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Abstract

Metric access methods based on hyperplane partitioning have the advantage, compared to the ball-
partitioning-based ones, that regions do not overlap. The price is less flexibility for controlling the tree
shape, especially in the dynamic scenario, that is, upon insertions and deletions of objects. In this paper
we introduce a technique called ghost hyperplanes, which enables fully dynamic data structures based on
hyperplane partitioning. We apply the technique to Brin’s GNAT static index, obtaining a dynamic variant
called EGNAT, which in addition we adapt to secondary memory. We show experimentally that the EGNAT
is competitive with the M-tree, the baseline for this scenario. We also apply the ghost hyperplane technique
to Voronoi trees, obtaining a competitive dynamic structure for main memory.

Keywords: Metric spaces, secondary memory, similarity search.

1. Introduction

Searching large collections for objects similar to
a given one, under complex similiarity criteria, is
an important problem with applications in pattern
recognition, data mining, multimedia databases,
and many other areas. Similarity is in many in-
teresting cases modeled using metric spaces, where
one searches for objects within a distance range or
for nearest neighbors. In this work we call d() the
metric, which is nonnegative and satisfies the usual
properties d(x, y) > 0 iff x 6= y, d(x, y) = d(y, x),
and the triangle inequality d(x, y) + d(y, z) ≥
d(x, z). We focus on range queries, where we wish
to find every database object u such that d(q, u) ≤
r, where q is our query object and r is the tolerance
radius. Nearest-neighbor queries can be systemat-
ically built over range queries in an optimal way
[1].

Metric access methods, metric data structures, or
metric space indexes are different names for data
structures built over the set of objects with the
goal of minimizing the amount of distance evalu-
ations carried out to solve queries. These methods
are mainly based on dividing the space by using dis-
tances towards selected objects. Not making use of
the particularities of each application makes them
general, as they work with any kind of objects [2].

Metric space data structures can be roughly di-
vided into those based on so-called pivots and those
based on clustering the space [2]. Our work fits into
the second category. These indexes divide the space
into areas, where each area has a so-called center.
Some data is stored in each area, which allows easy
discarding of the whole area by just comparing the
query with its center. Indexes based on clustering
are better suited for high-dimensional metric spaces
or larger query radii, that is, the cases where the
problem is more difficult [2]. Some clustering-based
indexes are the Voronoi tree [3], the GNAT [4], the
M-tree [5], the Slim-tree [6], and the SAT [7].

These indexes are trees, where the children of
each node delimit areas of the space. Range queries
traverse the tree, entering into all the children
whose areas cannot be proved to be disjoint with
the query region.

There are two main tools to delimit areas in
clustering-based metric structures: hyperplanes ;
and balls or covering radii. In the latter, clusters
are delimited by radii around centers, thus the spa-
tial shapes of clusters correspond to balls in an Eu-
clidean space. In the former, closest to our work,
the areas are defined according to the closest cen-
ter to each point. The Euclidean analogous of this
partitioning is the Voronoi diagram of the centers.
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A problem with ball partitioning is that it is
generally impossible to avoid that balls overlap in
space. Therefore, even exact queries (with zero ra-
dius) usually have to enter several branches of the
tree. In exchange, this overlap gives flexibility on
where to insert new points, which has been key in
techniques to maintain the tree balanced and to
control the page occupancy in secondary memory.
The M-tree is a paradigmatic example of these tech-
niques. The Slim-tree was designed as a way to re-
duce the overlaps of the M-tree through periodic re-
organizations. In contrast, no overlaps are possible
in hyperplane-based partitioning methods. While
this gives an advantage for queries, these methods
are more rigid and controlling the tree shape is dif-
ficult. The GNAT and the SAT are good exponents
of this trend.

Most structures for metric spaces are not de-
signed to support dynamism, that is, updates to
the database once the index is built [2]. Yet, some
structures allow non-massive insertion operations
without degrading their performance too much. In
recent years, indexes with full dynamic capabili-
ties (that is, allowing massive updates) have ap-
peared, such as the M-tree [5, 8] and a dynamic
SAT [9]. Due to the rigid nature of the struc-
tures, handling updates have proved to be more
complex on hyperplane-partitioning indexes, espe-
cially to guarantee that the data structure quality is
not degraded after massive updates. The most seri-
ous problem is how to replace a deleted center with
another while ensuring that all the existing sub-
trees are covered by the correct areas (this can be
achieved with ball partitioning structures by simply
enlarging the covering radii, but no such flexibility
exists with hyperplanes). In the dynamic SAT dele-
tions are handled via local reconstructions, which is
expensive [9].

Implementation in secondary memory is also
complex. To begin with, the number of distance
computations competes in relevance, as a cost mea-
sure, with the I/O access cost. Most of the struc-
tures for metric space search are designed for main
memory. At present there are a few dynamic metric
indexes for secondary memory. The best known is
the M-tree. Others, based on pivots, are the OMNI
methods [10] and the iDistance [11]. To our knowl-
edge, no hyperplane-partitioning based metric in-
dex exists for secondary memory that supports in-
sertions and deletions (a recent variant of the SAT
[12] handles insertions and searches). The difficulty,
added to that of handling deletions in general, is

that there is no control over the insertion positions
of new elements. Thus it is hard to maintain those
trees balanced, and to ensure an adequate space
utilization at the leaves. A poor space utilization
not only yields larger space usage, but also more
disk accesses to reach the data.

In this paper we face those challenges, by intro-
ducing a novel technique called ghost hyperplanes
that deals with the problems of rigid structures. We
apply the technique to the GNAT data structure
[4], obtaining a dynamic variant we call EGNAT.
The quality of the EGNAT structure is maintained
upon insertions and deletions, while keeping their
cost low. The result is shown experimentally to be
superior to the M-tree in various scenarios, thanks
to the intrinsic advantage given by the nonoverlap-
ping areas. To illustrate the generality of the tech-
nique, we apply it to another rigid structure, the
Voronoi tree [3]. The result is competitive with the
EGNAT in main memory.

The paper is organized as follows. In Section 2
we describe the EGNAT, focusing only on the data
structure, insertion and search operations. Sec-
tion 3 introduces the ghost hyperplane technique
and applies it to delete elements from the EGNAT.
It also evaluates the data structure experimentally
in main memory. Section 4 extends the EGNAT to
secondary memory, and compares it experimentally
with the M-tree. Section 6 applies the ghost hyper-
planes idea to Voronoi Trees, and gives experimen-
tal results as well. Finally, we conclude and give
future work directions in Section 7.

2. EGNAT

The EGNAT is based on the concept of hyper-
plane partitions. It is a variant of the GNAT index
proposed by Brin [4]. The GNAT is a k-ary tree
built by selecting k centers (database objects) at
random, {p1, p2, . . . , pk}, which induce a Voronoi
partition of the space. Every remaining point is as-
signed to the area of the center closest to it. The k
centers form the children of the root and the points
assigned to their areas recursively form subtrees,
Dpi

. Each child pi maintains a table of distance
ranges toward the rest of the sets Dpj

, rangei,j =
(min{d(pi, x), x ∈ Dpj

}, max{d(pi, x), x ∈ Dpj
}).

See Figure 1.
The EGNAT contains two types of nodes, buckets

(leaves) and gnats (internal nodes). Internal EG-
NAT nodes are similar to internal GNAT nodes,
whereas leaves contain a number of elements for
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Figure 1: GNAT : partition of the space and representation of children and range tables.

which only the distance to their parent is known.
Nodes are initially created as buckets, without in-
ternal structure. This yields a significant reduction
in space compared to the GNAT, while still allow-
ing some pruning at query time by applying the
triangle inequality using the distance to the parent
when scanning the bucket. The bucket size yields a
space/time tradeoff.

Insertions proceed by recursively choosing the
closest center for the new element, until reaching
a leaf, where the element is inserted in the bucket.
When a bucket becomes full, it evolves into a gnat
node, by choosing k centers at random from the
bucket and re-inserting all the other objects into
the newly created node. New children of this gnat
node will be of type bucket.

Thus, the structure is not built in a bottom-up
manner, as an M-tree, for example. It is built in
top-down form, except that leaves are converted
into internal nodes only when a sufficiently large
number of elements have been inserted into them.
Yet, their splits do not propagate higher in the tree.

The range search algorithm for query q and ra-
dius r proceeds as follows. For gnat nodes, the
query uses the standard recursive GNAT method,
shown in Algorithm 1, until reaching the leaves1.
When we arrive at a bucket node, which is the child

1The real GNAT algorithm is more complex, as it avoids
comparing the query with some centers, by using an AESA-
like [13] algorithm over the zones. The EGNAT uses the
simpler method we present here.

corresponding to a center p of some internal node,
we scan the bucket, yet use the triangle inequal-
ity to try to avoid comparing every object x in the
bucket: If |d(x, p)− d(q, p)| > r, then we know that
d(x, q) > r without computing that distance. We
note that d(q, p) is already computed when we ar-
rive at the node, and that distances d(x, p) are those
stored in the bucket together with the objects.

Algorithm 1 range search at a gnat node.

rangesearch(Node P, Query q, Range r)

1: c← argmin1≤i≤kd(pi, q)
2: dmin ← d(pc, q)
3: for all pi ∈ P do

4: if [dmin − r, dmin + r] ∩ rangei,c 6= ∅ then

5: if d(pi, q) ≤ r then

6: Report pi

7: end if

8: rangesearch(Dpi
, q, r)

9: end if

10: end for

3. Deleting in the EGNAT : Ghost Hyper-

planes

Deleting elements is the most serious problem we
face in the design of a fully dynamic data struc-
ture. Deleting from a bucket is of course simple,
but deleting an internal node is complicated be-
cause there is no chance of finding a replacement
with its same area boundaries.
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One path explored in the past [9] is fully recon-
structing the subtree rooted at the deleted element,
but this has shown to be too expensive, so we aim
at a more lightweight technique.

Another “solution” indeed used by some classical
database managers is to simply mark the deleted
object and retain it for indexing purposes. While
this is certainly an option when indexing scalar
data such as numbers and strings, it is not that
acceptable in the metric space scenario. First, the
indexed objects can be very large (images, audio,
or video streams, complex meshes, etc.). In cases
where massive deletions occur, the idea of a very
large database using a significant percentage of ex-
tra space due to the lack of a deletion algorithm is
hard to defend. One can reconstruct it periodically,
thus falling down again to carrying out expensive
reorganizations every short periods (longer periods
imply a higher percentage of wasted space).

Second, because the objects are not “anony-
mous” scalars but complex entities, there may be
even legal barriers to maintaining them in the
database. Imagine for example a database of online
music records that dynamically, upon changes in
the contracts with suppliers, must add and remove
records. It might be simply not possible, for copy-
right reasons, to maintain deleted records for index-
ing purposes. The same can happen with medical
records (X-ray images, for example) of patients, or
biometric information of the employees of a com-
pany, or fingerprints at police databases, etc. for
privacy reasons, depending on the law.

Finally, one could aim at using synthetic objects
for indexing purposes, but these are again a waste
of space, and the ability of generating a valid object
that is in addition a good representative of a set is
highly dependent on the specific metric space, and
thus not applicable as a general technique.

Thus facing the algorithmic challenge of carry-
ing out actual deletions in a hyperplane-based met-
ric index is relevant, especially if the alternative
of ignoring the problem can be far from satisfac-
tory from various points of view. In this section
we describe and evaluate an innovative solution to
this problem, called ghost hyperplanes. As we will
show later, this method sometimes performs better
than just marking deleted elements without remov-
ing them, which gives yet another justification to
study the problem.

We note, before entering into details, that nodes
never become of type bucket again once they have
been promoted to gnat, even if deletions would

make a gnat subtree fit in a bucket. The reason
is that there is a considerable cost for converting a
bucket of size m into a gnat node (O(km) distance
computations, to find the subtree of each object and
to compute the rangei,j tables). Periodic subtree
reconstructions (much sparser than those necessary
when no deletions are carried out, as we will see in
the experiments) handle this problem.

3.1. Ghost Hyperplanes

The method consists in replacing the deleted ob-
ject x by another, y, which will occupy the place-
holder in the node of x without modifying the orig-
inal ranges of the deleted object. The node that
held x is then marked as affected, and the distance
between x and y is recorded in the node.

As we replace the center x by y, the partition im-
plicitly changes its shape, altering the hyperplanes
that separate the current region with the neighbor-
ing ones (note that the hyperplanes themselves are
never stored, but instead implicitly defined by the
centers). Furthermore, there is no re-calculation of
rangei,j . This has to be accounted for at the time
of searching, insertion, and deletion in the EGNAT.
This method is called ghost hyperplanes because the
old hyperplanes, which have disappeared after the
replacement, will still influence the behavior of the
data structure.

Figure 2 illustrates this concept. The old hy-
perplanes, called the “ghost” ones, correspond to
the deleted object. The nodes already inserted in
the affected subtree have followed the rule of those
ghost hyperplanes. The new hyperplanes are the
real ones after the deletion, and will drive the inser-
tion of new objects. That is, insertions will consider
the new objects, and therefore the new elements in-
serted into the affected subtree will be those closest
to the new element.

However, we must be able of finding the elements
inserted before and after the deletion. For this sake,
we must introduce a tolerance when entering into
affected subtrees. Say that node p has been deleted
and replaced by node p′. Let I = d(p, p′) be the
distance between the original element and its re-
placement. Then, since we will only store the new
element as the center, but still want to find those
elements inserted before doing the replacement, we
must consider that the hyperplanes may be off up
to I. Therefore, to implement ghost hyperplanes,
the only extra information we store on gnat nodes
v is the tolerance Iv. If Iv = 0, the node has not
been affected by replacements.
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Figure 2: Partition of the space before and after the deletion
of center s1, which is replaced by s

′

1
. The new hyperplanes

are drawn with solid lines, but the old (“ghost”) ones, in
dashed lines, were used when inserting old elements, and
this must be considered in order to find those elements later.

In particular, for range searching we must modify
line 4 of Algorithm 1, so that if node pi is affected
with distance Ii, we use [dmin−Ii−r, dmin +Ii +r],
instead of just [dmin− r, dmin + r]. Moreover, if the
nearest center c is also affected with distance Ic, we
must use tolerance Ii+Ic. Only if the more tolerant
intersection is empty we can safely discard the sub-
tree in the search process. Also, the I value of the
parent must be considered when filtering the nodes
in the child bucket using the triangle inequality (as
they store the distance to their parent center).

In addition, we must take care about further dele-
tions. Imagine that, after replacing p by p′, we now
delete p′ and replace it by p′′. Now the hyperplanes
may be off by up to d(p, p′) + d(p′, p′′). In general,
all the gnat nodes v will maintain an Iv value, ini-
tially zero, and upon each replacement on the center
of v, Iv will be increased by the distance between
its deleted center and its replacement. We might
rebuild a subtree when its Iv values have reached a

point that queries become too inefficient.

3.2. Choosing the Replacement

Election of the replacement object is not obvious.
On one hand, we wish that the replacement is as
close as possible to the deleted object, to minimize
the increase of I. On the other, we wish to find it
with as low cost as possible.

We note that, prior to choosing the replacement,
we must find the node to be deleted in the tree.
This is done via an exact search (i.e., with radius
zero). Then we must choose a replacement object,
for which we devise at least the following alterna-
tives, from most to least expensive.

1. The nearest neighbor. A natural solution is to
choose the nearest element in the dataset as a re-
placement. This can be found by a nearest neighbor
query, whose nonnegligible cost must thus be added
to that of the deletion. As this replacement needs
not be in a leaf, migrating it to the deleted node
triggers a new deletion subproblem. Moreover one
must avoid cycles in the sequence of nearest neigh-
bors found, which further complicates the problem.

2. The nearest descendant. A way to guarantee ter-
mination is to choose the nearest neighbor from the
descendants of the node where the deleted object
lies. This limited nearest neighbor search is likely
to produce a good candidate, as we search within
the partition of the query element. Still, a single
deletion will usually introduce several ghost hyper-
planes, which is likely to be worse than making just
one replacement with a not-so-close element in the
first place.

3. The nearest descendent located in a leaf. A third
alternative is the replacement by the nearest de-
scendant of the deleted object, among those located
in a bucket. This might produce larger I values
than previous alternatives, but it guarantees that
only one nearest object search will be carried out,
and that no cascading eliminations (nor creations
of further ghost hyperplanes) will arise.

4. A promising descendant leaf. To avoid running
the expensive nearest-neighbor procedure, we might
just descend to the leaf where the element to delete
would be inserted, that is, choose the closest center
at each point. Then the closest object at the bucket
is chosen.
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Figure 3: Aggregated construction costs (top) and individual deletion costs when deleting the first 10% (middle) and 40%
(bottom) of the database. The different lines refer to different tree arities (centers per node).
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5. An arbitrary descendant leaf. The least sophis-
ticated alternative is the direct replacement of the
deleted element by an arbitrary object at a descen-
dant leaf. This can cause an even larger overlap, but
there is no cost in terms of distance evaluations.

3.3. Experimental Evaluation

Tests made in two spaces from the Metric Spaces
Library (www.sisap.org) were selected for this pa-
per. The first is a Spanish dictionary with 86,061
words, where the edit distance is used. This is the
minimum number of insertions, deletions or sub-
stitutions of characters needed to make one of the
words equal to the other. The second is a synthetic
10-coordinate Euclidean space with Gaussian dis-
tribution with mean 1.0 and variance 0.1, contain-
ing 100,000 points. We consider EGNATs of arities
k = 4 to k = 20. Bucket sizes are 102 for the
strings and 92 for the vectors, to match later disk
page sizes. We create the EGNATs with 90% of
the dataset, and reserve the rest for queries. The
effect of deletions is shown by deleting and rein-
serting 10% to 40% of the EGNAT after it is built.
The strings are searched for ranges 1 to 4, whereas
the vectors are searched with radii that recover, on
average, 0.01% to 1% of the database.

We first show aggregated construction costs in
Figure 3 (top), via successive insertions. For the
Spanish dictionary, the insertion cost per element
ranges from around 40 to 80 distance computations,
depending on the arity of the tree. For the Gaussian
space, the range goes from 33 to 66.

The height of the trees is always between 4 and
5, despite the lack of balancing guarantees. Thus
the variance in the searches is always small. On
the other hand, around 6% of the nodes are of type
gnat in both cases; the rest are buckets.

Individual deletion costs are also shown in Fig-
ure 3. We are using the fifth replacement policy, for
simplicity. When we have deleted a small part of
the database (10%, middle), the deletion costs are
close to insertion costs. As we pay no distance eval-
uations to find the replacement, the deletion cost is
simply the cost of a search with radius zero. This
should indeed be similar to an insertion cost (which
goes by a simple branch towards a leaf) when there
are no ghost hyperplanes. However, after a mas-
sive deletion (40%, bottom), the ghost hyperplanes
make the zero-radius search much more expensive,
and consequently we can see that deletion costs de-
teriorate considerably.

We now study replacement policies for deletion.
We show that the fifth policy, despite of its sim-
plicity, is competitive with more complex ones. For
this sake we compare it with the third, which is
likely to produce a very good candidate and is still
reasonably simple.

Figure 4 shows the relative difference between
both methods (a positive percentage indicates that
the third alternative is better), considering the cost
of deletions and that of searches after the deletions,
respectively. As it can be seen, the difference is al-
ways very small. This is explained by the fact that
most of the elements are very close to (or at) the
leaves, and therefore either the policies do not play
any role, or all the candidates are well clustered so
that finding the closest one is not too different from
finding a random one.

For searching, the third policy is usually better,
as expected, since the ghost hyperplanes are tighter.
For deleting, at first the fifth method is better be-
cause it is cheaper, yet in the long term (larger
percentages of the DB deleted) the higher cost of
finding the element to delete dominates. Since the
differences are anyway very small, we have chosen
the fifth method for simplicity.

Figure 5 shows the search cost just after construc-
tion, and after we delete and reinsert 10% and 40%
of the database. Interestingly, the effect of deletions
is not so sharp on proximity searches (with radius
larger than zero), as these searches have to enter
many branches anyway.

The results show that the methods are very ro-
bust in maintaining the quality of the database.
Full reconstruction of subtrees is necessary only af-
ter a massive amount of deletions and reinsertions
have been carried out on them.

4. Secondary Memory

In secondary memory we account not only for the
distance evaluations, but also for the disk reads,
writes, and seeks. A secondary memory version of
EGNAT fits each node and each leaf in a disk page.

In the experimental results, we assume the disk
page is of size 4KB, which determines arity k = 20
(dictionary) and k = 19 (vectors) for the EGNATs.
To understand this low arity, recall that we need to
store a quadratic number of rangei,j limits. Many
more elements fit in the leaves.

We experimentally evaluate the EGNAT and
compare it with the baseline for metric space
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Figure 4: Ratio between methods, in deletion (top, middle) and search (bottom) costs.
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Figure 5: Search costs after construction and after deleting and reinserting part of the database.
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search in secondary memory: the M-tree [5].
Deletions are not implemented in the standard
M-tree distribution we use for comparison (at
http://www-db.deis.unibo.it/Mtree), so in this
case we only test the EGNAT. The parameters cho-
sen for the M-tree are G HIPERPL (which gave us
the best results) and MIN UTIL = 0.1 and 0.4, to
test two page fill ratio guarantees [14]. For other
potential competitors [10, 11] we could not find the
code publicly available, and furthermore they do
not report results on deletions either.

A serious problem with the EGNAT is its poor
disk space utilization. While the M-tree achieves an
average page fill ratio of 48%-56% on strings and
25%-30% on vectors (depending on MIN UTIL),
the EGNAT achieves 19% and 18%, respectively.
The problem is that, with large arities (19 and 20),
bucket pages are created with few elements (5% uti-
lization), and this lowers the average page usage. A
natural solution is to share disk pages among buck-
ets, that is, the bucket size is set to 1/k of the phys-
ical disk page, which is shared among k buckets. By
sharing, for example, disk pages among k = 6 buck-
ets, the disk page utilization raises to 25% on both
spaces. For k = 4, utilization is 22%. We will call
this latter alternative EGNAT-B.

Aggregated construction costs are shown in Fig-
ure 6. Both structures have similar construction
cost in terms of distance evaluations and disk writes
(EGNAT-B being worse in the latter), yet the M-
tree does many more disk block reads. This owes to
the effort made in the M-tree insertion algorithms
to achieve a balanced partition of the objects across
disk pages. Therefore, the price of the better space
utilization of the M-tree is a higher number of disk
reads at insertion time. The number of disk writes,
instead, grows slower on the M-tree, partly due to
the better space utilization.

Figures 7 and 8 (top) compare search costs, in
terms of distance evaluations and number of reads
or seeks (the number is the same for both). The
EGNAT performs fewer distance computations (as
little as one half for selective queries), yet the M-tree
carries out (sometimes significantly) fewer I/O ac-
cesses. The EGNAT-B pays a significant extra cost
in terms of I/Os. The outcome of the comparison,
in general, will depend on the cost of distance com-
putations in a particular metric space, compared to
the disk access cost.

Figures 7 and 8 (middle) show deletion costs in
terms of disk block reads and writes, for the EG-
NAT. It is interesting that writes are always upper

bounded by 2, whereas reads do degrade as more
elements are reinserted. This is because the num-
ber of pages written is always bounded in the algo-
rithm, yet disk reads are needed to find the element
to delete. This read cost would be significantly low-
ered if one had a handle indicating where is the
element to delete located in the tree.

Finally, the bottom rows of the figures show the
search costs, in terms of distance computations and
disk accesses, after a portion of the database is
deleted and reinserted. We experiment here with
a variant called “marked”, where deleted elements
are just marked as such without actually removing
them from the tree. The search is as usual except
that marked elements are never reported. As ex-
plained, this is not an acceptable deletion method
in metric spaces, but it serves as a baseline to see
how much the search deteriorates due to the ghost
hyperplanes. It is interesting that, in the Gaus-
sian space, marking can be worse than our deletion
method in terms of distance computations.

5. Scalability

Finally, we show that the disk-based EGNAT
scales well with the data size. We created synthetic
datasets corresponding to 10-dimensional Gaussian
vectors of size 105, 106, and 107, with the same dis-
tribution as before, and measured construction and
search costs. We consider arity 19 for the EGNATs.
The results are given in Figure 9.

It can be seen that construction costs per element
grow logarithmically with the data size in terms
of distance evaluations and disk seeks and reads.
That is, as the data size multiplies by 10, the curves
shift upwards by a constant amount. The number
of disk writes, instead, quickly stabilizes below the
constant 2.

With respect to search costs, the traversed frac-
tion of the database decreases as the database
grows, exhibiting sharp sublinearity in query
times both for distance evaluations and for disk
reads/seeks. For example, a range query return-
ing 1% of the database computes distances to more
than 50% of the elements for n = 105, but just to
10% for n = 106, and to 5.5% for n = 107. The
number of disk reads also grow sublinearily: as the
data size multiplies by 10, the number of blocks
read multiplies by 6. On more selective queries the
sublinearity is even more pronounced.
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6. Voronoi Trees

The concept of ghost hyperplanes is not only ap-
plicable to GNATs, but also to similar data struc-
tures. In this section we show how to apply the
ghost hyperplane concept to a less known data
structure, the Voronoi tree (VT) [3]. The VT is
similar to the Bisector Tree (BST [15]), which in
turn can be seen as a restriction of the GNAT struc-
ture, which only two objects per node are used and
no rangei,j information is stored, just the hyper-
planes and the covering radii. That is, the BST is a
binary tree where at each node 2 objects are chosen,
each other point is sent to the subtree of its closer
object, and subtrees are organized recursively.

The VT is an improvement over BSTs, where the
tree has 2 or 3 objects (and children) per node.
The insertion proceeds as in our EGNAT. However,
when a new tree node has to be created to hold the
inserted element, its closest element from the par-
ent node is also inserted in the new node. VTs have
the property that the covering radius is reduced as
we move downwards in the tree, which provides bet-
ter packing of elements in subtrees. It was shown
[3] that VTs are superior and better balanced than
BSTs. The search on a VT uses the covering radii
to prune the search.

The remaining challenge on VTs is how to remove
elements from them. Using ghost hyperplanes for
deleting elements on a VT poses the challenge of
the replicated elements: A single deletion of an ob-
ject x may generate several ghost hyperplanes, as x
is replicated in its subtree. However, note that all
these positions form a single downward path from
the highest occurrence of x towards a leaf. There-
fore, we choose as a replacement an element y that
shares the leaf node with the deepest occurrence of
x. This way, we can use the same object y to re-
place all the occurrences of x, and we know that the
choice is “good” for all these occurrences, as in all
cases y descends from a leaf of the subtree of that
occurrence of x.

Note that the property that the element repli-
cated from the parent is the closest one may be lost
after replacing x by y (or more precisely, remain
valid only with tolerance d(x, y)). Yet, this prop-
erty is not essential for the correctness of the search,
which is carried out exactly as for the EGNAT. We
also maintain the distance from each element to its
closest parent, to further prune the search. This is
also relaxed with the tolerance d(x, y) if the parent
x is replaced, just as for the EGNAT.

Figure 10 shows construction, deletion, and
search costs for our VT, for the Gaussian space
of dimension 10. We generalized the VT to arities
larger than 3 (while maintaining the idea of copying
the closer parent object to the child). The experi-
mental results show that the lower arities, where the
impact of copying the parent is higher, are indeed
better. This is interesting, because more replica-
tion exists with lower arities, and nevertheless the
search and deletion costs, after removing part of
the database, are lower. Thus the better geometry
of VTs is more relevant than the need of creating
several ghost hyperplanes per deletion.

The comparison with the EGNAT is also interest-
ing. On lower arities, the VT works better, thanks
to its replication policy. On higher arities, where
replication is still used but its impact is reduced,
the EGNAT becomes superior. In particular, the
EGNAT is a better alternative for secondary mem-
ory, where higher arities are necessary to make bet-
ter use of the disk pages.

7. Conclusions and Future Work

Most metric search structures are static and do
not handle secondary memory. The most famous
exception is the M-tree, which is based on a ball
partitioning of the space. This allows overlaps be-
tween regions, which gives flexibility to ensure good
fill ratios and balancing of the tree, but in exchange
has to traverse many branches at search time. In
this paper we have presented the first, as far as
we know, dynamic and secondary-memory-bound
data structure based on hyperplane partitioning,
the EGNAT. Hyperplanes do not have the flexibil-
ity of ball partitionings, but in exchange do not
introduce overlapping areas.

Our experimental results show that, as expected,
the M-tree achieves better disk page usage and
consequently fewer I/O operations at search time,
whereas our EGNAT data structure carries out
fewer distance computations. On the other hand,
construction costs are similar except that the M-
tree requires many more disk page reads, presum-
ably due to a more complex balancing policy.

Our main algorithmic contribution is a novel
mechanism to handle deletions based on ghost hy-
perplanes, where the deleted element is replaced by
another, and then overlapping is reintroduced as a
way to avoid the expensive subtree reconstructions
required in alternative hyperplane-based techniques
[9]. We show that overlapping is robust enough to
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Figure 10: Construction, deletion, and search costs for VTs.
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retain reasonable performance until a large fraction
of the database has been deleted, and only then a
reconstruction of subtrees from scratch would need
to be carried out to restore good performance.

To illustrate the generality of the approach, we
have applied ghost hyperplanes to Voronoi trees as
well, obtaining a structure that works better than
the EGNAT on low-arity trees. For secondary mem-
ory, where large arities are used, the EGNAT is still
preferable. Ghost hyperplanes are likely to find ap-
plications in other hyperplane-based metric struc-
tures. For example, one could use them to support
deletions in a recent proposal based on the SAT
that achieves good space utilization [12].

In this paper we have assumed that the same met-
ric index must be used to locate the element to be
deleted, which triggers a zero-radius search in the
structure that is responsible for most of the search
cost. Indeed, this is a subproblem of different na-
ture, which could be better solved for instance with
secondary-memory hashing, taking care of keeping
track of the disk position of each object identifier.
This would make deletions much more efficient in
terms of disk reads and distance computations.

Several lines of research remain open. For exam-
ple, we could aim at smarter policies to choose the
centers when a bucket overflows, which has been
carefully studied, for example, for the M-tree. This
could also be applied to the problem of improving
disk page utilization. A more systematic study of
subtree reconstructions is also necessary, to under-
stand their impact in overall performance (for ex-
ample, being more tolerant with overlaps involves
fewer reconstructions but costlier operations, so the
optimal amortized point is not clear).

Finally, it would be interesting to study how re-
laxation techniques similar to ghost hyperplanes
can be used to achieve balanced hyperplane-
partitioning trees, in particular disk-based ones.
Balancing is a key to better space utilization and
it could render the structure competitive with the
M-tree in this aspect, while retaining the advantage
of EGNATs in the others.
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