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Abstract

In recent years, new semistatic word-based byte-oriented text compressors, such as

Tagged Huffman and those based on Dense Codes, have shown that it is possible to

perform fast direct search over compressed text and decompression of arbitrary text

passages over collections reduced to around 30-35% of their original size. Much of their

success is due to the use of words as source symbols and a byte-oriented target alphabet.

This approach broke with traditional statistical compressors, which use characters as

source symbols and a bit-oriented target alphabet.

In this work we go one step beyond by using phrases as source symbols. We present

two new semistatic modelers that we combined with a dense coding scheme to obtain

two new compressors: Pair-Based End-Tagged Dense Code (PETDC), where source sym-

bols can be either words or pairs of words, and Phrase-Based End-Tagged Dense Code

(PhETDC), which considers words and sequences of words (phrases). PETDC compresses

English texts to 28-29% and PhETDC to around 23%, outperforming the optimal byte-

oriented zero-order prefix-free word-based semistatic compressor by up to 8 percentage

points. Moreover, PETDC and PhETDC still permit random access and efficient direct

searches using fast Boyer-Moore algorithms.
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1. Introduction

A lossless compressor is evaluated by the amount of space reduction it achieves, as

well as by its compression and decompression efficiency. Decompression is usually more

important since in many cases the file is compressed once and decompressed many times.

When using a compressor within the framework of a text database, however, more factors

come into the evaluation. In such a case the compressor is required to support two further

operations: i) direct search into the compressed text without decompressing it, and ii)

local decompression (random access) of any portion of the compressed file without the

need of decompressing it from the beginning.

Statistical compressors replace the most frequent source symbols by shorter code-

words. Therefore, they need a model of the original file which informs about the fre-

quency of each source symbol. There are three strategies to obtain such a model: static,

semistatic, and dynamic. In this work, we deal with semistatic modelers. Compressors

using a semistatic modeler perform a first pass over the original text to obtain the list

of distinct source symbols and to count their number of occurrences. Once the model is

built, an encoding scheme assigns each source symbol a codeword. Then, the compressor

performs a second pass over the original file replacing each source symbol by the corre-

sponding codeword. Finally, to inform the decompressor of the correspondence between

codewords and source symbols, a prelude is stored along with the compressed text.

Classical statistical compressors are not well suited for text databases since they use

character-based modelers, which even using a Huffman coding (Huffman, 1952) obtain

poor compression ratios1 (around 60%).

Bentley, Sleator, Tarjan, and Wei (1986) used words as source symbols instead. This

might seem problematic, as the size of the prelude increases significantly. Yet, since

the number of different words grows sublinearly with the text size (Heaps, 1978), and

the distribution of words is much more biased than that of characters (Zipf, 1949),

compression improves appreciably if the text is large enough (Moura, Navarro, Ziviani,

and Baeza-Yates, 2000). For example, a Huffman-based compressor using a word-based

modeler can reach compression ratios around 25% (Moffat, 1989).

1Compression ratio is the size of the compressed text as a percentage of its original size.
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Byte-oriented variants of Huffman codes allow for faster decompression in exchange

for higher compression ratios. These stay around 30% for the basic Plain Huffman, and

35% for the so-called Tagged Huffman codes (Moura et al., 2000). The latter, aimed

at allowing fast direct searches on the compressed text, have been superseded by the

more recent Dense Codes family (Brisaboa, Fariña, Navarro, and Paramá, 2007). For

example, the End-Tagged Dense Code (ETDC) is a statistical semistatic compressor using

a semistatic zero-order word-based modeler.2 It retains the fast direct searchability of

Tagged Huffman codes, permits local decompression in both directions from a point in

the text, reduces compression ratios to around 31%, and is simpler to program.

One way to improve compression ratios beyond the 30% achievable with byte-oriented

compression is to use higher-order modeling, that is, to capture the dependencies between

consecutive words in the text. For example, in a newspaper article it is feasible to find

a considerable number of sequences of words like “European Union” or “United States”.

This was indeed mentioned in the foundational article of Bentley, Sleator, Tarjan, and

Wei (1986), but not explored further.

The idea of capturing the co-occurrence of sequences is behind high-order statistical

compressors and repetition-based compressors (Bell, Cleary, and Witten, 1990). One

general problem in those approaches is that it becomes difficult to perform random

access to the text, as well as to carry out direct pattern matching on it. In addition, it

is not obvious how to spot the text repetitions in the best way. A well-known one-pass

heuristic is the LZ77 compressor (Ziv and Lempel, 1977). This performs well in practice,

but it is particularly unfriendly to random access and direct searches.

Contrarily, offline compressors (Apostolico and Lonardi, 2000; Katajainen and Raita,

1989; Larsson and Moffat, 1999; Rubin, 1976; Turpin and Smyth, 2002) spend a good deal

of time and/or space during compression, since the idea is to compress static databases

to be stored in CD or DVDs. Some afford several passes over the original text and/or

a high memory consumption to achieve high compression, yet decompression is fast and

memory-efficient.

These compressors use a phrase book and encode the input as a list of pointers to

2Zero-order modelers provide the probability of each source symbol without taking into account the

surrounding symbols in the source stream.
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entries in the phrase book (Rubin, 1976). By using an algorithm for finding the shortest

path in a network, Katajainen and Raita (1989) gave a procedure that, given a phrase

book, obtains a time-efficient approximation algorithm for the space-optimal encoding.

Re-Pair (Larsson and Moffat, 1999) performs several passes over the text replacing pairs

of adjacent source symbols by new symbols until all pairs occur only once. Offline

(Apostolico and Lonardi, 2000) calculates a measure of compression gain for all the

possible non-overlapping substrings of the input string; those strings with high gain

are selected as a phrase for the phrase book. Crush (Turpin and Smyth, 2002) uses

Crochemore’s algorithm (Crochemore, 1981) to create a list of phrases that are used to

encode the text as the compressor traverses the original text.

In this paper we improve the compression ratio of ETDC by coupling it with an

offline modeler that detects promising sequences of words and regards them as a single

token. As a result, compression ratios become competitive with the best compressors

(near 25%). Compression speed is reasonable, while decompression, random access, and

direct search speeds stay very appealing for compressed text database scenarios.

More precisely, we introduce two new semistatic modelers that, coupled with the

encoding scheme of ETDC, produce two new compressors. The first one is called Pair-

Based End-Tagged Dense Code (PETDC), with a compression ratio around 28-29% for

sufficient large texts. It builds a model of the text considering two types of source

symbols: words and pairs of words. Phrase-Based End-Tagged Dense Code (PhETDC)

goes one step further by building a model composed of words and sequences of words

(phrases). Its compression ratio improves up to around 23%.

The key point is how the pairs and phrases are selected. For PETDC, we cannot add

all the possible pairs because the size of the prelude would spoil the compression. We have

devised a method to select the pairs of words that most improve the compression, taking

into account the cost in space of adding such a pair to the prelude. To construct phrases,

PhETDC uses the replacement algorithm of Re-Pair, which is preempted to speed up

compression. As the resulting sequence of phrases is still compressible, PhETDC applies

a dense coding scheme over it.
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2. End-Tagged Dense Code

In general, ETDC can be defined over symbols of b bits, although in this paper we

focus on the byte-oriented version where b=8. Given source symbols with decreasing

probabilities {pi}0≤i<n the corresponding codeword using the End-Tagged Dense Code

is formed by a sequence of symbols of b bits, all of them representing digits in base 2b−1

(that is, from 0 to 2b−1 − 1) except the last one, which has a value between 2b−1 and

2b − 1. And the assignment is done sequentially.

That is, the first word is encoded as 10000000, the second as 10000001, until the 128th

as 11111111. The 129th word is coded as 00000000:10000000, the 130th as 00000000:10000001

and so on until the (1282+128)th word which is encoded as 01111111:11111111. Note

that the code depends on the rank of the words, not on their actual frequency. As a

result, the prelude only includes the sorted vocabulary (list of source symbols).

However, not only is the sequential procedure available to assign codewords to the

words. There are simple encode and decode procedures that can be efficiently imple-

mented, because the codeword corresponding to the symbol in position i is obtained as the

number x written in base 2b−1, where x = i− 2(b−1)k−2b−1

2b−1−1
and k =

⌊
log2(2b−1+ (2b−1−1)i)

b−1

⌋
,

and adding 2b−1 to the last digit.

Function encode obtains the codeword Ci ← encode(i) for the word at the i -th

position in the ranked vocabulary. Function decode gets the position i ← decode(Ci)

in the vocabulary for a given codeword Ci. Both functions take just O(l) time, where

l = O(log(i)/b) is the length in digits of the codeword Ci. Those functions are efficiently

implemented through just bit shifts and masking.

A deeper description of ETDC, including analytical and empirical studies, can be

found in Brisaboa et al. (2007).

3. Pair-Based End-Tagged Dense Code

PETDC, as all semistatic compressors, performs a first pass over the original text in

order to gather the vocabulary and the number of occurrences of each source symbol.

However, in addition to the initial vocabulary of words, PETDC also collects all the

different pairs of words that occur adjacent in the source text and counts their number of
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occurrences. PETDC aims at taking advantage of the co-occurrence of words in the text

by including some pairs in the vocabulary, thus comprising both single-words and pairs.

Its main idea is simple: in classic semistatic compressors, each symbol in the vocabulary

has a unique codeword assigned by the encoding scheme. Therefore, replacing two source

words by just one codeword during the second pass may need fewer bytes than replacing

two single words by two codewords.

Example 1. Consider a text containing the following one-character words ADCBACD-

CCDABABACBB. Being only 4 source symbols (‘A’, ‘B’, ‘C’, and ‘D’), the ETDC en-

coding scheme assigns codewords of only 1 byte to all of them. As a result, the size of

the compressed file (compressed text plus the prelude) is 18+4=22 bytes.

Let us add the most frequent pair of words (‘BA’) to the vocabulary and compress the

same text again. In this case, the vocabulary contains the symbols: ‘C’, ‘D’, ‘BA’, ‘A’,

and ‘B’. Now the compressed text occupies 15 bytes and the prelude needs 6 bytes (the

new pair is added as two pointers to the positions of the plain words forming the pair).

Therefore, the compressed file requires 15+6=21 bytes.

3.1. Deciding which pairs should be added to the vocabulary

Adding all the different pairs to the vocabulary does not usually improve the com-

pression ratio because the prelude would grow too much. Figure 1(a) shows the evolution

of the size of a compressed file (as the sum of the size of the compressed text and the

size of the prelude) depending on the number of pairs added. The process starts adding

the most frequent pairs and continues adding pairs by decreasing order of frequency.

As expected, the first pairs improve the compression effectiveness greatly. However, at

some point, the gain obtained by replacing two words by a unique codeword does not

compensate the growth of the prelude.

Figure 1(b) shows that the curve has multiple local minima. This fact prevents us

from breaking the addition of pairs to the vocabulary when the addition of a new pair

worsens the compression. Instead of that, as in Apostolico and Lonardi (2000), PETDC

uses a gain function that determines which ones have to be added.

6



3.1.1. Gain function

Let us assume that a pair αβ, composed of two words α and β, is a candidate to be

added to the vocabulary. Let us define fx as the number of occurrences of a word or

pair x. Let us also define Cx as the codeword assigned to x by the encoding scheme, and

let |Cx| be the length of that codeword. The gain function is based on comparing the

number of bytes needed to encode all the occurrences of α and β in two cases:

1. The pair is skipped (skipbytes).

2. The pair is added to the vocabulary (addbytes).

Once those values are computed, the pair αβ is added to the vocabulary if skipbytes >

addbytes and skipped otherwise. Values skipbytes and addbytes are given by the two

following expressions:

skipbytes ← fα ∗ |Cα|+ fβ ∗ |Cβ | and
addbytes ← fαβ ∗ |Cαβ |+ (fα − fαβ) ∗ |C ′

α|+ (fβ − fαβ) ∗ |C ′
β |+K,

where C ′
α and C ′

β are the codewords assigned to the words α and β, assuming that the

pair αβ is added and therefore their number of occurrences are fα − fαβ and fβ − fαβ ,

respectively. The term K is an estimation of the number of bytes needed to store any

pair into the vocabulary. In our implementation, K=5 bytes.

After adding a pair αβ to the vocabulary, it is necessary to ensure that any pair

ending in α or beginning in β will not be included later. This happens because, once we

choose a pair, we do not access the text to replace it by another symbol in a Re-Pair-like

fashion. This makes compression faster, but some pairs must be discarded. As a result,

given the text ′γαβδαµ′, the addition of the pair αβ implies that the pairs γα, βδ, and

δα can no longer be added to the vocabulary. This is done just by marking the word α

as “disabled as last word of pair”, the word β as “disabled as first word of pair”, and

finally checking those flags before adding a new pair to the vocabulary.

3.2. Data Structures

The data structures used by the compressor are sketched in Figure 2. There are two

well-defined parts:

1. Data structures that make up the vocabulary.
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2. Data structures needed to hold the candidate pairs.

The vocabulary of the compressor consists of: a hash table used to locate a word

or pair quickly (hashSymb) and two vectors: symbVect and topVect. The hash table

hashSymb contains eight fields:

1. type indicates if an entry is either a word w or a pair p,

2. word stores the original word in plain text form, if type is set to w,

3. freq keeps the number of occurrences of the entry,

4. e1 and e2 flag if the word is enabled to be the first or second component of a pair,

respectively,

5. w1 and w2 store, for an entry of type p, pointers to the words that form the pair,

and

6. code stores the codeword assigned to each entry of the vocabulary after the code

generation phase. This field could actually be replaced by calls to the function

encode(i).

The vector symbVect maintains the vocabulary sorted by frequency. Its first slot

points to the entry of hashSymb where the most frequent word (or pair) in the source

text is stored, the second slot points to the second most frequent source symbol, and so

on. Assuming that symbVect is sorted by decreasing frequency, topV ect[fi] keeps track

of the first entry in symbVect whose frequency is fi. If there are no symbols of frequency

fi, then topV ect[fi] points to the position of the first symbol j in the ascending sort of

the vocabulary such that fi < fj .

The offline compressors that use a gain function need to calculate the frequency of the

phrases and an estimation of the space consumed by their compressed version. This may

result in a bottleneck that our compressors should alleviate in order to obtain reasonable

compression times. Recall that in ETDC, we do not need the actual frequency of the

source symbols to compute their codewords, we only need their position in the ordered

vocabulary. Maintaining the vocabulary ordered upon insertions and deletions would

be too expensive. Therefore, to estimate the positions of the source symbols, we only

maintain topVect updated. Then, being x an entry with frequency fx, we estimate |Cx|
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as |C(topV ect[fx])|. Although it gives an approximate value, computing this estimation is

much cheaper than computing the actual codeword sizes.

Finally, managing the candidate pairs to be added to the vocabulary includes the use

of two auxiliary data structures:

1. A hash table hashPairs, with fields freq, w1, and w2, used to give a fast access to

each candidate pair.

2. A vector pairsVector, which maintains all the candidate pairs sorted, in the same

way as symbVect does.

3.3. Compression, Decompression, and Search Procedures

Compression consists of five main phases:

1. First pass along the text. As shown, during this pass, PETDC obtains the different

v original words and the different p candidate pairs that appear in the text. At

the same time, the number of occurrences of all those elements is obtained. The

process costs O(n), being n the number of words in the text. When the first pass

ends, the vectors pairsVect and symbolVect are sorted by decreasing frequency. Fi-

nally, topVect is initialized: consider m the maximum frequency value of the v

original words, then for all i=m downto 1, we set topVect[i]←j, if j is the first

entry in symbVect such that hashSymb[symbVect[j]].freq=i. If @j such that hash-

Symb[symbVect[j]].freq=i, then topVect[i]←topVect[i+1].

The overall cost of this first phase is O(n+v log v+p log p+m). We show empirical

evidences that n À p and n À m, and typically p > v; in which case the cost is

O(n). Figure 2(a) shows the state of the structures after this phase.

2. Choosing and adding candidate pairs. During this phase, pairsVector is traversed

O(p) time. A candidate pair αβ is either added to the vocabulary or discarded

by applying the gain function explained in Section 3.1.1. To compute the gain

function, as seen, using topVect we compute the current positions3 of α and β in

the vocabulary. We also need to assume that the pair αβ is added to the vocabulary

and to compute the new ranks of αβ, α, and β in the new ordered vocabulary.

3Using the encoding scheme of ETDC, we can compute in O(log(i)/b) time the codeword Ci =

encode(i), where i is the rank of a word wi in the vocabulary.
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The cost of keeping topVect sorted after the insertion of αβ is O(m) time, since

this can be done with a single pass, by making simple additions and subtractions.

Of course, αβ is also inserted into hashSymb and into symbVect. Observe in Figure

2(b) the state of the structures after adding the pair ‘BA’ to the vocabulary. Since

the pair ‘BA’ (more specifically, its position in hashSymb) is placed in the fifth

position of symbVect, this vector no longer contains the vocabulary sorted: ‘BA’ has

3 occurrences and therefore it is the fourth most frequent element of the vocabulary.

However, observe that topVect is updated since, for example, the seventh entry is

now empty due to lack of vocabulary entries with frequency 7. Now, topVect

contains the pointers to a hypothetic updated version of symbVect, which no longer

exists.

The overall cost of this phase is O(pam + p) = O(pam), being pa the number of

pairs added to the vocabulary.

3. Code Generation Phase. The only data structures needed in this phase are de-

picted in Figure 2(c). The vocabulary (with v′ entries) is ordered by frequency and

the encoding scheme of ETDC is used. Encoding takes O(v′) time. As a result,

hashSymb will contain the mapping entryi → codei ∀i ∈ 1 . . . v′. The cost of this

phase is O(v′ log v′).

4. Second pass. The text is again traversed reading two words at a time and the

source words are replaced by codewords. If the read pair αβ is in hashSymb, then

the codeword Cαβ is output and two new words γδ are input. Otherwise Cα is

output and only the following word γ is read to form a new pair βγ. This phase

takes O(n) time.

5. Storing the prelude. As in ETDC, the prelude is stored along with the compressed

data to permit decompression. A bitmask is used to save the type of entry. Then

the v′ entries of the vocabulary follow that bitmask. A normal entry stores plain

text, but if it stores a pair αβ, the entry stores the relative positions of α and β in

the vocabulary (encoded with the on-the-fly Ci ← encode(i) function in order to

save space). Finally, the whole prelude is encoded with character-based Huffman.

Considering the cost of each phase, the overall cost of the whole process is O(n +

pam+ v′ log v′ + n). Given that v′ ¿ n, we obtain that the overall cost is O(n+ pam).
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Note that since pa is O(n), time is quadratic at most. However, in practice pa ¿ n.

Decompression starts by loading the prelude into a vector that keeps both words and

pairs. For each codeword Ci in the compressed file, i ← decode(Ci) is used to obtain the

entry i containing either the word or the pair associated to Ci.

When searching text compressed with PETDC, a searched word α can occur alone

or as a part of one or more pairs αβ, γα, . . . Therefore, we have to use a multi-pattern

matching algorithm. When we load the vocabulary, for each single-word α, we can easily

generate a list with all the codewords that represent any pair including such a word α.

After that, an algorithm from the Boyer-Moore family such as Set Horspool (Horspool,

1980; Navarro and Raffinot, 2002) is used to search for both all those codewords and

codeword Cα.

4. Phrase-Based End-Tagged Dense Code

PhETDC goes one step beyond with regard to PETDC, since it represents phrases,

with an undetermined number of words, using just one codeword.

However, the prelude issue gets more complicated because the number of possible

entries in it is much higher. Therefore, the main problem is again how to determine

which phrases should be introduced in the vocabulary to improve the compression ratio.

PhETDC is an evolution of PETDC based on the Re-Pair compression algorithm

(Larsson and Moffat, 1999). PhETDC performs a first pass over the original text to

obtain both the list of plain words and all the pairs of adjacent words present in the

text. In this pass, the frequency of all those elements is collected and the original text is

replaced by a vector of integers, where each occurrence of a word is substituted by the

integer assigned to it. This integer is a pointer to the entry storing the replaced word in

the hash table hashSymb.

Again, single words are immediately added to the vocabulary, but the pairs of words

are kept in a list of candidate pairs, which may be added later to the vocabulary.

The second phase of the compression process begins by adding the most frequent pair

αβ of the list of candidate pairs to the vocabulary. Next, in the sequence of integers

representing the text, all the occurrences of the selected pair are substituted by the new

integer pointing to the entry in hashSymb that stores the new pair. This produces a
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reduction in the number of occurrences of some pairs, and even some of them might

disappear. For each occurrence of the new pair αβ, the affected pairs are:

1. The pair γiα formed by the previous word (γi) and the first word of the added pair

(α).

2. The pair βδi formed by the second word of the added pair (β) and the following

word (δi).

In addition, new candidate pairs appear. For each occurrence of the added pair

(αβ → λ), new candidate pairs/phrases appear. They are formed by:

1. The previous word and the added pair (γiλ).

2. The new pair and the next word (λδi).

Example 2. Let us consider the text CDBCDCABCDBCACD. The most frequent pair is

CD with 4 occurrences, and the second one is BC with 3. Then, we add the new element

CD to the vocabulary and we replace all the occurrences of CD by the symbol E. The new

text is EBECABEBCAE.

Now, the pair BC has only 1 occurrence, whereas two new pairs (BE, EC) appear.

As explained, BE and EC are pairs that are indeed phrases, since the symbol E is a

representation of the pair CD. Therefore, the pair BE is actually a representation of the

text BCD.

Once this replacement is finished, the processed pair is removed from the list of

candidate pairs and the process continues. The replacing process continues by choosing

the most frequent pair from the list of candidate pairs. Observe that, from that point

on, two words, two pairs, or one word and a pair can form pairs.

Once the replacement process is finished, we use the ETDC encoding scheme to

encode the resulting vector of integers. The prelude is similar to that of PETDC, but

now the pointers of an entry can point to other pairs (while in PETDC, they only point

to original words). Figure 3 shows the main steps of the compression process.

4.1. Deciding which phrases should be added to the vocabulary

Figure 4 shows how the compression process, explained in the previous section, evolves

as we add all the candidate pairs in decreasing order of frequency to the vocabulary.
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Again, the compressed file gets shorter up to a point where it starts to grow (in this

experiment, this point was reached after the addition of 6,550 pairs and when the file

occupied 816,757 bytes). We studied two methods to avoid adding pairs that worsen the

compression: using a finishing condition and using a gain function.

Stopping the addition of phrases when their number of occurrences was under a given

threshold value worked well. However, we obtained better results when that finishing

condition was removed and we processed all the candidate pairs, choosing, by means of

a gain function, those pairs that improved the compression.

In addition, we also studied if choosing the most frequent pair yields the best ordering

to add pairs. Several strategies were tested, each one with different motivations:

1. The first strategy preselects the pair that, once added to the vocabulary, produces

the largest increase of the entropy per target symbol. This pair is finally chosen

only if its addition reduces the compressed file in at least K = 5 bytes. The process

ends when there is no pair in the list of candidates increasing the entropy. The

purpose in this approach is to produce symbols carrying as much information as

possible in order to reduce the number of symbols in the output.

2. The second strategy preselects the pair that, once added to the vocabulary, mini-

mizes the value (entropy per target symbol) × (number of symbols in the compressed

file). That is, it chooses the pair that minimizes the lower bound of the size of the

compressed file. It only adds pairs that reduce the compressed file in at least K = 5

bytes, and stops adding new pairs when the list of candidate pairs becomes empty.

3. The last strategy preselects the most frequent pair from the list. As in the previous

cases, a candidate pair is added to the vocabulary provided that such an addition

reduces the compressed file by at least K = 5 bytes; otherwise it is discarded. The

process finishes when the list of candidate pairs becomes empty.

Table 1 shows the results of our study. In addition to obtaining the best compression

ratio, the third alternative (to preselect the most frequent pair from the list) is the fastest

one (by far) in compression time. Therefore, this is the compression strategy used in the

empirical results.

We note that the chosen strategy is very similar to Re-Pair on words (Wan, 2003).

The main differences are (1) that we preempt the recursive pairing sooner while they
13



continue until every pair is unique; (2) that they compress the prelude while we store it

in plain form; and (3) that they compress the final sequence with bit-oriented Huffman

while we use ETDC. Those differences are important with respect to random access (as

we can uncompress an area without having to decompress the prelude, which is usually

a significant part of the output) and direct search (as ETDC can be efficiently searched,

while bit-oriented Huffman cannot).

4.2. Data Structures

PhETDC uses the same structures of PETDC, with some modifications in the hash

table hashSymb. In addition, it uses a new vector of integers (Tids), which follows the

ideas in Wan (2003). Tids keeps a representation of the text where, as explained, words

and pairs are replaced by an integer (id) indicating the position of the word/pair in the

hash table hashSymb. When a pair is added, the compressor has to replace in Tids all

the occurrences of the two symbols forming the new pair (when they are adjacent) by

the id of the new pair. In order to avoid the traversal of the whole text, the following

structures are needed:

1. For each code (word/pair) there is a doubly linked list connecting all its occurrences.

Then, during the replacement of two ids by a new id (pair), the compressor only

has to follow the linked list of one of the replaced ids and check, for each occurrence,

the presence of the other id.

2. Two pointers to the previous word/pair and the next word/pair in the text. With

the replacement of two consecutive ids by just one id, one of the entries in Tids

remains unused. To jump over these unused slots, each entry has these two pointers:

one points to the previous valid entry and the other to the next valid slot.

The hash table hashSymb has the same fields as in the case of PETDC, except the

e1 and e2 fields, since now PhETDC does not invalidate possible pairs with the addition

of one pair. Furthermore, each entry has a new pointer to one of the occurrences of its

word/pair in Tids. In this way, we have access to the linked list of occurrences of such a

word/pair.

Observe that now the pointers to the two members of a pair/phrase (w1 and w2) can

point to plain words or to other pairs, unlike PETDC, where the two pointers of a pair
14



pointed to plain words.

Figure 5 sketches the structures of the compressor in a point of the compression

procedure. The structures are shown after the addition of the phrase “the room”. The

hash table hashPairs includes only the fields freq, p1 and p2, the column with the text

version of the pair/phrase (with grey stripes) is included only for illustration purposes.

The new phrase (the room) is inserted in the 5th entry of hashSymb. Then, when the

ids 3 and 6 (representing the plain words the and room) are adjacent in Tids, they are

replaced by the id 5. After that replacement, in all the occurrences of the room, the next

word/pair pointer skips the next slot (formerly used by the id 6, that is, by the word

room).

4.3. Compression, Decompression and Search Procedures

Compression consists of six main phases:

1. First pass along the text. This phase is the same as in the case of PETDC. Recall

that it costs O(n).

2. Substitution of the plain words by an id. During this phase, the vector Tids is built.

As shown, each word in the original text is represented by an id that refers to the

position of such a word in hashSymb. We described this phase separately just for

illustration purposes, but this phase can be done in conjunction with the previous

one with no additional analytical cost.

3. Choosing and adding candidate pairs. During this phase, pairsVector is traversed

O(p) time . A candidate pair αβ is added to the vocabulary if its addition decreases

the size of the compressed file in at least K = 5 bytes. As shown in the case of

PETDC, the estimation of the new size of the compressed text costs O(m) time,

where m is the maximum frequency value of a word/pair.

Once the new pair αβ is added to hashSymb, we access the list of occurrences of

α. We traverse this list and create the list of occurrences of αβ by checking the

occurrences of α that are followed by β. The average number of occurrences of α

is n/v.

In conjunction with the previous process, for each occurrence of αβ: γiαβδj , where

γi is the previous word/pair and δj is the next word/pair:
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(a) the number of occurrences in hashSymb of the pairs γiα and β δj are decreased

by one unit,

(b) either the pairs γiαβ and αβδj are added (if they have not been added yet)

or their frequency is increased by one unit, and

(c) the list of occurrences of α and β and their frequency in hashSymb are updated.

Finally, the vector topVect is sorted.

The overall cost of this phase is O(pa(m + n/v)), being pa the number of pairs

added to the vocabulary.

4. Code Generation Phase. This phase is the same as in PETDC. The cost of this

phase is O(v′ log v′).

5. Second pass. The Tids vector is traversed (using the pointers next). For each valid

slot, the corresponding codeword is output. This phase takes O(n) time.

6. Storing the prelude. It works as in the case of PETDC.

Considering the cost of each phase, the overall cost of the whole process is O(n +

pa(m + n/v) + v′ log v′ + n). Since each time a pair occurring x times is replaced we

shorten Tids length by x elements (n ← n − x), the term pa(n/v) is bounded by O(n).

As it also holds that v′ ¿ n, we obtain that the cost is O(n+ pam), the same bound as

PETDC.

Decompression starts by loading the prelude into a vocabulary vector. For each

codeword Ci, the function i ← decode(Ci) is used to obtain the entry i that contains

either the word or the pair associated to Ci. Observe that now, a pair may contain one

or two pointers to other pairs, therefore a recursive process should inspect those pairs

until we obtain the plain words, which form a phrase.

As in the case of PETDC, a word being searched for can be found alone or as a part

of one or more pairs. Therefore, we need to gather all the codewords corresponding to

pairs that include a given searched pattern. This task is supported by keeping two lists

for each word/pair δ:

• contained by(δ) stores pointers to all the pairs which directly contain δ.

• codewords(δ) stores the codewords that should be sought in case of searching for δ.
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Searches start by loading the prelude that keeps the vocabulary of words/phrases. For

each pair λ formed by φθ, a pointer to λ is added to contained by(φ) and contained by(θ).

Then we have to create the codewords list for each searched pattern α. Let us consider

that contained by(α) includes pointers to ρ, τ , and σ. In such a case, the codewords

Cα, Cρ, Cτ , and Cσ are added to the list codewords(α). Yet, until now, this list only

keeps the pairs that directly contain α, and so we need to include also those codewords

representing any pair containing ρ, τ , and σ. Thus, we access the contained by lists of

ρ, τ , and σ and recursively follow the same procedure to fulfill the codewords lists of ρ, τ ,

and σ. After that, the codewords in codewords(ρ), codewords(τ), and codewords(σ) are

also added to codewords(α). Finally, the compressed data is scanned and the codewords

in codewords(α) are searched for.

5. Empirical Results

We used some large text collections from trec-2,4 namely AP Newswire 1988 (AP)

and Ziff Data 1989-1990 (ZIFF), as well as one from trec-4: Congressional Record 1993

(CR). As a small corpus, we used the Calgary corpus.5 To create the vocabulary, we

opted for the spaceless word model (Moura et al., 1998); that is, if a word is followed by a

space, we just encode the word, otherwise both the word and the separator are encoded.

Our machine is an Intel Core2Duo E6420@2.13Ghz, with 32KB+32KB L1 Cache,

4MB L2 Cache, and 4GB of DDR2-800 RAM. It runs Ubuntu 7.04 (kernel 2.6.20-15-

generic). We compiled with gcc version 4.1.2 and the options -m32 -09.

5.1. Compression Ratio, Compression time, and Decompression time

We compared PETDC and PhETDC against two semi-static word-based byte-oriented

compressors, namely Plain Huffman (PH) (Moura et al., 2000) and ETDC, and against

a Re-Pair6 compressor coupled with a bit-oriented Huffman.7 We also included four

4http://trec.nist.gov.
5We used a subset of the Calgary collection that includes only the text files: book1-2, bib, news, and

paper1-6. It is available at ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus.
6http://www.cbrc.jp/~rwan/software/restore.html.
7http://cs.mu.oz.au/~alistair/mr coder.
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well-known general purpose compressors: Gnu gzip,8 a Ziv-Lempel-based compressor;

Seward’s bzip2, 9 a compressor based on the Burrows-Wheeler transform; p7zip10 that

is a LZMA compressor with a dictionary of up to 4 GB; and ppmdj1,11 a compressor

based on an arithmetic encoder coupled with a k -order modeler. We set ppmdj1 com-

pression options to –o12 –m256 –r1 (using a 12-order modeler, up to 256MB of memory,

and rebuilding the model -rather than discarding it- when memory is exhausted). These

options provided the best compression in most files. The other two parameterizable com-

pressors (gzip and bzip2 ) were run with default options, aiming at providing the best

compression/speed trade-off.

In any case, compression times consider that the compressors are fed with the text

in plain form. In the same way, decompression times include the complete process of

recovering the original text. Finally, we recall that our compression ratios give the size

of the compressed file as a percentage of the original size in plain form (text) and the

compressed file size includes the size of the prelude.

Table 2 shows the compression ratios achieved by the compressors. PH is the optimal

semistatic zero-order word-based byte-oriented statistical compressor, yet PETDC beats

it by around 1-3 percentage points and PhETDC by around 4-8 percentage points.

As the word-based statistical methods, PETDC and PhETDC perform worse in small

collections due to the need of storing a large prelude. Yet, if the text is large enough,

they can even compete with a powerful compressor such as p7zip.

As expected, PETDC obtains better results than gzip except in the smallest collection.

In the largest collection, PETDC compresses only 1.3 percentage points worse than bzip2,

whereas in medium size collections, the gap is around 3-4 percentage points. Finally,

PETDC obtains compression ratios around 6-12 percentage points worse than those of

p7zip, around 7-12 percentage points worse than those of Re-Pair, and it is overcome by

ppmdj1 by around 12-16 percentage points.

PhETDC is still unable of beating gzip in the smallest collection. Yet, when the texts

are large enough, PhETDC compresses between 10 to 15 percentage points better than

8http://www.gnu.org.
9http://www.bzip.org.

10http://www.7-zip.org.
11http://www.compression.ru/ds/.
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gzip, it outperfoms bzip2 by around 1-3 percentage points, and it is on a par with p7zip,

which overcomes PhETDC by less than 1 percentage point.

With compression ratios around 3-7 and 5-13 percentage points better respectively,

Re-Pair and ppmdj1 remain as the only two compressors that clearly beat PhETDC in

compression ratio. Yet, these techniques do not produce efficiently searchable outputs:

the pattern may appear in many different forms along the text, and thus they essentially

need to decompress in order to search. Even if we used the original word-based Re-

Pair (Wan, 2003), which achieves similar compression ratios and where searching for a

word is simpler, still the need to decompress the prelude and the slowness of processing

bit-oriented Huffman codes hamper random access and direct search capabilities, as

explained. Therefore, as we will see, the key reasons that make our compression ratios

inferior to the classical word-based Re-Pair are the same for our high decompression and

search efficiency.

We performed an additional experiment to check the compression ratios of Re-Pair

using an ETDC encoder as a final compression step, instead of a bit oriented Huffman

encoder. The values were the following: 35.15% compressing Calgary, 22.54% compress-

ing CR, 22.31% compressing ZIFF, and 17.14% compressing AP. This is still better than

PhETDC due to the compression of the prelude. Yet, as we will see, the highly sophisti-

cated prelude compression makes classical Re-Pair (based on characters or words) much

slower at decompression, particularly making infeasible direct searches on it.

Table 3 shows that PETDC and PhETDC pay the extra cost of managing pairs or

phrases during compression. PETDC is around 3 times slower than ETDC and PH.

However, it is still faster than gzip, bzip2, p7zip, and ppmdj1. PhETDC is between 4.5-5

times slower than ETDC and PH, around 1.5-2 times slower than gzip, and it is on a par

with bzip2. Yet, with similar compression ratios, it is around 2.5-7 times faster than p7zip.

The comparison against ppmdj1 shows that PhETDC compresses less but it is around 2-6

times faster. Re-Pair, as an offline compressor, obtains remarkable compression ratios,

but at the expense of poor compression times, in part due to a greedy use of memory.

Yet, we have to take into account that we did not use the block-wise version of Re-Pair,

which reduces the memory consumption in exchange for poorer compression ratios. We

used the normal version of Re-Pair to have a fair comparison with our non-block-wise
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PETDC and PhETDC.

In decompression (see Table 4), the extra-cost of PETDC consists only in processing

the bitmask in the header of the vocabulary file and rebuilding the pairs from the pointers

to single-words. Therefore, due to a shorter compressed input file, it is around 25% faster

than PH and ETDC, and up to 65% faster than gzip. In the case of p7zip, and especially

in the case of bzip2 and ppmdj1, the gaps are considerable, being PETDC around 3 times

faster than p7zip, between 3-7 times faster than bzip2, and between 13-75 times faster

than ppmdj1.

In the case of PhETDC, the extra cost of the recursive rebuilding of the phrases

implies a slowdown. Now, PhETDC is on a par with ETDC and PH, it is around 17-22%

faster than gzip, except in the smallest collection, and between 1-3 times faster than

p7zip. bzip2 and ppmdj1 are again the slowest techniques, being PhETDC between 3-6

times faster than bzip2 and between 13-55 times faster than ppmdj1.

As expected, Re-Pair is not so time-consuming at decompression. Indeed, in the

small collection Re-Pair performed similarly to PETDC and PhETDC, but in the rest

of collections, it was around 2.5-4.5 times slower than PETDC and PhETDC.

We also compared the decompression performance of Re-Pair using an ETDC en-

coder instead of a bit oriented Huffman. Firstly, we compared the decompression of

the sequence of integers generated by the Re-Pair process, and found that using ETDC

is twice as fast as using bit-oriented Huffman. Then we compared the overall Re-Pair

decompression time. In this case, using ETDC rather than Huffman reduces the overall

decompression times by around 3-9%.

As a conclusion, if one is interested in compression ratio, PETDC and PhETDC

can now compete with bzip2 and p7zip, at the cost of losing some compression speed

compared with the classical PH and ETDC. Yet, as we will see in the next section,

PETDC and PhETDC are efficiently searchable, which is a remarkable feature.

5.2. Search Speed

We performed single and multi-pattern searches over corpus AP. To choose our search

patterns, we followed the model in (Moura et al., 2000) where each vocabulary word is

sought with uniform probability, and extracted patterns chosen at random over the vo-
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cabulary of corpus AP. We classified the generated patterns depending on their frequency

and length as shown below.

We carried out two different experiments. The first one compares searches over text

compressed with PETDC and PhETDC versus searching the uncompressed text. This

shows how much search time is gained or lost due to having the text in compressed form.

The second kind of comparison is against ETDC. This shows the loss in search speed

with respect to ETDC, due to the management of pairs and phrases.

To search text compressed with ETDC, we use our own implementations of Horspool

and Set-Horspool algorithms12 (Horspool, 1980; Navarro and Raffinot, 2002): Horspool

for single-pattern searches and Set-Horspool for multi-pattern searches. In the case of

PETDC and PhETDC, since a pattern can be represented by several codewords, we have

to use the multi-pattern Set-Horspool even for single-pattern searches.

On the other hand, three different algorithms were tested to search the uncompressed

text: our own implementations of Horspool and Set-Horspool algorithms, and the Agrep13

software (Wu and Manber, 1992a,b). Agrep returns chunks of text containing one or

more searched patterns. The default chunk is a line. When traversing a chunk, if Agrep

finds a search pattern, it skips the processing of the rest of the chunk. This appreciably

distorts the comparison against the rest of the searchers. To avoid this harmful effect, we

performed the searches over a modified version of the text obtained by removing all the

pattern occurrences from it, and then scaled the results. More precisely, we computed

the text T’ obtained by removing all the pattern occurrences from the original text (AP

corpus). Then we ran Agrep -s over T’ and we scaled the resulting times assuming that

|T ′| = |AP | . This essentially shows the same statistics and reflects more accurately the

real search cost of Agrep.

To choose the search patterns, we considered the vocabulary of corpus AP, we ex-

tracted sets of patterns with K words of length L at random. We consider lengths L= 5

and 10, and sets of K= 5, 25, 50 or 100 patterns. Figure 6 shows the average times of

running the searchers over 10 sets for each combination of L and K.

PETDC single-pattern search (although it is actually a multi-pattern search) is around

12http://vios.dc.fi.udc.es/codes.
13ftp://ftp.cs.arizona.edu/agrep/agrep-2.04.tar.Z.
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2.7 times slower than that of ETDC and around 2.1-2.6 times slower than Horspool single-

pattern searches over plain text. Yet, in single-pattern searches, PETDC at least matches

(if not clearly surpasses) the Agrep results, and in multi-pattern searches, PETDC is 1.1-

2.8 times faster than the plain text searchers.

PhETDC is around 1.5-2.25 times slower than PETDC. With patterns of length 5, it

is on a par with Agrep single pattern searches, but it is 4.8 times slower than Horspool.

In multipattern searches under the same circumstances, PhETDC is 5%-74% faster than

plain text searchers. However, when the patterns are long, it is 16%-45% slower.

As a summary, PETDC and PhETDC perform better in multipattern searches than

in single pattern searches, whereas plain text searchers perform better when the patterns

are long. Two factors determine this situation. The first one is that the searcher over

compressed text has to traverse a much shorter file. The second factor is that plain

text patterns are usually longer than compressed patterns, since compressed patterns

are only between 1 and 3 characters long (the usual size of codewords). This favors

the plain text searchers, especially in single-pattern searches, as longer patterns allow

longer shifts. However, in any multi-pattern Boyer-Moore-type search, when both longer

and shorter patterns are sought, the most efficient choice is to truncate all of them

to the shortest length and verify them upon the occurrence of their truncated version.

Therefore, the more the patterns are sought, the more the chances to cut down the search

patterns, obtaining shorter shifts. This harms the advantage of the plain text searchers,

particularly when the plain patterns are not very long.

An interesting question is how PETDC and PhETDC behave when the frequency of

the searched words increases, since it is expected that the more frequent a word is, the

more the codewords (from its pairs) that will represent such a word, and therefore, the

more costly the search will be. Therefore, we included another experiment to determine

how this factor affects the searches. Figure 7(a) and Figure 7(b) display the times needed

to search respectively, for 1 pattern and 100 patterns of different frequencies. In both

cases, patterns of 5 characters (the average length of English words) were used. As

expected, PhETDC is the most affected searcher, while the others are quite insensitive

to this factor. Still, PhETDC is always faster than Agrep, and in most multipattern

searches, faster than Horspool over plain text.
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6. Conclusions and Future Work

We have introduced two new semistatic modelers and tested them in two compres-

sors called Pair-Based End-Tagged Dense Code (PETDC) and Phrase-Based End-Tagged

Dense Code (PhETDC). They take advantage of using pairs of words or phrases (ex-

ploiting the co-occurrence of words) to improve the compression obtained by word-based

semistatic techniques such as PH or ETDC.

In essence, the goal is to use offline techniques to improve the ETDC compression

ratio, which is its weakest point if we compare ETDC with PPM-based compressors,

offline compressors, p7zip, and bzip2. At the cost of a slowdown in compression and

search speed, PETDC gets closer to bzip2 and p7zip compression ratios, and even for

sufficient large texts, PhETDC beats bzip2 and it is on a par with p7zip, which obtains

non-efficiently searchable compressed text. The comparison against a powerful PPM-

based compressor such as ppmdj1 shows that the worse compression of PETDC and

PhETDC is compensated by their faster compression and decompression processes. We

showed also that PETDC and PhETDC cannot compete with Re-Pair in compression

ratio, but they still obtain competitive values with remarkable better compression time,

which is the main disadvantage of Re-Pair, and an efficiently searchable compressed text.

As explained, the improvement in compression ratio has a price. PETDC is around

3 times slower than ETDC in compression, yet it is 25% faster in decompression. In the

case of PhETDC, it is 4.5 times slower than ETDC in compression and it is on par in

decompression speed.

Figure 8 shows trade-offs between compression ratio and both compression and de-

compression times. We used the corpus CR, where Re-Pair can run without swapping in

our machine. In this way the figure reflects the actual differences better.

As expected, the improvement in compression ratio implies also a slowdown in the

search procedure with respect to ETDC. PETDC is between 2.1-2.6 times slower than

plain text Horspool single-pattern searches. Yet, in multipattern searches, it is still

between 1.11-2.8 times faster than searching the plain text. In the case of PhETDC, it is

faster than plain text searchers in multipattern searches for average length words, but it

is beaten in searches for long patterns. Figure 9 displays trade-offs between compression

ratio and search time.
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As a conclusion, there is an interesting trade-off between speed and compression ratio.

Those who are more interested in speed can use the classical ETDC, which compresses to

around 31%. With a reasonable slowdown, PETDC obtains 27-28% compression ratio.

Finally, users most interested in compression ratio can opt for PhETDC, which achieves

up to 23%, at the cost of a more significant loss of speed.

As semistatic compressors, PETDC and PhETDC have to keep in memory the vo-

cabulary (that is, the model). In the case of the word-based compressors, this consumes

a considerable amount of memory, which in the case of PETDC and PhETDC is even

higher, since they do not only deal with words, but also with pairs of words or phrases.

In addition, PETDC and PhETDC use structures that are more complex and PhETDC

requires recursive processes. Table 5 shows the peak memory consumption of PETDC

and PhETDC compared with ETDC and Re-Pair, which are compressors that also have

to store a large model. From the point of view of a practitioner, on the one hand, we

remark that the implementation of PETDC is quite similar to that of the semistatic

ETDC. The main difference is the need of managing pairs, and marking those that are

either still valid or have already been discarded. Table 5 reflects this point, as it shows

that the executable file of the PETDC compressor is only 5% larger than that of ETDC.

On the other hand, it can be seen that the implementation of PhETDC requires much

more effort. We show that the executable file of the PhETDC compressor is around 36%

and 29% larger than those of ETDC and PETDC respectively.

As a future work, to reduce the memory usage of our compressors, we intend to

develop block-wise versions of PETDC and PhETDC following the ideas in Wan and

Moffat (2007). Block-wise compressors compute the model of a chunk of the text and

use it to compress such a chunk. For the next chunk of text, the model is computed again.

By using small chunks, models are shorter and then the memory consumption decreases.

As shown in Wan and Moffat (2007), combining block-wise compression with a technique

called Re-Merge, the overhead achieved by repeating portions of the vocabulary in the

prelude of each chunk can be reduced drastically, so the compression ratio is not damaged.

Another solution to save memory is to compute the pairs/phrases to be added in a

small portion of the text and use the resulting vocabulary to compress the complete text.

Finally, the compression obtained by our new techniques can still be improved even
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further on several ways. For example, by using a (s, c)-dense coding scheme (Brisaboa

et al., 2007) instead of ETDC we expect improvements around 0.5 percentage points in

compression ratio (and a marginal loss of speed). Also, studying new alternatives to

compress the hierarchy of phrases obtained by PhETDC would be of interest.
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Tables

Strategy Compression ratio

1 38.91 %

2 38.43 %

3 38.22 %

Table 1: Compression ratio achieved by the different strategies on the Calgary corpus.

Size(Mb) PH ETDC PETDC PhETDC PPMdj p7zip gzip bzip2 Re-Pair

Calgary 2.0 42.16% 43.31% 41.11% 38.22% 25.36% 29.97% 36.95% 28.92% 31.20%

CR 48.72 30.41% 31.30% 27.66% 23.02% 16.88% 21.64% 33.29% 24.14% 20.15%

ZIFF 176.74 32.52% 33.41% 29.04% 23.22% 18.11% 22.99% 33.06% 25.11% 20.32%

AP 239.02 31.78% 32.60% 28.53% 23.52% 18.20% 22.78% 37.32% 27.25% 16.37%

Table 2: Compressing with PETDC and comparison in compression ratio with others.

PH ETDC PETDC PhETDC PPMdj p7zip gzip bzip2 Re-Pair

Calgary 0.14 0.15 0.46 0.61 0.80 1.61 0.26 0.42 1.85

CR 1.99 2.03 5.75 9.70 26.01 66.04 6.24 10.69 71.99

ZIFF 7.51 7.49 20.51 37.38 124.55 250.28 18.90 41.10 502.00a

AP 10.33 10.35 28.40 50.65 198.12 349.91 32.64 50.93 1,361.12a

Table 3: Compression times (seconds).

a These values are approximated, since our test machine was not capable of compressing these

files. These measures were obtained on an Intel Xeon E5335@2.00GHz with 16GB RAM. It ran Ubuntu

GNU/Linux with kernel version 2.6.24-24-server. The compiler was gcc version 4.2.4 and -O9 compiler

optimizations were set.
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PH ETDC PETDC PhETDC PPMdj p7zip gzip bzip2 Re-Pair

Calgary 0.04 0.04 0.06 0.06 0.81 0.08 0.04 0.17 0.06

CR 0.65 0.61 0.51 0.57 28.55 1.53 0.70 3.33 1.54

ZIFF 2.40 2.32 1.92 2.45 129.66 6.11 2.92 12.28 5.96

AP 3.16 3.06 2.63 3.71 200.83 8.25 4.34 18.34 11.57

Table 4: Decompression times (seconds).

Peak Memory usage Size on disk

compression decompression compressor executable

ETDC 38.37 MB 3.90 MB 28,163 bytes

PETDC 106.10 MB 6.97 MB 29,614 bytes

PhETDC 1.02 GB 20.09 MB 38,298 bytes

Re-Pair 1.41 GB 29.12 MB - -

Table 5: Peak memory consumption during the compression and decompression of corpus CR; and size

on disk of the executable file of the compressor for ETDC, PETDC, and PhETDC.
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Figure 1: Evolution of compressed file as pairs are added.

29



freq w1 w2 freq e2e1type w1 w2word

3 14 2

1 6 14

1 6 2

2 2 9

A 4 w f t

BA 3 p 14 2

C 6 w t t

2 6 9 414

4 4 4 3 1 -

2 9 7 1312 5 8 4 11 3

1 2 3 54 6 7 8 9

1 2 3 54 6 7 8 9 1110 12

1

2

3

5

4

6

7

8

9

11

10

12

3 6 9

2 9 2

3 9 6

1 6 6

2 2 6

2 2 14

D 5 w t t

14

13

pairsVector

hashTable
ofsym

bols
(hashS

ym
b)

1

2

3

5

4

6

7

8

9

11

10

12

B 0 w t f

13

14

symbVect

topVect

code type w1 w2word

A c2 w

BA c5 p 14 2

C c1 w

2 6 11 94 14

D c4 w

DC c3 p 9 6

hashTable
ofsym

bols
(hashS

ym
b)

1

2

3

5

4

6

7

8

9

11

10

12

B c6 w

13

14

symbVect
1 2 3 54 6 7 8

freq w1 w2 freq e2e1type w1 w2word

3 14 2

1 6 14

1 6 2

2 2 9

A 7 w t t

C 6 w t t

2 6 9 14

4 4 4 33 2 1

2 9 7 1312 5 8 4 11 3

1 2 3 54 6 7 8 9

1 2 3 54 6 7 8 9 1110 12

1

2

3

5

4

6

7

8

9

11

10

12

3 6 9

2 9 2

3 9 6

1 6 6

2 2 6

2 2 14

D 5 w t t

14

13

pairsVector

hashTable
ofsym

bols
(hashS

ym
b)

1

2

3

5

4

6

7

8

9

11

10

12

B 3 w t t

13

14

symbVect

topVect

1 2 3 54 6 7 8 1 2 3 54 6 7 8

hashTable
ofcanditate

pairs
(hashP

airs)

hashTable
ofcanditate

pairs
(hashP

airs)

(a) State after 1st pass (b) State after adding pair BA (c) State before 2nd pass

freq

4

3

3

2

3

0

2

Figure 2: Structures used in PETDC for text “ADCBACDCCDACADABABACDC”.

Replacement of words by integers

and filling the structures with the

initial pairs.

Sorting the initial pairs

Recursive pairing

Sorting the entries of the vocabulary

Encoding with ETDC

text

entries

Compr text

bitmap

Prelude

Figure 3: The PhETDC compression process.

30



0 5,000 10,000 15,000 20,000 25,000 30,000
0

0.2

0.4

0.6

0.8

1.0

Number of phrases added to the vocabulary

S
iz

e
 (

M
b
y
te

s
)

Calgary Corpus (2Mbytes)

(6550,816757)
size of the compressed file

size of the compressed text

size of the vocabulary

Figure 4: Evolution of the size of the compressed file as the process adds new phrases to the vocabulary.

5 6 5 6 5 67 72

on

the

in

the room

room

located

6 7

1

0

1

3

1

3

w

w

p

w

w

1

2

3

4

5

6

7

over ...

… the room

the room located

In the room

room located

the room on

located ...

2

1

1

1

1

2

3

4

5

6

7

… …………

hashPairs

(hash table of candidate pairs)

hashSymb

(hash table of words or 

phrases in the vocabulary)

4

pairsVect

symbVect 364275

87654321

4653

87654321

133topVect

87654321

Vector 

Tids

Word/phrase Freq. Type

Freq.

… in the room located... … the room        on ... … room located ... … the room located ...

2

5

4

6

5

7

5

7

5

7

2

p1 p2

Linked list of the ocurrences of 

the phrase “the room”

Pointers to the previous/next 

word/phrase

Pointer to an 

occurence 

Figure 5: Structures used by the PhETDC compressor.

31



 0

 0.5

 1

 1.5

 2

 2.5

1 25 50 100

C
P

U
-t

im
e 

(s
ec

s)

Number of Patterns

Search Times Patterns Length 5

(a)

 0

 0.5

 1

 1.5

 2

 2.5

1 25 50 100

C
P

U
-t

im
e 

(s
ec

s)

Number of Patterns

Search Times Patterns Length 10

Plain Horspool
Agrep
ETDC

PETDC
PhETDC

(b)

Figure 6: Search times with patterns of different lengths.
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Figure 7: Search time of patterns of length 5 depending on the frequency of the patterns.
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Figure 8: Space/time trade-offs on corpus CR, related to compression/decompression time.
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Figure 9: Space/Search time trade-offs on corpus AP with patterns of length 5.
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