Parameterized Matching on Non-linear Structures

Amihood Amir* Gonzalo Navarrof
Bar-Ilan University University of Chile
and

Johns Hopkins University

Abstract

The classical pattern matching paradigm is that of seeking occurrences of one string in another,
where both strings are drawn from an alphabet set ¥. In the parameterized pattern matching model, a
consistent renaming of symbols from ¥ is allowed in a match. The parameterized matching paradigm
has proven useful in problems in software engineering, computer vision, and other applications.

In classical pattern matching, both the text and pattern are strings. Applications such as searching
in xml or searching in hypertext require searching strings in non-linear structures such as trees or graphs.

There has been work in the literature on exact and approximate parameterized matching, as well
as work on exact and approximate string matching on non-linear structures. In this paper we explore
parameterized matching in non-linear structures. We prove that exact parameterized matching on trees
can be computed in linear time for alphabets in an O(n)-size integer range, and in time O(nlogm) in
general, where n is the tree size and m the pattern length. These bounds are optimal in the comparison
model. We also show that exact parameterized matching on directed acyclic graphs (DAGs) is N'P-
complete.

1 Introduction

The last few decades have prompted the evolution of pattern matching from a combinatorial solution of the
exact string matching problem [13, 18] to an area concerned with approximate matching of various rela-
tionships motivated by computational molecular biology, computer vision, and complex searches in digitized
and distributed multimedia libraries [12, 7].

The parameterized matching problem was introduced by Baker [10, 11]. Her main motivation lay in software
maintenance, where program fragments are to be considered “identical” even if variable names are different.
Therefore, strings under this model are comprised of symbols from two disjoint sets ¥ and II containing
fixed symbols and parameter symbols respectively. In this paradigm, one seeks parameterized occurrences,
i.e., occurrences up to renaming of the parameter symbols, of a string in another. This renaming is a
bijection b : IT — II. An optimal algorithm for exact parameterized matching appeared in [5]. Approximate
parameterized matching was investigated in [10, 15, 8]. Idury and Schéffer [16] considered multiple matching
of parameterized patterns.

Parameterized matching has proven useful in other contexts as well. An interesting problems is searching for
color images (e.g. [21, 9, 4]). Assume, for example, that we are seeking a given icon in any possible color map.
If the colors were fixed, then this is exact two-dimensional pattern matching [3]. However, if the color map
is different the exact matching algorithm would not find the pattern. Parameterized two dimensional search

*Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel, +972 3 531-8770; amir@cs.biu.ac.il;
and Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218. Partly supported by ISF grant 35/05
and an Israel-Korea bi-national research grant.

TDepartment of Computer Science, University of Chile, Blanco Encalada 2120, Santiago, Chile, +56 2 6892736;
gnavarro@dcc.uchile.cl. Partially funded by Millennium Institute for Cell Dynamics and Biotechnology (ICDB), Grant
ICM P05-001-F, Mideplan, Chile.

is precisely what is needed. If, in addition, one is also willing to lose resolution, then a two dimensional
function matching search should be used, where the renaming function is not necessarily a bijection [2].

Most of the above work is carried out in the traditional string matching model, where both the pattern
and the text are strings (one dimensional arrays). The function matching work [2] considers both pattern
and text as two dimensional arrays. However, there are applications where a string is sought in non-linear
structures.

The importance of hypertext has been steadily growing over the last few decades. Internet and other
information systems use hypertext format, with data organized associatively rather than sequentially or
relationally. Thus, it is natural to consider pattern matching on hypertext. In contrast to regular text,
hypertext has a non-linear structure and the techniques of pattern matching for text cannot be directly
applied to hypertext.

Manber and Wu [19] pioneered the study of pattern matching in hypertext and defined a hypertext model for
pattern matching. Akutsu [1] developed an algorithm that can be used for exact pattern matching in a tree-
structured hypertext. Park and Kim [17] considered regular pattern matching in hypertext. They developed
a complex algorithm that works for hypertext with an underlying structure of a DAG. Amir, Lewenstein
and Lewenstein [6], developed an algorithm for pattern matching in any hypertext graph, and considered
the problem of approximate pattern matching in hypertext. They showed that, in contrast to regular text,
it does make a difference whether the errors occur in the hypertext or the pattern. The approximate
pattern matching problem in hypertext with errors in the hypertext turns out to be AP-Complete and
the approximate pattern matching problem in hypertext with errors in the pattern has a polynomial time
solution. Navarro [20] improved the polynomial complexity to O(m(|V| + |E|)) time and O(|V|) space, for
a graph G = (V, E) with one letter per edge.

In this paper we investigate the natural combination of parameterized matching in hypertext. We present
an optimal algorithm for pattern matching where the text is a tree, whose running time is O(nlog o), where
n is the tree size, m is the pattern length, ¥ is the alphabet of text node labels and pattern symbols, and
o = min(m, |X|). The time reduces to O(n) if ¥ is a range of integers of size O(n). We then show that when
the text is a directed acyclic graph (DAG), the problem is A"P-complete.

2 Problem Definition

We start by simplifying Baker’s definition of parameterized pattern matching.

Definition 1 (Parameterized-Matching) Let ¥ be an alphabet set, T = t[1]---t[n] the text and P =
p[1]---p[m] the pattern, t[i],p[j] € X, i=1,...,n;5=1,...,m. We say that P parameterize-matches or
simply p-matches T in location j if p[i]| 2 t[j +i—1], ¢ =1,...,m, where p[i] = t[j] if and only if the
following condition holds:

1. foreveryk=1,...;i—1, pli| =pli — k] if and only if t[j] = t[j — k].
The p-matching problem is to determine all p-matches of P inT'. Two strings S1 and Ss of same length are

said to parametrize-match or simply p-match if S1[i] = Sa[i] for all i.

Intuitively, the matching relation & captures the notion of one-to-one mapping between the alphabet symbols.
Specifically, the condition in the definition of 2 ensures that there exists a bijection between the symbols
from ¥ in the pattern and those in the overlapping text, when they p-match. The relation = has been defined
by [5] in a manner suitable for computing the bijection.

We follow Manber and Wu [19] in defining string matching in hypertext.

Definition 2 (hypertext) A hypertext over alphabet X is a triplet H = (V, E,T) where (V, E) is a digraph
and T ={T, € T |v e V}. If for everyv € V, T, € ¥ then we call the hypertext a one-character hypertext.

It was shown [19, 5] that hypertext matching is equivalent to one-character hypertext matching, thus we
will henceforth only consider one-character hypertext. For simplicity’s sake we will refer to “one-character
hypertext” as “hypertext”.

Definition 3 (hypertext matching) Let v1,...,vx be a path, possibly with loops, in (V,E) and let W =
T Lo, Loy Ty T, Ty, be the concatenation of the symbols upon this path. We call W the string defined

Vg—2

by path vy, ..., vg.

The Pattern Matching in Hypertext problem is defined as follows:
INPUT: A pattern P and a hypertext H.
OUTPUT: All locations v € V where P =W and W is a string defined by a path starting at v.

The Parameterized Matching in Hypertext problem is defined as follows:
INPUT: A pattern P and a hypertext H.
OUTPUT: All locations v € V where P p-matches W, and W is a string defined by a path starting at v.

3 Parameterized Hypertext Matching on Trees

Throghout this section we assume that our trees are directed graphs where the parent points to the children;
we consider the alternative case at the end. A crucial feature of trees is that each node has a unique ancestor
path in the tree. This property leads to the following results.

Observation 1 Given a deterministic finite automaton A and a tree of n nodes, it is possible to determine
in time O(n) all the tree nodes v for which the string labeling the path from the root to v is accepted by A.

Proof: Compute, in constant time per tree node v, the state s(v) of A upon reading the string Tyopt - - - Ty-
Set A at the initial state and and carry out a depth-first traversal starting at the root. Upon arriving at
each node v for the first time, with label T, set s(v) = da(s(parent(v)),Ty). I

Corollary 1 Ezact string matching in hypertext can be performed in linear time when the hypertext structure
s a tree.

Proof: This is an immediate result of Observation 1, since the Knuth-Morris-Pratt (KMP) algorithm [18]
is an automaton-based algorithm.]

Amir, Farach, and Muthukrishnan [5] achieved an optimal time algorithm for parameterized string matching
by a modification of the KMP algorithm. In fact, the algorithm is exactly the KMP algorithm, however,
every equality comparison “x = g” is replaced by “xr = y” as defined below.

Implementation of “x = y”

Construct table A[1],..., A[m] where A[i] = the largest k, 1 < k < 4, such that p[k] = p[i]. If no such k
exists then A[i] = 1.

The following subroutines compute “p[i] 2 ¢[j]” for j > i (needed for the text scanning phase of KMP), and

“ ~Y

pli] 22 p[j]” for j < i (needed for the pattern preprocessing phase of KMP).
Compare(pli] t[j])

if Ali] =4 and t[j] #t[j —1],...,t[j — i+ 1] then return equal

if Afi] #4 and t[j] =t[j — i+ A[i]] then return equal

return not equal
end

Compare(plil,p[j])
if i — A[i] > j — 1 and p[j] # p[1],...,p[j — 1] then return equal
if i — A[i] < j —1 and p[j] = p[j — i + Ali]] then return equal

return not equal
end

Theorem 1 [5] The p-matching problem can be solved in O(nlogao) time, where ¢ = min(m, |X|).

Proof: The table A can be constructed in O(m log o) time as follows: scan the pattern left to right keeping
track of the distinct symbols from ¥ in the pattern in a balanced tree, along with the last occurrence of each
such symbol in the portion of the pattern scanned thus far. When the symbol at location ¢ is scanned, look
up this symbol in the tree for the immediately preceding occurrence; that gives Ali].

Compare can clearly be implemented in time O(log o). For the case A[i] # 4, the comparison can be done in
time O(1). When scanning the text from left to right, keep the last m symbols in a balanced tree. The check
tlj) # tli —1],...,t[j — i+ 1] in Compare(p[i],t[j]) can be performed in O(log o) time using this information.
Similarly, Compare(pli],p[j]) can be performed using A[i]. Therefore, the automaton construction in KMP
algorithm with every equality comparison “z = y” replaced by “x = y” takes time O(mlogo) and the text
scanning takes time O(nlogo), giving a total of O(nlogo) time.

As for the algorithm’s correctness, Amir, Farach and Muthukrishnan showed that the failure link in automa-
ton node ¢ produces the largest prefix of p[1] - - - p[i] that p-matches the suffix of p[1] - - - pl[i]. I

Theorem 2 The p-matching problem in hypertext can be solved in O(nlogo) time, where o = min(m, |X|),
and where the hypertext is a tree.

Proof: Corollary 1 guarantees that KMP can be performed on the tree in linear time. We need to assess
the time it takes to perform the “x = y” operation on the tree.

For the “x = y” operation, we need to be able to access previous symbols ¢[j — k], for k = 1...m, both
for the case A[i] # ¢ and for maintaining the set of the last m characters seen. These symbols are recorded
in a circular array of size m, and maintained in the obvious way as we move down and back in the tree.
These are indeed the same symbols stored in the balanced tree, which must also be maintained up to date
to handle the case A[i] = i.]

Theorem 3 The O(nlogo) time algorithm for solving the p-matching problem in hypertext, where o =
min(m, |X|), and where the hypertext is a tree, is optimal.

Proof: Amir, Farach, and Muthukrishnan [5] proved that the algorithm is optimal for the special case of
a string — a non-branching tree.]

We note that the problem is solved in O(n) time if the alphabet is integers smaller than cn for some fixed
constant ¢. The algorithm can then use a table indexed by alphabet symbols, in place of the binary tree.
This enables Compare to be performed in time O(1) at the cost of O(c) additional space.

We also note that the problem statement refers to initial positions of matching, whereas we are finding final
positions. Since all the matches have fixed length m, we can easily mark a match at the m-th level ancestor
of the node instead of at the node. For this sake we need to maintain a circular array of pointers to the last
m tree nodes, not only to their symbols.

Similarly, if the tree is a directed graph where children point to their parent (instead of the other way) we
can first reverse all arrows and then run the original algorithm for the reverse pattern P = p[m]...p[2]p[1],
which will correctly mark the beginning of matches. The correctness of this approach stems from the fact
that P p-matches t[i]t[i + 1] ...t[i + m — 1] iff P p-matches t[i +m — 1]...¢[i + 1]¢[d].

4 Parameterized Hypertext Matching on a DAG

Theorem 4 The Parameterized Hypertext Matching on a DAG problem is N'P-hard.

We reduce the 3-dimensional matching problem [14] to Parameterized Hypertext Matching on a DAG.

oen
FOEEN
o)
EEEM
e

Figure 1: The constructed DAG.

Definition 4 The 3 Dimensional Matching problem: (3DM)
INPUT: Three sets X,Y,Z of q elements each, and a set M C X XY x Z.
OUTPUT: Is there a set M' C M of size q where no two elements in M’ agree in any
coordinate. Such a set is called a matching

Let X = {z1,....xq}; Y ={vy1,..,¥s}; Z = {21,...2q}. Given set M C X xY x Z, construct a labeled
DAG G = (V, E) as follows:

The alphabet: ¥ = X UY U Z. Assume the three sets are disjoint; otherwise they can be marked to enforce
disjointness.

The vertex set V: For every triple t, = (x,y, 2) € M define two new nodes vy, and wy, and label them y and
z respectively. In addition, define ¢ nodes u1,...,uq labeled z1,...,z4, respectively. Altogether we have
g+ 2|M| nodes in V' (of course, some different nodes v or wy may have the same alphabet symbols).

The Edges: For every triple t;, = (z;,y,2) € M, i=1,...,q9— 1, put the edges: w0, Urwg, and WrU;11.-
For the triples ty = (4,9,), put the edges u,vy and Ugwg.

Example: Let X = {A4,B,C}, Y ={1,2,3}, and W = {J,K,L}. Let M = {(4,1,]), (A4,2,K), (B,1,L),
(B,2,]), (B,3,I), (C,2,K)}. Then the constructed DAG G appears in Figure 1.

It is clear that the construction is polynomial.

Note that any path through a node labeled with a symbol z € X traverses through at most one triple of
M that begins with 2. Observe also that the longest path in G is of length 3¢g. It starts at the source (uy),
and its first 3 elements are one triple whose first coordinate has z1, it is followed by a triple whose first
coordinate is 2, and so on until it ends with a triple whose first coordinate is .

Now consider the string P = x1 y1 21 T2 Y2 22 T4 Yq Z¢. Clearly, there is a parameterized match of P in
G iff there is a path from the source with no repeating symbol iff there are ¢ different triples where all first
elements are different, all second elements are different and all third elements are different iff there is a 3-d
matching on M. |

5 Conclusions

Exact string matching can be effectively done in general hypertext files. Parameterized string matching is
also efficiently computable. In this paper we have shown that while parameterized pattern matching can be
done in hypertext in optimal O(n log o) time for tree graphs, where o = min(m, |X|), as soon as the structure
of the hypertext becomes more complex, i.e. a directed acyclic graph, parameterized matching is already
NP-hard.

References

1]

2]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

T. Akutsu. A linear time pattern matching algorithm between a string and a tree. In Proc. 4th Symp.
on Combinatorial Pattern Matching (CPM), pages 1-10, Padova, Italy, 1993.

A. Amir, A. Aumann, M. Lewenstein, and E. Porat. Function matching. SIAM Journal on Computing,
35(5):1007-1022, 2006.

A. Amir, G. Benson, and M. Farach. An alphabet independent approach to two dimensional pattern
matching. SIAM J. Comp., 23(2):313-323, 1994.

A. Amir, K. W. Church, and E. Dar. Separable attributes: a technique for solving the submatrices
character count problem. In Proc. 15th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages
400-401, 2002.

A. Amir, M. Farach, and S. Muthukrishnan. Alphabet dependence in parameterized matching. Infor-
mation Processing Letters, 49:111-115, 1994.

A. Amir, N. Lewenstein, and M. Lewenstein. Pattern matching in hypertext. J. of Algorithms, 35:82—99,
2000.

A. Apostolico and Z. Galil (editors). Pattern Matching Algorithms. Oxford University Press, 1997.

A. Apostolico, M. Lewenstein, and P. Erdos. Parameterized matching with mismatches. Journal of
Discrete Algorithms, 5(1):135-140, 2007.

G.P. Babu, B.M. Mehtre, and M.S. Kankanhalli. Color indexing for efficient image retrieval. Multimedia
Tools and Applications, 1(4):327-348, Nov. 1995.

B. S. Baker. Parameterized pattern matching: Algorithms and applications. Journal of Computer and
System Sciences, 52(1):28-42, 1996.

B. S. Baker. Parameterized duplication in strings: Algorithms and an application to software mainte-
nance. SIAM Journal on Computing, 26(5):1343-1362, 1997.

M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.

M.J. Fischer and M.S. Paterson. String matching and other products. Complezity of Computation,
R.M. Karp (editor), SIAM-AMS Proceedings, 7:113-125, 1974.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. New York: W. H. Freeman and Co., 1979.

C. Hazay, M. Lewenstein, and D. Sokol. Approximate parameterized matching. In Proc. 12th Annual
European Symposium on Algorithms (ESA 2004), pages 414-425, 2004.

R.M. Idury and A.A Schiffer. Multiple matching of parameterized patterns. In Proc. 5th Combinatorial
Pattern Matching (CPM), volume 807 of LNCS, pages 226-239. Springer-Verlag, 1994.

D.K. Kim and K. Park. String matching in hypertext. Proc. 6th Symposium on Combinatorial Pattern
Matching (CPM 95), 1995.

D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings. SIAM J. Comp., 6:323-350,
1977.

U. Manber and S. Wu. Approximate string matching with arbitrary cost for text and hypertext. In
Proc. Int’l Workshop on Structural and Syntactic Pattern Recognition, pages 22-33, 1992.

G. Navarro. Improved approximate pattern matching on hypertext. Theoretical Computer Science,
237:455-463, 2000.

M. Swain and D. Ballard. Color indexing. International Journal of Computer Vision, 7(1):11-32, 1991.

