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Abstract

Variants of Huffman codes where words are taken as the source symbols are currently the most
attractive choices to compress natural language text databases. In particular, Tagged Huffman Code
by Moura et al. offers fast direct searching on the compressed text and random access capabilities, in
exchange for producing around 11% larger compressed files. This work describes End-Tagged Dense
Code and (s, c)-Dense Code, two new semistatic statistical methods for compressing natural language
texts. These techniques permit simpler and faster encoding and obtain better compression ratios than
Tagged Huffman Code, while maintaining its fast direct search and random access capabilities. We show
that Dense Codes improve Tagged Huffman Code compression ratio by about 10%, reaching only 0.6%
overhead over the optimal Huffman compression ratio. Being simpler, Dense Codes are generated 45%
to 60% faster than Huffman codes. This makes Dense Codes a very attractive alternative to Huffman
code variants for various reasons: they are simpler to program, faster to build, of almost optimal size,
and as fast and easy to search as the best Huffman variants, which are not so close to the optimal size.

Keywords: Text databases, natural language text compression, searching compressed text.

1 Introduction

Text compression (Bell et al. 1990) permits representing a document using less space. This is useful not only
to save disk space, but more importantly, to save disk transfer and network transmission time. In recent
years, compression techniques especially designed for natural language texts have not only proven extremely
effective (with compression ratios1 around 25%-35%), but also permitted searching the compressed text much
faster (up to 8 times) than the original text (Turpin and Moffat 1997, Moura et al. 1998, Moura et al. 2000).
The integration of compression and indexing techniques (Witten et al. 1999, Navarro et al. 2000, Ziviani
et al. 2000) opened the door to compressed text databases, where texts and indexes are manipulated directly
in compressed form, thus saving both time and space.

Not every compression method is suitable for a compressed text database. The compressed text should
satisfy three basic conditions: (1) it can be directly accessed at random positions, (2) it can be decompressed
fast, and (3) it can be searched fast. The rationale of conditions (1) and (2) is pretty obvious, as one wishes to

∗Supported by CYTED VII.19 RIBIDI Project and (for the third author) Millennium Nucles Center for Web Research,
Grant P04-67-F, Mideplan, Chile. Also funded (for the Spanish group) by MCyT (PGE and FEDER) grant(TIC2003-06593)
and Xunta de Galicia grant(PGIDIT05SIN10502PR).

1The size of the compressed file as a percentage of the original size.
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display individual documents to final users without need of decompressing the whole text collection preceding
it. Moreover, in many cases it is necessary to display only a snippet of the text around an occurrence position,
and thus it must be possible to start decompression from any position of the compressed text, not only from
the beginning of a document or even from the beginning of a codeword. Condition (3) could be unnecessary
if an inverted index pointing to all text words were available, yet such indexes take up significant extra
space (Baeza-Yates and Ribeiro-Neto 1999). Alternatively, one can use inverted indexes pointing to whole
documents, which are still able of solving one-word queries without accessing the text. Yet, more complex
queries such as phrase and proximity queries will require some direct text processing in order to filter out
documents containing all the query terms in the wrong order. Moreover, some space-time tradeoffs in inverted
indexes are based on grouping documents into blocks, and therefore sequential scanning is necessary even on
single-word queries (Manber and Wu 1994, Navarro et al. 2000). Although partial decompression followed
by searching is a solution, direct search of the compressed text is much more efficient (Ziviani et al. 2000).

Classic compression techniques are generally unattractive for compressing text databases. For example,
the well-known algorithms of Ziv and Lempel (1977, 1978) permit searching the text directly, without
decompressing it, in half the time necessary for decompression (Navarro and Tarhio 2000, Navarro and
Tarhio 2005). Yet, as any other adaptive compression technique, it does not permit direct random access to
the compressed text, thus failing on Condition (1). Semistatic techniques are necessary to ensure that the
decoder can start working from any point of the compressed text without having seen all the previous text.
Semistatic techniques also permit fast direct search of the compressed text, by (essentially) compressing the
pattern and searching for it in the compressed text. This does not work on adaptive methods, as the pattern
does not appear in the same form across the compressed text.

Classic semistatic compression methods, however, are not entirely satisfactory either. For example, the
Huffman (1952) code offers direct random access from codeword beginnings and decent decompression and
direct search speeds (Miyazaki et al. 1998), yet the compression ratio of the Huffman code on natural language
is poor (around 65%).

The key to the success of natural language compressed text databases is the use of a semistatic word-
based model by Moffat (1989), so that the text is regarded as a sequence of words (and separators). A
word-based Huffman code (Turpin and Moffat 1997), where codewords are sequences of bits, achieves 25%
of compression ratio, although decompression and search are not so fast because of the need of bit-wise
manipulations. A byte-oriented word-based Huffman code, called Plain Huffman Code (PHC) by Moura
et al. (2000), eliminates this problem by using 256-ary Huffman trees, so that codewords are sequences of
bytes. As a result, decompression and search are faster, although compression ratios rise to 30%. As the
compression ratio is still attractive, they also propose Tagged Huffman Code (THC), whose compression
ratio is around 35% but permits much faster Boyer-Moore-type search directly in the compressed text, as
well as decompression from any point of the compressed file (even if not codeword-aligned).

In this paper, we improve the existing tradeoffs on word-based semistatic compression, presenting two new
compression techniques that allow direct searching and direct access to the compressed text. Roughly, we
achieve the same search performance and capabilities of Tagged Huffman Code, combined with compression
ratios similar to those of Plain Huffman Code. Our techniques have the additional attractiveness of being
very simple to program.

We first introduce End-Tagged Dense Code (ETDC), a compression technique that allows (i) efficient
decompression of arbitrary portions of the text (direct access), and (ii) efficient Boyer-Moore-type search
directly on the compressed text, just as in Tagged Huffman Code. End-Tagged Dense Code improves both
Huffman codes in encoding/decoding speed. It also improves Tagged Huffman Code in compression ratio,
while retaining similar search time and capabilities.

We then present (s,c)-Dense Code (SCDC), a generalization of End-Tagged Dense Code which achieves
better compression ratios while retaining all the search capabilities of End-Tagged Dense Code. (s,c)-Dense
Code poses only a negligible overhead over the optimal2 compression ratio reached by Plain Huffman Code.

2Optimal among all semistatic prefix-free byte-oriented codes.
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Partial early versions of this paper were presented in (Brisaboa et al. 2003a, Brisaboa et al. 2003b, Fariña
2005).

The outline of this paper is as follows. Section 2 starts with some related work. Section 3 presents
our first technique, End-Tagged Dense Code. Next, Section 4 introduces the second technique, (s, c)-Dense
Code. Encoding, decoding, and search algorithms for both compression techniques are presented in Section 5.
Section 6 is devoted to empirical results. Finally, Section 7 gives our conclusions and future work directions.

2 Related work

Text compression (Bell et al. 1990) consists of representing a sequence of characters using fewer bits than its
original representation. The text is seen as a sequence of source symbols (characters, words, etc.). For the
reasons we have explained, we are interested in semistatic methods, where each source symbol is assigned a
codeword (that is, a sequence of target symbols), and this assignment does not change across the compression
process. The compressed text is then the sequence of codewords assigned to its source symbols. The function
that assigns a codeword to each source symbol is called a code. Among the possible codes, prefix codes are
preferable in most cases. A prefix code guarantees that no codeword is a prefix of another, thus permitting
decoding a codeword right after it is read (hence the alternative name instantaneous code).

The Huffman (1952) code is the optimal (shortest total length) prefix code for any frequency distribution.
It has been traditionally applied to text compression by considering characters as source symbols and bits as
the target symbols. On natural language texts, this yields poor compression ratios (around 65%). The key
idea to the success of semistatic compression on natural language text databases was to consider words as the
source symbols (Moffat 1989) (as well as separators, defined as maximal text substrings among consecutive
words). The distribution of words in natural language is much more skewed than that of characters, following
a Zipf Law (that is, the frequency of the i-th most frequent word is proportional to 1/iθ, for some 1 < θ < 2
(Zipf 1949, Baeza-Yates and Ribeiro-Neto 1999)), and the separators are even more skewed. As a result,
compression ratios get around 25%, which is close to what can be obtained with any other compression
method (Bell et al. 1990). The price of having a larger set of source symbols (which semistatic methods
must encode together with the compressed text) is not significant on large text collections, as the vocabulary
grows slowly (O(Nβ) symbols on a text of N words, for some β ≈ 0.5, by Heaps Law (Heaps 1978, Baeza-
Yates and Ribeiro-Neto 1999)).

This solution is acceptable for compressed text databases. With respect to searching those Huffman
codes, essentially one can compress the pattern and search the text for it (Turpin and Moffat 1997, Miyazaki
et al. 1998). However, it is necessary to process the text bits sequentially in order to avoid false matches.
Those occur because the compressed pattern might appear in a text not aligned to any codeword, that is,
the concatenation of two codewords might contain the pattern bit string, yet the pattern is not in the text.
A sequential processing ensures that the search is aware of the codeword beginnings and thus false matches
are avoided.

With such a large source vocabulary, it makes sense to have a larger target alphabet. The use of bytes as
target symbols was explored by Moura et al. (2000), who proposed two byte-oriented word-based Huffman
codes as a way to speed up the processing of the compressed text.

The first, Plain Huffman Code (PHC), is no more than a Huffman code where the source symbols are
the text words and separators, and the target symbols are bytes. This obtains compression ratios close to
30% on natural language, a 5% of overhead with respect the word-based approach of Moffat (1989), where
the target symbols are bits. In exchange, decompression and in general traversal of the compressed text is
around 30% faster with Plain Huffman Code, as no bit manipulations are necessary (Moura et al. 2000).
This is highly valuable in a compressed text database scenario.

The second code, Tagged Huffman Code (THC), is similar except that it uses the highest bit of each byte
to signal the first byte of each codeword. Hence, only 7 bits of each byte are used for the Huffman code.
Note that the use of a Huffman code over the remaining 7 bits is mandatory, as the flag is not useful by
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itself to make the code a prefix code. Compared to Plain Huffman Code, Tagged Huffman Code produces a
compressed text around 11% longer reaching 35% of compression ratio.

There are two important advantages to justify this choice in a compressed text database scenario. First,
Tagged Huffman Code can be accessed at any position for decompression, even in the middle of a codeword.
The flag bit permits easy synchronization to the next or previous codeword. Plain Huffman Code, on the
other hand, can start decompression only from codeword beginnings. Second, a text compressed with Tagged
Huffman Code can be searched efficiently, by just compressing the pattern word or phrase and then running
any classical string matching algorithm for the compressed pattern on the compressed text. In particular,
one can use those algorithms able of skipping characters (Boyer and Moore 1977, Navarro and Raffinot 2002).
This is not possible with Plain Huffman Code, because of the false matches problem. On Tagged Huffman
Code false matches are impossible thanks to the flag bits.

It is interesting to point out some approaches that attempt to deal with the false matches problem
without scanning every target symbol. The idea is to find a synchronization point, that is, a position in the
compressed text where it is sure that a codeword starts. Recently, Klein and Shapira (2005) proposed that
once a match of the search pattern is found at position i, a decoding algorithm would start at position i−K,
being K a constant. It is likely that the algorithm synchronizes itself with the beginning of a codeword before
it reaches again position i. However, false matches may still appear, and the paper analyzes the probability
of reporting them as true matches.

Another alternative, proposed by Moura et al. (2000), is to align the codeword beginnings to block
boundaries of B bytes. That is, no codeword is permitted to cross a B-byte boundary and thus one can
start decompression at any point by going back to the last position multiple of B. This way, one can search
using any string matching algorithm, and then has to rule out false matches by retraversing the blocks where
matches have been found, in order to ensure that those are codeword-aligned. They report best results with
B = 256, where they pay a space overhead of 0.78% over Plain Huffman Code and a search time overhead
of 7% over Tagged Huffman Code.

Moura et al. (2000) finally show how more complex searches can be carried out. For example, complex
patterns that match a single word are first searched for in the vocabulary, and then a multipattern search
for all the codewords of the matching vocabulary words is carried out on the text. Sequences of complex
patterns can match phrases following the same idea. It is also possible to perform more complex searches,
such as approximate matching at the word level (that is, search for a phrase permitting at most k insertions,
deletions, replacements, or transpositions of words). Overall, the compressed text not only takes less space
than the original text, but it is also searched 2 to 8 times faster.

The combination of this compressed text with compressed indexes (Witten et al. 1999, Navarro et al. 2000)
opens the door to compressed text databases where the text is always in compressed form, being decompressed
only for presentation purposes (Ziviani et al. 2000).

Huffman coding is a statistical method, in the sense that the codeword assignment is done according to
the frequencies of source symbols. There are also some so-called substitution methods suitable for compressed
text databases. The earliest usage of a substitution method for direct searching we know of was proposed by
Manber (1997), yet its compression ratios were poor (around 70%). This encoding was a simplified variant
of Byte-Pair Encoding (BPE) (Gage 1994). BPE is a multi-pass method based on finding frequent pairs of
consecutive source symbols and replacing them by a fresh source symbol. On natural language text, it obtains
a poor compression ratio (around 50%), but its word-based version is much better, achieving compression
ratios around 25%-30% (Wan 2003). It has been shown how to search the character-based version of BPE
with competitive performance (Shibata et al. 2000, Takeda et al. 2001), and it is likely that the word-based
version can be searched as well. Yet, the major emphasis in the word-based version has been the possibility
of browsing over the frequent phrases of the text collection (Wan 2003).

Other methods with competitive compression ratios on natural language text, yet unable of searching
the compressed text faster than the uncompressed text, include Ziv-Lempel compression (Ziv and
Lempel 1977, Ziv and Lempel 1978) (implemented for example in Gnu gzip), Burrows-Wheeler compression

4



Rank ETDC THC

1 100 100
2 101 101
3 110 110
4 111 111 000
5 000 100 111 001
6 000 101 111 010
7 000 110 111 011 000
8 000 111 111 011 001
9 001 100 111 011 010
10 001 101 111 011 011

Table 1: Comparative example among ETDC and THC, for b=3.

(Burrows and Wheeler 1994) (implemented for example in Seward’s bzip2), and statistical modeling with
arithmetic coding (Carpinelli et al. 1999).

3 End-Tagged Dense Code

We obtain End-Tagged Dense Code (ETDC) by a simple change to Tagged Huffman Code (Moura et al. 2000).
Instead of using the highest bit to signal the beginning of a codeword, it is used to signal the end of a codeword.
That is, the highest bit of codeword bytes is 1 for the last byte (not the first) and 0 for the others.

This change has surprising consequences. Now the flag bit is enough to ensure that the code is a prefix
code regardless of the content of the other 7 bits of each byte. To see this, consider two codewords X and
Y , where X is shorter than Y (|X | < |Y |). X cannot be a prefix of Y because the last byte of X has its
flag bit set to 1, whereas the |X |-th byte of Y has its flag bit set to 0. Thanks to this change, there is no
need at all to use Huffman coding in order to ensure a prefix code. Rather, all possible combinations can
be used over the remaining 7 bits of each byte, producing a dense encoding. This is the key to improve the
compression ratio achieved by Tagged Huffman Code, which has to avoid some values of these 7 bits in each
byte, since such values are prefixes of other codewords (remember that the tag bit of THC is not enough
to produce a prefix code, and hence a Huffman coding over the remaining 7 bits is mandatory in order to
maintain a prefix code). Thus, ETDC yields a better compression ratio than Tagged Huffman Code while
keeping all its good searching and decompression capabilities. On the other hand, ETDC is easier to build
and faster in both compression and decompression.

Example 1 Assume we have a text with a vocabulary of ten words and that we compress it with target
symbols of three bits. Observe in Table 1 the fourth most frequent symbol. Using THC, the target symbol
111 cannot be used as a codeword by itself since it is a prefix of other codewords. However, ETDC can use
symbol 111 as a codeword, since it cannot be a prefix of any other codeword due to the flag bit. The same
happens with the seventh most frequent word in THC: The target symbols 111 011 cannot be used as a
codeword, as again they are reserved as a prefix of other codewords.

⊓⊔

In general, ETDC can be defined over target symbols of b bits, although in this paper we focus on the
byte-oriented version where b = 8. ETDC is formally defined as follows.

Definition 1 The b-ary End-Tagged Dense Code assigns to the i-th most frequent source symbol (starting
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with i = 0), a codeword of k digits in base 2b, where

2b−1 2(b−1)(k−1) − 1

2b−1 − 1
≤ i < 2b−1 2(b−1)k − 1

2b−1 − 1
.

Those k digits are filled with the representation of number i − 2b−1 2(b−1)(k−1)−1
2b−1−1

in base 2b−1 (most to least

significant digit), and we add 2b−1 to the least significant digit (that is, the last digit).

That is, for b = 8, the first word (i = 0) is encoded as 1
¯
0000000, the second as 1

¯
0000001, until the 128th

as 1
¯
1111111. The 129th word is encoded as 0

¯
0000000:1

¯
0000000, 130th as 0

¯
0000000:1

¯
0000001 and so on until

the (1282 + 128)th word 0
¯
1111111:1

¯
1111111.

The number of words encoded with 1, 2, 3, etc., bytes is fixed (specifically 128, 1282, 1283 and so on).

Definition 1 gives the formula for the change points in codeword lengths (ranks i = 2b−1 2(b−1)(k−1)−1
2b−1−1 ).

Note that the code depends on the rank of the words, not on their actual frequency. That is, if we have
four words A, B, C, D (ranked 1 to 4) with frequencies 0.36, 0.22, 0.22, and 0.20, respectively, then the
code will be the same as if their frequencies were 0.9, 0.09, 0.009, and 0.001. As a result, only the sorted
vocabulary must be stored with the compressed text for the decompressor to rebuild the model. Therefore,
the vocabulary will be basically of the same size as in the case of Huffman codes, yet Huffman codes need
some extra information about the shape of the Huffman tree (which is nevertheless negligible using canonical
Huffman trees).

As it can be seen in Table 2, the computation of the code is extremely simple: It is only necessary to
sort the source symbols by decreasing frequency and then sequentially assign the codewords taking care of
the flag bit. This permits the coding phase to be faster than using Huffman, as obtaining the codewords is
simpler.

On the other hand, it is also easy to assign the codeword of an isolated rank i. Following Definition 1,
it is easy to see that we can encode a rank and decode a codeword in O((log i)/b) time. Section 5 presents
those algorithms.

Word rank codeword assigned # Bytes # words

0 10000000 1
... ... ...

27 − 1 = 127 11111111 1
27 = 128 00000000:10000000 2

... ... ...
256 00000001:10000000 2 2727

... ... ...
2727 + 27 − 1 = 16511 01111111:11111111 2

2727 + 27 = 16512 00000000:00000000:10000000 3
... ... ... (27)3

(27)3 + (27)2 + 27 − 1 01111111:01111111:11111111 3
... ... ...

Table 2: Code assignment in End-Tagged Dense Code.

Actually, the idea of ETDC is not new if we see it under a different light. What we are doing is to encode
the symbol frequency rank with a variable-length integer representation. The well-known universal codes
Cα, Cγ and Cω (Elias 1975) also assign codewords to source symbols in order of decreasing probability, with
shorter codewords for the first positions. Other authors proposed other codes with similar characteristics
(Lakshmanan 1981, Fraenkel and Klein 1996). These codes yield an average codeword length within a
constant factor of the optimal average length. Unfortunately, the constant may be too large for the code to
be preferable over one based on the probabilities such as Huffman, which is optimal but needs to know the
distribution in advance. The reason is that these codes adapt well only to some probability distributions,
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which may be far away from those of our interest. More specifically, Cα is suitable when the distribution
is very skewed (more than our vocabularies), while Cγ and Cω behave better when no word is much more
likely than any other. These codes do not adjust well to large and moderately skewed vocabularies, as those
of text databases. Moreover, we show in Section 4 how ETDC can be adapted better to specific vocabulary
distributions.

It is possible to bound the compression performance of ETDC in terms of the text entropy or in terms of
Huffman performance. Let Eb be the average codeword length, measured in target symbols3, using a b-ary
ETDC (that is, using target symbols of b bits), and Hb the same using a b-ary Huffman code. As ETDC is
a prefix code and Huffman is the optimal prefix code, we have Hb ≤ Eb. On the other hand, as ETDC uses
all the combinations on b − 1 bits (leaving the other for the flag), its codeword is shorter than Hb−1, where
sequences that are prefixes of others are forbidden. Thus Hb ≤ Eb ≤ Hb−1. The average length of a Huffman
codeword is smaller than one target symbol over the zero-order entropy of the text (Bell et al. 1990). Let
H be the zero-order entropy measured in bits. Thus, H ≤ bHb < H + b, and the same holds for Hb−1. We
conclude that

H

b
≤ Eb <

H

b − 1
+ 1.

While the first inequality is obvious, the second tells us that the average number of bits used by a b-ary
ETDC is at most b

b−1 H+b. It also means that Eb < b
b−1 Hb +1, which upper bounds the coding inefficiency

of ETDC with respect to a b-ary Huffman. Several studies about bounds on Dense Codes and b-ary Huffman
codes applied to Zipf (Zipf 1949) and Zipf-Mandelbrot (Mandelbrot 1953) distributions can be found in
(Navarro and Brisaboa 2006, Fariña 2005).

As shown in Section 6, ETDC improves Tagged Huffman Code compression ratio by more than 8%. Its
difference with respect to Plain Huffman Code is just around 2.5%, much less than the rough upper bound
just obtained. On the other hand, the encoding time with ETDC is just 40% below that of Plain Huffman
Code, and one can search ETDC as fast as Tagged Huffman Code.

4 (s, c)-Dense Code

Instead of thinking in terms of tag bits, End-Tagged Dense Code can be seen as using 2b−1 values, from 0 to
2b−1 − 1, for the symbols that do not end a codeword, and using the other 2b−1 values, from 2b−1 to 2b − 1,
for the last symbol of the codewords. Let us call continuers the former values and stoppers the latter. The
question that arises now is whether that proportion between the number c of continuers and s of stoppers
is optimal. That is, for a given text collection with a specific word frequency distribution, we want to use
the optimal number of continuers and stoppers. Those will probably be different from s = c = 2b−1. Thus
(s, c)-Dense Code is a generalization of ETDC, where any s + c = 2b can be used (in particular, the values
maximizing compression). ETDC is actually a (2b−1, 2b−1)-Dense Code.

This idea has been previously pointed out by Rautio et al. (2002). They presented an encoding scheme
using stoppers and continuers on a character-based source alphabet, yet their goal is to have a code where
searches can be efficiently performed. Their idea is to create a code where each codeword can be split into
two parts in such a way that searches can be performed using only one part of the codewords.

Example 2 illustrates the advantages of using a variable rather than a fixed number of stoppers and
continuers.

Example 2 Assume that 5,000 distinct words compose the vocabulary of the text to compress, and that
b = 8 (byte-oriented code).

If End-Tagged Dense Code is used, that is, if the number of stoppers and continuers is 27 = 128, there
will be 128 codewords of one byte, and the rest of the words would have codewords of two bytes, since

3For example, if binary Huffman is used (b=2), the target alphabet will be Σ = {0, 1}, while if it is byte oriented (b = 8),
the target alphabet will be Σ = {0, . . . , 255}.

7



128 + 1282 = 16, 512. That is, 16, 512 is the number of words that can be encoded with codewords of one or
two bytes. Therefore, there would be 16, 512− 5, 000 = 11, 512 unused codewords of two bytes.

If the number of stoppers chosen is 230 (so the number of continuers is 256 − 230 = 26), then
230 + 230 × 26 = 6, 210 words can be encoded with codewords of only one or two bytes. Therefore all
the 5, 000 words can be assigned codewords of one or two bytes in the following way: the 230 most frequent
words are assigned one-byte codewords and the remaining 5, 000− 230 = 4, 770 words are assigned two-byte
codewords.

It can be seen that words from 1 to 128 and words ranked from 231 to 5, 000 are assigned codewords of
the same length in both schemes. However words from 129 to 230 are assigned to shorter codewords when
using 230 stoppers instead of only 128.

⊓⊔

This shows that it can be advantageous to adapt the number of stoppers and continuers to the size and
the word frequency distribution of the vocabulary.

4.1 Formalization

In this section, we formally define (s, c)-Dense Code and prove some of its properties. Formally, this section
contains the material of Section 3, yet we have chosen to present ETDC first because it is more intuitively
derived from the previous Tagged Huffman Code. We start by defining (s, c) stop-cont codes as follows.

Definition 2 Given positive integers s and c, a (s, c) stop-cont code assigns to each source symbol a unique
target code formed by a sequence of zero or more digits in base c (that is, from 0 to c − 1), terminated with
a digit between c and c + s − 1.

It should be clear that a stop-cont coding is just a base-c numerical representation, with the exception
that the last digit is between c and c + s − 1. Continuers are digits between 0 and c − 1 and stoppers are
digits between c and c + s − 1. The next property clearly follows.

Property 1 Any (s, c) stop-cont code is a prefix code.

Proof: If one codeword were a prefix of the other, since the shorter codeword must have a final digit of value
not smaller than c, then the longer codeword should have an intermediate digit which is not in base c. This
is a contradiction. ⊓⊔

Among all possible (s, c) stop-cont codes for a given probability distribution, (s, c)-Dense Code minimizes
the average codeword length.

Definition 3 Given positive integers s and c, (s, c)-Dense Code ((s, c)-DC, or SCDC) is a (s, c) stop-cont
code that assigns the i-th most frequent source symbol (starting with i = 0) to a codeword of k digits in base
s + c (most significant digits first), where

s
ck−1 − 1

c − 1
≤ i < s

ck − 1

c − 1

Let x = i − s ck−1−1
c−1 . Then, the first k − 1 digits are filled with the representation of number ⌊x/s⌋ in base

c, and the last digit is c + (x mod s).

To fix ideas, using bytes as symbols (s + c = 28), the encoding process can be described as follows:

• One-byte codewords from c to c + s − 1 are given to the first s words in the vocabulary.
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• Words ranked from s to s + sc − 1 are assigned sequentially to two-byte codewords. The first byte of
each codeword has a value in the range [0, c − 1] and the second in the range [c, c + s − 1].

• Words from s + sc to s + sc + sc2 − 1 are assigned to three-byte codewords, and so on.

Word rank codeword assigned # Bytes # words

0 [c] 1
... ... ... s

s− 1 [c + s− 1] 1
s [0][c] 2
... ... ...

s + s− 1 [0][c + s− 1] 2 sc
s + s [1][c] 2
... ... ...

s + sc− 1 [c− 1][c + s− 1] 2
s + sc [0][0][c] 3

... ... ... sc2

s + sc + sc2 − 1 [c− 1][c− 1][c + s− 1] 3
... ... ...

Table 3: Code assignment in (s, c)-Dense Code.

Table 3 summarizes this process. Next, we give an example of how codewords are assigned.

Example 3 The codewords assigned to twenty-two source symbols by a (2,6)-Dense Code are the following
(from most to least frequent symbol): 〈6〉, 〈7〉, 〈0,6〉, 〈0,7〉, 〈1,6〉, 〈1,7〉, 〈2,6〉, 〈2,7〉, 〈3,6〉, 〈3,7〉, 〈4,6〉, 〈4,7〉,
〈5,6〉, 〈5,7〉 〈0,0,6〉, 〈0,0,7〉, 〈0,1,6〉, 〈0,1,7〉, 〈0,2,6〉, 〈0,2,7〉, 〈0,3,6〉, 〈0,3,7〉. ⊓⊔

Notice that the code does not depend on the exact symbol probabilities, but only on their ordering by
frequency. We now prove that the dense coding is an optimal stop-cont coding.

Property 2 The average length of a (s, c)-Dense Code is minimal with respect to any other (s, c) stop-cont
code.

Proof: Let us consider an arbitrary (s, c) stop-cont code, and let us write all the possible codewords in
numerical order, as in Table 3, together with the source symbol they encode, if any. Then it is clear that
(i) any unused codeword in the middle could be used to represent the source symbol with longest codeword,
hence a compact assignment of target symbols is optimal; and (ii) if a less probable source symbol with a
shorter codeword is swapped with a more probable symbol with a longer codeword then the average codeword
length decreases, and hence sorting the source symbols by decreasing frequency is optimal. ⊓⊔

It is now clear from Definition 3 that ETDC is a (2b−1,2b−1)-DC, and therefore (s, c)-DC is a generalization
of ETDC, where s and c can be adjusted to optimize the compression for the distribution of frequencies and
the size of the vocabulary. Moreover, (2b−1,2b−1)-DC (i.e. ETDC) is more efficient than Tagged Huffman
Code over b bits, because Tagged Huffman Code is essentially a non-dense (2b−1,2b−1) stop-cont code, while
ETDC is a (2b−1,2b−1)-Dense Code.

Example 4 Table 4 shows the codewords assigned to a small set of words ordered by frequency when using
Plain Huffman Code, (6,2)-DC; End-Tagged Dense Code (which is a (4,4)-DC), and Tagged Huffman Code.
Digits of three bits (instead of bytes) are used for simplicity (b = 3), and therefore s + c = 8. The last
four columns present the products of the number of bytes by the frequency of each word, and its sum (the
average codeword length) is shown in the last row.
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Freq × bytes
Rank Word Freq PHC (6,2)-DC ETDC THC PHC (6,2)-DC ETDC THC

0 A 0.200 [0] [2] [4] [4] 0.20 0.20 0.20 0.20
1 B 0.200 [1] [3] [5] [5] 0.20 0.20 0.20 0.20
2 C 0.150 [2] [4] [6] [6] 0.15 0.15 0.15 0.15
3 D 0.150 [3] [5] [7] [7][0] 0.15 0.15 0.15 0.30
4 E 0.140 [4] [6] [0][4] [7][1] 0.14 0.14 0.28 0.28
5 F 0.090 [5] [7] [0][5] [7][2] 0.09 0.09 0.18 0.18
6 G 0.040 [6] [0][2] [0][6] [7][3][0] 0.04 0.08 0.08 0.12
7 H 0.020 [7][0] [0][3] [0][7] [7][3][1] 0.04 0.04 0.04 0.06
8 I 0.005 [7][1] [0][4] [1][4] [7][3][2] 0.01 0.01 0.01 0.015
9 J 0.005 [7][2] [0][5] [1][5] [7][3][3] 0.01 0.01 0.01 0.015

average codeword length 1.03 1.07 1.30 1.52

Table 4: Comparative example among compression methods, for b=3.

It is easy to see that, for this example, Plain Huffman Code and the (6,2)-Dense Code are better than
the (4,4)-Dense Code (ETDC) and they are also better than Tagged Huffman Code. A (6,2)-Dense Code
is better than a (4,4)-Dense Code because it takes advantage of the distribution of frequencies and of the
number of words in the vocabulary. However the values (6,2) for s and c are not the optimal ones since
a (7,1)-Dense Code obtains, in this example, an optimal compressed text having the same result as Plain
Huffman Code. ⊓⊔

The problem now consists of finding the s and c values (assuming a fixed b where 2b = s + c) that minimize
the size of the compressed text for a specific word frequency distribution.

4.2 Optimal s and c values

The key advantage of SCDC with respect to ETDC is the ability to use the optimal s and c values. In all the
real text corpora used in our experiments (with s + c = 28), the size of the compressed text, as a function
of s, has only one local minimum. Figure 1 shows compression ratios and file sizes as a function of s for two
real corpora, ZIFF and AP4. It can be seen that a unique minimum exists for each collection, at s = 198 in
ZIFF and s = 189 in AP. The table details the sizes and compression ratios when values of s close to the
optimum are used.

The behavior of the curves is explained as follows. When s is very small, the number of high frequency
words encoded with one byte is also very small (s words are encoded with one byte), but in this case c is
large and therefore many words with low frequency will be encoded with few bytes: sc words will be encoded
with two bytes, sc2 words with 3 bytes, sc3 with 4 bytes, and so on. From that point, as s grows, we gain
compression in more frequent words and lose compression in less frequent words. At some later point, the
compression lost in the last words is larger than the compression gained in words at the beginning, and
therefore the global compression ratio worsens. That point gives us the optimal s value. Moreover, Figure 1
shows that, in practice, the compression is relatively insensitive to the exact value of s around the optimal
value.

If one assumes the existence of a unique minimum, a binary search strategy permits computing the best
s and c values in O(b) steps. At each step, we check whether we are in the decreasing or increasing part of
the curve and move towards the decreasing direction. However, the property of the existence of a unique
minimum does not always hold. An artificial distribution with two local minima is given in Example 5 5.

4These are two text collections from trec-2, described in Section 6.
5This contradicts our earlier assertion (Brisaboa et al. 2003b), where we mentioned the existence of a long and complex
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s value AP Corpus ZIFF Corpus

ratio(%) size(bytes) ratio(%) size(bytes)

186 31.5927 79,207,309 32.0433 59,350,593
187 31.5917 79,204,745 32.0391 59,342,810
188 31.5910 79,202,982 32.0355 59,336,069
189 31.5906 79,202,053 32.0321 59,329,848
190 31.5907 79,202,351 32.0290 59,324,149
191 31.5912 79,203,574 32.0263 59,319,106
192 31.5921 79,205,733 32.0239 59,314,667
195 31.5974 79,219,144 32.0188 59,305,267
196 31.6002 79,226,218 32.0179 59,303,599
197 31.6036 79,234,671 32.0174 59,302,677
198 31.6074 79,244,243 32.0174 59,302,609
199 31.6117 79,254,929 32.0178 59,303,324
200 31.6166 79,267,125 32.0186 59,304,790
201 31.6220 79,280,683 32.0198 59,307,119

(b)

Figure 1: Compressed text sizes and compression ratios for different s values.

Example 5 Consider a text with N = 50, 000 words, and n = 5, 000 distinct words. An artificial distribution
of the probability of occurrence pi for all words 0 ≤ i < n in the text is defined as follows:

pi =















0.4014 if i = 0
0.044 if i ∈ [1..9]
0.0001 if i ∈ [10..59]
0.00004 if i ∈ [60..4999]

If the text is compressed using (s, c)-Dense Code and assuming that b = 4 (therefore, s + c = 2b = 16),
the distribution of the size of the compressed text depending on the value of s used to encode words has two
local minima, at s = c = 8 and at s = 10, c = 6. This situation can be observed in Table 5. ⊓⊔

Therefore, a binary search does not always guarantee that we will find the optimum s value, and a
sequential search over the 2b possible values is necessary. In practice, however, all the text collections we
have considered do have a unique minimum and thus permit binary searching for the optimum s value.

proof of the existence of a unique minimum, which was finally flawed.
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s value avg. codeword length compressed size (bytes)

7 1.70632 85,316
8 1.67716 83,858

9 1.67920 83,960
10 1.67900 83,950

11 1.71758 85,879

Table 5: Size of compressed text for an artificial distribution.

Section 4.3 explains why this property is expected to hold in all real-life text collections.
Let us consider how to find the optimum s value, either by binary or sequential search. Assume s+c = 2b

and c > 1 in the following. As sck−1 different source symbols can be encoded using k digits, let us call

W s
k =

k
∑

j=1

scj−1 = s
ck − 1

c − 1
(1)

(where W s
0 = 0) the number of source symbols that can be encoded with up to k digits. Let us consider an

alphabet of n source symbols, where pi is the probability of the i-th most frequent symbol (i = 0 for the
first symbol) and pi = 0 if i ≥ n. Let us also define

Pj =

j
∑

i=0

pi

as the sum of pi probabilities up to j. We also need

fs
k =

W s

k
−1

∑

i=W s

k−1

pi = PW s

k
−1 − PW s

k−1

the sum of probabilities of source symbols encoded with k digits by (s, c)-DC and

F s
k =

W s

k
−1

∑

i=0

pi = PW s

k
−1

the sum of probabilities of source symbols encoded with up to k digits by (s, c)-DC. Then, the average
codeword length, L(s, c), for (s, c)-DC is

L(s, c) =

Ks

∑

k=1

k fs
k =

Ks

∑

k=1

k (F s
k − F s

k−1) =

Ks−1
∑

k=0

(k − (k + 1)) F s
k + KsF s

Ks

= Ks −

Ks−1
∑

k=0

F s
k =

Ks−1
∑

k=0

(1 − F s
k ) (2)

where Ks =
⌈

logc

(

1 + n(c−1)
s

)⌉

is the maximum codeword length used by the code, and thus F s
Ks = 1.

Thus, if we precompute all the sums Pj in O(n) time, we can compute L(s, c) in O(Ks) = O(logc n)
time. Therefore, a binary search requires O(n+b log n) and a sequential search requires O(n+2b log n) time.
We can assume 2b ≤ n, as otherwise all the n codewords fit in one symbol. This makes the binary search
complexity O(n), while the sequential search complexity can be as large as O(n log n) if b is close to log n.

The case c = 1 is hardly useful in practice: W s
k = ks, Ks = ⌈n/s⌉, and L(s, c) is computed in O(n) time.
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6

1 1 256 65,281 16,711,681 4.E+09 1.E+17
10 10 2,470 607,630 150,082,150 4.E+10 9.E+17
20 20 4,740 1,118,660 265,117,700 6.E+10 1.E+18
30 30 6,810 1,539,090 349,366,650 8.E+10 2.E+18
40 40 8,680 1,874,920 406,849,000 9.E+10 2.E+18
50 50 10,350 2,132,150 441,344,750 9.E+10 2.E+18
60 60 11,820 2,316,780 456,393,900 9.E+10 2.E+18
70 70 13,090 2,434,810 455,296,450 8.E+10 2.E+18
80 80 14,160 2,492,240 441,112,400 8.E+10 1.E+18
90 90 15,030 2,495,070 416,661,750 7.E+10 1.E+18

100 100 15,700 2,449,300 384,524,500 6.E+10 9.E+17
110 110 16,170 2,360,930 347,040,650 5.E+10 7.E+17
120 120 16,440 2,235,960 306,310,200 4.E+10 6.E+17

127 127 16,510 2,129,917 276,872,827 4.E+10 5.E+17
128 128 16,512 2,113,664 272,646,272 3.E+10 4.E+17
129 129 16,512 2,097,153 268,419,201 3.E+10 4.E+17

130 130 16,510 2,080,390 264,193,150 3.E+10 4.E+17
140 140 16,380 1,900,220 222,309,500 3.E+10 3.E+17
150 150 16,050 1,701,450 182,039,250 2.E+10 2.E+17
160 160 15,520 1,490,080 144,522,400 1.E+10 1.E+17
170 170 14,790 1,272,110 110,658,950 1.E+10 8.E+16
180 180 13,860 1,053,540 81,108,900 6.E+09 5.E+16
190 190 12,730 840,370 56,292,250 4.E+09 2.E+16
200 200 11,400 638,600 36,389,000 2.E+09 1.E+16
210 210 9,870 454,230 21,339,150 1.E+09 5.E+10
220 220 8,140 293,260 10,842,700 390,907,660 1.E+10
230 230 6,210 161,690 4,359,650 113,662,090 3.E+09
240 240 4,080 65,520 1,110,000 17,883,120 286,314,480
250 250 1,750 10,750 73,750 460,750 2,791,750
255 255 510 765 1,275 2,040 3,060

Table 6: Values of W s
k for 1 ≤ k ≤ 6.

4.3 Uniqueness of the minimum

As explained, only one minimum appeared in all our experiments with b = 8 and real collections. In this
section, we show that this is actually expected to be the case in all practical situations. We remark that we
are not going to give a proof, but just intuitive arguments of what is expected to happen in practice.

Heaps Law (Heaps 1978) establishes that n = O(Nβ), where n is the vocabulary size, N the number of
words in the text, and β a constant that depends on the text type and is usually between 0.4 and 0.6 (Baeza-
Yates and Ribeiro-Neto 1999). This means that the vocabulary grows very slowly in large text collections.
In fact, in a corpus obtained by joining different texts from trec-2 and trec-4 (see Section 6), which adds
up to 1 gigabyte, we find only 886,190 different words. This behavior, combined with the fact that we use
bytes (b = 8) as target symbols, is the key to the uniqueness of the minimum in practice.

Table 6 shows how the W s
k (Eq. (1)) evolve, with b = 8. The maximum number of words that can be

encoded with 6 bytes is found when the value of s is around 40. In the same way, the maximum number of
words that can be encoded with 5, 4, and 3 bytes is reached when the value of s is respectively around of 50,
60 and 90. Finally, the value of s that maximizes the number of words encoded with 2 bytes is s = c = 128,
but the number of words encoded with just one byte grows when s is increased.

Notice that compression clearly improves, even if a huge vocabulary of 2 million words is considered,
when s increases from s = 1 until s = 128. This is because, up to s = 128, the number of words that can
be encoded with 1 byte and with 2 bytes both grow, while the number that can be encoded with 3 bytes
stays larger than 2 million. Only larger vocabularies can lose compression if s grows from s = 90 (where 2.5
million words can be encoded) up to s = 128. This happens because those words that can be encoded with
3-byte codewords for s = 90, would need 4-byte codewords when s increases. However, as it has been already
pointed out, we never obtained a vocabulary with more than 886, 190 words in all the real texts used, and
that number of words is encoded with just 3 bytes with any s ≤ 187.

Therefore, in our experiments (and in most real-life collections) the space trade-off depends on the sum of
the probability of the words encoded with only 1 byte, against the sum of the probability of words encoded
with 2 bytes. The remaining words are always encoded with 3 bytes.
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The average codeword length for two consecutive values of s are (Eq. (2))

L(s, c) = 1 +
∑

i≥W s

1

pi +
∑

i≥W s

2

pi,

L(s + 1, c − 1) = 1 +
∑

i≥W s+1
1

pi +
∑

i≥W s+1
2

pi.

Two different situations arise depending on whether s > c or s ≤ c. When s < c the length L(s, c) is always
greater than L(s + 1, c − 1) because the number of words that are encoded with both 1 and 2 bytes grows
when s increases. Therefore, as the value of s is increased, compression improves until the value s = c = 128
is reached. For s values beyond s = c (s > c), compression improves when the value s + 1 is used instead of
s iff L(s + 1, c − 1) < L(s, c), that is,

W s+1
1 −1
∑

i=W s

1

pi >

W s

2 −1
∑

i=W s+1
2

pi, which is ps >

s+sc−1
∑

i=sc+c

pi.

For each successive value of s, ps clearly decreases. On the other hand,
∑sc+s−1

sc+c pi grows. To see this,

since the pi values are decreasing, it is sufficient to show that each interval [W s+1
2 , W s

2 − 1] is longer than
the former and it ends before the former starts (so it contains more and higher pi values). That is: (a)
W s

2 −W s+1
2 > W s−1

2 −W s
2 , and (b) W s+1

2 < W s
2 . It is a matter of algebra to see that both hold when s ≥ c.

As a consequence, once s reaches a value such that ps ≤
∑W s

2 −1

i=W s+1
2

pi, successive values of s will also produce

a loss of compression. Such loss of compression will increase in each successive step. Hence only one local
minimum will exist.

The argument above is valid until s is so large that more than 3 bytes are necessary for the codewords,
even with moderate vocabularies. For example, for s = 230 we will need more than 3 bytes for n as low as
161,690, which is perfectly realistic. When this happens, we have to take into account limits of the form
W s

3 and more, which do not have the properties (a) and (b) of W s
2 . Yet, notice that, as we move from s

to s + 1, compression improves by ps (which decreases with s) and it deteriorates because of two facts: (1)
fewer words are coded with 2 bytes; (2) fewer words are coded with k bytes, for any k ≥ 3. While factor (2)
can grow or reduce with s, factor (1) always grows because of properties (a) and (b) satisfied by W s

2 . Soon
the losses because of factor (1) are so large that the possible oscillations due to factor (2) are completely
negligible, and thus local minima do not appear anyway.

To illustrate the magnitudes we are considering, assume the text satisfies Zipf (1949) Law with θ = 1.5,
which is far lower than the values obtained in practice (Baeza-Yates and Ribeiro-Neto 1999). If we move
from s = 230 to s + 1 = 231, compression gain is ps < 0.00029. The loss just because of W s

2 is > 0.00042,
and the other W s

k (k ≥ 3) add almost other 0.00026 to the loss. So, no matter what happens with factor
(2), factor (1) is strong enough to ensure that compression will deteriorate for s > 230.

5 Encoding, decoding, and searching

Encoding, decoding, and searching is extremely simple in ETDC and SCDC. We give in this section the
algorithms for general SCDC. The case of ETDC can be considered as a particular case of SCDC taking the
value of s as 2b−1 (128 in our case). We will make clear where the particular case of ETDC yields potentially
more efficiency.
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5.1 Encoding algorithm

Encoding is usually done in a sequential fashion as shown in Table 3, in time proportional to the output
size. Alternatively, on-the-fly encoding of individual words is also possible. Given a word rank i, its k-byte
codeword can be easily computed in O(k) = O(logc i) time6.

There is no need to store the codewords (in any form such as a tree) nor the frequencies in the compressed
file. It is enough to store the plain words sorted by frequency and the value of s used in the compression
process. Therefore, the vocabulary will be basically of the same size as using Huffman codes and canonical
trees.

Figure 2 gives the sequential encoding algorithm. It computes the codewords for all the words in the
sorted vocabulary and stores them in a vector code.

SequentialEncode (code, n, s, c)
(1) firstKBytes ← 0; // rank of the first word encoded with k bytes
(2) numKBytes ← s; // number of k-byte codewords
(3) p ← 0; // current codeword being generated
(4) k ← 1; // size of the current codeword
(5) while p < n // n codewords are generated
(6) paux ← 0; //relative position among k-byte codewords
(7) while (p < n) and (paux < numKBytes) // k-byte codewords are computed
(8) code[p].codeword[k− 1] ← c + (paux mod s); // rightmost byte
(9) paux ← paux div s;
(10) for i ← k − 2 downto 0
(11) code[p].codeword[i] ← paux mod c;
(12) paux ← paux div c;
(13) p ← p + 1;
(14) paux ← p − firstKBytes;
(15) k ← k + 1;
(16) firstKBytes ← firstKBytes + numKBytes;
(17) numKBytes ← numKBytes× c;

Figure 2: Sequential encoding process. It receives the vocabulary size n, and the (s, c) parameters, and
leaves the codewords in code.

Notice that, when using ETDC, since s = c = 128, the operations mod s, mod c, div s, div c, + c and
× c can be carried out using faster bitwise operations. As shown in Section 6.2.1, this yield better encoding
times.

Figure 3 presents the on-the-fly encoding algorithm. It outputs the bytes of the codeword one at a time
from right to left, that is, the least significant bytes first.

5.2 Decoding algorithm

The first step of decompression is to load the words that compose the vocabulary to a vector. Those are
already sorted by frequency.

In order to obtain the word that corresponds to a given codeword, the decoder runs a simple computation
to obtain, from the codeword, the rank of the word i. Then it outputs the i-th vocabulary word. Figure 4
shows the decoding algorithm. It receives a codeword x, and iterates over each byte of x. The end of the
codeword can be easily recognized because its value is not smaller than c. After the iteration, the value
i holds the relative rank of the word among those of k bytes. Then base = W s

k−1 is added to obtain the
absolute rank. Overall, a codeword of k bytes can be decoded in O(k) = O(logc i) time7.

6If c = 1, encoding takes O(i/2b) time.
7If c = 1, decoding takes O(i/2b) time.
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Encode (i, s, c)
(1) output c + (i mod s);
(2) x ← i div s;
(3) while x > 0
(4) x ← x− 1;
(5) output x mod c;
(6) x ← x div c;

Figure 3: On-the-fly encoding process. It receives the word rank i, and the (s, c) parameters, and outputs
the codewords in reverse order.

Decode (x, s, c)
(1) i← 0;
(2) base← 0; // W s

k−1

(3) tot← s; // sck−1

(4) k ← 1; // number of bytes of the codeword
(5) while x[k] < c
(6) i← i× c + x[k];
(7) k ← k + 1;
(8) base← base + tot;
(9) tot← tot× c;
(10) i← i× s + (x[k]− c);
(11) return i + base;

Figure 4: On-the-fly decoding process. It receives a codeword x, and the (s, c) parameters, and returns the
word rank. It is also possible to have base precomputed for each codeword size.

5.3 Searching

The essential idea of searching a semistatic code is to search the compressed text for the compressed pattern
P . However, some care must be exercised to make sure that the occurrences of codeword P only correspond
to whole text codewords. Specifically, we must ensure that the following situations do not occur: (i) P
matches the prefix of a text codeword A; (ii) P matches the suffix of a text codeword A; (iii) P matches
strictly within a text codeword A; (iv) P matches within the concatenation of two codewords A : B or more.

Case (i) cannot occur in prefix codes (such as Huffman or our Dense Codes). However, cases (ii) to (iv)
can occur in Plain Huffman Code. This is why searches on Plain Huffman Code must proceed byte-wise so as
to keep track of codeword beginnings. Tagged Huffman Code, on the other hand, rules out the possibility of
situations (ii) to (iv) thanks to the flag bit that distinguishes codeword beginnings. Hence Tagged Huffman
Code can be searched without any care using any string matching algorithm.

End-Tagged Dense Code, on the other hand, uses the flag bit to signal the end of a codeword. (s, c)-Dense
Code does not have such a tag, yet a value ≥ c serves anyway to distinguish the end of a codeword. It is
easy to see that situations (iii) and (iv) cannot arise in this case, yet case (ii) is perfectly possible. This is
because Dense Codes are not suffix codes, that is, a codeword can be a suffix of another.

Yet, with a small modification, we can still use any string matching algorithm (in particular, the Boyer-
Moore family, which permits skipping text bytes). We can just run the search algorithm without any care
and, each time a matching of the whole pattern P occurs in the text, we check whether the occurrence
corresponds to a whole text codeword or to just a suffix of a text codeword. For this sake, it is sufficient to
check whether the byte preceding the first matched byte is ≥ c or not. Figure 5 shows an example of how
false matchings can be detected (using “bytes” of three bits and ETDC). Note that Plain Huffman Code
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does not permit such simple checking.

pattern

Compressed text

010 110

110 000 001 010 110 010 110

false match valid match

intermediate byte last byte

Figure 5: Searching using End-Tagged Dense Code.

This overhead in searches is negligible because checking the previous byte is only needed when a matching
is detected, which is infrequent. As shown in Section 6.4, this small disadvantage with respect to Tagged
Huffman Code (which is both a prefix and a suffix code) is compensated because the size of the compressed
text is smaller with Dense Codes than with Tagged Huffman Code.

Figure 6 gives a search algorithm based on Horspool’s variant of Boyer-Moore (Horspool 1980, Navarro
and Raffinot 2002). This algorithm is especially well suited to this case (codewords of length at most 3–4,
characters with relatively uniform distribution in {0. . . 255}).

6 Empirical results

We present in this section experimental results on compression ratios, as well as speed in compression,
decompression, and searching. We used some text collections from trec-2

8: AP Newswire 1988 (AP) and
Ziff Data 1989-1990 (ZIFF); and from trec-4: Congressional Record 1993 (CR) and Financial Times 1991
to 1994 (FT91 to FT94). In addition, we included the small Calgary corpus9 (CALGARY), and two larger
collections: ALL FT aggregates corpora FT91 to FT94, and ALL aggregates all our corpora.

We compressed the corpora with Plain Huffman Code (PHC), Tagged Huffman Code (THC), our End-
Tagged Dense Code (ETDC) and our (s, c)-Dense Code (SCDC), using in all cases bytes as the target symbols
(b = 8). In all cases, we defined words as maximal contiguous sequences of letters and digits, we distinguished
upper and lower case, and we adhered to the spaceless word model (Moura et al. 2000). Under this model,
words and separators share a unique vocabulary, and single-space separators are assumed by default and
thus not encoded (i.e., two contiguous codewords representing words imply a single space between them).

8http://trec.nist.gov.
9ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus.

Search (x, k, c, T, z)
(1) for b← 0 to 255 do d[b]← k
(2) for j ← 1 to k − 1 do d[x[j]]← k − j
(3) i← 0
(4) while i ≤ z − k
(5) j ← k − 1
(6) while j ≥ 0 and T [i + j] = x[j] do j ← j − 1
(7) if j < 0 and (i = 0 or T [i− 1] ≥ c) output i
(8) i← i + d[T [i + k − 1]]

Figure 6: Search process using Horspool’s algorithm. It receives a codeword x and its length k, parameter
c, the compressed text T to search, and its length z. It outputs all the text positions that start a true
occurrence of x in T .
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We also include comparisons against the most competitive classical compressors. These turn out to
be adaptive techniques that do not permit direct access nor competitive direct searching, even compared
to PHC. These are Gnu gzip 10, a Ziv-Lempel compressor (Ziv and Lempel 1977); Seward’s bzip2 11, a
compressor based on the Burrows-Wheeler transform (Burrows and Wheeler 1994); and Moffat’s arith 12,
a zero-order word-based modeler coupled with an arithmetic coder (Carpinelli et al. 1999). Gzip and bzip2
have options -f where they run faster, and -b, where they compress more.

6.1 Compression ratio

Table 7 shows the compression ratios obtained by the four semistatic techniques when compressing the
different corpora. The second column gives the original size in bytes. Columns 3 to 6 (sorted by compression
performance) give the compression ratios for each method. Column 7 shows the (small) loss of compression
of SCDC with respect to PHC, and the last column shows the difference between SCDC and ETDC. The
fourth column, which refers to SCDC, gives also the optimal (s, c) values.

We excluded the size of the compressed vocabulary in the results. This size is negligible and similar in
all cases, although a bit smaller in SCDC and ETDC because only the sorted words are needed.

Corpus Original Size PHC SCDC ETDC THC 1 − PHC

SCDC
1 − SCDC

ETDC

(%) (%)

CALGARY 2,131,045 34.76 (197,59) 35.13 35.92 38.91 1.06 2.30
FT91 14,749,355 30.26 (193,63) 30.50 31.15 33.58 0.79 2.09
CR 51,085,545 29.21 (195,61) 29.45 30.10 32.43 0.81 2.16
FT92 175,449,235 30.49 (193,63) 30.71 31.31 34.08 0.72 1.92
ZIFF 185,220,215 31.83 (198,58) 32.02 32.72 35.33 0.59 2.14
FT93 197,586,294 30.61 (195,61) 30.81 31.49 34.30 0.65 2.16
FT94 203,783,923 30.57 (195,61) 30.77 31.46 34.28 0.65 2.19
AP 250,714,271 31.32 (189,67) 31.59 32.14 34.72 0.85 1.71
ALL FT 591,568,807 30.73 (196,60) 30.88 31.56 34.16 0.49 2.15
ALL 1,080,719,883 32.05 (188,68) 32.24 32.88 35.60 0.59 1.95

Table 7: Comparison of compression ratio among semistatic compressors. Vocabulary sizes are excluded.

PHC obtains the best compression ratio (as expected from an optimal prefix code). ETDC always obtains
better results than THC, with an improvement of 7.7%–9.0%. SCDC improves ETDC compression ratio by
1.7%–2.3%, and it is worse than the optimal PHC only by 0.49%–1.06% (being 0.6% in the whole corpus
ALL). Therefore, our Dense Codes retain the good searchability and random access of THC, but their
compression ratios are much closer to those of the optimum PHC.

Table 8 compares ETDC and SCDC against adaptive compressors. This time we have added the size of
the vocabulary, which was compressed with classical (character oriented, bit-based) Huffman. It can be seen
that SCDC always compresses more than gzip -b, except on the very small Calgary file. The improvement in
compression ratio is between 7% and 14% except on the ZIFF collection. The other compressors, however,
compress more than SCDC by a margin of 6% to 24% (even excluding the short Calgary file). We remind
that these compressors do not permit local decompression nor direct search. We also show next that they
are very slow at decompression.

10http://www.gnu.org.
11http://www.bzip.org.
12http://www.cs.mu.oz.au/~alistair/arith coder/.
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Corpus Original Size SCDC ETDC arith gzip -f gzip -b bzip2 -f bzip2 -b

CALGARY 2,131,045 43.64 44.43 34.68 43.53 36.840 32.83 28.92
FT91 14,749,355 33.50 34.15 28.33 42.57 36.33 32.31 27.06
CR 51,085,545 30.80 31.45 26.30 39.51 33.18 29.51 24.14
FT92 175,449,235 31.68 32.28 29.82 42.59 36.38 32.37 27.09
ZIFF 185,220,215 32.92 33.62 26.36 39.66 32.98 29.64 25.11
FT93 197,586,294 31.68 32.36 27.89 40.20 34.12 30.62 25.32
FT94 203,783,923 31.54 32.23 27.86 40.24 34.12 30.54 25.27
AP 250,714,271 32.14 32.69 28.00 43.65 37.23 33.26 27.22
ALL FT 591,568,807 31.45 32.13 27.85 40.99 34.85 31.15 25.87
ALL 1,080,719,883 32.72 33.36 27.98 41.31 35.00 31.30 25.98

Table 8: Comparison of compression ratio against adaptive compressors.

6.2 Compression time

In this section we compare the Dense and Plain Huffman encoding phases and measure the code generation
time. We do not include THC because it works exactly as PHC, with the only difference of generating
2b−1-ary trees instead of 2b-ary trees as PHC. This causes some loss in encoding speed. We also include the
adaptive compressors.

The model used for compressing a corpus in our experiments is described in Figure 7. It consists of three
phases.

1. Vocabulary extraction. The corpus is processed once in order to obtain all distinct words in it, and
their number of occurrences (n). The result is a list of pairs (word, frequency), which is then sorted
by frequency. This phase is identical for PHC, SCDC, and ETDC.

2. Encoding. Each vocabulary word is assigned a codeword. This process is different for each method:

• The PHC encoding phase is the application of the Huffman technique (Moffat and Katajainen
1995, Moffat and Turpin 1996, Huffman 1952). Encoding takes O(n) time overall.

• The SCDC encoding phase has two parts: The first computes the list of accumulated frequencies
and searches for the optimal s and c values. Its cost is O(n) in practice (Sections 4.2 and 4.3).
After obtaining the optimal s and c values, sequential encoding is performed (Figure 2). The
overall cost is O(n).

• The encoding phase is even simpler in ETDC than in SCDC, because ETDC does not have to
search for the optimal s and c values (as they are fixed to 128). Therefore only the sequential
code generation phase is performed. It costs O(n) time overall.

In all cases, the result of the encoding section is a hash table of pairs (word, codeword).

3. Compression. The whole source text is processed again. For each source word, the compression process
looks for it in the hash table and outputs its corresponding codeword.

Note that both PHC and SCDC encoding phases run in linear time. However, Huffman’s constant is in
practice larger because it involves more operations than just adding up frequencies.

Given that the vocabulary extraction phase, the process of building the hash table of pairs, and the
compression phase are identical in PHC, ETDC and SCDC, we first measure only code generation time
(T1−T0 in Figure 7), to appreciate the speedup due to the simplicity of Dense Codes. We then measure also
the overall compression time, to assess the impact of encoding in the whole process and to compare against
adaptive compressors.
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Figure 7: Vocabulary extraction and encoding phases.

6.2.1 Encoding time

Table 9 shows the results on code generation time. A dual Intel r©pentium r©-III 800 Mhz system, with 768
SDRAM-100Mhz was used in our tests. It ran Debian GNU/Linux (kernel version 2.2.19). The compiler
was gcc version 2.95.2 with -O9 compiler optimizations. The results measure encoding user time.

The second column gives the corpus size measured in words, while the third gives the number of different
words (vocabulary size). Columns 4–6 give encoding time in milliseconds for the different techniques (from
faster to slower). Column 7 measures the gain of ETDC over SCDC, and the last the gain of SCDC over
PHC.

ETDC takes advantage of its simpler encoding phase with respect to SCDC, to reduce its encoding time
by about 25%. This difference corresponds to two factors. One is that, when using ETDC, s is 128, and
then bitwise operations (as shown in Section 5.1) can be used. Another factor is the amount of time needed
to compute the optimal s and c values, which corresponds mainly to the process of computing the vector of
accumulated frequencies. With respect to PHC, ETDC decreases the encoding time by about 60%. Code
generation is always about 45% faster for SCDC than for PHC.

Although the encoding time is in all methods O(n) under reasonable conditions, ETDC and SCDC
perform simpler operations. Computing the list of accumulated frequencies and searching for the best (s, c)
pair only involve elementary operations, while the process of building a canonical Huffman tree has to deal
with the tree structure.
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Corpus Size n ETDC SCDC PHC 1 − ETDC

SCDC
1 − SCDC

PHC

(words) (msec) (msec) (msec) (%) (%)

CALGARY 528,611 30,995 4.233 6.150 11.133 31.165 44.760
FT91 3,135,383 75,681 11.977 15.350 26.500 21.976 42.075
CR 10,230,907 117,713 21.053 25.750 49.833 18.239 48.328
FT92 36,803,204 291,427 52.397 69.000 129.817 24.063 46.848
ZIFF 40,866,492 284,892 44.373 56.650 105.900 21.671 46.506
FT93 42,063,804 295,018 52.813 69.725 133.350 24.255 47.713
FT94 43,335,126 269,141 52.980 71.600 134.367 26.006 46.713
AP 53,349,620 237,622 50.073 64.700 121.900 22.607 46.924
ALL FT 124,971,944 577,352 103.727 142.875 260.800 27.400 45.217
ALL 229,596,845 886,190 165.417 216.225 402.875 23.498 46.330

Table 9: Code generation time comparison.

6.2.2 Overall compression time

Section 6.2.1 only shows the encoding time, that is, the time to assign a codeword to each word in the sorted
vocabulary. We now consider the whole compression time. Table 10 shows the compression times in seconds
for the four techniques and for the adaptive compressors.

Corpus PHC SCDC ETDC THC arith gzip -f gzip -b bzip2 -f bzip2 -b

CALGARY 0.415 0.405 0.393 0.415 1.030 0.360 1.095 2.180 2.660
FT91 2.500 2.493 2.482 2.503 6.347 2.720 7.065 14.380 18.200
CR 7.990 7.956 7.988 8.040 21.930 8.875 25.155 48.210 65.170
FT92 29.243 29.339 29.230 29.436 80.390 34.465 84.955 166.310 221.460
ZIFF 30.354 30.620 30.368 30.725 82.720 33.550 82.470 174.670 233.250
FT93 32.915 33.031 32.783 33.203 91.057 36.805 93.135 181.720 237.750
FT94 33.874 33.717 33.763 33.700 93.467 37.500 96.115 185.107 255.220
AP 42.641 42.676 42.357 42.663 116.983 50.330 124.775 231.785 310.620
ALL FT 99.889 100.570 100.469 101.471 274.310 117.255 293.565 558.530 718.250
ALL 191.396 191.809 191.763 192.353 509.710 188.310 532.645 996.530 1,342.430

Table 10: Compression time comparison (in seconds).

Observe that the two passes over the original file (one for vocabulary extraction and the other to compress
the file) take the same time with all semistatic techniques. These tasks dominate the overall compression
time, and blur out most of the differences in encoding time. The differences are in all cases very small,
around 1%.

It is interesting that the time to write the compressed file benefits from a more compact encoding, as it
has to write less data. Therefore, a technique with fastest encoding like ETDC is harmed in the overall time
for its extra space with respect to SCDC and PHC.

As a result, PHC is faster in the largest files, since it has to write a shorter output file. However, in
shorter files, where the size of the output file is not so different and the vocabulary size is more significant,
ETDC is faster due to its faster encoding time. SCDC is in between and it is the fastest in some intermediate
size files. THC, on the other hand, is consistently the slowest, as it is slow at encoding and produces the
largest output files.

With respect to adaptive compressors, we can see that all PHC, THC, ETDC and SCDC, are usually
10%-20% faster than gzip (even considering its fastest mode), and 2.5–6.0 times faster than bzip2 and arith
compression (only those two defeat ETDC and SCDC compression ratios).
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6.3 Decompression time

Decoding is almost identical for PHC, THC, ETDC and SCDC. Such a process starts by loading the words
of the vocabulary into a vector V . For decoding a codeword, SCDC needs the s value used in compression,
and PHC and THC also need to load two vectors: base and first (Moffat and Katajainen 1995). Next, the
compressed text is read and each codeword is replaced by its corresponding uncompressed word. Since it
is possible to detect the end of a codeword by using the s value in the case of SCDC (128 when ETDC is
used) and the first vector in the case of PHC and THC, decompression is performed codeword-wise. Given
a codeword C, a simple decoding algorithm obtains the position i such that V [i] is the uncompressed word
that corresponds to codeword C. The decompression process takes O(z) time (where z is the size of the
compressed text).

Table 11 gives overall decompression time in seconds for the four semistatic techniques and for adaptive
compressors. Again, in addition to the simplicity of the decoding process, we must consider the penalty
posed by codes with worse compression ratios, as they have to process a longer input file.

Corpus PHC SCDC ETDC THC arith gzip -f gzip -b bzip2 -f bzip2 -b

CALGARY 0.088 0.097 0.085 0.092 0.973 0.090 0.110 0.775 0.830
FT91 0.577 0.603 0.570 0.575 5.527 0.900 0.825 4.655 5.890
CR 1.903 1.971 1.926 1.968 18.053 3.010 2.425 15.910 19.890
FT92 7.773 7.592 7.561 7.801 65.680 8.735 7.390 57.815 71.050
ZIFF 8.263 7.988 7.953 8.081 67.120 9.070 8.020 58.790 72.340
FT93 8.406 8.437 8.694 8.657 71.233 10.040 9.345 62.565 77.860
FT94 8.636 8.690 8.463 8.825 75.925 10.845 10.020 62.795 80.370
AP 11.040 11.404 11.233 11.637 88.823 15.990 13.200 81.875 103.010
ALL FT 24.798 25.118 24.500 26.280 214.180 36.295 30.430 189.905 235.370
ALL 45.699 46.698 46.352 47.156 394.067 62.485 56.510 328.240 432.390

Table 11: Decompression time comparison (in seconds).

We can see again that the times for PHC, THC, ETDC, and SCDC are very similar. The differences are
under 1.5 seconds even when decompressing 1 gigabyte corpora. It is nevertheless interesting to comment
upon some aspects. PHC benefits from the smaller size of the compressed file. ETDC processes a larger file,
yet it is faster than PHC in many cases thanks to its simpler and faster decoding. SCDC is between both
in compression ratio and decoding cost, and this is reflected in its overall decompression time, where it is
never the fastest but it is intermediate in many cases. THC is again the slowest method, as its input file is
the largest and its decoding algorithm is as slow as that of PHC.

These four compressors, on the other hand, are usually 10%–20% faster than gzip (even using its fastest
mode), and 7–9 times faster than bzip2 and arith.

6.4 Search time

As explained in Section 5.3, we can search on ETDC and SCDC using any string matching algorithm provided
we check every occurrence to determine whether it is a valid match. The check consists of inspecting the
byte preceding the occurrence (Figure 6).

In this section, we aim at determining whether this check influences search time or not, and in general
which is the performance of searching ETDC and SCDC compared to searching THC. Given a search pattern,
we find its codeword and then search the compressed text for it, using Horspool’s algorithm (Horspool 1980).
This algorithm is depicted in Figure 6, where it is adapted to ETDC and SCDC. In the case of searching
THC, line (7) is just “if j < 0 output i”.
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Comparing methods that encode the same word in different ways is not simple. The time needed by
Horspool’s algorithm is inversely proportional to the length of the codeword sought. If one method encodes
a word with 2 bytes and the other with 3 bytes, Horspool will be much faster for the second method.

In our first experiment, we aim at determining the relative speed of searching ETDC, SCDC, and THC,
when codewords of the same length are sought (classical compressors are not competitive at searching and
hence left out of this experiment). In order to isolate the length factor, we carefully chose the most and
least frequent words that are assigned 1, 2, and 3 byte codewords with the three methods simultaneously.
ETDC and SCDC never had codewords longer than 3 bytes, although THC has. We consider later the issue
of searching for “random” codewords.

Table 12 compares the search times in the ALL corpus. The first three columns give the length of the
codeword, the most and least frequent words chosen for that codeword length, and the number of occurrences
of those words in the text. The frequency of the words is important because ETDC and SCDC must check
every occurrence, but THC must not. Columns 4–7 give the search times in seconds for the three techniques
(fastest to slowest). The last two columns give the decrease in search time of SCDC with respect to ETDC
and THC.

code length word occurrences SCDC ETDC THC 1 − SCDC

ETDC
1 − SCDC

THC

(sec) (sec) (sec) (%) (%)

1 the 8,205,778 5.308 5.452 5.759 2.636 7.826
1 were 356,144 4.701 5.048 5.182 6.856 9.273

2 sales 88,442 2.526 2.679 2.800 5.711 9.779
2 predecessor 2,775 2.520 2.666 2.736 5.476 7.895

3 resilience 612 1.671 1.779 1.858 6.061 10.059
3 behooves 22 1.613 1.667 1.701 3.245 5.189

Table 12: Searching time comparison.

It can be seen that searching ETDC for a k-bytes codeword is 2%–5% faster than searching THC. Even
when searching for "the", which has one true occurrence every 42 bytes on average, the search in ETDC
is faster. This shows that the extra comparison needed in ETDC is more than compensated by its better
compression ratio (which implies that a shorter file has to be traversed during searches). The same search
algorithm gives even better results in SCDC, because the compression ratio is significantly better. Searching
SCDC is 2.5%–7% faster than searching ETDC, and 5%–10% faster than searching THC.

Let us now consider the search for random words. As expected from Zipf (1949) Law, a few vocabulary
words account for 50% of the text words (those are usually stopwords: articles, prepositions, etc.), and a
large fraction of vocabulary words appear just a few times in the text collection. Thus picking the words
from the text and from the vocabulary is very different. The real question is which is the distribution of
searched words in text databases. For example, stopwords are never searched for in isolation, because they
bring a huge number of occurrences and their information value is null (Baeza-Yates and Ribeiro-Neto 1999).
On the other hand, many words that appear only once in our text collections are also irrelevant as they are
misspellings or meaningless strings, thus they will not be searched for either.

It is known that the search frequency of vocabulary words follows a Zipf distribution as well, which
is not related to that of the word occurrences in the text (Baeza-Yates and Navarro 2004). As a rough
approximation, we have followed the model (Moura et al. 2000) where each vocabulary word is sought with
uniform probability. Yet, we have discarded words that appear only once, trying to better approximate
reality. As the search and occurrence distributions are independent, this random-vocabulary model is
reasonable.

The paradox is that this model (and reality as well) favors the worst compressors. For example, THC
has many 4-byte codewords in our largest text collections, whereas ETDC and SCDC use at most 3 bytes.
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On large corpora, where THC uses 4 bytes on a significant part of the vocabulary, there is a good chance of
picking a longer codeword with THC than with ETDC and SCDC. As a result, the Horspool search for that
codeword will be faster on THC.

More formally, the Horspool search for a codeword of length m in a text of N words, for which we achieved
c bytes/word compression, costs essentially Nc/m byte comparisons. Calling mTHC and mSCDC the average
codeword lengths (of words randomly chosen from the vocabulary) in both methods, and cTHC and cSCDC

the bytes/word compressions achieved (that is, average codeword length in the text), then searching THC
costs NcTHC/mTHC and searching SCDC costs NcSCDC/mSCDC . The ratio of search time of THC divided

by SCDC is cTHC/cSCDC

mTHC/mSCDC
. Because of Zipf Law, the ratio mTHC/mSCDC might be larger than cTHC/cSCDC ,

and thus searching THC can be faster than searching SCDC.
Table 13 shows the results of searching for (the same set of) 10,000 random vocabulary words, giving

mean and standard deviation for each method.

Corpus SCDC ETDC THC

time σ time σ time σ

FT91 0.023 0.006 0.024 0.006 0.024 0.005
CR 0.072 0.015 0.073 0.016 0.077 0.012
FT92 0.250 0.038 0.257 0.044 0.267 0.046
ZIFF 0.275 0.041 0.283 0.047 0.292 0.052
FT93 0.283 0.049 0.291 0.045 0.299 0.052
FT94 0.291 0.039 0.300 0.047 0.306 0.059
AP 0.376 0.056 0.382 0.066 0.380 0.048
ALL FT 0.844 0.091 0.867 0.101 0.760 0.141
ALL 1.610 0.176 1.650 0.195 1.390 0.250

Table 13: Searching for random patterns.

The results are as expected after the discussion. Searching THC is up to 13.7% faster on very long text
collections (ALL FT and ALL), thanks to the many 4-byte codeword assignments it makes. On the other
hand, SCDC is 5.0%–6.5% faster than THC on medium-size text collections. Even ETDC is 2%-5% faster
than THC on those texts.

The next experiment compares multi-pattern searching on a text compressed with ETDC and SCDC
against those searches on uncompressed text. To search the compressed text we applied the Set Horspool’s
algorithm (Horspool 1980, Navarro and Raffinot 2002), with the small modifications needed to deal with our
codes. Three different algorithms were tested to search the uncompressed text: i) our own implementation
of the Set Horspool’s algorithm, ii) author’s implementation of Set Backward Oracle Matching algorithm
(SBOM) (Allauzen et al. 1999), and iii) the agrep software (Wu and Manber 1992b, Wu and Manber 1992a),
a fast approximate pattern-matching tool which allows, among other things, searching a text for multiple
patterns. Agrep searches the text and returns those chunks containing one or more searched patterns. The
default chunk is a line, as the default chunk-separator is the newline character. Once the first search pattern
is found in a chunk, agrep skips processing the remaining bytes in the chunk. This speeds up agrep searches
when a large number of patterns are searched. However, it does not give the exact positions of all the
searched patterns. To make a fairer comparison, in our experiments, we also tried agrep with the reversed
patterns, which are unlikely to be found. This maintains essentially the same statistics of the searched
patterns and reflects better the real search cost of agrep.

By default, the search tools compared in our experiments (except agrep) run in silent mode, and count
the number of occurrences of the patterns in the text. Agrep was forced to use these two options by setting
the parameters -s -c.
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Search type lenght of number of patterns
pattern 5 10 25 50 100 200 400 1000

5 0.665 0.784 1.136 1.764 2.493 3.211 3.473 3.836
ETDC 10 0.665 0.800 1.147 1.754 2.469 3.152 3.389 3.703
Set Horspool >10 0.655 0.769 1.139 1.729 2.458 3.167 3.388 3.655

5 0.621 0.713 1.023 1.552 2.294 3.228 3.585 3.940
SCDC 10 0.630 0.717 1.005 1.542 2.278 3.172 3.648 3.898
Set-Horspool >10 0.611 0.711 0.992 1.496 2.248 3.151 3.585 3.893

5 2.099 3.077 5.333 7.286 9.010 10.942 12.989 16.314
Set-Horspool 10 1.864 2.913 4.546 5.533 6.648 7.959 9.409 12.482

>10 1.759 2.811 4.285 5.255 6.148 7.253 8.665 11.726
5 4.230 5.220 6.552 8.351 11.040 13.608 16.557 22.895

SBOM 10 2.970 3.532 4.995 6.401 7.572 9.363 12.024 17.197
>10 2.757 3.458 4.875 6.043 7.250 8.946 11.705 17.162

5 5.410 5.100 4.520 3.686 2.200 1.150 0.531 0.218
Agrep -s -c 10 2.910 3.150 3.700 3.855 3.310 2.330 1.568 0.717

default >10 2.690 2.960 3.580 3.792 3.390 2.880 1.985 1.070
5 5.720 5.867 6.257 7.205 10.723 9.862 8.490 5.464

Agrep -s -c 10 2.861 3.035 3.532 4.614 4.758 5.028 5.857 6.462
rev. patterns >10 2.617 2.817 3.357 4.167 4.311 4.579 5.038 6.152

Table 14: Multi-pattern searches over the ALL corpora (in seconds).

Table 14 shows the average time (in seconds) needed to search for 1000 sets of random words. To choose
these sets of random words we considered the influence of the length of the words in searches (a longer
pattern is usually searched for faster) by separately considering words of length 5, 10, or greater than 10.
With respect to the number of words in each set, we considered several values from 5 to 1000.

The results clearly show that searching compressed text is much faster than searching the uncompressed
version of the text. Only default agrep (which skips lines where patterns are found) can improve the results
of compressed searches, yet this occurs when more than 100 words are searched for and, as explained, does
not reflect the real cost of a search. In the case of agrep with reversed patterns, it is interesting to distinguish
two cases: i) Searching for inverted patterns of length greater or equal than 10. Those inverted patterns do
never occur in the text. Therefore, search time worsens as the number of searched patterns increases. ii)
Searching for inverted patterns whose length is 5. In this case, some of the inverted patterns are found in
the text, and the probability of finding the searched patterns increases as the number of searched patterns
grows. This fact, explains that search time improves when the number of search patterns is large (> 100
patterns).

If we focus on our implementations of the Set Horspool’s algorithm applied to both compressed and plain
text (which is the fairest comparison between searches in compressed and plain text), we see that searching
compressed text is around 3-5 times faster than searching plain text.

It is also noticeable that compressed search time does not depend on the length of the uncompressed
pattern (in fact, the small differences shown are related to the number of occurrences of the searched
patterns). On the other hand, searching plain text for longer patterns is faster, as it permits skipping more
bytes during the traversal of the searched file.

Moura et al. (2000) showed that if searchers allowing errors are considered, then searching text compressed
with THC (which has roughly the same search times as our Dense Codes) can be up to 8 times faster than
searching the uncompressed version of the text.

We have left aside from this comparison the block-boundary method proposed by Moura et al. (2000) to
permit Horspool searching on PHC. In the experiments they report, that method is 7% slower than THC
on medium-size collections (where SCDC is at least 5% faster than THC), and the block-alignment poses
a space overhead of 0.78% over PHC (where SCDC overhead is around 0.60%). Thus SCDC is even closer
to the optimum PHC compression ratio and 12%–19% faster. On large corpora, the same codeword length
effect that affects SCDC will make the search on PHC even slower, as those codewords are shorter on average.
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7 Conclusions and future work

We have presented End-Tagged Dense Code (ETDC) and (s, c)-Dense Code (SCDC), two statistical
semistatic word-based compression techniques suitable for text databases. SCDC is a generalization of
ETDC which improves its compression ratio by adapting the number of stopper/continuer values to the
corpus to be compressed.

Although the best semistatic compression ratio is achieved with Huffman coding, different variants that
lose some compression in exchange for random access and fast searching for codewords are preferable in
compressed text databases. In particular, Tagged Huffman Code (Moura et al. 2000) has all those features
in exchange for 11% compression loss compared to Plain Huffman Code.

We have shown that ETDC and SCDC maintain all the good searching features of Tagged Huffman Code,
yet their compression ratio is much closer to that of the optimum Plain Huffman Code (just 0.6% off). In
addition, ETDC and SCDC are much simpler and faster to program, create, and manipulate.

Figure 8(a) summarizes compression ratio, encoding time, compression and decompression time, and
search time for the semistatic word-based statistical methods. In the figure, the measures obtained in the
AP corpus are shown normalized to the worst value. The lower the value in a bar, the better the result.
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Figure 8: Comparison of Dense Codes against other compressors on corpus AP.

Using the same corpus and format, Figure 8(b) compares Dense Codes against other popular compressors:
gzip, bzip2, and arith. We recall that gzip and bzip2 have options “-f” (fast compression) and “-b” (best
compression).

Figure 9 presents the comparison in terms of space/time tradeoffs for encoding and search time versus
compression ratio (overall compression/decompression times are very similar in all cases). The figure
illustrates that, while Plain Huffman Code remains interesting because it has the best compression ratio,
Tagged Huffman Code has been overcome by both ETDC and SCDC in all concerns: compression ratio,
encoding speed, compression and decompression speed, and search speed. In addition, Dense Codes are
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simpler to program and manipulate. We also note that more complex searches (such as regular expression
or approximate searching) can be handled with ETDC or SCDC just as with Plain Huffman Code (Moura
et al. 2000), by means of a byte-wise processing of the text.
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Figure 9: Space/time tradeoffs of Dense and Huffman-based codes on corpus AP.

Figure 10 compares ETDC and SCDC against other popular compressors in terms of space/time tradeoffs
for compression and decompression versus compression ratio. It can be seen that gzip is overcome by our
compressors in all aspects: ETDC and SCDC obtain better compression ratio, compression time, and
decompression time, than gzip. Although arith and bzip2 compress up to 20% more than ETDC and
SCDC, these are 2.5–6 times faster to compress and 7–9 times faster to decompress. This shows that,
even disregarding the fact that these classical compressors cannot perform efficient local decompression or
direct text search, our new compressors are an attractive alternative even from a pure-compression point of
view. We remark that these conclusions are only true if one is compressing not-too-small (say, at least 10
megabytes) natural language text collections.

ETDC and SCDC can be considered the first two members of a newborn family of dense compressors.
Dense compressors have a number of possibilities in other applications. For example, we have faced the
problem of dealing with growing text collections. Semi-static codes have an important drawback for
compressed text databases: the whole corpus being compressed has to be available before compression starts.
As a result, a compressed text database must periodically recompress all its text collections to accommodate
new text that has been added, or accept a progressive degradation of compression ratio because of changes
in the distribution of its collections. We have some preliminary results on a semistatic compressor based on
Dense Codes (Brisaboa et al. 2005a). The idea is that, instead of changing any codeword assignment when
a word increases its frequency, we concatenate its new occurrence with the next word and consider the pair
as a new source symbol. Instead of using shorter codewords for more frequent symbols, we let codewords
encode more source symbols when those appear. This is easy to do thanks to the simplicity of Dense Codes.

This leads naturally to the use of Dense Codes as variable to variable codes. This is a relatively new
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Figure 10: Space/time tradeoffs of Dense Codes versus adaptive compressors, on corpus AP.

research field (Savari and Szpankowski 2002), based on the use of source symbols of variable length, which
are in turn encoded with variable-length codewords.

We have also explored the use of Dense Codes in dynamic scenarios (Brisaboa et al. 2004, Fariña 2005),
where we have presented adaptive versions of both word-based byte-oriented Huffman and End-Tagged Dense
Codes. These approaches do not permit efficient direct search on the compressed text since the assignment
word/codeword varies frequently as the model changes during the compression.

The simplicity of Dense Codes, which results in much faster encoding time, has little impact in the overall
compression time of semistatic compressors, as encoding is a tiny part of the whole process. In adaptive
compression, however, updating the model upon each new word is a heavy task that must be carried out for
every new text word. As a result, the overall compression time is much better with Dense Codes than with
adaptive Huffman codes, whereas the compression ratio is almost the same.

Recently, we have managed to modify dynamic ETDC to allow direct search in the compressed text
(Brisaboa et al. 2005b). This adaptive technique gives more stability to the codewords assigned to the
original symbols as the compression progresses, exploiting the fact that Dense Codes depend only on
the frequency rank and not the actual frequency of words. Basically, the technique changes the model
only when it is absolutely necessary to maintain the original compression ratio, and it breaks the usual
compressor-decompressor symmetry present in most adaptive compression schemes. This permits much
lighter decompressors and searchers, which is very valuable in mobile applications.

Finally, Dense Codes have proved to be a valuable analytic tool to bound the redundancy of D-ary
Huffman codes on different families of distributions (Navarro and Brisaboa 2006).

28



References

Allauzen, C., Crochemore, M. and Raffinot, M.: 1999, Factor oracle: A new structure for pattern matching.,
SOFSEM, LNCS 1725, pp. 295–310.

Baeza-Yates, R. and Navarro, G.: 2004, Recent advances in applied probability, in R. Baeza-Yates, J. Glaz,
H. Gzyl, J. Husler and J. Palacios (eds), Modeling Text Databases, Springer, pp. 1–25.

Baeza-Yates, R. and Ribeiro-Neto, B.: 1999, Modern Information Retrieval, Addison-Wesley Longman.

Bell, T. C., Cleary, J. G. and Witten, I. H.: 1990, Text Compression, Prentice Hall.

Boyer, R. S. and Moore, J. S.: 1977, A fast string searching algorithm, Communications of the ACM
20(10), 762–772.

Brisaboa, N., Fariña, A., Navarro, G. and Esteller, M.: 2003a, (s,c)-dense coding: An optimized compression
code for natural language text databases, Proceedings of the 10th International Symposium on String
Processing and Information Retrieval (SPIRE’03), LNCS 2857, Springer-Verlag, pp. 122–136.
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