Approximate Regular Expression Searching
with Arbitrary Integer Weights*

Gonzalo Navarro

Dept. of Computer Science, Univ. of Chile. gnavarro@dcc.uchile.cl.

Abstract. We present a bit-parallel technique to search a text of length
n for a regular expression of m symbols permitting &k differences in worst
case time O(mn/log, s), where s is the amount of main memory that
can be allocated. The algorithm permits arbitrary integer weights and
matches the best previous complexities, but it is much simpler and faster
in practice. In our way, we define a new recurrence for approximate
searching where the current values depend only on previous values.

1 Introduction and Related Work

The need to search for regular expressions arises in many text-based applications,
such as text retrieval, text editing and computational biology, to name a few. A
reqular expression (RE) is a generalized pattern composed of (i) basic strings,
(ii) union, concatenation and Kleene closure of other REs [1]. We call m the
length of our RE, not counting operator symbols. The alphabet is denoted by
Y, and n is the length of the text.

The traditional technique to search for a RE [1] first builds a nondeterministic
finite automaton (NFA) and then converts it to a deterministic finite automaton
(DFA), which is finally used to search the text in O(n) time. This is worst-case
optimal in terms of n. The main problem has been always the preprocessing time
and space requirement to code the DFA, which can be as high as O(22™|X)) if
the classical Thompson’s NFA construction algorithm [10] is used. Thompson’s
construction produces up to 2m states, but it has interesting properties, such as
ensuring a linear number of edges and constant in/out-degree.

An alternative NFA construction is Glushkov’s [3,2]. Although it does not
provide the same regularities of Thompson’s, this construction has other useful
properties, such as producing the minimum number of states (m+1) and that all
the edges arriving at a node are labeled by the same character. The corresponding
DFA needs only O(2™|X]) space, which is significantly less than the worst case
using Thompson’s NFA. Nevertheless, this is still exponential in m.

Two techniques have been classically used to cope with the space problem.
The first is to use lazy DFAs, where the states are built only when they are
reached. This ensures that no more than O(n) extra space is necessary. The
second choice [10] is to directly use the NFA instead of converting it to deter-
ministic. This requires only O(m) space, but the search time becomes O(mn).
Both approaches are slow in practice if the RE is large.

* Partially supported by Fondecyt grant 1-020831.

Newer techniques have provided better space-time tradeoffs by using hybrids
between the NFA and the DFA. Based on the Four Russians technique, which
precomputes large tables that permit processing several automaton states in
one shot, it has been shown that O(mn/logs) search time is possible using
O(s) space [4]. The use of Thompson’s automaton is essential for this approach
which, however, is rather complicated. Simpler solutions obtaining the same
complexities have been obtained later using bit-parallelism, a technique to pack
several NFA states in a single machine word and update them as a single state. A
first solution [12], based on Thompson’s construction, uses a table of size O(2%™)
that can be split into ¢ tables of size O(22™/) each, at a search cost of O(tn)
table inspections. A second solution [8] uses Glushkov’s automaton and uses ¢
tables of size O(2™/*) each, which is much more efficient in space usage. In both
cases, O(mn/log s) search time is obtained using O(s) space.

Several applications in computational biology, data mining, text retrieval,
etc. need an even more sophisticated form of searching: An integer threshold &
is given, so that we have to report the text substrings that can match the RE
after performing several character insertions, deletions and substitutions, whose
total cost or weight does not exceed k. Each operation may have a different
weight depending on the characters involved. This problem is called “approxi-
mate regular expression searching”, as opposed to “exact” searching.

Instead of being just active or inactive, every NFA node has now k+2 possible
states, according to the weight of the differences needed to match the text (0 to
k, or more than k). If one applies the classical DFA construction algorithm, the
space requirement raises to O((k+2)?™) using Thompson’s NFA and O((k+2)™)
using Glushkov’s NFA. A dynamic programming based solution with O(mn) time
and O(m) space exists [5]. Although this is an achievement because it retains
the time complexity of the exact search version and handles real-valued weights,
it is still slow. The Four Russians technique has been gracefully extended to
this problem [13], obtaining O(mn/log, s) time using O(s) space. Again, this
algorithm is rather complicated.

Since bit-parallel solutions have, for many related problems, yielded fast and
simple solutions, one may wonder what have they achieved here. For the case
of unitary costs (that is, all the weights are 1), bit-parallel solutions exist which
resort to simulating k + 1 copies of the NFA used for exact searching. They
achieve O(ktn) time using O(22"/t) space [12] or O(2/?) space [6]. This yields
O(kmn/logs) time using O(s) space, inferior to the achievement of the Four
Russians technique. Despite this worse complexity, bit-parallel solutions are by
far the fastest for moderate sized REs. Yet, they are restricted to unitary costs.

The aim of this paper is to overcome the technical problems that have pre-
vented the existence of a simple O(mn/log; s) time and O(s) space bit-parallel
solution to approximate RE searching with arbitrary integer weights. We build
over Glushkov’s NFA and represent the state of the search using m[1+log, (k+2)]
bits. We then use ¢ tables of size O((k + 2)™/?) and reach O(tn) search time.

We use the following terminology for bit-parallel algorithms. A bit mask is
a sequence of bits, where the lowest bit is written at the right. Typical bit

operations are infix “|” (bitwise or), infix “&” (bitwise and), prefix “~” (bit

3

complementation), and infix “<<” (“>>"), which moves the bits of the first
argument (a bit mask) to higher (lower) positions in an amount given by the
argument on the right. Additionally, one can treat the bit masks as numbers and
obtain specific effects using the arithmetic operations “+”, “=", etc. Exponen-
tiation is used to denote bit repetition, e.g., 031 = 0001, and [z], represents an
integer x using ¢ bits. Finally, X x z, where X is a bit mask and x is a number,
is the exact result of the multiplication, that is, a bit mask where x appears in
the places where X has 1’s.

An extended version of this paper, with all the details, can be found in [7].

2 A Bit-Parallel Exact Search Algorithm

We describe in this section the exact bit-parallel solution we build on [8]. The
classical algorithm to produce a DFA from an NFA [1] consists in making each
DFA state represent a set of NFA states that may be active at some point. Our
way to represent the states of a DFA (i.e., the sets of states of an NFA) is a bit
mask of O(m) bits. The bit mask has in 1 the bits that belong to the set. We
use set notation or bit mask notation indistinctly.

Glushkov’s NFA construction algorithm can be found in [3,2]. We just re-
mark some of its properties. Given a RE of m characters (not counting operator
symbols), the algorithm defines m + 1 positions numbered 0 to m (one per po-
sition of a character of X' in the RE, plus an initial position 0). Then, the NFA
has exactly one state per position, the initial state corresponding to position 0.
Two tables are built: B(co), the set of positions of the RE that contain character
o; and Follow(x), the set of NFA states that can be reached from state = in
one transition!. From these two tables, the transition function of the NFA is
computed: §: {0...m} x ¥ — p({0...m}), such that y € é(z,0) if and only if
from state = we can move to state y by character o. The algorithm gives also a
set of final states, Last, which again will be represented as a bit mask.

Important properties of Glushkov’s construction follow. (1) The NFA is e-
free. (2) All the arrows leading to a given NFA state are labeled by the same
character: the one at the corresponding position. (3) The initial state does not
receive any transition. (4) d(z,0) = Follow(x) N B(o).

Property (4) permits a very compact representation of the DFA transitions.
The construction algorithm is written so that tables B and Follow represent
the sets of states as bit masks. We use B as is and build a large table .J, the
deterministic version of Follow. That is, .J is a table that, for every bit mask D
representing a set of states, stores J[D] = J,o,, Follow(i). Then, by Property
(4) it holds that, if the current set of active states is D and we read text character
o, then the new set of active states is J[D] N Blo]. For search purposes, we
set state 0 in J[D] for every D and in Blo] for every o, and report every text

! This is computed from the RE, since the NFA does not yet exist. Also, for simplicity,
we assume that Follow(0) = First, the states reachable from the initial state.

position j where D N Last # 0. (In fact, state 0 needs not be represented, since
it is always active when searching.)

Hence we need only O(2™ + |X|) space instead of the O(2™|X]) space of
the classical representation. Space-time tradeoffs are achieved by splitting table
J. The splitting is done as follows. We build two tables .J; and J,, which give
the set of states reached from states 0...¢ and ¢ + 1...m, respectively, with
¢ = [(m + 1)/2]. Then, if we accordingly split the current set of states D into
left and right submasks, D = Dy : Dy, we have J[D] = J;[D1] U J3[Ds3]. Tables
Jy and .Jo need only O(2™/2) space each. This generalizes to using ¢ tables, for an
overall space requirement of O(t2"/t) and a search cost of O(tn) table accesses.

3 A New Recurrence for Approximate Searching

We start with an exact formulation for our problem. Let R be a RE generating
language L(R) C X*. Let m be the number of characters belonging to X' in R.
Let Ty, ,, € X* be the text, a sequence of n symbols. The problem is, given R,
T, and k € N, to report every text position j such that, for some j' < j and
P e L(R), ed(Tj._;, P) < k. The edit distance, ed(A, B), is the minimum sum of
weights of a sequence of character insertions, deletions and substitutions needed
to convert A into B. The weights are represented by a function w, where w(a, b)
is the cost to substitute character a by character b in the text, w(a, €) is the cost
to delete text character a, and w(e, b) is the cost to insert character b in the text.
Function w satisfies w(a, a) = 0, nonnegativity, and triangle inequality.

The classical dynamic programming solution for approximate string matching
[9], for the case where R is a simple string P;_,,, recomputes for every text
position j a vector Cy..r,, where C; = minj <; ed(T}.. j, Py, ;). Hence every text
position 7 where C,, < k is reported. C is initialized as C; = ¢ and then updated
to C" at text position j using dynamic programming:

01/ — min(w(Tj,Pi) +C;_1, w(Tj,s) + Cy, LU(E.,Pi) + Cz{fl)

where C) = 0. The first component refers to a character matching or substi-
tution, the second to deleting a text character, and the third to inserting a
character in the text. If we have a general RE R built using Glushkov’s algo-
rithm, with positions 1 to m, this generalizes as follows. We call L; the set of
strings recognized by the automaton if we assume that the only final state is i.
Then C; = minj <; per, ed(Ty .. ;, P) is computed as follows:

Ci o min(Si(Ty) + i’EFJlI;zi;g’l(i) Cir, D(T) + G, it i'ngzIzlzi;gfl(i) G @
where S;(a) = w(a, R;), D(a) = w(a,e), I; = w(e, R;), and R; is the only charac-
ter such that B(R;) = {i}: Thanks to Property (2), we know that all the edges
arriving at state 7 are labeled by the same character, R;. Cy is always 0 because
it refers to the initial state, so Lo = {¢}.

Note that the main difference in the generalization is that, in the case of a
single pattern, every state ¢ has a unique predecessor, state ¢+ — 1. Here, the set of

predecessor states, Follow (i), can be arbitrarily complex. In the third compo-
nent of Recurrence (1) (insertions in the text) we have a potential dependence
problem, because in order to compute C’ for state i we need to have already com-
puted C' for states that precede i, in an automaton that can perfectly contain
cycles. There are good previous solutions to this circular dependence problem
[5], but these are not easy to apply in a bit-parallel context.

We present a new solution now. We will use the form (") in minimization ar-
guments, whose range is as follows: i(®) = i and i("*1) € Follow='(i(")). Also, we
will denote S;) = S; (Tj) and D = D(T}). Let us now unfold Recurrence (1):

Cl’ < min (Si + n(l})nC’iu), D+ Ci,
i

. . . . ’
Iz' —|—rr(1}}r1 mln(Siu; +rr(1;}r1 Ci(2J7 D +Ci(117 Ii(U +H(121)n Ci(z)))
i i i

where after a few manipulations we obtain
Czl ¢+ min (D + C;, Il’(llP(Sl + Ciu)), Il’(li?(]i + Siu) + II’(IIP Ci(2)).,
it it iz

HllIl(Lj + D + Ci(ll), Il’llIl(Il + Ii(l) + l’IliH C((Q)))
i) i i °

The term min;n) (I; + D + C;n)) can be removed because, by definition of
C;, C; < min;n) I; + C;y (third component of Recurrence (1) applied to the
computation of C'), and we have already D + C; in the minimization. We factor
out all the minimizing operators and get

C{ — min(D + C;, min Il’llIl(Si + Ci(l) S+ Siu) + Ci(z), I; + Il'(l) + C;(Q)))

i(1) 3(2)
By unfolding C/,, and doing the same manipulations again we get

C! < min(D + C;, min min (S; + C,), I; + S;) + Cie),

i(1) 4(2) j(3)

I; + Ii(l) + Si(Q) + Ci(s) i+ Iz'(ll + Il-(z) + C;(S)))

and we can continue until the latter term exceeds k + C’;(T“), which is not
interesting anymore. The resulting recurrence does not depend anymore on C’,
and will become our working recurrence:

C! + min(D + C;, mi i L Sy + Cir 2
| < min(D + Cj, 1;(12161 Z_(11gr.1.1.1;l(r)0<z< sy S + Cieany) (2)
<u<r

4 A Bit-Parallel Approximate Search Algorithm

We will represent the C; vector in a bit mask. Each cell C; will range in the
interval 0...%k + 1, so we will need ¢ = [log,(k + 2)] bits to represent it. The
reason is that, if a cell value is larger than k + 1, we can assume that its value
is £ + 1 and the outcome of the search will be the same [11]. For technical
reasons that are made clear soon, we will need an extra bit per cell, which

CalcWeights (w, B, k, m, £)
I «— 0(1+l)m
For c € Y Do
Dlc] + (O[min(w(c,e), k+ 1)]e)™
S[e] « otFom
Forie1...m Do
If Blc] & 0™7"10°"" # 0™ Then
I 10390 =0pmin(w(e,c), k4 1)), 00 FIE—D
For ¢ € ¥ Do
S[c'] « S['] | 04+ =Do[min(w(c, ¢), k 4 1)],03+O-1)

© 20N ook WD

Fig. 1. Computation of tables I, D and S from w and B.

will always be zero. Since Cy is always 0, it does not need to be represented.
Hence we need m(1 + ¢) bits overall. The bit mask will represent the sequence
of cells C = 0[Cy,]¢ 0[Cru—1]e - .. 0[C2]s O[C1],. We use as many computer words
as needed to store C' (a single cell will not be split among computer words).

From the parsing of the RE, we receive the tables B and Follow, where the
sets are represented as bit masks of length m + 1 (see previous work for details
[8]). We will preprocess B so as to produce bit-parallel versions of I;, D and S;.
These will be called I, D[o] and S[o], respectively. The computation of these
values from w and B is shown in Figure 1.

We use a table J (an extended version of previous simpler table J), which
maps bit masks of length m(1 + ¢) into bit masks of length m(1 + ¢), as follows:

T[0[C]e O[Crn1]e-..0[C]e O[Ci]e] = O[Mum]e O[Mya_1]e ... 0[Ms], O[Mi],

where Mz' = min Ci’
' €Follow—1(i)

That is, for each search state C, J indicates how the values in C' propagate
through NFA edges. If several states i’ propagate to a single state i, we choose
the minimum value. We account for the zeros propagated from the unrepresented
initial state 0.

Let us now consider Recurrence (2). Assume that C is our current search
state. The first part of the minimum (D + C}) is easily obtained in bit-parallel,
as F < C + (0[D];)™. If D turns out to be larger than k+ 1 we set D = k + 1.
The result of the sum can give us values as large as 2(k + 1) in the counters.
Our extra bit per cell can hold the overflow, but we have to replace the values
of the overflown counters by k£ + 1 in order to continue our process. We detect
the overflown counters by precomputing W « (10°)™ and doing Z < E & W.
Then, Z + Z — (Z >> () will be a sequence of all-0 or all-1 cells, where the
all-1 ones correspond to the overflown counters. These are restored to k£ + 1 by
doing E+— (E & ~Z) | (0[k+1])™ & Z).

Let us call H the second, complex part of the main minimum of Recur-
rence (2). Once we obtain H, we have to obtain C' < Min(E, H), where Min
takes the element-wise minimum over two sequences of values, in bit-parallel.

Bit-parallel minimum can be obtained with a technique similar to the one
used above to restore overflown values. Say that we have to compute Min(X,Y),
where X and Y contain several counters (nonnegative integers) properly aligned.
We need the extra highest bit per counter, which is always zero. We use mask
W and perform the operation Z < ((X | W) —Y) & W. The result is that, in
7, each highest bit is set if and only if the counter of X is larger than that of
Y. We now compute Z < Z — (Z >> (), so that the counters where X is larger
than Y have all their bits set in Z, and the others have all the bits in zero. We
now choose the minima as Min(X,Y) «+ (Y & 2) | (X & ~ 2).

We focus now on the most complex part: the computation of H. Let us con-
sider A = J[C]+ S[T}], and assume that we have again solved overflow problems
in A?. The i-th element of A is, by definintion of .J, A; = S;+min; ¢ poyow-1(:) Cir-
Now, consider J[A] + I. Its i-th value is

Iz' —+ min Ai’ =]1' —+ min (Sz" —+ min Ci”)
i’ € Follow=1(i) i' € Follow~1(i) i" € Follow=1(i")
= min (Il + Si(l) + 01(2))
i(1) ,3(2)

If we compute J[J[A]+ 1]+ I, we have that its i-th value is min;a) ;) ;e (I +
L) + Si + Cy), and so on. Let us define f(A) = J[A] + T and f(")(A) as the
result of taking r times f over A. Then, we have that

f(T)(A) = (min (Z Ii(u] +Si(")+ci("+11)

i(1) ()
i) 0<u<r
and hence the H we look for is

H[A] = Min (A,f(A).,f<2>(A).,f<3>(A)., N)

To conclude, we have to report every text position where it holds C; < k
for a final state i. The parsing yields an (m + 1)-bits long mask of final states,
Last. We will precompute a mask F' = 0[F,,]s O[Fm—1]s ... 0[F2]; 0[F1]s, so that
F; = 1if i is final and F; = 0 otherwise®. Hence, we have a match if and only if
C & (F x (28 —=1)) # F x (k+1). Note that F x x is a bit mask of m counters
X; such that X; = z if F; =1 and X; = 0 otherwise.

Figure 2 gives the search code. To initialize C' we take H over an initial state
where all the counters are k + 1. Glushkov_Parse is in charge of parsing the
RE and delivering tables B, Follow and bit mask Last. We then precompute all
the tables using Preprocess.

The preprocessing is given in Figure 3. Although it looks complicated, it is
conceptually simple. Function Expand takes a sequence of m + 1 bits, ignores
2 The extra work for this can be avoided by precomputing all the allocated cells of H,

as it will be clear soon.
3 We assume that the initial state is not final, as otherwise the problem is trivial.

Search (T4..., R, k, w)
(B, Follow, Last,m) < Glushkov_Parse(R)
(D, S,.J, H, F,{) «< Preprocess(B, Follow, Last,m, k,w)
C « H[(0[k +1],)™]
For jel...n Do
A« J[C+ S[Tj]
C «+ Min(C + D[1};], H[A])
If C & (F x (2° —1)) # F x (k+ 1) Then Report text position j

NSO W

Fig. 2. Search algorithm. We disregard the restoring of overflows after additions.

the first, and introduces ¢ zero bits between each pair of bits, so as to align
them to our representation. J is computed by ranging over all the (k + 2)™
possible search states, starting with a state where all the counters are k + 1 and
then computing all the possible values for state i, with the invariant that all
the possible values of states < ¢ (with states larger than ¢ having value k + 1)
are already computed. G is a bit mask that traverses all these possible values,
and curr is the current value of state ¢ in G. J[G] is computed as the minimum
between what we already have with value k + 1 for state ¢ and the curr value
for the states in Follow[i]. Next computes the next value for G. The processing
for H is very similar, except that we first compute h[i, v] as the desired value of
H[A] when the i-th value of A is v and the rest is £ 4+ 1. Then, we build all the
combinations of A using h with the same technique as before. Note that we do
not return I because it is embedded in the computation of H.

5 Analysis and Space-Time Tradeoffs

The search time of our algorithm is clearly O(n). The preprocessing time includes
O(]X|*>m) for CalcWeights and O(k?m?) to compute h (since for each of the
km cells we iterate as long as we reduce some counter, which can happen only
m(k+ 1) times). However, the dominant preprocessing complexity is the O((k +
2)™) space and time needed to fill J and H. If this turns out to be excessive, we
can horizontally split tables J and H.

Let J be a table built over m counters. Let C' = C! : C? be a splitting of
mask C into two submasks, a left and a right submask. If we define J; and J,
so that they propagate counters only from the first and second half of mask C,
respectively, then J[C' : C?] = Min(J;[C"], Jo[C?]) because of the definition
of J. (Note that J; and Jy can propagate values to states of any half.) The
same is valid for H: we can split the argument A into two halves A! and A2,
and preprocess the propagations of values from the first and second half in H;
and Hs, so that H[A' : A?] = Min(H,[A'], H2[A?]). In general, we can split
J and H into t tables .J;....J; and H; ... H;, such that .J; and H; address the
counters roughly from (i — 1)m/¢ to im/k — 1, that is, m/t counters. Each such
table has (k + 2)"/* entries, for a total space requirement of O(t(k + 2)™/*).

Expand(X, m, ()
1. EX «oi+om

2. Foriel...m Do
3. If X & 0™7'10" # 0™*! Then EX « EX | 0m~D0+Hgl1pli-D0+)
4. Return FX

Next(G, ¢, m, lim)
Foriel...m Do
val < (G >> (14 0)(i — 1)) & 00Ot
If val < lim Then
G — G 4+ 0AFOm—i=1) gt g+0(-1)
Return GG
GG & 1(1+l)(m7i71)01+f1(1+l)(i71)

Y TR W N~

Preprocess (B, Follow, Last, m, k, w)
1. 0+ [log,(k + 2)]
2. (I,D,S) + CalcWeights (w, B, k, m, {)
3. F + Expand(Last, m, ()
// Computation of .J
4 For i € 0...m Do EFollow[i] + Expand(Follow[i], m, ()
5 JI(O[k + 1]¢)™] « (0[k + 1]e)™ — (EFollow[0] x (k+ 1))
6. Forie1l...m Do
7. G« (0[k + 1],)™ ot +0)"
8 For j€0...(k+2)"—1 Do
9 curr « (G >> (1 +€)(i — 1)) & o FHm=Dgq

10. J[G] — Min(J[G + 00O =Do[k 41 — curr],00+OE-D],
(O[k + 1]¢)™ — (EFollow[i] x (k+ 1 — curr)))
11. G + Next(G,¢,m,k+ 1)

// Computation of H
12 Foriel...m Do

13. Forve0...k+1 Do

14. hli,v] < (0[k + 1]¢)™"0[w]¢ (0[k + 1]¢)"

15. While hli,v] # Min(h[i, v], J[h[i,v]] + [) Do
16. hli,v] < Min(h[i, v], J[h[i, v]] + 1)

17. H[(O[k + 1]¢)™] < (O[k + 1],)™
18. Foriel...m Do

19. G+ (0[k + 1],)™ ot +0)s

20. For j€0...(k+2)"—1Do

21. curr « (G >> (1 +€)(i — 1)) & o FHm=D g1

22. H[G] + Min(H[G + 0" +O0m=90[k 4+ 1 — curr], 00 TOC=D] b4, curr))
23. G + Next(G,¢,m,k+1)

24. Return (D,S,J, H, F,{)

Fig. 3. Our preprocessing.

Now, in order to perform each transition, we need to pay for ¢ table accesses
so as to compute J[C! : C? : ...C"] = Min(J1[C"], J2[C?], ...J[C"]) and
HI[A" : A% ... AY] = Min(H,[A"], Hy[A?], ... H[A"]), which makes the search
time O(tn). If we have O(s) space, then we solve for s = t(k 4+ 2)™/?, to obtain
a search time of O(tn) = O(mn/ log,, s).

6 Conclusions

We have presented a bit-parallel algorithm to solve the problem of approximate
searching for regular expressions with arbitrary integer weights. The algorithm
is simple and has the same complexity of the best previous solution, namely
O(mn/logy, s) time with O(s) space. For lack of space we cannot present our
experimental results in this paper, but they are available in [7]. There we show
that, in practice, our algorithm clearly outperforms all previous solutions.

In our way, we have found a new recurrence for the problem, where the cur-
rent values depend only on previous values. This is usually the main complication
when combining the circular dependence of the classical recurrence (current val-
ues depending on current values) with the possible cycles of the automaton. We
believe that our solution can be useful in other scenarios, for example the simpler
problem of approximate string matching with integer weights.

References

1. A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and Tools.
Addison-Wesley, 1985.

2. G. Berry and R. Sethi. From regular expression to deterministic automata. Theor.
Comp. Sci., 48(1):117-126, 1986.

3. V. Glushkov. The abstract theory of automata. Russ. Math. Surv., 16:1-53, 1961.

4. E. Myers. A four-russian algorithm for regular expression pattern matching. J. of
the ACM, 39(2):430-448, 1992.

5. E. Myers and W. Miller. Approximate matching of regular expressions. Bull. Math.
Biol., 51:7-37, 1989.

6. G. Navarro. Nr-grep: a fast and flexible pattern matching tool. Software Practice
and Experience, 31:1265 1312, 2001.

7. G. Navarro. Approximate regular expression searching with arbitrary integer
weights. Tech.Rep. TR/DCC-2002-6, Dept. of Computer Science, Univ. of Chile,
July 2002. ftp.dcc.uchile.cl/pub/users/gnavarro/aregexp.ps.gz.

8. G. Navarro and M. Raffinot. Compact DFA representation for fast regular expres-
sion search. In Proc. WAE’01, LNCS 2141, pages 1-12, 2001.

9. P. Sellers. The theory and computation of evolutionary distances: Pattern recog-
nition. J. of Algorithms, 1(4):359-373, 1980.

10. K. Thompson. Regular expression search algorithm. CACM, 11(6):419 422, 1968.

11. E. Ukkonen. Finding approximate patterns in strings. J. of Algorithms, 6:132 137,
1985.

12. S. Wu and U. Manber. Fast text searching allowing errors. CACM, 35(10):83 91,
1992.

13. S. Wu, U. Manber, and E. Myers. A subquadratic algorithm for approximate
regular expression matching. J. of Algorithms, 19(3):346-360, 1995.

