Information Retrieval manuscript No.
(will be inserted by the editor)

Implicit Indexing of Natural Language Text
by Reorganizing Bytecodes

Nieves R. Brisaboa - Antonio Farina -
Susana Ladra - Gonzalo Navarro

Received: date / Accepted: date

Abstract Word-based byte-oriented compression has succeeded on large nat-
ural language text databases, by providing competitive compression ratios, fast
random access, and direct sequential searching. We show that by just rearrang-
ing the target symbols of the compressed text into a tree-shaped structure, and
using negligible additional space, we obtain a new implicitly indezed represen-
tation of the compressed text, where search times are drastically improved. The
occurrences of a word can be listed directly, without any text scanning, and in
general any inverted-index-like capability, such as efficient phrase searches, can
be emulated without storing any inverted list information. We experimentally
show that our proposal performs not only much more efficiently than sequen-
tial searches over compressed text, but also than explicit inverted indexes and
other types of indexes, when using little extra space. Our representation is
especially successful when searching for single words and short phrases.

Keywords Word-based compression - Searching compressed text - Com-
pressed indexing
1 Introduction

Text compression is not only useful to save disk space, but more importantly,
to save processing, transmission, and disk transfer time. In text databases,

A preliminary partial version of this paper appeared in Proc. SIGIR 2008, pp. 139-146.

Nieves R. Brisaboa - Antonio Farifia - Susana Ladra (&)
Database Laboratory, University of A Coruna

Campus de Elvina s/n, 15071, A Coruiia, Spain

E-mail: {brisaboa | antonio.farina | sladra}@udc.es

Gonzalo Navarro

Department of Computer Science, University of Chile
Blanco Encalada 2120, Santiago, Chile

E-mail: gnavarro@dcc.uchile.cl

2 Nieves R. Brisaboa et al.

reducing the compression ratio (that is, the size of the compressed file as a
percentage of its uncompressed size) is only one of the criteria to choose a
compressor. It is also particularly important to decompress quickly, to access
the collection at arbitrary points for display purposes, and to support fast
pattern searches.

Compression techniques designed for natural language text databases have
obtained good compression ratios (around 25-30%) while allowing one to de-
compress the text collection from any point (Turpin and Moffat, 1997; Moura
et al, 2000). By using slightly more space they also offer very fast sequential
searches on the compressed text, 3 to 8 times faster than on the plain text
(Moura et al, 2000; Brisaboa et al, 2007).

In order to offer indexed searches (that is, search times that do not scale up
linearly with the database size), an inverted indez is usually added on top of
the collection. A word-addressing inverted index records the positions of each
word in the collection, and it can easily double the space of the compressed text
(Baeza-Yates and Ribeiro-Neto, 1999; Witten et al, 1999). Block addressing
(Navarro et al, 2000) is used to reduce space: the text is cut into blocks and
the index records only the blocks where each word appears. Then the indexed
searches must be complemented with some sequential scanning on compressed
text blocks, giving a space/time tradeoff related to the block size.

Most of the compressors that have succeeded in natural language text
databases are statistical methods that use a word-based model (Bentley et al,
1986; Moffat, 1989), where words, not characters, are taken as the source sym-
bols!. Words exhibit a more biased distribution of frequencies than characters.
Thus, regarded as a sequence of words, the text is highly compressible with a
zero-order modeling. The use of words captures high-order entropy statistics,
while ensuring that the model is not too large (as the vocabulary grows sub-
linearly with the size of the text collection (Heaps, 1978)). With the optimal
binary Huffman (1952) coding, compression ratios can be as low as 25%.

Although somewhat inferior to binary Huffman codes in compression effec-
tiveness, different coding methods, such as Plain Huffman Codes (Huffman,
1952; Moura et al, 2000) or Restricted Prefix Byte Codes (Culpepper and
Moffat, 2005) encode the source symbols as sequences of bytes instead of bits.
This enables much faster decompression.

Other coding methods, such as Tagged Huffman Codes (Moura et al,
2000), End-Tagged Dense Codes, and (s, ¢)-Dense Codes (Brisaboa et al, 2007),
worsen the compression ratios a bit more in exchange for self-synchronization.
This means that codeword boundaries can be distinguished starting from any-
where in the encoded sequence. Self-synchronization enables random access to
the compressed text, as well as very fast Boyer-Moore-like direct searches on
the compressed text (Boyer and Moore, 1977).

In this paper we show that self-synchronized byte-encodings and block-
addressing inverted indexes may be unnecessary. We propose a rearrangement
of the bytes of the compressed text codewords into a tree-shaped data struc-

1 The strings separating words are called “separators” and handled like words too.

Implicit Indexing of Natural Language Text by Reorganizing Bytecodes 3

ture that we call Wavelet Trees on Bytecodes (WTBC) for its resemblance
to wavelet trees (Grossi et al, 2003). This reordering by itself brings self-
synchronization to any byte-encoding scheme. For example, even using Plain
Huffman Codes, the reordered compressed text can be directly accessed at any
word offset. This encourages the use of the most space-efficient byte-encodings,
on which direct access is achieved.

What is even more striking is that the rearranged text turns out to offer
implicit indexing properties. That is, it can list the text positions of any word
directly, just as with a word-addressing inverted index. Moreover, it can in
general simulate any functionality of such an index, for example carrying out
efficient phrase searches on the text. In addition, it efficiently supports some
operations that are hard to compute with inverted indexes, such as counting
word frequencies along ranges of the text.

We implemented block-addressing inverted indexes on top of different word-
based compressors and using the most efficient list compression and list inter-
section techniques, in order to compare to WTBCs. Our results demonstrate
that, within the same space usage, it is more convenient to use WTBC than
those space-efficient inverted indexes. Only if one is willing to degrade com-
pression ratios over some point, inverted indexes may take over in some queries.

We remark that we are focusing on the so-called “full-text retrieval”, that
is, on the problem of retrieving the occurrences of a query in the text, and
therefore we compare to word-addressing inverted indexes. These must be
converted into block-addressing indexes in order to compete in space with our
structure. A different problem is “document retrieval”, that is, retrieving the
documents where a query appears. This is handled with a document-addressing
inverted index. We briefly discuss in the Conclusions about derivatives of our
present work that handle this type of search.

We also compare our proposal with other word-based compressed indexes
in the literature. Those directly based on wavelet trees (Claude and Navarro,
2008) achieve non-competitive compression ratios. Those based on word-based
suffix arrays (Brisaboa et al, 2008b), on the other hand, can use slightly less
space than WTBC and are faster when searching for phrases of 3 or more
words. Yet, they are slower on the more common word and 2-word queries?,
and particularly slow to display portions of the text. They are also unable to
efficiently restrict the search to an area of the database.

Our technique is applicable in main memory due to its random access pat-
tern. There has been much recent interest on inverted indexes that operate
in main memory (Sanders and Transier, 2007; Transier and Sanders, 2010;
Strohman and Croft, 2007; Culpepper and Moffat, 2007, 2010), mainly mo-
tivated by the possibility of distributing a large collection among the main
memories of several interconnected processors. By using less space for those
in-memory indexes (as our technique allows) more text could be cached in the
main memory of each processor and fewer processors (and less communication

2 According to up-to-date studies, these comprise 65% to 90% of the queries posed
to Web search engines in various countries, see http://www.keyworddiscovery.com/
keyword-stats.html.

4 Nieves R. Brisaboa et al.

and energy) would be required. In small handheld devices, secondary memory
may even be absent, and using less space may make the difference between
being able or not to handle a collection.

The paper is organized as follows. The next section describes the byte-
coding schemes we build on. Section 3 describes wavelet trees and how they
can be used as compressed indexes. Sections 4 and 5 present our WTBC tech-
nique, first the structure and then the access algorithms. Section 6 presents our
experimental results. We conclude in Section 7 and give future work directions.

2 Bytewise Encoders

We cover the most representative byte-oriented coding methods: Huffman-
based ones (Huffman, 1952; Moura et al, 2000), Dense Codes (Brisaboa et al,
2007), and Restricted Prefix Bytes codes (Culpepper and Moffat, 2005).

The byte-oriented variant of the binary Huffman code, called Plain Huff-
man Code (PH) (Huffman, 1952; Moura et al, 2000), is just a Huffman code
with arity 256, so its target symbols are bytes instead of bits. This worsens the
compression ratio by around 5 percentage points over that obtained by binary
Huffman coding on natural language and using words as source symbols (Mof-
fat, 1989). In exchange, decompression and searching are much faster on PH
because no bit manipulations are needed. Tagged Huffman codes (TH) (Moura
et al, 2000) are similar to PH, but they use a flag bit to obtain synchronism
at the expense of another 5 percentage point loss in compression ratio.

End-Tagged Dense Code (ETDC) is the simplest and fastest member of the
family of (s, ¢)-Dense Codes (SCDC) (Brisaboa et al, 2007). It reserves the first
bit of each byte to flag the last byte of the codewords. Such flag bit is enough
to ensure that the code is a prefix code regardless of the content of the other 7
bits, so all the 128 possible combinations are used. ETDC is better than TH in
almost every aspect. In the more general SCDC codes, values from 0 to s — 1
are final codeword bytes, and the other ¢ = 256 — s values denote that the
codeword continues. SCDC codes get very close to PH in compression ratio
and are almost as efficient as ETDC, which is the particular case s = ¢ = 128.

TH, ETDC, and SCDC are self-synchronizing codes, that is, one can start
decompression at any point in the compressed sequence, even from the middle
of a code, in any direction. They are also amenable to direct searching: a search
pattern can be encoded and searched for in the compressed text with any string
matching algorithm, even those skipping characters (Boyer and Moore, 1977),
without fear of false positives.

In Restricted Prefix Byte Codes (RPBC) (Culpepper and Moffat, 2005)
the first byte of each codeword completely specifies its length. The encoding
scheme is determined by a 4—tuple3 (v1,v2,v3,v4) satisfying vy +vo+uvz+vy <

3 Considering codewords composed of up to 4 bytes, the codeword assignment in RPBC
can be easily accomplished by using a simple brute force calculation. It can be extended to
handle longer codeword lengths, allowing for codewords of five or more bytes if required.
Yet, in our experiments the longest codeword used at most 4 bytes.

Implicit Indexing of Natural Language Text by Reorganizing Bytecodes 5

R, where the radix R is typically 256. The code has v; one-byte codewords,
Ru, two-byte codewords, R?v3 three-byte codewords and R3v, four-byte ones.
They require that v; + vo R + v3R% + v4R3 is not less than the vocabulary
size. This method improves the compression ratio of ETDC as it adds more
flexibility to the codeword lengths. It maintains efficiency with simple encode
and decode procedures, but it loses the self-synchronization property. It is
possible to run Boyer-Moore-like searches over this encoding, but this is slower
than searching text compressed with ETDC.

In this paper we will use PH, ETDC, and RPBC as the techniques to
illustrate our rearrangement strategy. Since we will obtain self-synchronization
on any code and indexed searches, there will be a strong reason to prefer PH
over the other codes, as it achieves minimum space and the advantages of the
other codes will be blurred.

3 Wavelet Trees

The wavelet tree is a data structure proposed by Grossi et al (2003) for repre-
senting a sequence S[1,n| in compressed form. The original wavelet tree is a
balanced binary tree that divides the alphabet into two halves at each node,
and stores bitmaps in the nodes to mark which side was chosen by each symbol
in the sequence. The root handles the whole sequence and each child handles
recursively the subsequence with the symbols assigned to it. The leaves corre-
spond to a single symbol and are not represented. On an alphabet of size o,
the wavelet tree has [log, o] levels, storing n bits overall per level. This makes
up a total of n[log, o] bits, that is, the same as a plain representation of S.

To extract any S[i], the wavelet tree starts at the root bitmap B[1,n]. If
Bli] = 0, then Si] belongs to the left half of the alphabet (i.e., S[i] < 0/2)
and we go to the left child, otherwise we go to the right child. Now, on the left
child, the symbol S[i] has been mapped to position i’ < 4, which is the number
of Os in BJ[1,4]. This is called ranko(B,). Similarly, we move to ' = rank,(B, 1)
when going to the right child.

Operation rank on bitmaps B[1,n] can be solved in constant time using
o(n) bits on top of B (Jacobson, 1989). If we create rank structures for all
the bitmaps, we can compute any S[i] in time O(logo) and using nlogo +
o(nlog o) bits of space. A similar algorithm computes rank.(S, %), the number
of occurrences of symbol ¢ in S[1,4], in time O(log o).

The operation complementary to rank is select (S, j), which gives the posi-
tion of the j-th occurrence of ¢ in S. On binary sequences, select can be solved
also in constant time with o(n) extra bits (Clark, 1996; Munro, 1996). If we
give select support to the bitmaps, we can also compute select.(S, j) in time
O(log o), by an upwards traversal from the leaf that corresponds to symbol c,
to the root.

The space required by the wavelet tree can be reduced to the zero-order
entropy of S in two ways. One is changing the balanced tree by a Huffman-
shaped tree (Grossi et al, 2003), according to the frequencies of the symbols

6 Nieves R. Brisaboa et al.

in S. Another is to use a compressed bitmap representation that also gives
constant-time rank and select (Raman et al, 2002).

Multi-ary wavelet trees were introduced by Ferragina et al (2007). As
the tree is not binary, it stores sequences over small alphabets, rather than
bitmaps, on the nodes. In theory the space is the same but the time can be
divided by O(loglogn). No practical implementation of this idea exists.

Claude and Navarro (2008) explored the idea of S being the sequence of
word identifiers of a text database. Then the wavelet tree represents S within
its zero-order entropy (plus some overhead) and allows accessing S at any po-
sition. Furthermore, the inverted list of the positions of any word w is obtained
with select,, (S, 1), select,,(S,2), and so on. Arbitrary positions of the list can
also be obtained in order to simulate various list intersection algorithms. The
best space/time performance was obtained by combining Huffman shape with
compressed bitmap representations. Still, the compression ratio obtained when
applied to English texts was around 50%.

4 Wavelet Trees on Bytecodes
4.1 Conceptual Description

Our proposal, called Wavelet Trees on Bytecodes (WTBC), can be applied to
any prefix-free byte-oriented encoding technique (such as all those mentioned
in Section 2). Basically the idea is to reorganize the different bytes of each code-
word, placing them in different nodes of a wavelet-like tree (wavelet tree from
now on, for shortness). That is, instead of representing the compressed text as
a concatenated sequence of codewords (composed of one or more bytes), each
one replacing the original word at that position in the text, we represent the
compressed text as a wavelet tree where the different bytes of each codeword
are placed at different nodes.

The root of the wavelet tree contains the first byte of all the codewords,
following the same order as the words in the original text. That is, at position
7 in the root we place the first byte of the codeword that encodes the i-th word
in the source text. The root has as many children as different bytes can be
the first byte of a codeword composed of more than one byte. For instance, in
ETDC the root has always 128 children and in RPBC it will typically have
256 — v1. The node x in the second level (taking the root as the first level)
stores the second byte of those codewords whose first byte is x. Hence each
node handles a subset of the text words, in the same order they have in the
original text. That is, the byte at position ¢ in node z is the second byte of the
i-th text codeword that starts with the byte x. The same arrangement is done
to create the lower levels of the tree. That is, node x has as many children as
different second bytes exist in codewords with more than 2 bytes having x as
their first byte.

Formally, let us represent the text words as (wy,ws...w,). Let us call
cw; the codeword representing word w;. Note that two codewords cw; and

Implicit Indexing of Natural Language Text by Reorganizing Bytecodes 7

cw; can be the same if the i-th and j-th words in the text coincide. The
bytes of codeword cw; are denoted as (c}...c™) were m is the size in bytes of
codeword cw;. The root node of the tree is formed by the sequence of bytes
(c},cd, ch...cl). Notice that the root has as many bytes as words has the text.
As explained, the root has a child for each byte value that can be the first
in a codeword with more than one byte. Assume there are r words in the
source text encoded by codewords (longer than 1 byte) starting with the byte
T: CWs, ...cw;, . Then the node x will store the sequence (cf1 , 0122 , cfs ci> Some
of those will be the last byte of their codeword, yet others would correspond
to codewords with more than two bytes.

Therefore, node x would have in turn children as explained before. Assume
node zy is a child of node . It stores the byte sequence (c?1 , c?Q,cgs...c?k) of
all the third bytes of codewords cwj, ...cw;, starting with xy, in their original
text order. Our wavelet tree is not balanced because some codewords are longer
than others. The number of levels is equal to the number of bytes of the longest
codewords assigned by the encoding scheme.

Figure 1 shows a small example where we built a WTBC* from the text
“LONG TIME AGO IN A GALAXY FAR FAR AWAY”, and the source alphabet of
words X = {A,AGO, AWAY,FAR, GALAXY, IN, LONG, TIME}. After obtaining the
codewords for all the words in the text, using a known encoding technique, we
reorganize their bytes in the WTBC data structure following the arrangement
explained. The first byte of each codeword is placed in the root node. The
next bytes are contained in the corresponding child nodes. For example, the
second byte of the word “AWAY” is the third byte of node Bs, because it is the
third word in the root node having by as first byte. Its third byte is in node
Bs By as its two first codeword bytes are by and by.

Assume we want to know which is the 6-th word in the text. Starting at
the root node in Figure 1, we read the byte at position 6 of the root node:
root[6] = by. The encoding scheme indicates that the codeword is not complete
yet, so we move to the second level of the tree. The second byte is contained
in the node By, which is the child node of the root where the second bytes
of all the codewords starting with byte by are stored. Using a byte-wise rank
operation we obtain ranks,(root,6) = 2. This means that the second byte
of the codeword starting in the byte at position 6 in the root node will be
the second byte in node By. In the next level, B4[2] = bs, therefore b5 is the
second byte of the codeword we are looking for. Again the encoding scheme
indicates that the codeword is still not complete, and rank,, (Bs,1) = 1 tells
us that the third byte of that word will be in node B4 Bsy at position 1. One
level down, we obtain ByBs[1] = b2, and now the obtained sequence bsbsba
is a complete codeword according to the encoding scheme. It corresponds to
“GALAXY”, which therefore is the 6-th word in the source text.

This process can be used to recover any word. Note that this mechanism
gives direct access and random decompression capabilities to any encoding

4 Note that only the shaded byte sequences are stored in the nodes; the text is shown
only for clarity.

8 Nieves R. Brisaboa et al.

TEXT: “LONG TIME AGO IN A GALAXY FAR FAR AWAY”

SYMBOL FREQ CODE

FAR 2 b1

IN 1 b, bs

A 1 b; by
LONG 1 bs bs
AGO 1 b, bs
TIME 1 b, by
AWAY 1 b, by bs
GALAXY 1 bs bs by

Word: LONG TIME AGO IN A GALAXY FAR FAR AWAY

Position: 1 2 3 4 5 6 7 8 9
TIME AWAY LONG A AGO GALAXY
1 2 1 2
[by b5 b4 | \ b5 by | by bs
Bz 54\ Bs Bs\
AWAY GALAXY
1 1

Fig. 1 Example of WI'BC data structure for a short text.

method, including those that do not mark the codeword boundaries. With the
proposed arrangement, those boundaries become automatically defined (each
byte in the root corresponds to a new codeword).

If we want to search for the first occurrence of “AWAY” in the example of
Figure 1, we start by finding out its codeword, which is babsbs. Therefore, the
search will start at the node By B4, which holds all the codewords starting with
baby. In this leaf node we find out where the first byte b3 occurs, because b3 is
the third byte of the codeword sought. Operation selecty, (B2 By, 1) = 1 tells us
that the first occurrence of our codeword is the first of all codewords starting
with baby, thus in the node Bs the first occurrence of byte by is the one encoding
the first occurrence of the word “AWAY” in the text. Again, to know where the
first byte by occurs in the node Bs, we perform selecty, (B2,1) = 3. Now we
know that, in the root node, the third byte b, will be the one corresponding to
the first byte of our codeword. To know where that third byte by is in the root
node, we compute selecty, (root,3) = 9. Finally, the result is that the word

Implicit Indexing of Natural Language Text by Reorganizing Bytecodes 9

“AWAY” appears for the first time as the 9-th word of the text. Note that it
would be easy to obtain a snippet of an arbitrary number of words around this
occurrence, just by using the explained decompression mechanism.

The sum of the space needed for the byte sequences stored in all the nodes
of the tree is exactly the same as the size of the compressed text obtained by
compressing the text with a word-based compressor using the same encoding
technique as that used to build the WTBC data structure. Just a rearrange-
ment has taken place. Yet, a negligible (as little as 0.05%, as we shall demon-
strate shortly) amount of extra space is required to store a few pointers that
permit us to keep information of the tree shape. Actually, the shape of the
tree is determined by the compression technique, so in many cases it is not
necessary to store those pointers, but only the length of the sequence at each
node. For example, if we use a canonical PH, it is not necessary to store point-
ers to maintain the shape of the tree and determine the i-th child of a given
node in constant time. In the same way, the wavelet trees built using ETDC or
RPBC can be navigated without the need of extra pointers due to the dense
assignment of codewords, which causes that all the nodes with children are
contiguously located in the wavelet tree. If an arbitrary code is used, the use
of pointers or bitmaps may be required to determine which node is the i-th
child of a given node.

In addition, some extra space can be used to support fast rank and select
operations over the byte sequences.

4.2 Tmplementation of bytewise rank and select

We explored different alternatives to implement rank and select operations over
byte sequences, due to their importance on the efficiency of the final structure.

A baseline solution is to carry out those operations by brute force, that
is, by sequentially counting all the occurrences of the byte we are interested
in, from the beginning of the node sequence. This simple option does not
require any extra structure. Interestingly enough, it already allows searches
to be carried out more efficiently than in classically compressed files. In both
cases we perform sequential searches, but with WTBC these searches process a
reduced portion of the file. Likewise, it is possible to access the text at random,
even using non-synchronized codes such as PH and RPBC, much faster than
scanning the file from the beginning.

Furthermore, it is possible to drastically improve the performance of rank
and select operations at a very moderate cost in extra space, by adapting well-
known techniques (Jacobson, 1989). Given a sequence of bytes B[1,n|, we use
a two-level directory structure, dividing the sequence into blocks of size b and
superblocks of size sb. The first level stores the number of occurrences of each
byte® from the beginning of the sequence to the start of each superblock. The
second level stores the number of occurrences of each byte up to the start of

5 Actually, only for bytes that appear in the sequence.

10 Nieves R. Brisaboa et al.

each block from the beginning of the superblock it belongs to. The second-level
values cannot be larger than sb, and hence can be represented with fewer bits.
We use integers for superblock values and short integers for block values.

With this approach, ranky, (B, j) is obtained by counting the number of
occurrences of b; from the beginning of the last block before j up to the position
7, and adding the values stored in the corresponding block and superblock for
byte b;. Instead of O(n), this structure answers rank in time O(b).

To compute selecty, (B, j) we binary search for the first value such that
ranky, (B, x) = j. We first binary search the values stored in the superblocks,
then those in the blocks inside the right superblock, and finally complete the
search with a sequential scan in the right block. The time is O(b + logn).

There is a space/time tradeoff associated to parameter b. The shorter the
blocks, the faster the sequential counting of occurrences of byte b;. In addi-
tion, we can speed up select operations by storing the result obtained for the
last query. Since it is common to perform several selecty, (B, j) operations for
the same byte value b; and consecutive j values, for instance when finding all
the occurrences of a word, this stored value can be used when the previous
occurrence of the byte value is located in the same block than the one sought.
Hence, instead of searching from the first position of the block, we can start
the sequential search from the position of the previous occurrence. This im-
proved performance in practice. Another related improvement we tried was
exponential instead of binary searches, but this did not have much effect.

With this solution we obtain better overall performance in practice than
using other alternatives to compute rank and select over arbitrary sequences,
as shown by Ladra (2011). We remark that this is not the general case, but it
holds for our particular application, due to the frequency distribution of words
and the higher relevance of access and select operations compared to rank in
the operations that emulate an inverted index.

4.3 Construction algorithm

The construction algorithm performs two passes over the source text. In the
first pass we obtain the vocabulary and the model (frequencies), and then
assign codewords using any prefix-free encoding scheme. In the second pass the
source text is processed again and each word is translated into its codeword.
Instead of storing those codewords sequentially, as in a classical compressor,
the codeword bytes are spread along the different nodes in the wavelet tree.
The node where a byte of a codeword is stored depends on the previous bytes
of that codeword, as explained.

It is possible to precompute how many nodes will form the tree and the
length of the sequence of each node before the second pass starts, as it is
determined by the encoding scheme and the frequencies of the words of the
vocabulary. Then, the nodes can be allocated according to these sizes and filled
with the codeword bytes as the second pass takes place. We maintain an array

Implicit Indexing of Natural Language Text by Reorganizing Bytecodes 11

Algorithm 1: Construction algorithm of WI'BC

Input: T, source text

Output: WTBC representing T'

voc < first-pass(t)

sortByFrequency(voc)

totalNodes < calculateNumberNodes ()
forall the node € totalNodes do
length[node] < calculateSeqLength(node)
wt[node] + allocate (length[node])
marker[node] + 1

end
forall the word € T do
cw <+ code(word) (= ctc?...)
currentnode <— rootnode
for i + 1 to |cw| do
J + marker|currentnode]
wt[currentnode][j] + ¢
marker|currentnode] < j + 1
currentnode < child(currentnode, c*)
end

end
return concatenation of node sequences, vocabulary, and length of node sequences
plus some extra information for the compression technique if needed

of markers that point to the current writing position at each node, so that
they can be filled sequentially following the order of the words in the text.

Finally, we obtain the WTBC representation as the concatenation of the
sequences of all the nodes in the wavelet tree, and we add a header with
the assignment between the words of the vocabulary and their codewords,
determined by the encoding technique employed. In addition, WTBC data
structures include the length of the sequence for all the nodes of the tree and
some extra information, if needed, of the shape of the tree. This information
depends on the encoding method used; if ETDC is the chosen technique, then
there is no extra information to maintain, whereas if we reorganize the com-
pressed text of PH, then a few extra bytes representing the canonical Huffman
tree are needed.

Algorithm 1 shows the pseudocode of this procedure, where the input is the
source text we want to represent and the output is the WTBC data structure
generated.

5 Access and Search Algorithms

In the previous section we have described the new data structure WITBC. We
showed how it is navigated using a small example. In this section we detail
the general algorithms for accessing to any position of the text and extracting
the word located at that position, as well as those for searching for patterns
in the text represented by the data structure.

12 Nieves R. Brisaboa et al.

Algorithm 2: Fxtract z (Fullaccess if it returns cw instead of w)

Input: z, position in the text

Output: w, word at position = in the text

currentnode < Tootnode

¢ < wt[currentnode][x]

cw <+ (¢

while cw is not completed do
x < rankc(currentnode,)
currentnode < child(currentnode, c)
¢ + wt[currentnode][x]
cw < cwl||c

end

w < decode(cw)

return w

5.1 Random extraction

Operation extract is vital for a structure that replaces the text, as the latter
is not available otherwise. This operation allows one to decompress portions
of the text, starting at any word offset, or to recover the whole original text.

We first explain how a single word is extracted using the WTBC data
structure, and in the next section we generalize the algorithm such that longer
sequences of the text can be extracted.

To extract a random text word j, we access the j-th byte of the root node
sequence to obtain the first byte of its codeword. If the codeword has just
one byte, we finish at this point. If the byte read b; is not the last one of a
codeword, we have to go down in the tree to obtain the rest of the bytes. As
explained, the next byte of the codeword is stored in the child node B;, the
one corresponding to words with b; as first byte. All the codewords starting
with that byte b; store their second byte in B;, so we count the number of
occurrences of byte b; in the root node before position j by using a rank
operation, ranky, (root,j) = k. Thus k is the position in the child node B; of
the second byte of the codeword. We repeat this procedure as many times as
the length of the codeword, as we show in Algorithm 2 (which also defines
operation fullaccess(x) as the one returning the codeword at position z).

The complexity of this algorithm is (¢ —1) times the complexity of the rank
operation, where ¢ is the length of the codeword. Therefore, its performance
depends on how the rank operation is implemented.

We can also decompress backward or forward from a given position. For
instance, if we need to return a snippet consisting of r words around the
occurrence of a word at position p we can follow the same algorithm starting
with the entries at positions [p — 7, p + 7] in the root node.

Implicit Indexing of Natural Language Text by Reorganizing Bytecodes 13

Algorithm 3: Full text decompression

Output: T, original text represented by the WTBC data structure
forall the node € totalNodes do
| marker[node] + 1

end

T+ ¢

for pos < 1 to length[rootnode] do

currentnode <— rootnode

¢ + wt[currentnode][pos]

cw <+ (¢)

while cw is not completed do
currentnode < child(currentnode, c)
x < marker|currentnode)
¢ + wt[currentnode][x]
marker|[currentnode] + x + 1
cw 4 cwl|c

end

T <+ T || decode(cw)

end
return T

5.2 Full text decompression

Since WTBC represents the text, we must be able to recover the original text
from its data structures. After loading the vocabulary and the whole structure
of the WTBC, a full recovery of the text consists in decoding sequentially each
entry of the root.

Instead of extracting each word individually, which would require (¢ — 1)
rank operations for each word (¢ being the length of its codeword), we follow
a faster procedure that avoids all those rank operations. Since all the nodes of
the tree will be processed sequentially, we can gain efficiency if we maintain
pointers to the current first unprocessed entry of each node, similarly to the
markers used at construction time (Section 4.3). Once we obtain the child node
where the codeword of the current word continues, we can avoid unnecessary
rank operations because the next byte of the codeword will be the next byte
to be processed in the corresponding node. Except for this improvement, the
procedure is the same as the one explained in Section 5.1. Its pseudocode is
given in Algorithm 3.

5.2.1 Starting the decompression at a random position

It is also possible to extract a portion of the text, starting from a random
position different from the first position of the text. The algorithm is the same
as the one described in Algorithm 3, which retrieves the whole original text,
except for the initialization of the markers. If we do not start the decompression
of the text from the beginning, we cannot initialize the markers with the value
1 for each node, they must be initialized with their corresponding values,
that are at first unknown. Hence, we start the algorithm with all the markers
uninitialized. During the top-down traversal of the tree performed to obtain

14 Nieves R. Brisaboa et al.

Algorithm 4: Count operation

Input: w, a word

Output: n, number of occurrences of w

cw < code(w)

Let cw = cw’||c, being c the last byte
currentnode <—node corresponding to code cw
n < rank.(currentnode, length|currentnode])
return n

/

the codeword of each word, the marker of a node might not contain the value of
the next byte to be read. Thus, if the marker is uninitialized, a rank operation
is performed to establish that value. If the marker is already initialized, the
rank operation is avoided and the value contained in the marker is used. At
most t rank operations are performed, being ¢ the total number of nodes of
WTBC data structure.

5.3 Searching

As already mentioned, WTBC data structure provides some implicit indexing
properties to the compressed text. Hence, it enables some search operations in
a more efficient way than over the text compressed with a regular compressor.

5.8.1 Counting word occurrences

If we want to count the occurrences of a given word, we can just compute how
many times the last byte of the codeword assigned to that word appears in the
corresponding leaf node. That leaf node is the one identified by all the bytes
of the codeword except the last one.

For instance, if we want to count how many times the word “TIME” occurs
in the text of the example in Figure 1, we first notice that its codeword is
babi. Then, we just count the number of times its last byte b; appears at
node By (since the first byte of its codeword is by). Analogously, to count the
occurrences of the word “GALAXY”, we obtain its codeword bsbsbs, and count
the number of times its last byte by appears at node ByBs (since the first
bytes of its codeword are bybs). The pseudocode is presented in Algorithm 4.

The main advantage of this procedure is that we count the number of
times that a byte appears within a node, instead of processing the whole text.
Generally, leaf nodes are not large and the procedure is much faster than
searching the regular compressed text, while using essentially the same space.
In addition the cost in time is drastically reduced if we include structures to
support efficient rank operations on the bytes stored at the node.

An extension to the count operation consists in counting the number of
times a word appears in a range within the text collection. This is relevant
for handling hierarchical, versioned, or temporal databases, for example. To
count the number of occurrences of word w between text words ¢ and j, we

Implicit Indexing of Natural Language Text by Reorganizing Bytecodes 15

Algorithm 5: Fullrank operation

Input: z, a position in the text
Input: cw (= clc?...), a codeword
Output: y, the number of occurrences of cw up to position = in the compressed text
currentnode < Tootnode
y «— rank 1 (currentnode, x)
for i < 1 to |cw| — 1 do
currentnode < child(currentnode, ct)
y < rank i1 (currentnode, y)
end
return y

use operation fullrank(cw,), which maps position ¢ towards the leaf of cw =
code(w), that is, it counts the number of occurrences of codeword cw in T'[1, 4]
(just as symbol rank operation on sequences). Then counting in range [i, j] is
efficiently implemented as fullrank(cw,j) — fullrank(cw,i — 1). Algorithm 5
gives the pseudocode for fullrank.

5.3.2 Locating individual words

As explained in the example of Section 4, to locate all the occurrences of a given
word, we start by looking for the last byte of the corresponding codeword cw
in the associated leaf node using operation select. If the last symbol of the
codeword, ¢/“?!, occurs at position j in the leaf node, then the previous byte
clewl=1 of that codeword will be the j-th one occurring in the parent node. We
proceed in the same way up in the tree until reaching the position x of the first
byte ¢! in the root node. Thus z is the position of the first occurrence of the
word searched for. The basic procedure, also called fullselect when receiving
the codeword instead of the word, is shown in Algorithm 6.

To find all the occurrences of a word we proceed in the same way, yet
we can use pointers to the already found positions in the nodes to speed up
the select operations, as explained in Section 4.2. Furthermore, to find all the
occurrences of a word in the text range [¢, j], we use fullrank to find the range of
occurrences of the word in that range, and then locate only those occurrences.

5.8.8 Counting and locating phrase patterns

It is also possible to search for a phrase pattern, that is, a pattern composed
of several words. We locate all the occurrences of the least frequent word in
the root node, and then check if all the first bytes of each codeword of the
pattern match with the previous and next entries at the root node. If all the
first bytes of the codewords of the pattern match, we verify their complete
codewords around the candidate occurrence by performing the corresponding
top-down traversal over the tree, until either a byte fails to match the search
pattern or we find the complete phrase pattern.

16 Nieves R. Brisaboa et al.

Algorithm 6: Locate the j-th occurrence of word w (Fullselect if it re-
ceives cw instead of w)

Input: w, word
Input: j, integer
Output: position of the j-th occurrence of w in the root node
cw < code(w) (=clc?...)
Let cw = cw’||c, being c the last byte
currentnode +—node corresponding to cw’
for i < |cw| downto 1 do
J < select i (currentnode, j)
currentnode < parent(currentnode)
end
return j

Algorithm 7: Locate all occurrences of phrase wiws ... w,

Input: wiws ... wp, phrase pattern
Output: positions of all the occurrences of phrase wiws ... wp in the root node
for i <+ 1 to p do
| cw; + code(w;) (=clc?..)
end
Let w; be the least frequent word of the phrase pattern and minpos < j
cw + cwj, (=cte?...)
m <— count(w;)
positions < 0
for z < 1 to m do
J < fullselect(cw, z)
141
while i < p do
‘ if rootnode[j — minpos + i] # ¢} then break
i i+1
end
if i > p then
i< 1
while i < p do
‘ if fullaccess(j — minpos + i) # cw; then break
i1+ 1
end
if ¢ > p then positions < positions U {j — minpos + 1}
end

end
return positions

This algorithm describes both the procedure for counting and locating the
occurrences of a given phrase pattern, so both operations are equally time-
costly. Its pseudocode is detailed in Algorithm 7.

In addition to this native method for searching for phrase patterns over the
WTBC, it is interesting to remark that WTBC also supports list intersection
algorithms to search for phrases over the compressed text. Inverted indexes
search for phrase patterns by obtaining the lists associated to the words that
compose the pattern, and then intersecting those lists. The efficiency of the
list intersection is crucial for search engines, and it continues to be an open

Implicit Indexing of Natural Language Text by Reorganizing Bytecodes 17

Algorithm 8: List intersection

Input: wi, word
Input: w2, word
QOutput: positions of the occurrences of the pattern wiws
cwy 4 code(wr)
cwg 4 code(wz)
x1 < fullselect(cwi, 1)
x2 fullselect(cwa, 1)
while maz{z1,z2} < n do
if 1 + 1 = z2 then
report occurrence
1 < fullselect(cwi, fullrank(cw1,z1) + 1)
T2 < fullselect(cwa, fullrank(cwa, z2) + 1)
else
if z1 +1 < x9 then
| x1 « fullselect(cwi, fullrank(cwi,z2 — 2) + 1)
if 1 +1 > x9 then
| x2 + fullselect(cwa, fullrank(cwa,z1 — 1) + 1)

end
return j

research problem, where new list intersection algorithms are constantly being
proposed (Sanders and Transier, 2007; Transier and Sanders, 2010; Culpepper
and Moffat, 2007, 2010; Barbay et al, 2009). These algorithms can be applied
over WT'BC by noticing that we can generate any arbitrary entry of the posting
list associated to any word on the fly.

As an example, the pseudocode of a set-vs-set-type intersection algorithm
implemented over WTBC is shown in Algorithm 8. Note that the native
method we explained first, however, has been especially adapted to take ad-
vantage of WTBC data structures. For instance, it will not be necessary to
make complete top-down traversals over the tree to check an occurrence in the
longest list if we detect a mismatch at an upper level of the tree on the first
codeword bytes of some word. In the next section we experimentally show that
our native method outperforms the set-vs-set-type list intersection algorithm
when searching for phrases over a real text.

6 Experimental Evaluation

This section presents the experimental performance of the new method pro-
posed, WIBC. We first show that WTBC is much more efficient than the
sequential representation of the compressed text when search functionality is
required. This is due to the implicit indexing properties that WTBC provides.

We also compare our WIBC data structure with explicit inverted in-
dexes, when using the same amount of space. More concretely, we use block-
addressing compressed inverted indexes (Navarro et al, 2000; Zobel et al, 1998),
since they are the best choice, as far as we know, when little space is available.

18 Nieves R. Brisaboa et al.

Table 1 Description of the corpora used.

CORPUS size (bytes) num. words | voc. size
CR 51,085,545 | 10,113,143 | 117,713
ZIFF 185,220,211 40,627,131 237,622
ALL 1,080,720,303 228,707,250 885,630

Our results demonstrate that using WTBC is more convenient than trying to
use very space-efficient inverted indexes. In addition to this comparison, we
compare the performance of WI'BC with some recent compressed indexes of
the literature.

Section 6.1 describes the collections and the machines used in the experi-
ments. Section 6.2 compares the new technique with the original compression
methods. Section 6.3 compares our proposal with indexing structures, that is,
inverted indexes and other compressed indexes.

6.1 Experimental framework

We used a large corpus (ALL), with around 1 GB, created by aggregating the
following text collections: AP Newswire 1988 and Ziff Data 1989-1990 (ZIFF)
from TREC-2, Congressional Record 1993 (CR) and Financial Times 1991 to
1994 from TREC-4%, in addition to the small Calgary corpus’. We also used CR
and ZIFF corpora individually to have smaller corpora to experiment with.
Table 1 presents the main characteristics of the corpora used. The first column
indicates the name of the corpus, the second its size (in bytes), the third the
number of words that compose the corpus, and the fourth the number of
different words in the text.

To create our vocabulary, we split the text into words (a maximal sequence
of alphanumerical characters) and separators (a sequence of non-alphabetical
characters between two contiguous words). Then, both words and separators
were encoded. We used the spaceless word model (Moura et al, 2000) to model
the separators. That is, if a word is followed by a single space, we just encode
the word, otherwise both the word and the separator are encoded. As a re-
sult, the vocabulary is formed by all the different words and all the different
separators, excluding the single white space. We did not perform any addi-
tional pre-processing of the text. Therefore, operations such as case-folding,
stemming, etc. were not, considered.

Two different machines have been used for the experiments. In Section
6.2 we used an isolated Intel®Pentium®-1v 3.00 GHz system (16Kb L1 +
1024Kb L2 cache), with 4 GB dual-channel DDR-400Mhz RAM. It ran De-
bian GNU/Linux (kernel version 2.4.27). The compiler used was gcc version

6 http://trec.nist.gov

7 We concatenated in a single file a subset of the files from the Calgary collection that
includes only the text files: book1-2, bib, news, and paperl-6. It is available at ftp://ftp.
cpsc.ucalgary.ca/pub/projects/text.compression.corpus

Implicit Indexing of Natural Language Text by Reorganizing Bytecodes 19

Table 2 Compression ratio (in %) of WIBC built using PH, ETDC and RPBC versus
their regular counterparts for three different natural language texts.

PH | ETDC | RPBC || WTPH | WTDC | WTRPBC
CR 31.057 | 31.941 | 31.062 || 31.060 | 31.948 31.065
ZIFF || 32.876 | 33.770 | 32.883 || 32.878 | 33.774 32.885
ALL || 32.833 | 33.659 | 32.845 || 32.835 | 33.662 32.847

3.3.5 and -09 -m32 compiler optimizations were set. In Section 6.3 we used
an isolated Intel®Xeon®-E5520@2.26GHz with 72GB-DDR3@800MHz RAM.
It ran Ubuntu 9.10 (kernel 2.6.31-19-server), using gcc version 4.4.1 with -09
-m32 options. Time results refer to CPU user time.

In Section 6.3 we analyze the search performance of our technique over
the ALL corpus. We use 8 sets of 100 test patterns. The first four sets are
composed of single-word patterns with different frequency ranges: W,, Wy, W,
and Wy with words occurring respectively [1,100], [101, 1000], [1001, 10000],
and [10001, oo] times. Those words were chosen at random from the vocabulary
following the model by Moura et al (2000) were each word is sought with
uniform probability. The overall number of occurrences for such sets are 5,679;
30,664; 258,098; and 2,273,565 respectively. The other four sets, P>, P3, Py, and
Ps, consist of phrase-patterns composed of 2, 3, 4, and 6 words respectively
that were randomly chosen from the text. We ensured that phrases consisting
only of stopwords® were not included in the sets P;. The number of occurrences
of such sets are 201,956; 31,964; 4,415; and 144 respectively.

6.2 Comparison with regular text compressors

As already explained, WTBC can be built over different byte-oriented encoding
schemes. The new proposed structure rearranges the bytes of the codewords
that conform the compressed text in a tree-shaped data structure. In this sec-
tion, we build the WTBC structure over PH, ETDC, and RPBC (see Section 2)
obtaining respectively what we call WT'PH, WTDC, and WTRPBC.

We measure how the reorganization of the codeword bytes induced by our
proposal affects the main compression parameters, such as compression ratio
and both compression and decompression times. We also show the searching
capabilities of the new WTBC-based structures, including results for count
and locate operations.

Table 2 shows that compression ratio is essentially not affected, as ex-
pected. There is a very slight loss of compression (close to 0.01%), due to the
storage of the tree shape. In this experiment addressing just compression, no
blocks and superblocks are built on WTPH, WTDC, and WTRPBC.

Tables 3 and 4 show the compression and decompression times obtained
using the WTBC data structure. The absolute differences in time are similar

8 We used a list of stopwords (prepositions, articles, etc.) available at http://vios.dc.
fi.udc.es/indexing/wsi/download.html.

20 Nieves R. Brisaboa et al.

Table 3 Compression time (s).

PH|ETDC |RPBC || WTPH | WIDC | WTRPBC
CR 2.886 | 2.870| 2.905 3.025 2.954 2.985
ZIFF || 11.033] 10.968 | 11.020 || 11.469 | 11.197 11.387
ALL || 71.317 | 71.452 | 71.614 || 74.631| 73.392 74.811

Table 4 Decompression time (s).

PH|ETDC |RPBC || WTPH | WTDC | WTRPBC
CR 0.574| 0.582| 0.583 0.692 0.697 0.702
ZIFF || 2.309| 2.254| 2.289 2.661 2.692 2.840
ALL || 14.191 | 13.943 | 14.131 || 16.978 | 17.484 17.576

both at compression and decompression: WTBC worsens the time by around
0.1 seconds for CR corpus, 0.4 seconds for ZIFF corpus and 3.5 seconds for
ALL corpus. This is because with WTBC strategy, compression and decom-
pression operate with data that is not sequentially stored in main memory. For
each word of the text, a top-down traversal is carried out on the tree, so the
benefits of cache and spatial locality are reduced. This is more noticeable at
decompression than at compression, since in the latter the overhead of parsing
the source text blurs those time differences. Therefore, compression time is
almost the same (2%-4% worse) as for the sequential compression techniques.
That is, almost the same time is required to build the WTBC from the text
than just to compress it. In decompression, those gaps increase and WTBC
structures become around 20%-25% slower than the regular counterparts.

We now compare the search results obtained by WITBC with those ob-
tained when performing searches over text compressed with PH, ETDC, and
RPBC.? We focus in two main search operations: we measure the user time re-
quired to count all the occurrences of a pattern (in milliseconds) and to locate
all those occurrences (in seconds). We run our experiments over the largest
corpus, ALL, and show the average time to search for 100 distinct words ran-
domly chosen from the vocabulary (we removed stopwords, since it makes no
sense to search for them). We present the results obtained by the compression
methods PH, ETDC, and RPBC; and by the WIBC data structure imple-
mented without blocks and superblocks (WTPH, WTDC, and WTRPBC).
We also include alternatives WT'PH+, WTDC+, and WTRPBC+, which cor-
respond to wasting 1% of extra space in the WTBC (i.e., 1% of the size of
the original collection T') on block and superblock structures to speed up the
operations.

To adjust WTBC to a desired extra space, we proceed as follows. Firstly,
being N the number of bytes of the indexed sequence, the overall size of the
rank/ select structures (E) is roughly estimated as E = (K, x 256)N/(s x

9 We used our own implementations to search within compressed text. For PH the searcher
marks the searched pattern in the vocabulary and then simulates decompression (Moura
et al, 2000). For ETDC we used a Horspool-based searcher (Horspool, 1980) available at
http://vios.dc.fi.udc.es/codes. Finally, for RPBC we implemented the Horspool-based
algorithm from RPBC’s authors (Culpepper, 2007, p. 100).

Implicit Indexing of Natural Language Text by Reorganizing Bytecodes 21

Table 5 Search performance for the ALL corpus.

Memory usage Count Locate

(%) (msec) (sec)

PH 35.128 2605.600 2.648
ETDC 35.955 1027.400 0.940
RPBC 35.140 1996.300 2.009
WTPH 35.129 238.500 0.754
WTDC 35.957 221.900 0.762
WTRPBC 35.141 238.700 0.773
WTPH+ 36.113 0.015 0.123
WTDC+ 36.953 0.015 0.129
WTRPBC+ 36.086 0.015 0.125

b) + (Kp x 256)N/b, where K is the byte size of the superblock counters (in
our case 4, the size of an unsigned int) and Kj is the byte size of the block
counters (in our case 2, the size of an unsigned short int). Therefore, we obtain
b= N (256 x (Ks/s+ K3))/E. By fixing s (to a small value) and the expected
extra space F, we obtain a first approximation for the value of b. Finally, we
manually fine-tune b until we reach the expected 1% extra space. In our case,
we obtained b = 21,000 bytes and superblocks of s = 10 blocks.

Table 5 shows time results for count and locate for each method and also
the amount of memory they need in order to solve those queries. To have a
fairer comparison, all the compared alternatives maintain the vocabulary of
words using a hash table with identical parameters and data structures. Its
space requirements are also included within the values in Table 5.

We observe that, even when no extra space is used for the block and su-
perblock structures, the use of WIBC data structure improves search perfor-
mance by an order of magnitude compared to scanning regular compressed
text, especially for counting the number of occurrences. By using just 1% of
extra space for rank and select support, searching times improve much more.

On the other hand, the time performance of the different realizations of
WTBC and WTIBC+ is very similar.

6.3 Comparison with other indexes

As explained, the reorganization carried out by the WTBC data structure
brings some (implicit) indexed search capabilities into the compressed file. It
improves searches in such a way that it becomes competitive with other index-
ing structures. In this section we compare the search performance of WITPH+
with two block-addressing compressed inverted indexes (Navarro et al, 2000),
a bit-oriented Huffman-shaped wavelet tree as described in Section 3 (Grossi
et al, 2003; Claude and Navarro, 2008) and a word-based compressed index
based on suffix arrays (Brisaboa et al, 2008b), working in main memory.

The inverted indexes used are block-grained: they assume that the indexed
text is partitioned into blocks of size b, and for each term they keep a list of
occurrences that stores all the block-ids in which that term occurs.

22 Nieves R. Brisaboa et al.

The first compressed inverted index, II-scde, is built over text compressed
with SCDC, whereas the second index, II-huff, is built over text compressed
with binary Huffman. We use SCDC for one of the inverted indexes due to its
efficiency at decompression and searches, while achieving a good compression
ratio (33.02% for the ALL corpus). For the other inverted index we use Huf-
fword, which consists in the well-known bit-oriented Huffman coupled with a
word-based modeler (Witten et al, 1999). It obtains better compression ratios
than SCDC (29.22% for ALL corpus), but it is much slower at both decom-
pression and searches. For our two alternatives, II-scdc and II-huff, we built
several indexes where we varied the block size, which brings an interesting
space/time tradeoff. If we use the slower Huffman coding, we can exchange
the space gain by a denser sampling, so that shorter blocks will be scanned.
If we use the faster SCDC, scanning will be faster but it will be performed on
longer blocks.

To reduce the size of the index, the lists of occurrences were compacted
using Rice codes (Witten et al, 1999) for the shorter lists and bitmaps for
the longer ones. We follow a list compression strategy (Moffat and Culpepper,
2007; Culpepper and Moffat, 2010) where the list L of a given word is stored
as a bitmap if |L| > u/8, being u the number of blocks. No sampling is used.
As the posting lists are compressed with variable-length codes, intersection of
lists is performed using a merge-type algorithm along with the decoding of such
lists (that is, the lists are intersected as they are sequentially decoded). We
have tried other strategies to deal with the inverted lists, including sampling
for direct access (Sanders and Transier, 2007; Transier and Sanders, 2010;
Culpepper and Moffat, 2007, 2010) or codes that are only slightly less space-
efficient but faster to decode (Ding et al, 2010; Anh and Moffat, 2005; Zukowski
et al, 2006; Yan et al, 2009). Yet, search times were practically unaffected as
they depend mainly on the block size. The reason is that most of the time is
spent in scanning blocks and not on traversing lists. Adding sampling or a less
space-efficient code wastes some space that is much better used in a denser
sampling with reduced block size.

In addition, we compare WTBC with other compressed indexes that sup-
port fast searches for words or phrases and occupy space comparable to our
WTBC. We will not compare our proposal with classical full-text compressed
indexes that can search for any pattern (not only words). This comparison
is unfair because these indexes offer stronger functionality, and require much
more space: around 40-60% for natural language text (Ferragina et al, 2009).
Instead, we first compare WTPH+ with a binary Huffman-shaped wavelet tree
(Grossi et al, 2003; Claude and Navarro, 2008) representing the sequence of
words of the text, denoted WTbitHuff, and also with a word-based version of
a classical compressed index such as the word-based Compressed Suffix Array
(WCSA) (Brisaboa et al, 2008b).

For the comparison, we create several Huffman-shaped wavelet trees with
different sizes, varying the size for the extra structure used to compute fast
binary rank and select operations. We used the implementations of WThitHuff

Implicit Indexing of Natural Language Text by Reorganizing Bytecodes 23

available at the Compact Data Structures Library (libcds)!®. For WCSA, we
create several indexes with different sizes, varying construction parameters
such as the sample periods ¢ 4, t;l and ty for A, A~ and ¥, which also gives
an interesting space/time tradeoff.

To illustrate the behavior of WIBC, we compute search times for the
variant built over PH (WTPH+), since it obtains the best space/time results.

Note that, for the experiments of this section and the following ones, the
vocabulary is not stored using a hash table, as in the previous section. We
store the vocabulary in alphabetic order, so that we can obtain the codeword
assigned to a word with a binary search over this structure. This solution
is lighter than using a hash table, and the WTBC data structure built over
the compressed text of the ALL corpus using PH requires just 33.32% of the
original text to solve any query (without any rank and select extra structure).
Our method cannot use less than that memory to represent the ALL corpus in
an indexed way, whereas other indexes, such as WCSA or the inverted index
using Huffman coding (II-huff) can still go beyond our lower bound.

We built several configurations for WI'PH+ using different sizes for the
rank and select structure, so that we can show the space/time tradeoff obtained
by the representation. We compare WTPH+ with the other indexes over the
corpus ALL, using the sets of patterns W,, Wy, W, Wy, Ps, P53, Py, and Py
described in Section 6.1. We measure the amount of main memory occupied
by the indexes, and the time to perform the following search operations:

— locate: we measure the time to locate all the occurrences of a pattern.

— extract: we measure the time to extract some portions of text of different
lengths.

— display: we measure the time to display a snippet around all the occurrences
of a pattern, which includes the time to locate its occurrences and to extract
snippets containing 20 words, starting at an offset 10 words before each
occurrence.

Results for both locate and display operations refer to average time per
occurrence (in msec/occurrence). We do not measure counting time since it
could be solved trivially for word patterns by including the number of occur-
rences for each word along with the vocabulary (worsening compression ratio
by around 0.75 percentage points). WTBC counting times for phrase patterns
are similar to locating them; hence, those counting times can be obtained from
the figures for locate operation. Results for extract are measured in time per
character extracted (in usec/char).

6.3.1 Locating times

Figure 2 shows the performance of the indexes for locating individual words
for scenarios W, (top left), W} (top right), W, (bottom left), and Wy (bottom
right). We can observe that WTPH+ obtains the best results, regardless of the

10 http://libcds.recoded.cl/

24 Nieves R. Brisaboa et al.
W, scenario: words freq = [1..100]) W,, scenario: words freq = [101..1000]
016 [v ‘ ‘ “llesede —— o] 016 [¥ I "]
11-huff - :
. oaaf WCSA ¥ E . oaaf E
g WTbitHuff & g S
; 012 WTPH+ ---@-- — § 012 b]]
0.1t) o1t —
E ¥ E v
E 0.08 | .g 0.08 | I 4
@ 006 @ 006 i E
bt § ?
38 o004l 8 o0l —
0.02 0.02 al —
-5
0 1 0 1 L a8
32 32 34 a4
compression ratio (%) compression ratio (%)
W, scenario: words freq = [1001..10000] W, scenario: words freq = > 10000)
016 [" ‘ " ll-sode —— "] 016 [‘ ‘ ‘ ‘ "]
11-huff -
. oaaf WCSA v E . oaaf E
g WTbitHuff & m
; 012 WTPH+ --e-- © — é 012 —
E [n)
g 0.1t Y — Z o1t —
E 0.08 - : — g 0.08 - —
@ 006 v E © 006 1
bt i § v
38 o004l & — 8 ool —
002 | : a1 002 o
ol ¢ 758 ol ees qq %95
32 34 36 38 40 42 a4 32 34 36 38 40 42 a4
compression ratio (%) compression ratio (%)
Fig. 2 Time/space tradeoff for locating individual words with WTBC strategy over PH
against other searching structures, varying the frequency of the word sought.
P, scenario: phrases with 2 words P scenario: phrases with 3 words
0.14 — 06 — ! — . . ,
v L
012 05 | J
g g
01t
0.08 2
% T 03]
£ 006 £
© © 02f f
bt L
§ om §]
0.1 ¥ J
002 v
0 0
32 32
compression ratio (%) compression ratio (%)
P, scenario: phrases with 4 words Pg scenario: phrases with 6 words
2 20 — . T . ; .
18 18 | i
~ 16} ~ 161 .
Q Q
8 14 8 14t .
E 12 3 12t
£ £
5 1r S 10
£ osl £ gt
Q Q
§ 06 1§ 6
= 04f S 4l
02+ 2
o e 0 L= o
32 34 36 38 40 42 a4 32 34 36 38 40 a2 44
compression ratio (%) compression ratio (%)
Fig. 3 Time/space tradeoff for locating phrases with WTBC strategy over PH against other

searching structures, varying the length of the phrase sought.

Implicit Indexing of Natural Language Text by Reorganizing Bytecodes 25

frequency of the word sought, when little space is used to index the compressed
text.

Compared with inverted indexes, WTPH+ is faster since it directly jumps
to the next occurrence, while inverted indexes have to scan the text. When lit-
tle memory is used, the inverted indexes obtain poor results, since a sequential
scan must be performed over large blocks. The worst scenario for WIPH+ is
locating low-frequency words, since it must perform a bottom-up traversal of
the tree from the deepest leaves, and thus several select operations must be
carried out. For this scenario W,, inverted indexes overcome WTPH+ when
the index occupies more than 39% of the original text size. This scenario is
particularly advantageous for II-scdc inverted index: we are searching for low-
frequency words, which have long codewords assigned, over short blocks of
SCDC compressed text. Moreover, SCDC enables Boyer-Moore-type search-
ing, which skips bytes during the search, and since the codewords sought are
long, the Boyer-Moore algorithm can skip more bytes. For scenarios Wy, W,
and W; WTPH+ obtains better times than the inverted indexes, even when
using much space.

WTPH+ also outperforms the binary Huffman-shaped wavelet tree (WT-
bitHuff). Since the alphabet is so large (around 885,000 words) the wavelet
tree requires several levels, and thus accessing, counting, and locating the sym-
bols of the sequence become slow. In addition, the tree has a large number
of nodes, which require many pointers to maintain the tree shape. Therefore,
WTbitHuff uses significantly more space than the zero-order entropy of the
text (note that the compression ratio obtained by binary Huffman code over
ALL corpus is 28.55%).

Compared with WCSA, WTPH+ is significantly faster at locating the oc-
currences of individual words. However, WCSA can achieve lower spaces than
WTPH+. WTPH built over ALL corpus occupies 33.32% of the text, when no
rank or select structures are used. In the figures, we illustrate the behavior of
several configurations of WTPH+ using a structure for rank and select opera-
tions with varying sample period. When very little space is used for rank and
select structures, the compression ratio obtained gets close to that of WTPH,
but WTPH+ becomes very inefficient due to the sparseness in the samples
of the rank and select directory of blocks and superblocks. The efficiency of
WCSA also decreases when we use less space, but it can index the same text
using less than 33% of space.

Figure 3 shows the performance when locating phrase patterns for scenar-
ios Py (top left), Ps (top right), Py (bottom left), and Py (bottom right). From
the experimental results we can observe that WTPH+ can efficiently locate
short phrase patterns (of length 2) but its efficiency decreases for longer pat-
terns. Note that the average time for locate is measured in milliseconds per
occurrence. Since long phrase patterns are less frequent than the short ones,
this average time is worse for long phrase patterns. In addition, when the
phrases are long, verifications require to perform ¢ top-down traversals over
the tree, being ¢ the length of the phrase. Even if some more false match-
ings are detected at the root level, those extra rank operations worsen the

26 Nieves R. Brisaboa et al.

Table 6 Average times (in msec/pattern) to locate 2-words phrases from the sets S1 and
Sa, for WTPH+ using two different intersection algorithms.

Searching technique | S1 Sa
Native phrase searching algorithm 86.07 28.89
Set-vs-set-like list intersection algorithm | 411.30 100.15

average locating time. Inverted indexes become a better choice to search for
long phrase patterns for compression ratios above 37%, as it happened when
searching for less frequent patterns: when searching for long phrases, we can
skip more bytes during the sequential scan of the blocks. However, WTPH+
is always the preferred solution when little space is used.

WCSA clearly outperforms WTPH+ when searching for long phrase pat-
terns. This is an expected result since suffix arrays were designed to efficiently
count and locate all the occurrences of substrings of the text. WCSA is a word-
based compressed index based on suffix arrays, hence, it easily recovers all the
occurrences of the word phrases of the text. However, WTPH+ still obtains
better results than WCSA when searching for phrases composed of two words.

Locating phrase patterns versus list intersection

Recall that, apart from the native algorithm presented in Section 5.3.3 for
locating the occurrences of phrase patterns, other list intersection algorithms
could be used. We now compare the performance of the native algorithm with
the implementation of the set-vs-set-type intersection method in the WTBC.

We run our experiments over the ALL corpus and show the average time to
search for two different sets of phrase-patterns composed of 2 words. The first
set (S1) contains 100 distinct 2-words phrases randomly chosen from the text,
where the most frequent word of each phrase occurs less than 100,000 times
in the text. The second test set (S2) contains 100 distinct phrases composed
of two words that were randomly chosen from the vocabulary among all the
words of frequency f, such that 1,000 < f < 50,000. Note that the artificially
generated phrases in Sy do not necessarily exist in the text. We present the
results obtained for both techniques by WIBC built over PH (WTPH+) using
blocks of 21,000 bytes and superblocks of 10 blocks, which waste 1% of extra
space, to speed up rank and select operations.

In Table 6, we can observe that the best results are obtained by the na-
tive algorithm when searching for phrases in the WTBC. Remember that this
algorithm consists in searching for the occurrences of the least frequent word
and then checking the surrounding positions to know whether there is an oc-
currence of the phrase or not. This can be very efficiently checked by just
comparing the first bytes of the codeword in the first level of the WTBC,
which permits fast detection of false matchings. If the first bytes match, then
we check the bytes at the second level. Only if all the bytes at each level of
the tree coincide, we reach the leaf level of the WTBC and check if there is an
occurrence of the phrase-pattern. On the other hand, the set-vs-set-type list

Implicit Indexing of Natural Language Text by Reorganizing Bytecodes 27

intersection algorithm performs complete top-down traversals of the WTBC,
which may be unnecessary.

Note that the set-vs-set-type algorithm for list intersection may be faster
than the native method if we search for a phrase composed of two words, where
each word occurs more frequently in one portion of the text. Thus, we will
avoid checking all the occurrences of the least frequent word, as the algorithm
may skip several occurrences of the word that appears in one portion of the
document by jumping to another portion of the document. However, these list
intersection algorithms (Barbay et al, 2009) were designed for intersecting lists
of documents on bag-of-word queries, where the described situation is more
plausible. It seems less likely that this arises in words that are searched for as
a phrase. Our experiments show that the effect is far from relevant when we
choose random pairs of words.

6.3.2 Range-restricted locating

As mentioned in Section 5.3, our WTBC strategy efficiently supports counting
and locating the occurrences of patterns within a certain range (for phrases
the only way to count the occurrences is to locate them). We now compare
its performance with inverted indexes and WCSA. Inverted indexes can find,
for each of the involved lists, the first entry that falls within the range, and
continue the intersection until leaving the range. This way they support effi-
cient locating in a range, yet they cannot directly count, even for simple word
queries. For the WCSA the problem is even harder, as the positions are deliv-
ered out of order, so the only way to query within a range is to carry out the
full query and then restrict the positions.

We generated random intervals of width n, n/10, n/100, n/1,000, and
n/10,000, being n = 228,707,250 the number of words of the text ALL. We
configured the indexes to obtain a compression around 36%. For WTPH+ we
use blocks of 5,000 bytes and superblocks of 8 blocks, obtaining a compression
ratio of 35.94%. Il-scdc is tuned to obtain a compression ratio of 36.31%,
IT-huff obtains 36.36%, and WCSA obtains 36.10%.

We measured the time to count and locate all the occurrences of 100 distinct
patterns from three different sets: W,., P3 and Pg, averaging over 20, 1000,
and 5000 random ranges of each size, respectively. We measured counting and
locating average times per pattern (in msec/pattern).

Figure 4 shows space/time results for scenarios W, (top), Ps (bottom left)
and Ps (bottom right). For W, we represent separately the times for counting
and locating the occurrences of the query word with WTPH+ whereas for
phrase-pattern scenarios we only show locating times, as there is no indepen-
dent algorithm for counting.

We can observe that WTPH+ becomes the most efficient technique to
locate patterns in a range as its width decreases, that is, as the query be-
comes more selective. Even for the most disadvantageous scenario, that is,
when searching for the occurrences of long phrase patterns (Fs), WTPH+
outperforms WCSA when restricting to shorter ranges.

28 Nieves R. Brisaboa et al.

W, scenario: words freq = [1001..10000]

Il-scdc
11-huff -
WCSA -7
100 WTPH+ locate —e
’g WTPH+ count ---&--
% 10
£ 1
o
£
I 01
8
°
001 S 8
o-
0.001
n n1o n/100 /1000 n/10000
range width
P; scenario: phrases with 3 words Pg scenario: phrases with 6 words
1000 T T 100 T T
Il-scdc —+— « Il-scdc —+—
11-huff -
= 100 | *. WCSA v E —
c < 10 ¢
g g
8 1wl i
8 g
E 1} s
£ g o1
% 01F %
g om} & oop
0.001 L— 0.001 —
n n/10 n/100 n/1000 n/10000 n n/10 n/100 n/1000 n/10000
range width range width

Fig. 4 Time/space tradeoff for locating patterns in a range with WTBC strategy over PH
against other structures, varying the width of the range considered.

Moreover, WI'PH+ can efficiently count the number of occurrences of an
individual word between two positions of the text by performing just two byte-
wise rank operations, whereas the other indexing structures must obtain the
occurrences and count them.

6.3.3 Extraction times

In this section we study the efficiency of WITBC at extracting portions of
text, comparing it with the other two compressed indexes, that is, WCSA and
WThbitHuff. We do not compare WTBC with inverted indexes, since these
carry out sequential searches on the blocks, and therefore they can display
any snippet around occurrences found without any extra time penalty.

We created three sets of intervals [i, i +w — 1], where 7 is a random position
on the sequence of N words that compose the text (1 <i < N —w), and w
is the interval width. We tried three different values for w (10, 100, and 1000
words), so that we start the extraction of text from the i-th word and recover
a substring containing the following w words. We will refer to such sets as 10w,
100w, and 1000w, and they contain respectively 10%, 10°, and 10* intervals.
Therefore, we will extract 10 substrings consisting of 10 words, 10° of 100
words, and 10* substrings with 1000 words respectively. Results for extract
are given in microseconds per extracted character (usec/char).

Implicit Indexing of Natural Language Text by Reorganizing Bytecodes 29

Figure 5 shows the results for the set 10w (top left), 100w (top right) and
1000w (bottom left). As we can observe, WTBC outperforms the other indexes
when extracting snippets. This shows in particular a weak side of the WCSA,
which is slow at this task.

Figure 5 (bottom right) shows how the performance of the extract operation
improves as the length of the snippet increases. Remember from Section 5.2.1
that we use one pointer per node to avoid rank operations over the tree. These
pointers are uninitialized at first, and one rank operation is required to set
their value for a node if needed. Once its value is established, no more rank
operations are performed to access a position of that same node. The longer
the snippet, the lower the amortized cost per traversed byte. In addition, we
can see in the figure that the time depends on the size of the structure that
supports rank operations. As expected, we obtain better time results if we
spend more extra space to speed up this bytewise operation.

6.3.4 Display times

We now show the results for operation display, which are analogous to the
results obtained for locate. Note that the display operation consists in first
locating the occurrences and then extracting some portion of text around
those occurrences. Therefore, again, as long as we set the indexes to use less
space, WITPH+ becomes the preferred choice.

Figure 6 shows only the results for some of the scenarios for individual
words and phrase patterns, since the results can be obtained by adding locat-
ing plus extracting times. More concretely, we show space/times results for
scenarios W, (top left) and Wy (top right), as well as for scenarios P2 (bottom
left) and Ps (bottom right).

Differences in time between WTBC and inverted indexes are larger when
comparing locate times than when we compare snippet extraction times. Note
that those gaps in snippet extraction time tend to reduce since decompression
is faster in inverted indexes than in WTPH+, especially for the inverted index
built over SCDC. However, WTBC still obtains better time results when dis-
playing all the occurrences of a word, especially for not very frequent words,
where there are fewer snippets to extract.

Compared with the other compressed indexes, the results of WIBC for
display are slightly better than in the case of the locate operation, as the ex-
traction of the text is more efficient in our WTBC strategy than for WCSA
or WThitHuff. For instance, when searching for either single-word patterns
or short phrases, we can observe how WTPH+ always outperforms WCSA at
displaying, whereas their performance is more similar for locating. WCSA is
again the best choice to display some portions of the text around the occur-
rences of long phrase patterns, but WTBC dominates the space/time tradeoff
for the rest of the scenarios: displaying individual words and short phrases.

We remark that our good results compared with inverted indexes essentially
owe to the fact that we are not sequentially scanning any significant portion

30

Nieves R. Brisaboa et al.

14

12

0.8

0.6

0.4

extract time (microsec/char)

0.2

14

12

0.8

0.6

0.4

extract time (microsec/char)

0.2

Extract words: 10 words (10E times)

T T T T T T wsa —]

[WTbitHuff 2
L L WTPH+ e
32 34 36 38 40 42 44 46 48 50
compression ratio (%)
Extract words: 1000 words (10A times)
[T T T T T Wi 1
IWTbitHUff 8-
L WTPH+ e |
L N]
L T eee ey,
32 3 36 38 40 42 44 46 48 50

compression ratio (%)

extract time (microsec/char)

extract time (microsec/char)

Extract words: 100 words (105 times)

WCSA ——]

Lar WTbitHUff -
12 | H PH+ e
1l
08 r
06
04 r
02 |
0
32 34 36 38 40 42 4 46 48 50
compression ratio (%)
Extracting on WTPH+: influence of the snippet length
1 T T T T
WTPH+ (10w) —e—
WTPH+ (100w) ----e--
08 | WTPH+ (1000w) e
06
04
0.2
0
32

compression ratio (%)

Fig. 5 Time/space tradeoff for extracting operation. WIBC strategy over PH is compared
with the other compressed indexes, varying the length of the extracted snippet.

0.14

0.12

0.1

0.08

0.06

0.04

display time (msec/occ.)

0.02

0.14

0.12

0.1

0.08

0.06

0.04

display time (msec/occ.)

0.02

W, scenario: words freq = [1..100]

Il-scdc —+— B
H-huff —%—
CSA % 4
WTbitHuff &
WTPH+ ---&--

36
compression ratio (%)

P, scenario: phrases with 2 words

32

compression ratio (%)

display time (msec/occ.)

display time (msec/occ.)

0.14
0.12

0.1
0.08
0.06
0.04

0.02

0.3

0.25

0.2

0.15

0.1

0.05

W, scenario: words freq > 10000

Il-scdc —+— B

1-huff —%—
WCSA v)
WTbitHuff —&
WTPH+ e

32
compression ratio (%)
P; scenario: phrases with 3 words
.
L]
)
V»
A4
.
. .
32 34

compression ratio (%)

Fig. 6 Time/space tradeoff for displaying 20-words snippets. WTBC strategy over PH is
compared with the other indexes, for individual words (top) and phrase patterns (bottom).

Implicit Indexing of Natural Language Text by Reorganizing Bytecodes 31

of the file, whereas a block addressing inverted index must sequentially scan
(sometimes many) blocks. As more space is allowed to those structures, both
improve in time but the inverted indexes eventually take over WTPH+ (this
occurs when both use around 37% of the text size). Of course, if sufficient
space were given, the inverted indexes could directly point to occurrences in-
stead of blocks and that scanning could be avoided. Yet, as explained in the
Introduction, using little space is very relevant for the current trend of main-
taining the index distributed among the main memory of several processors.
What our experiments show is that WTBC makes better use of the available
space when there is not much to spend.

6.4 Scalability

We present now new experiments on a larger text collection: the INEX 2009
Wikipedia Dataset!'!. It consists of a dump of the English Wikipedia created on
October 8, 2008 and contains 2,666,190 articles that make up 50.7GiB of XML
data (Schenkel et al, 2007). We removed all the XML tags and retained only
the text content, obtaining a corpus containing 8.76GiB of plain text (1.8 x
10° words), and a vocabulary of 14.88 million words (a rather heterogeneous
collection). We include experiments for locate operation searching for a set of
429 queries'? (including both phrases and single words) extracted from the
topics in the INEX 2009-2010 Adhoc Track!3. Figure 7 shows the results.

0.07

l-scde —+—
| WCSA -~
0.06 | WTPH+ o
i L]
3 oos| ! 4
2 004r 4
g N
£ o003} o
T w e
kst N
3 oo “a
e
001 F L — N
LSRR
0 .

32 34 36 38 40 42 44 46 48 50
compression ratio (%)

Fig. 7 Time/space tradeoff for locate comparing WTBC strategy over PH with other in-
dexes on the INEX corpus.

We use the inverted index based on SCDC encoding, which gave us the
best results. Its space is lower bounded by the compression ratio obtained
by SCDC compression, which is around 36.1%. Even when we set the block
size to 16MiB, the inverted index uses around 39.2% space. WTPH+, with a

M http://www.mpi-inf.mpg.de/departments/d5/software/inex.
12 Available at http://vios.dc.fi.udc.es/indexing/wsi/download.html.
13 https://inex.mmci.uni-saarland.de/data/documentcollection. jsp.

32 Nieves R. Brisaboa et al.

sparse sampling configuration, is able to obtain compression ratios under 37%.
WCSA takes advantage of higher order compression and almost reaches 30%
compression.

Focusing on operation locate, we observe similar results as those in Figure 3
for P, scenario. That is, WTPH+ obtains the best space/time trade-off in the
wide range of 38%-47% compression ratios. Only when we want to obtain
compression ratios below 38%, the WCSA becomes the best choice due to
its better compression. At that compression level, we force WTPH+ to use
a very sparse sampling whereas WCSA uses still a rather dense setup. Both
techniques clearly overcome block-addressing inverted indexes.

7 Conclusions and Future Work

It has been long established that semistatic word-based byte-oriented compres-
sors such as those considered in this paper are useful not only to save space and
time, but also to speed up sequential search for words and phrases (Moura et al,
2000). However, the more space-efficient compressors such as Plain Huffman
(Moura et al, 2000) and Restricted Prefix Byte Codes (Culpepper and Moffat,
2005; Culpepper, 2007) are not that fast at searching or random decompres-
sion, because they are not self-synchronizing techniques. In this paper we have
shown that a simple reorganization of the bytes of the codewords obtained
when a text is being compressed, marks clear codeword boundaries for those
compressors. Our proposal, Wavelet Trees on Bytecodes (WTBC), gives better
search and random access capabilities than all the byte-oriented compressors,
even those that exchange some compression degradation by marking codeword
boundaries (Tagged Huffman (Moura et al, 2000), End-Tagged Dense Codes
(Brisaboa et al, 2007)).

As our reorganization permits carrying out all those operations efficiently
over Plain Huffman, the most space-efficient byte-oriented compressor, the
usefulness of looking for coding variants that sacrifice compression ratio for
search or decoding performance is questioned: A WTBC over Plain Huffman
(WTPH) will do better in almost all aspects.

This reorganization has also surprising consequences related to implicit
indexing of the compressed text. Block-addressing inverted indexes over com-
pressed text have been long considered as the best low-space structure to index
a text for efficient word and phrase searches (Navarro et al, 2000). They can
trade space for speed by varying the block size. We have shown that the reor-
ganized codewords provide a powerful alternative to these inverted indexes. By
adding a small extra structure to WTBC, the search operations are speeded
up so sharply that the structure competes successfully with block-addressing
inverted indexes that take the same space on top of the compressed text. Espe-
cially, our structure is superior when little extra space on top of the compressed
text is permitted.

Other compressed indexes like word-based compressed suffix arrays (Bris-
aboa et al, 2008b) perform better than WTBC when searching for phrases of

Implicit Indexing of Natural Language Text by Reorganizing Bytecodes 33

3 words or more, and may achieve less space. They are, however, slower at
other operations like searching for words and short phrases, searching on text
ranges, and displaying portions of the text.

An interesting challenge for this representation is to support dynamism,
so as to remove documents from the collection or add others at the end. This
requires traversing all the nodes and remove part of the sequences, or append
more data at the end of the sequences. The total amount of work is similar
to that of updating an inverted index, where each list must be edited. There
is the issue, however, of maintaining the encoding up to date with changing
frequencies. Recent work on dynamic (s, ¢)-Dense Codes (Brisaboa et al, 2010)
may prove this code better suited for this task, as it can maintain optimality
within a moderate number of changes in the encoding.

Since its conference publication (Brisaboa et al, 2008a), WTBC has been
successfully extended in various ways. A very interesting extension has been
its adaptation to emulate a document-addressing inverted index (Arroyuelo
et al, 2010), so as to natively support document retrieval operations. In par-
ticular, they target at answering conjunctive queries. Their solution is more
efficient than inverted indexes in some scenarios. Another extension has been
the use of WTBC to index XML documents (Brisaboa et al, 2009), supporting
XPath queries in efficient time and space proportional to the compressed XML
document. We believe that many other extensions will come.

Finally, we wish to remark that our general idea could have wider appli-
cations. Grossi et al (2003) initially defined balanced wavelet trees, which are
built on the source symbols of a sequence. They also introduced the idea of
skewed wavelet trees, by giving them Huffman shape. It is not hard to see that
both wavelet trees on Huffman codes and our wavelet trees on byte codes are
just two representatives of a more general idea: Given an encoder C' : X — 7%,
and a sequence S[1,n] over X, create a |7|-ary tree with one root-to-leaf path
spelling each element in the image of C(X'). Store at the root a sequence over
7 with the first symbol of the code of each S[i], and continue recursively with
the ¢-th child of the root with the subsequence of S formed by the symbols
whose target code starts with ¢t € 7. Give rank capabilities to the sequences.
Then the total space of the tree is essentially the same as that of S encoded
with C, and we have direct access to any S[i] in the time required to compute
|C(S[i])| rank queries. This is an interesting alternative to the usual sampling
schemes. Moreover, we can find all the occurrences of a given symbol ¢ € ¥
in S by going upwards from the leaf corresponding to C(c) and using select.
In this paper we have shown how relevant this idea can be to Information
Retrieval, but we believe it may find applications in many other areas as well.

Acknowledgements Funded by MICINN grants TIN2009-14560-C03-02 and TIN2010-
21246-C02-01, Ministerio de Ciencia e Innovacién grant CDTI CEN-20091048, and Xunta
de Galicia grant 2010/17 (for the Spanish group); and for the fourth author by Fondecyt
grant 1-110066.

34 Nieves R. Brisaboa et al.

Bibliography

Anh V, Moffat A (2005) Inverted index compression using word-aligned binary
codes. Information Retrieval 8(1):151-166

Arroyuelo D, Gonzdlez S, Oyarzin M (2010) Compressed self-indices sup-
porting conjunctive queries on document collections. In: Proc. of the 17th
International Symposium on String Processing and Information Retrieval
(SPIRE), LNCS 6393, pp 43-54

Baeza-Yates R, Ribeiro-Neto B (1999) Modern Information Retrieval.
Addison-Wesley Longman, Boston, MA, USA

Barbay J, Lépez-Ortiz A, Lu T, Salinger A (2009) An experimental inves-
tigation of set intersection algorithms for text searching. ACM Journal of
Experimental Algorithmics (JEA) 14:article 7:3, 24 pages

Bentley J, Sleator D, Tarjan R, Wei V (1986) A locally adaptive data com-
pression scheme. Communications of the ACM (CACM) 29(4):320-330

Boyer R, Moore J (1977) A fast string searching algorithm. Communications
of the ACM (CACM) 20(10):762-772

Brisaboa N, Farina A, Navarro G, Param& J (2007) Lightweight natural lan-
guage text compression. Information Retrieval 10:1-33

Brisaboa N, Farifia A, Ladra S, Navarro G (2008a) Reorganizing compressed
text. In: Proc. of the 31th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR), pp 139-146

Brisaboa N, Farina A, Navarro G, Places A, Rodriguez E (2008b) Self-indexing
natural language. In: Proc. of the 15th International Symposium on String
Processing and Information Retrieval (SPIRE), LNCS 5280, pp 121-132

Brisaboa N, Cerdeira A, Navarro G (2009) A compressed self-indexed repre-
sentation of XML documents. In: Proc. of the 13th European Conference
on Digital Libraries (ECDL), LNCS 5714, pp 273-284

Brisaboa N, Farifia A, Navarro G, Param4 J (2010) Dynamic lightweight text
compression. ACM Transactions on Information Systems (TOIS) 28(3):ar-
ticle 10, 32 pages

Clark D (1996) Compact pat trees. PhD thesis, University of Waterloo, Canada

Claude F, Navarro G (2008) Practical rank/select queries over arbitrary se-
quences. In: Proc. of the 15th International Symposium on String Processing
and Information Retrieval (SPIRE), LNCS 5280, pp 176-187

Culpepper S (2007) Efficient data representations for information retrieval.
PhD thesis, Department of Computer Science and Software Engineering,
University of Melbourne, Australia

Culpepper S, Moffat A (2005) Enhanced byte codes with restricted prefix prop-
erties. In: Proc of the 12th International Symposium on String Processing
and Information Retrieval (SPIRE), LNCS 3772, pp 1-12

Culpepper S, Moffat A (2007) Compact set representation for information re-
trieval. In: Proc. of the 14th International Symposium on String Processing
and Information Retrieval (SPIRE), LNCS 4726, pp 137-148

Culpepper S, Moffat A (2010) Efficient set intersection for inverted indexing.
ACM Transactions on Information Systems (TOIS) 29(1):article 1, 25 pages

Implicit Indexing of Natural Language Text by Reorganizing Bytecodes 35

Ding S, Attenberg J, Suel T (2010) Scalable techniques for document iden-
tifier assignment in inverted indexes. In: Proc. of the 19th International
Conference on World Wide Web (WWW), pp 311-320

Ferragina P, Manzini G, Méakinen V, Navarro G (2007) Compressed represen-
tations of sequences and full-text indexes. ACM Transactions on Algorithms
(TALG) 3(2):article 20, 24 pages

Ferragina P, Gonzélez R, Navarro G, Venturini R (2009) Compressed text in-
dexes: From theory to practice. ACM Journal of Experimental Algorithmics
(JEA) 13:article 12, 31 pages

Grossi R, Gupta A, Vitter J (2003) High-order entropy-compressed text in-
dexes. In: Proc. of 14th Annual ACM-STAM Symposium on Discrete Algo-
rithms (SODA), pp 841-850

Heaps H (1978) Information Retrieval - Computational and Theoretical As-
pects. Academic Press, New York, NY, USA

Horspool R (1980) Practical fast searching in strings. Software: Practice and
Experience (SPE) 10(6):501-506

Huffman D (1952) A method for the construction of minimum-redundancy
codes. Proceedings of the Institute of Radio Engineers (IRE) 40(9):1098—
1101

Jacobson G (1989) Space-efficient static trees and graphs. In: Proc. 30th IEEE
Symposium on Foundations of Computer Science (FOCS), pp 549-554

Ladra S (2011) Algorithms and compressed data structures for information
retrieval. PhD thesis, Department of Computer Science, University of A
Coruna, Spain

Moffat A (1989) Word-based text compression. Software: Practice and Expe-
rience (SPE) 19(2):185-198

Moffat A, Culpepper S (2007) Hybrid bitvector index compression. In: Proc. of
the 12th Australasian Document Computing Symposium (ADCS), pp 25-31

Moura E, Navarro G, Ziviani N, Baeza-Yates R (2000) Fast and flexible word
searching on compressed text. ACM Transactions on Information Systems
(TOIS) 18(2):113-139

Munro I (1996) Tables. In: Proc. of the 16th Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS), LNCS
1180, pp 3742

Navarro G, Moura E, Neubert M, Ziviani N, Baeza-Yates R (2000) Adding
compression to block addressing inverted indexes. Information Retrieval
3(1):49-77

Raman R, Raman V, Rao S (2002) Succinct indexable dictionaries with appli-
cations to encoding k-ary trees and multisets. In: Proc. of the 13th Annual
ACM-STAM Symposium on Discrete Algorithms (SODA), pp 233-242

Sanders P, Transier F (2007) Intersection in integer inverted indices. In:
Proc. of the 9th Workshop on Algorithm Engineering and Experiments
(ALENEX), pp 71-83

Schenkel R, Suchanek F, Kasneci G (2007) Yawn: A semantically annotated
wikipedia xml corpus. In: 12th GI Conference on Databases in Business,
Technology and Web (BTW), pp 277-291

36 Nieves R. Brisaboa et al.

Strohman T, Croft B (2007) Efficient document retrieval in main memory. In:
Proc. of the 30th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR), pp 175-182

Transier F, Sanders P (2010) Engineering basic algorithms of an in-memory
text search engine. ACM Transactions on Information Systems (TOIS)
29(1):article 2, 37 pages

Turpin A, Moffat A (1997) Fast file search using text compression. In: Proc.
of the 20th Australasian Computer Science Conference (ACSC), pp 1-8

Witten I, Moffat A, Bell T (1999) Managing gigabytes: compressing and in-
dexing documents and images, 2nd edn. Morgan Kaufmann Publishers, San
Francisco, CA, USA

Yan H, Ding S, Suel T (2009) Inverted index compression and query process-
ing with optimized document ordering. In: Proc. of the 18th International
Conference on World Wide Web (WWW), pp 401-410

Zobel J, Moffat A, Ramamohanarao K (1998) Inverted files versus signature
files for text indexing. ACM Transactions on Database Systems (TODS)
23(4):453-490

Zukowski M, Heman S, Nes N, Boncz P (2006) Super-scalar RAM-CPU cache
compression. In: Proc. of the 22nd International Conference on Data Engi-
neering (ICDE), p 59

