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l.Abstra
tProximity sear
hes be
ome very diÆ
ult on \high dimensional" metri
 spa
es, thatis, those whose histogram of distan
es has a large mean and/or a small varian
e. Thisso-
alled \
urse of dimensionality", well known in ve
tor spa
es, is also observed inmetri
 spa
es. The sear
h 
omplexity grows sharply with the dimension and withthe sear
h radius. We present a general probabilisti
 framework appli
able to anysear
h algorithm and whose net e�e
t is to redu
e the sear
h radius. The higher thedimension, the more e�e
tive the te
hnique. We illustrate empiri
ally its pra
ti
alperforman
e on a parti
ular 
lass of algorithms, where large improvements in thesear
h time are obtained at the 
ost of a very small error probability.Key words: Metri
 spa
es, proximity sear
hing, nearest neighbor sear
hing,distan
e based indexing, probabilisti
 algorithms.
1 Introdu
tionThe 
on
ept of \proximity" sear
hing has appli
ations in a vast number of�elds. Some examples are multimedia databases, data mining, ma
hine learn-ing and 
lassi�
ation, image quantization and 
ompression, text retrieval, 
om-putational biology and fun
tion predi
tion, just to name a few.? Supported by CYTED VII.19 RIBIDI Proje
t (both authors), CONACyT grantR-28923A (�rst author) and FONDECYT Grant 1-000929 (se
ond author).??An earlier version of this work appeared in Pro
. 3rd Workshop on AlgorithmEngineering and Experiments (ALENEX'01), LNCS 2153, pp. 147-160 2001.Preprint submitted to Elsevier Preprint 15 April 2002



All those appli
ations have some 
ommon 
hara
teristi
s. There is a universe Xof obje
ts, and a nonnegative distan
e fun
tion d : X�X �! R+ de�ned amongthem. This distan
e satis�es the three axioms that make the set ametri
 spa
e:stri
t positiveness (d(x; y) = 0 , x = y), symmetry (d(x; y) = d(y; x)) andtriangle inequality (d(x; z) � d(x; y)+d(y; z)). This distan
e is assumed to be
omputationally expensive (e.g., 
omparing two �ngerprints). We have a �nitedatabase U � X, of size n, whi
h is a subset of X. The goal is to prepro
ess Uto answer (with as few distan
e 
omputations as possible) �xed radius queriesand nearest neighbor queries. We are interested in this work in the former,expressed as (q; r)d (a point q in X and a toleran
e radius r), whi
h shouldretrieve all the points at distan
e r or less from q, i.e. fu 2 U; d(u; q) � rg.Nearest-neighbor queries retrieve the K elements of U that are 
losest to q.A parti
ular 
ase of metri
 spa
es are k-dimensional ve
tor spa
es, X = Rkusing Minkowski's Ls distan
e. In this 
ase the obje
ts have a geometri
 mean-ing and the 
oordinate information 
an be used to guide the sear
h. E�e
tivemethods to sear
h ve
tor spa
es are kd-trees [4℄ and R-trees [10℄, among manyothers. However, for random ve
tors on more than about 20 dimensions, allthose stru
tures 
ease to work well. Proven lower bounds exist [8℄ that showthat the sear
h 
omplexity is exponential with the dimension.It is interesting to point out that the 
on
ept of \dimensionality" 
an betranslated into metri
 spa
es as well. The histogram of distan
es of a highdimensional ve
tor spa
e has a large mean and normally a small relative vari-an
e. In [7℄ this is used to de�ne the intrinsi
 dimension of a general metri
spa
e as � = �22�2 , where � and �2 are the mean and varian
e of the histogramof distan
es. Under this de�nition, a database of random k-dimensional ve
-tors with uniformly distributed 
oordinates has intrinsi
 dimension � = �(k).Hen
e, the de�nition extends naturally that of ve
tor spa
es.Analyti
al lower bounds and experiments in [7℄ show that all the sear
h al-gorithms degrade as � in
reases. The problem has re
eived the name of 
urseof dimensionality. In terms of the histogram, we see two reasons for it. First,if � in
reases be
ause �2 is redu
ed, then most distan
es tend to give thesame values and hen
e yield less information (think on the degenerate spa
ed(x; y) = if x = y then 0 else 1). Se
ond, if � in
reases be
ause � grows, thena larger sear
h radius r is ne
essary to retrieve a �xed fra
tion of the database(and also to get a 
onstant number of nearest neighbors). The sear
h 
ost alsogrows sharply when the sear
h radius in
reases.An interesting question is whether a probabilisti
 or approximate algorithm
an break or at least alleviate the 
urse of dimensionality. These algorithmsare a

eptable in most appli
ations, be
ause in general the modelization asa metri
 spa
e already 
arries some kind of relaxation, so �nding some 
loseelements is usually as good as �nding all of them. This is our fo
us.2



2 Related Work and Our ContributionMost existing sear
h algorithms for metri
 spa
es are exa
t, that is, they re-trieve the exa
t set fu 2 U; d(q; u) � rg. A re
ent survey of these algorithms is[7℄. In this work we fo
us on approximate and probabilisti
 algorithms, whi
hrelax the requisite of delivering the exa
t solution. A pre
ision parameter "measures how mu
h may the out
ome di�er from the 
orre
t result.Approximation algorithms are surveyed in depth in [14℄. An example is [1℄,whi
h proposes a general framework to sear
h for an arbitrary region Q inreal-valued ve
tor spa
es (Rk ; L2). The idea is to de�ne areas Q� and Q+ su
hthat Q� � Q � Q+. Points inside Q� are guaranteed to be reported andpoints outside Q+ not to be reported. In between the algorithm 
an err. Themaximum distan
e between the real and the bounding areas is ".To illustrate the idea, one of the many trees used to de
ompose the spa
e isused to guide the sear
h by in
luding or ex
luding whole areas. Every de
isionabout in
luding/ex
luding a whole area 
an be done using Q+/Q� to in
reasethe probability of pruning the sear
h in either way. Those areas that 
annotbe fully in
luded or ex
luded are analyzed in more detail by going down theappropriate subtree. The 
omplexity is shown to be O(2k logn + (3pk=")k)and a very 
lose lower bound is proven for the problem.Probabilisti
 algorithms have been proposed only for nearest neighbor sear
h-ing, for ve
tor spa
es in [2,15,14℄, and for general metri
 spa
es in [9℄.In [15℄, a proposal 
alled \aggressive pruning" for \limited radius nearestneighbors" is presented. This query seeks for nearest neighbors that are insidea given radius. The idea 
an be seen as a parti
ular 
ase of [1℄, where thesear
h area is a ball and the data stru
ture is a kd-tree. Relevant elementsmay be lost but irrelevant ones 
annot be reported, i.e. Q+ = Q. The ball Q,of radius r and 
entered at q = (q1; : : : ; qk), is pruned by interse
ting it withthe area between hyperplanes qi � r + " and qi + r � ". The authors give aprobabilisti
 analysis assuming normally distributed distan
es, whi
h almostholds if the points are uniformly distributed in the spa
e. The sear
h time isO(n�) where � de
reases as the permitted failure probability " in
reases.In [9℄, the author 
hooses a \training set" Q of queries and builds a datastru
ture to answer 
orre
tly only queries of the training set. The idea is thatthis setup is enough to answer 
orre
tly, with high probability, an arbitraryquery. Under reasonable probabilisti
 assumptions it is shown that, payingO(Kn�) spa
e and O(K� log n) sear
h time, the probability of not �ndingthe nearest neighbor is O((logn)2=K). Here � is the logarithm of the ratiobetween the farthest and the nearest pairs of points in U [ Q .3



In this paper we present a probabilisti
 te
hnique for �xed radius sear
hingon general metri
 spa
es. We exploit the high dimension of the metri
 spa
e,spe
i�
ally the fa
t that the di�eren
e between random distan
es is small 
om-pared to a random distan
e. We show that this permits redu
ing the sear
hradius and yet losing very few elements, and explain how any exa
t algorithm
an make use of this property to be
ome a mu
h more eÆ
ient probabilisti
algorithm. We exemplify the approa
h with a parti
ular algorithm, whi
h in-
identally leads to a metri
 spa
e version of [15℄. We present empiri
al resultsshowing a large in
rease in the sear
h eÆ
ien
y making very few errors.3 Stret
hing the Triangle InequalityA large 
lass of algorithms to sear
h metri
 spa
es, 
alled \pivot based" [7℄,are built on a single general idea. We sele
t k random elements (pivots)fp1; : : : ; pkg � U. The database is prepro
essed to build a table of nk en-tries that stores the distan
es d(u; pi) for every u 2 U and pivot pi. Whena query (q; r) is submitted, we 
ompute d(q; pi) for every pivot pi and thendis
ard elements u 2 U by using the triangle inequality. Two fa
ts hold:d(u; pi) � d(u; q) + d(q; pi) and d(q; pi) � d(q; u) + d(u; pi) (1)whi
h 
an be reexpressed as d(q; u) � jd(u; pi)�d(q; pi)j. Hen
e, we 
an dis
ardall those u su
h that jd(u; pi) � d(q; pi)j > r for some pivot pi. The elementsof U that 
annot be dis
arded using this rule are dire
tly 
ompared against q.Di�erent pivot based algorithms share this prin
iple and di�er in the way theyredu
e the CPU 
ost in
urred apart from that of 
omputing distan
es. Trees,binary sear
h and tries are some of the te
hniques used [7,13,6,3,5,12℄. In thiswork we fo
us on redu
ing the number of distan
e 
omputations and disregardextra CPU 
ost. Any known te
hnique 
an be used to redu
e the latter.More pre
isely, let us de�neDk(q; u) = maxi21:::k jd(u; pi)� d(q; pi)jand hen
e we dis
ard any u su
h that Dk(q; u) > r. The k distan
es d(q; pi)
omputed are 
alled internal evaluations, while the d(q; u) 
omputed againstthose u that 
annot be ruled out (Dk(q; u) � r) are 
alled external evaluations.As the latter de
rease (or at least do not in
rease) with k, it follows that thereis an optimum k. In most 
ases, however, kn rea
hes the spa
e limit well beforek rea
hes its optimum, so one uses as many pivots as spa
e permits.Figure 1 illustrates a useful 
ost model. Let X be a random variable for thedistan
e d(x; y) in X and Z be a random variable for the distan
e Dk(x; y).4



Their distributions fX and fZ are illustrated, and let us 
all FX and FZ their
umulative distributions. To retrieve a fra
tion � of the database we need touse a sear
h radius large enough to make FX(r) � � . On the other hand,sin
e we dis
ard elements u su
h that Dk(q; u) > r, our external 
omplexityis n� FZ(r). That is, in order to retrieve the double grayed area in Figure 1we have to examine all the single grayed area. Clearly Dk(x; y) � d(x; y), andthe ideal situation is that both distributions are as 
lose as possible. Whenthis happens, the external 
omplexity is the size of the result.Note that the mean of X is �, while the mean of Z is related to � andindependent of �, as it is a maximum over di�eren
es of distan
es. In highdimensions (large � = �22�2 ) the ratio between both means in
reases, whi
hmeans that the distribution of Z falls behind that of X. Hen
e in order toretrieve the same � it is ne
essary to examine a larger fra
tion of the database.To avoid this problem we 
an in
rease k to shift fZ to the right, but this islimited by the amount of memory available and by the in
rease in internal
omplexity.
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XZ

rFig. 1. The sear
h 
omplexity of pivoting algorithms.The histogram 
omparison sket
hed above a

urately predi
ts the sear
h 
ost:To retrieve nFX(r) database elements we must pay k + nFZ(r) distan
e 
om-putations. The fa
t that we examine all the area where Dk(q; u) � r is justi�edbe
ause Dk(x; y) is upper bounded by d(x; y), so we 
annot miss any element.A natural question towards a probabilisti
 sear
h algorithm is: How frequentlydoes Dk(x; y) really rea
h d(x; y)? Or, alternatively, how many elements wouldwe lose if we sear
hed with radius �r, for 0 < � < 1?If we 
onsider that the mean of X is � and that of Z is related to �, thenDk(x; y) be
omes mu
h smaller than d(x; y) as the dimension � grows. Thismeans that, for higher dimension (or for a poorer index) we 
an \safely" use asmaller �. Hen
e the method promises to work better as the dimension growsor for worse indexes. However, for a �ner analysis we 
annot rely on wholehistograms but on individual measures.Consider the random variable 0 � Q � 1 taking values in the quotientDk(x; y)=d(x; y). Figure 2 depi
ts the behavior of FQ(�) by estimating its his-5



togram for di�erent k values on the metri
 spa
e ([0; 1)16; L2), with elementsand pivots 
hosen at random.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F
ra

ct
io

n 
of

 th
e 

el
em

en
ts

 b
el

ow
 th

e 
qu

ot
ie

nt
 v

al
ue

Quotient value

Cumulative Quotient Distribution 
 Dimension 16

1 pivots
2 pivots
4 pivots
8 pivots

16 pivots
32 pivots
64 pivots

128 pivots

Fig. 2. The 
umulative empiri
al distribution of Q for di�erent instan
es of themappingLet us interpret the meaning of Q with the help of Figure 2. With a 
on�den
elevel 
 (determined solely by Dk(x; y) and d(x; y)) we 
an assume a smallerupper bound forDk(x; y) in terms of the original distan
e d(x; y). For example,in Figure 2, for 16 pivots we 
an �x a fa
tor of � = 0:5 with a 
on�den
e level
 > 0:9. In other words, for this parti
ular sele
tion, in 9 out of ea
h 10 
ases,if we measure a distan
e Dk(x; y), the a
tual distan
e d(x; y) for the pair (x; y)will be at least twi
e Dk(x; y). We may take advantage of this observation bydis
arding elements using a smaller radius, knowing that the probability ofmissing a relevant element is at most 0.1.In standard sear
hing we perform the query (q; r)Dk to obtain a 
andidate list.Sin
e Dk(x; y) � d(x; y) we are sure that (q; r)d � (q; r)Dk for any r. Then,we examine the elements in the 
andidate list using d. Using the statisti
s ofQ we design a probabilisti
 generalization of the above pro
edure, whi
h �ndsa subset of the 
orre
t answer (q; r)d. Its 
on�den
e level (or probability ofsu

ess) 
 is de�ned as the probability that a given element in (q; r)d is a
tuallyfound. The method simply obtains � = F�1Q (
) and builds the 
andidate listusing the stri
ter query (q; �r)Dk. The rest is un
hanged.It is 
lear that the probability of losing a relevant element u is that ofDk(q; u) >�r given that d(q; u) � r. Sin
e this implies Dk(q; u)=d(q; u) > �, we have thatthis o

urs with probability at most 
. Note, however, that for a

uratenesswe should 
ompute FQ(�) over pairs (x; y) su
h that d(x; y) � r. Some inter-esting properties of the algorithm are: (i) it is one-sided error, sin
e it neverreport elements that should not be reported; (ii) elements at distan
e at most�r from q are guaranteed to be reported; (iii) we 
an 
hoose 
 and � at querytime; and (iv) basi
ally no modi�
ations to the indexing and sear
hing algo-rithms are ne
essary. The main remaining question is whi
h tradeo� we obtainbetween speed and a

ura
y. 6



4 EÆ
ien
y and the Statisti
al ModelUsing the model des
ribed in the previous se
tion we 
an a

urately predi
tthe behavior of the probabilisti
 algorithm for a given pivot based index. The
ost of satisfying (q; r)d exa
tly using an index with k pivots is k + nFZ(r).To satisfy a query with probability 
 = FQ(�) we have to pay k+ nFZ(�r) =k + nFZ(F�1Q (
) r).We show experimentally how our predi
tion works. We use ([0; 1)dim; L2) asour metri
 spa
es, with uniformly distributed 
oordinates for the ve
tors. Theadvantage of this spa
e is that we 
an know its exa
t dimensionality. Oursear
h radius retrieves 1% of the database, r = F�1X (0:01). Figure 3 (top) showsthe experimental probability of retrieving a relevant element as � in
reases,using k = 1 and k = 64 pivots. Note that we lose less elements when thedimension is higher or when we have less pivots, as expe
ted.
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Dimension
4
8

16
32
64

128Fig. 3. Fra
tion of relevant elements retrieved as a fun
tion of �. On top the exper-imental results, on the bottom the predi
ted behavior.Figure 3 (bottom) shows the predi
tion obtained using our model, just byplotting the 
umulative distribution FQ. The predi
tion is not perfe
t be
ausewe have estimated FQ on arbitrary pairs (x; y) instead of over pairs at distan
e� r. However, the predi
tion is very a

urate in the region of interest 
 � 0:9,so we favor this simpler model. 7



Let us now 
ompare the sear
h 
ost against the probability of su

ess. Figure 4shows the number of 
omparisons as a fun
tion of the fra
tion of relevantelements retrieved, for di�erent 
ombinations of k and r. As 
an be seen, weretrieve even 90% or 95% of the relevant elements paying mu
h less than theexa
t algorithm (� = 1 in the plots). In many 
ases there is a large di�eren
ebetween the 
osts to retrieve 99% and 100% of the set. These di�eren
esare more notorious when k is too low to get good results with the exa
talgorithm. We 
an obtain the same eÆ
ien
y of the exa
t algorithm usingmu
h less pivots. For example, 16 dimensions is almost intra
table for the exa
talgorithm with less than 256 pivots, while with the probabilisti
 algorithm we
an get a

eptable results with 16 pivots.
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Fig. 4. Number of distan
e evaluations as a fun
tion of the fra
tion of elementsretrieved, for di�erent dimensions. On the left, the a
tual experiment, on the right,the predi
ted behavior.Figure 5 (left) shows the e�e
t of di�erent sear
h radii, retrieving from 0.01%to 5% of the database. Note that in
reasing the sear
h radius has an e�e
tsimilar to that of in
reasing the dimension.
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Fig. 5. On the left, number of distan
e evaluations as a fun
tion of the fra
tion ofelements retrieved, for di�erent radii. On the right, external 
omplexity as a fun
tionof the number of pivots used, for 
 = 0:97 and a radius that should retrieve 0.5%of the dataset.Figure 5 (right) shows that the external 
omplexity is not monotonously de-
reasing with k, as it is for the exa
t algorithm. This is be
ause, as k in
reases,8



the probability of missing a relevant answer grows, and therefore we need alarger � to keep the same error probability. This, in turn, in
reases the sear
htime. This fa
t worsens in higher dimensions: if we use enough pivots so as to�ght the high dimension, then the error probability goes up. Therefore, thes
heme does also get worse as the dimension grows. However, it worsens mu
hslower than the exa
t algorithm.
5 Real-life ExamplesWe show the performan
e of our method on two real appli
ations. The �rst oneis a database of text lines from the Federal Register 
olle
tion of TREC-3 [11℄.We used edit distan
e: the minimum number of 
hara
ter insertions, deletionsand substitutions to make the two strings equal. This model is 
ommonly usedin text retrieval, signal pro
essing and 
omputational biology appli
ations.Figure 6 (left) shows the results for di�erent k values. As 
an be seen, with amoderately high probability (more than 0.8) we improve the exa
t algorithmby a fa
tor of 3. The exa
t algorithm examines around 90% of the database,and our probabilisti
 approa
h around 26%. Again, there is an optimum kthat depends on the desired 
.The se
ond experiment takes the do
uments of the same 
olle
tion and buildsa metri
 spa
e using the 
osine distan
e, whi
h is heavily used in informa-tion retrieval to determine do
uments relevant to a query. In this distan
edo
uments are seen as ve
tors in a spa
e where the terms are the 
oordi-nates and the value of do
ument i along the 
oordinate of term j is de�nedas fi;j log(N=nj), where fi;j is the number of o

urren
es of j in i, N is thetotal number of do
uments, and nj is the number of do
uments where term jappears. The distan
e between two ve
tors is the 
osine of the angle betweentheir ve
tors.Figure 6 (right) shows the result for k = 64 pivots. The problem is totallyintra
table with 64 pivots using the exa
t algorithm, i.e., the index examines99.99% of the set. However, our probabilisti
 algorithm performs mu
h better.With su

ess probability 0.8 we pay a small fra
tion of the exa
t algorithm:2% to 12% depending on the sear
h radius. If we require the probability ofsu

ess to be 0.9, the 
ost rea
hes 40%-50% of the exa
t algorithm, whi
h isstill very good. 9
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Fig. 6. Performan
e of our approa
h versus the exa
t algorithm. On the left, for theedit distan
e on text lines, on the right, for the 
osine distan
e.6 Con
lusionsWe have presented a probabilisti
 algorithm to sear
h metri
 spa
es and apredi
tive model able to des
ribe both the performan
e of the algorithm andthe expe
ted probability of su

ess. The algorithm 
an be used on any index.For the parti
ular 
ase of pivot based indexes we have shown that the modela

urately predi
ts the behavior of the algorithm and permits �ne tuning ofthe parameters by using simple statisti
s.Even with very low error probability we obtain large improvements in thesear
h time. The idea 
an also be used to sear
h semimetri
 spa
es, where thetriangle inequality \almost" holds: We 
an relax the 
ondition to eliminate
andidates instead of tightening it as in the present work.We are 
urrently working on applying the idea to other data stru
tures, inparti
ular to 
lustering algorithms [7℄. As explained in Se
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