)m=t, to obtaina sear
h time of O(tn) = O(mn= logk s).6 Con
lusionsWe have presented a bit-parallel algorithm to solve the problem of approximatesear
hing for regular expressions with arbitrary integer weights. The algorithmis simple and has the same
omplexity of the best previous solution, namelyO(mn= logk s) time with O(s) spa
e. For la
k of spa
e we
annot present ourexperimental results in this paper, but they are available in [7℄. There we showthat, in pra
ti
e, our algorithm
learly outperforms all previous solutions.In our way, we have found a new re
urren
e for the problem, where the
ur-rent values depend only on previous values. This is usually the main
ompli
ationwhen
ombining the
ir
ular dependen
e of the
lassi
al re
urren
e (
urrent val-ues depending on
urrent values) with the possible
y
les of the automaton. Webelieve that our solution
an be useful in other s
enarios, for example the simplerproblem of approximate string mat
hing with integer weights.Referen
es1. A. Aho, R. Sethi, and J. Ullman. Compilers: Prin
iples, Te
hniques and Tools.Addison-Wesley, 1985.2. G. Berry and R. Sethi. From regular expression to deterministi
 automata. Theor.Comp. S
i., 48(1):117{126, 1986.3. V. Glushkov. The abstra
t theory of automata. Russ. Math. Surv., 16:1{53, 1961.4. E. Myers. A four-russian algorithm for regular expression pattern mat
hing. J. ofthe ACM, 39(2):430{448, 1992.5. E. Myers and W. Miller. Approximate mat
hing of regular expressions. Bull. Math.Biol., 51:7{37, 1989.6. G. Navarro. Nr-grep: a fast and
exible pattern mat
hing tool. Software Pra
ti
eand Experien
e, 31:1265{1312, 2001.7. G. Navarro. Approximate regular expression sear
hing with arbitrary integerweights. Te
h.Rep. TR/DCC-2002-6, Dept. of Computer S
ien
e, Univ. of Chile,July 2002. ftp.d

.u
hile.
l/pub/users/gnavarro/aregexp.ps.gz.8. G. Navarro and M. RaÆnot. Compa
t DFA representation for fast regular expres-sion sear
h. In Pro
. WAE'01, LNCS 2141, pages 1{12, 2001.9. P. Sellers. The theory and
omputation of evolutionary distan
es: Pattern re
og-nition. J. of Algorithms, 1(4):359{373, 1980.10. K. Thompson. Regular expression sear
h algorithm. CACM, 11(6):419{422, 1968.11. E. Ukkonen. Finding approximate patterns in strings. J. of Algorithms, 6:132{137,1985.12. S. Wu and U. Manber. Fast text sear
hing allowing errors. CACM, 35(10):83{91,1992.13. S. Wu, U. Manber, and E. Myers. A subquadrati
 algorithm for approximateregular expression mat
hing. J. of Algorithms, 19(3):346{360, 1995.

