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Abstract

Proximity searches become very difficult on “high dimensional” metric spaces, that
is, those whose histogram of distances has a large mean and /or a small variance. This
so-called “curse of dimensionality”, well known in vector spaces, is also observed in
metric spaces. The search complexity grows sharply with the dimension and with
the search radius. We present a general probabilistic framework applicable to any
search algorithm and whose net effect is to reduce the search radius. The higher the
dimension, the more effective the technique. We illustrate empirically its practical
performance on a particular class of algorithms, where large improvements in the
search time are obtained at the cost of a very small error probability.

Key words: Metric spaces, proximity searching, nearest neighbor searching,
distance based indexing, probabilistic algorithms.

1 Introduction

The concept of “proximity” searching has applications in a vast number of
fields. Some examples are multimedia databases, data mining, machine learn-
ing and classification, image quantization and compression, text retrieval, com-
putational biology and function prediction, just to name a few.
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All those applications have some common characteristics. There is a universe X
of objects, and a nonnegative distance function d : XxX — Rt defined among
them. This distance satisfies the three axioms that make the set a metric space:
strict positiveness (d(z,y) = 0 & @ = y), symmetry (d(x,y) = d(y,z)) and
triangle inequality (d(x, z) < d(x,y)+d(y, z)). This distance is assumed to be
computationally expensive (e.g., comparing two fingerprints). We have a finite
database U C X of size n, which is a subset of X. The goal is to preprocess U
to answer (with as few distance computations as possible) fized radius queries
and nearest neighbor queries. We are interested in this work in the former,
expressed as (¢q,7)4 (a point ¢ in X and a tolerance radius r), which should
retrieve all the points at distance r or less from ¢, i.e. {u € U, d(u,q) < r}.
Nearest-neighbor queries retrieve the K elements of U that are closest to q.

A particular case of metric spaces are k-dimensional vector spaces, X = RF
using Minkowski’s L distance. In this case the objects have a geometric mean-
ing and the coordinate information can be used to guide the search. Effective
methods to search vector spaces are kd-trees [4] and R-trees [10], among many
others. However, for random vectors on more than about 20 dimensions, all
those structures cease to work well. Proven lower bounds exist [8] that show
that the search complexity is exponential with the dimension.

It is interesting to point out that the concept of “dimensionality” can be
translated into metric spaces as well. The histogram of distances of a high
dimensional vector space has a large mean and normally a small relative vari-
ance. In [7] this is used to define the intrinsic dimension of a general metric
space as p = %, where 1 and 02 are the mean and variance of the histogram
of distances. Under this definition, a database of random k-dimensional vec-
tors with uniformly distributed coordinates has intrinsic dimension p = (k).

Hence, the definition extends naturally that of vector spaces.

Analytical lower bounds and experiments in [7] show that all the search al-
gorithms degrade as p increases. The problem has received the name of curse
of dimensionality. In terms of the histogram, we see two reasons for it. First,
if p increases because o2 is reduced, then most distances tend to give the
same values and hence yield less information (think on the degenerate space
d(x,y) = if © = y then 0 else 1). Second, if p increases because p grows, then
a larger search radius r is necessary to retrieve a fixed fraction of the database
(and also to get a constant number of nearest neighbors). The search cost also
grows sharply when the search radius increases.

An interesting question is whether a probabilistic or approximate algorithm
can break or at least alleviate the curse of dimensionality. These algorithms
are acceptable in most applications, because in general the modelization as
a metric space already carries some kind of relaxation, so finding some close
elements is usually as good as finding all of them. This is our focus.



2 Related Work and Our Contribution

Most existing search algorithms for metric spaces are ezact, that is, they re-
trieve the exact set {u € U, d(q,u) < r}. A recent survey of these algorithms is
[7]. In this work we focus on approximate and probabilistic algorithms, which
relax the requisite of delivering the exact solution. A precision parameter &
measures how much may the outcome differ from the correct result.

Approximation algorithms are surveyed in depth in [14]. An example is [1],
which proposes a general framework to search for an arbitrary region @) in
real-valued vector spaces (R, Ly). The idea is to define areas Q~ and QT such
that Q- C @Q C Q7. Points inside )~ are guaranteed to be reported and
points outside @' not to be reported. In between the algorithm can err. The
maximum distance between the real and the bounding areas is €.

To illustrate the idea, one of the many trees used to decompose the space is
used to guide the search by including or excluding whole areas. Every decision
about including/excluding a whole area can be done using Q% /Q~ to increase
the probability of pruning the search in either way. Those areas that cannot
be fully included or excluded are analyzed in more detail by going down the
appropriate subtree. The complexity is shown to be O(2%logn + (3vk/2)¥)
and a very close lower bound is proven for the problem.

Probabilistic algorithms have been proposed only for nearest neighbor search-
ing, for vector spaces in [2,15,14], and for general metric spaces in [9].

In [15], a proposal called “aggressive pruning” for “limited radius nearest
neighbors” is presented. This query seeks for nearest neighbors that are inside
a given radius. The idea can be seen as a particular case of [1], where the
search area is a ball and the data structure is a kd-tree. Relevant elements
may be lost but irrelevant ones cannot be reported, i.e. Q7 = @Q. The ball Q,
of radius r and centered at ¢ = (q1,...,qx), is pruned by intersecting it with
the area between hyperplanes ¢; — r + ¢ and ¢; + r — . The authors give a
probabilistic analysis assuming normally distributed distances, which almost
holds if the points are uniformly distributed in the space. The search time is
O(n?) where )\ decreases as the permitted failure probability & increases.

In [9], the author chooses a “training set” Q of queries and builds a data
structure to answer correctly only queries of the training set. The idea is that
this setup is enough to answer correctly, with high probability, an arbitrary
query. Under reasonable probabilistic assumptions it is shown that, paying
O(Kna) space and O(Kalogn) search time, the probability of not finding
the nearest neighbor is O((logn)?/K). Here « is the logarithm of the ratio
between the farthest and the nearest pairs of points in UU Q.



In this paper we present a probabilistic technique for fixed radius searching
on general metric spaces. We exploit the high dimension of the metric space,
specifically the fact that the difference between random distances is small com-
pared to a random distance. We show that this permits reducing the search
radius and yet losing very few elements, and explain how any exact algorithm
can make use of this property to become a much more efficient probabilistic
algorithm. We exemplify the approach with a particular algorithm, which in-
cidentally leads to a metric space version of [15]. We present empirical results
showing a large increase in the search efficiency making very few errors.

3 Stretching the Triangle Inequality

A large class of algorithms to search metric spaces, called “pivot based” [7],
are built on a single general idea. We select k& random elements (pivots)
{p1,.--,pr} C U. The database is preprocessed to build a table of nk en-
tries that stores the distances d(u,p;) for every u € U and pivot p;. When
a query (q,r) is submitted, we compute d(q,p;) for every pivot p; and then
discard elements u € U by using the triangle inequality. Two facts hold:

d(u,p;) < d(u,q) + d(q,p;) and d(q,p;) < d(q,u) + d(u,p;) (1)

which can be reexpressed as d(q, u) > |d(u, p;)—d(q, p;)|. Hence, we can discard
all those w such that |d(u,p;) — d(q,p;)| > r for some pivot p;. The elements
of U that cannot be discarded using this rule are directly compared against ¢.

Different pivot based algorithms share this principle and differ in the way they
reduce the CPU cost incurred apart from that of computing distances. Trees,
binary search and tries are some of the techniques used [7,13,6,3,5,12]. In this
work we focus on reducing the number of distance computations and disregard
extra CPU cost. Any known technique can be used to reduce the latter.

More precisely, let us define
Dy(q,u) = max |d(u, pi) — d(q, pi)|

and hence we discard any u such that Dy(q,u) > r. The k distances d(q, p;)
computed are called internal evaluations, while the d(q,u) computed against
those u that cannot be ruled out (D (q,u) < r) are called external evaluations.
As the latter decrease (or at least do not increase) with k, it follows that there
is an optimum k. In most cases, however, kn reaches the space limit well before
k reaches its optimum, so one uses as many pivots as space permits.

Figure 1 illustrates a useful cost model. Let X be a random variable for the
distance d(z,y) in X and Z be a random variable for the distance Dy(x,y).



Their distributions fx and f; are illustrated, and let us call Fx and F their
cumulative distributions. To retrieve a fraction 7 of the database we need to
use a search radius large enough to make Fx(r) > 7. On the other hand,
since we discard elements u such that Dy(q,u) > r, our external complexity
is n X Fz(r). That is, in order to retrieve the double grayed area in Figure 1
we have to examine all the single grayed area. Clearly Dy (x,y) < d(z,y), and
the ideal situation is that both distributions are as close as possible. When
this happens, the external complexity is the size of the result.

Note that the mean of X is u, while the mean of Z is related to o and
independent of pu, as it is a maximum over differences of distances. In high
dimensions (large p = %) the ratio between both means increases, which
means that the distribution of Z falls behind that of X. Hence in order to
retrieve the same 7 it is necessary to examine a larger fraction of the database.
To avoid this problem we can increase k to shift f; to the right, but this is
limited by the amount of memory available and by the increase in internal
complexity:.

Fig. 1. The search complexity of pivoting algorithms.

The histogram comparison sketched above accurately predicts the search cost:
To retrieve nFy (r) database elements we must pay k + nFy(r) distance com-
putations. The fact that we examine all the area where Dy(q, u) < r is justified
because Dy (z,y) is upper bounded by d(x,y), so we cannot miss any element.
A natural question towards a probabilistic search algorithm is: How frequently
does Dy(x,y) really reach d(z, y)? Or, alternatively, how many elements would
we lose if we searched with radius ar, for 0 < a < 17

If we consider that the mean of X is u and that of Z is related to o, then
Dy (z,y) becomes much smaller than d(z,y) as the dimension p grows. This
means that, for higher dimension (or for a poorer index) we can “safely” use a
smaller a. Hence the method promises to work better as the dimension grows
or for worse indexes. However, for a finer analysis we cannot rely on whole
histograms but on individual measures.

Consider the random variable 0 < @ < 1 taking values in the quotient
Dy(x,y)/d(z,y). Figure 2 depicts the behavior of F(a) by estimating its his-



togram for different & values on the metric space ([0,1)'%, Ly), with elements
and pivots chosen at random.
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Fig. 2. The cumulative empirical distribution of @) for different instances of the
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Let us interpret the meaning of () with the help of Figure 2. With a confidence
level v (determined solely by Dy(z,y) and d(x,y)) we can assume a smaller
upper bound for Dy (x,y) in terms of the original distance d(x, y). For example,
in Figure 2, for 16 pivots we can fix a factor of & = 0.5 with a confidence level
~v > 0.9. In other words, for this particular selection, in 9 out of each 10 cases,
if we measure a distance Dy (x,y), the actual distance d(z, y) for the pair (x,y)
will be at least twice Dy (x,y). We may take advantage of this observation by
discarding elements using a smaller radius, knowing that the probability of
missing a relevant element is at most 0.1.

In standard searching we perform the query (¢, r)p, to obtain a candidate list.
Since Dg(z,y) < d(x,y) we are sure that (¢,7)s C (q,r)p, for any r. Then,
we examine the elements in the candidate list using d. Using the statistics of
() we design a probabilistic generalization of the above procedure, which finds
a subset of the correct answer (q,r)y. Its confidence level (or probability of
success) 7 is defined as the probability that a given element in (g, r)4 is actually
found. The method simply obtains o = Fél(y) and builds the candidate list
using the stricter query (¢, ar)p,. The rest is unchanged.

[t is clear that the probability of losing a relevant element u is that of Dy(q, u) >
ar given that d(q, u) < r. Since this implies Dy (q,u)/d(q, u) > a, we have that
this occurs with probability at most 7. Note, however, that for accurateness
we should compute F(a) over pairs (z,y) such that d(x,y) < r. Some inter-
esting properties of the algorithm are: (i) it is one-sided error, since it never
report elements that should not be reported; (ii) elements at distance at most
ar from ¢ are guaranteed to be reported; (iii) we can choose v and « at query
time; and (iv) basically no modifications to the indexing and searching algo-
rithms are necessary. The main remaining question is which tradeoff we obtain
between speed and accuracy.



4 Efficiency and the Statistical Model

Using the model described in the previous section we can accurately predict
the behavior of the probabilistic algorithm for a given pivot based index. The
cost of satisfying (q,7)4 exactly using an index with & pivots is k + nFy(r).
To satisfy a query with probability v = Fy(a) we have to pay k +nFy(ar) =
k+nFy(Fy'(v) ).

We show experimentally how our prediction works. We use ([0,1)%™ L) as
our metric spaces, with uniformly distributed coordinates for the vectors. The
advantage of this space is that we can know its exact dimensionality. Our
search radius retrieves 1% of the database, r = Fy'(0.01). Figure 3 (top) shows
the experimental probability of retrieving a relevant element as o increases,
using £ = 1 and £ = 64 pivots. Note that we lose less elements when the
dimension is higher or when we have less pivots, as expected.

Real experiment: 1 pivot, retrieving 1.0% of the database Real experiment: 64 pivots, retrieving 1.0% of the database
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Fig. 3. Fraction of relevant elements retrieved as a function of . On top the exper-
imental results, on the bottom the predicted behavior.

Figure 3 (bottom) shows the prediction obtained using our model, just by
plotting the cumulative distribution Fg. The prediction is not perfect because
we have estimated Fy on arbitrary pairs (z, y) instead of over pairs at distance
< r. However, the prediction is very accurate in the region of interest v > 0.9,
so we favor this simpler model.



Let us now compare the search cost against the probability of success. Figure 4
shows the number of comparisons as a function of the fraction of relevant
elements retrieved, for different combinations of £ and r. As can be seen, we
retrieve even 90% or 95% of the relevant elements paying much less than the
exact algorithm (a = 1 in the plots). In many cases there is a large difference
between the costs to retrieve 99% and 100% of the set. These differences
are more notorious when £ is too low to get good results with the exact
algorithm. We can obtain the same efficiency of the exact algorithm using
much less pivots. For example, 16 dimensions is almost intractable for the exact
algorithm with less than 256 pivots, while with the probabilistic algorithm we
can get acceptable results with 16 pivots.
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Fig. 4. Number of distance evaluations as a function of the fraction of elements
retrieved, for different dimensions. On the left, the actual experiment, on the right,
the predicted behavior.

Figure 5 (left) shows the effect of different search radii, retrieving from 0.01%
to 5% of the database. Note that increasing the search radius has an effect
similar to that of increasing the dimension.
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Fig. 5. On the left, number of distance evaluations as a function of the fraction of
elements retrieved, for different radii. On the right, external complexity as a function
of the number of pivots used, for v = 0.97 and a radius that should retrieve 0.5%
of the dataset.

Figure 5 (right) shows that the external complexity is not monotonously de-
creasing with k, as it is for the exact algorithm. This is because, as k increases,



the probability of missing a relevant answer grows, and therefore we need a
larger « to keep the same error probability. This, in turn, increases the search
time. This fact worsens in higher dimensions: if we use enough pivots so as to
fight the high dimension, then the error probability goes up. Therefore, the
scheme does also get worse as the dimension grows. However, it worsens much
slower than the exact algorithm.

5 Real-life Examples

We show the performance of our method on two real applications. The first one
is a database of text lines from the Federal Register collection of TREC-3 [11].
We used edit distance: the minimum number of character insertions, deletions
and substitutions to make the two strings equal. This model is commonly used
in text retrieval, signal processing and computational biology applications.

Figure 6 (left) shows the results for different & values. As can be seen, with a
moderately high probability (more than 0.8) we improve the exact algorithm
by a factor of 3. The exact algorithm examines around 90% of the database,
and our probabilistic approach around 26%. Again, there is an optimum &
that depends on the desired 7.

The second experiment takes the documents of the same collection and builds
a metric space using the cosine distance, which is heavily used in informa-
tion retrieval to determine documents relevant to a query. In this distance
documents are seen as vectors in a space where the terms are the coordi-
nates and the value of document i along the coordinate of term j is defined
as f;jlog(N/n;), where f;; is the number of occurrences of j in i, N is the
total number of documents, and n; is the number of documents where term j
appears. The distance between two vectors is the cosine of the angle between
their vectors.

Figure 6 (right) shows the result for £ = 64 pivots. The problem is totally
intractable with 64 pivots using the exact algorithm, i.e., the index examines
99.99% of the set. However, our probabilistic algorithm performs much better.
With success probability 0.8 we pay a small fraction of the exact algorithm:
2% to 12% depending on the search radius. If we require the probability of
success to be 0.9, the cost reaches 40%-50% of the exact algorithm, which is
still very good.
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6 Conclusions

We have presented a probabilistic algorithm to search metric spaces and a
predictive model able to describe both the performance of the algorithm and
the expected probability of success. The algorithm can be used on any index.
For the particular case of pivot based indexes we have shown that the model
accurately predicts the behavior of the algorithm and permits fine tuning of
the parameters by using simple statistics.

Even with very low error probability we obtain large improvements in the
search time. The idea can also be used to search semimetric spaces, where the
triangle inequality “almost” holds: We can relax the condition to eliminate
candidates instead of tightening it as in the present work.

We are currently working on applying the idea to other data structures, in
particular to clustering algorithms [7]. As explained in Section 3, this involves
defining D appropriately.
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