
Space-Efficient Construction of Lempel-Ziv Compressed Text Indexes⋆

Diego Arroyuelo1 ⋆⋆ and Gonzalo Navarro2 ⋆ ⋆ ⋆

1 Yahoo! Research Latin America, Blanco Encalada 2120, Santiago, Chile.
2 Dept. of Computer Science, University of de Chile, Blanco Encalada 2120, Santiago, Chile.

{darroyue, gnavarro}@dcc.uchile.cl

Abstract. A compressed full-text self-indexis a data structure that replaces a text and in addition givesindexed
access to it, while taking space proportional to the compressed text size. This is very important nowadays, since one
can accommodate the index of very large texts entirely in main memory, avoiding the slower access to secondary
storage. In particular, the LZ-index [G. Navarro, Journal of Discrete Algorithms, 2004] stands out for its good
performance at extracting text passages and locating pattern occurrences. Given a textT [1..u] over an alphabet
of sizeσ, the LZ-index requires4|LZ|(1 + o(1)) bits of space, where|LZ| is the size of the LZ78-compression
of T . This can be bounded by|LZ| = uHk(T) + o(u log σ), whereHk(T) is thek-th order empirical entropy
of T , for any k = o(logσ u). The LZ-index is built inO(u log σ) time, yet requiringO(u log u) bits of main
memory in the worst case. In practice, the LZ-index occupies1.0-1.5 times the text size (and replaces the text),
but its construction requires around 5 times the text size. This limits its applicability to medium-sized texts. In
this paper we present a space-efficient algorithm to construct the LZ-index inO(u(log σ + log log u)) time and
requiring4|LZ|(1 + o(1)) bits of main memory, that is, asymptotically the same space of the final index. We also
adapt our algorithm to construct more recent reduced versions of the LZ-index, which occupy from 1 to 3 times
|LZ|(1 + o(1)) bits, and show that these can also be built using asymptotically the same space of the final index.
Finally, we study an alternative model in which we are given only a limited amount of main memory to carry out
the indexing process (less than that required by the final index), and must use the disk for the rest. We show how to
build all the LZ-index variants inO(u(log σ + log log u)) time, and within|LZ|(1 + o(1)) bits of main memory,
that is, asymptotically just the space to hold the LZ78-compressed text. Our experimental results show that our
method is efficient in practice, needing an amount of memory close to that of the final index, and being competitive
with the best construction times of other compressed indexes.

1 Introduction and Previous Work

Text searchingis a classical problem in Computer Science. Given a sequenceof symbolsT [1..u] (the text)
over an alphabetΣ of size σ, and given another (short) sequenceP [1..m] (the search pattern) over Σ,
the full-text search problemconsists of finding (counting or reporting) all theocc occurrences ofP in T .
Nowadays, much information is stored in the form of (usuallylarge) texts, e.g. biological sequences such as
DNA and proteins, XML data, MIDI pitch sequences, digital libraries, program code, etc. Usually, these texts
need to be searched for patterns of interest, and therefore the full-text search problem plays a fundamental
role in modern computer applications.

Text Compression and Indexing. Despite that there has been some work on space-efficient inverted indexes
for natural language texts [71, 58] (able to find whole words and phrases), until one decade ago it was

⋆ A preliminary partial version of this paper appeared inProc. ISAAC 2005, pp. 1143–1152.
⋆⋆ Funded by CONICYT PhD Fellowship Program, Chile. Part of this work was done while the author was in the Department

of Computer Science, Univesity of Chile, and later visitingthe David Cheriton School of Computer Science, University of
Waterloo.

⋆ ⋆ ⋆ Funded by Fondecyt Grant 1-080019 and by Millennium Institute for Cell Dynamics and Biotechnology (ICDB), Grant ICM
P05-001-F, Mideplan, Chile.

believed that any general index for text searching (such as those that we are considering in this paper) would
need much more space. In practice, the smallest index available was the suffix array [46], a compact version
of suffix trees [1] requiringu log u bits3 to index a text ofu symbols. Since the text requiresu log σ bits to
be represented, the suffix array is usually much larger than the text (typically 4 times the text size). With the
large texts available nowadays (e.g., the Human Genome consists of about3× 109 base pairs), one solution
is to store the indexes on secondary memory. However, this has a significant impact on the running time of
an application, as accesses to secondary memory are orders of magnitude slower.

Several attempts to reduce the space of the suffix arrays havebeen made [41, 26, 65, 18, 25, 42, 19].
They aim atcompressed indexing, which takes advantage of the regularities of the text to operate in space
proportional to that of the compressed text (i.e.,c times the size of the text compressed under some model,
for some constantc). Especially, in some of those works [65, 18, 25, 55, 42, 19, 64, 7] the indexesreplace
the text and, using little space (sometimes even less than that of the original text), provide indexed access.
This feature is known asself-indexing, since the index allows one to search and retrieve any part ofthe text
without storing the text itself. Taking space proportionalto the compressed text, replacing it, and providing
efficient indexed access to it, is an important breakthrough.

The main families of self-indexes based on suffix arrays [57]are theCompressed Suffix Arrays(CSAs
for short) [65, 25] and FM-indexes (for “Full-text index in Minute space”) [18, 42, 19]. The latter compress
suffix arrays via the Burrows-Wheeler Transform [10]. The compressibility in both families is usually mea-
sured in terms of thek-th order empirical entropy, Hk, which is a lower bound on the performance of
statistical compressors based on predicting the next text symbol as a function of thek preceding ones.

A separate track of indexes based on Lempel-Ziv compression[72, 73] was pursued in parallel to the
research on compressing suffix arrays. These are generally called LZ-indexes [36, 55, 18, 64, 7]. Except for
the first pioneering work [36], all the rest are self-indexesand based on the Lempel-Ziv compression algo-
rithm of 1978 (LZ78) [73]. Their space performance is measured in terms of the output size of Lempel-Ziv
compressors, which are based on exploiting the repetitionsthat arise in the text. This can be upper-bounded
by thek-th order empirical entropy of the text, but it can be smallerwhen the text is repetitive.

Handling compressed indexes certainly requires more operations than classical indexes. However, given
the relation between main and secondary memory access times, handling compressed indexes entirely in
main memory is much faster than handling them in uncompressed form in secondary storage.

We are particularly interested in LZ-indexes, since they have shown to be very effective in practice
for extracting text, displaying occurrence contexts, and locating many occurrences, outperforming suffix-
array-based self-indexes at these tasks [56, 64, 5, 17]. In theory, only LZ-indexes achieve high-order entropy
space together withO(log u) worst-case time per located occurrence. Moreover, in practice many pattern
occurrences can be actually found in constant time. In particular, we will be interested in Navarro’s LZ-
index [55, 56] and its more recent variants [6, 7, 5].

Compressed Construction of Self-Indexes. Many works on compressed full-text self-indexes do not con-
sider the space-efficient construction of the indexes. Yet,this aspect becomes crucial when implementing
the index in practice. For example, the original construction of the CSA [26, 65] andFM-index[18] involves
building first the suffix array of the text, using for example the algorithm of Larsson and Sadakane [40] or
the one by Manzini and Ferragina [48]. Similarly, Navarro’sLZ-index is constructed over a non-compressed
intermediate representation [55]. In both cases one needs in practice about 5 times the text size (in the case
of the CSA and the FM-index, by using the deep-shallow algorithm [48]). For example, the Human Genome

3 log x means⌈log2 x⌉ in this paper.

may fit in less than 1 GB of main memory using these indexes (andthus it can be operated entirely in
RAM on a modest desktop computer), but 15 GB of main memory areneeded to build the indexes! Using
secondary memory for the construction is nowadays the most practical alternative [15].

Another research path is to try building the suffix array directly in compressed space in main memory.
Hon et al. [31] present an algorithm to construct suffix arrays (and also suffix trees) usingO(u log σ) bits
of storage, inO(u log log σ) = o(u log u) time for suffix arrays, andO(u(logǫ u + log σ)) time for suffix
trees, for any fixed0 < ǫ < 1. This gives an alternative algorithm to construct the CSA and the FM-index
using O(u log σ) bits of storage andO(u log log σ) time. For sufficiently small alphabets, i.e.,log σ =
O((log log u)1−ǫ), the construction time can be made optimal,O(u). However, the space requirement to
construct the CSA is still bigger than that needed by the finalindex.

The work of Hon et al. [29, 30] deal with the space (and time) efficient construction of the CSA. The
former uses(2H0(T)+1+ ǫ)u+o(u log σ) bits of space to build the CSA, whereǫ is any positive constant.
The construction time isO(σu log u), which is good enough for small alphabets (as for DNA sequences),
but impractical for larger alphabets such as those of Oriental languages.

The second work [30] addresses this problem by requiring(H0(T) + 2 + ǫ)u + o(u log σ) bits of space
andO(u log u) time to build the CSA. Also, they show how to build the FM-index from the CSA using
negligible extra space inO(u) time. In practice they were able to build the CSA for the HumanGenome in
about 24 hours and requiring about 3.6 GB of main memory [28],on a 1.7 GHz CPU. The FM-index can be
built from the CSA in about 4 extra hours, for a total of about 28 hours.

Na and Park [54] construct the CSA inO(u log σ(logσ u)log3 2) bits of space andO(u) time. This is the
most space-efficient linear-time algorithm for constructing the CSA. They leave open, however, the question
of whether the CSA can be constructed in linear time and requiring O(u log σ) bits of space.

Kärkkäinen [35] introduces an algorithm to construct theBurrows-Wheeler transform of a textT (and
hence its FM-index) inO(u log u + vu) worst-case time and usingO(u log u/

√
v) bits of working space,

wherev ∈ [3, u2/3]. Sirén [32] introduces a space-efficient algorithm to construct CSAs inO(u log u) worst-
case time and usingO(u) bits of space on top of the CSA itself. Ferragina et al. [16] present an algorithm
for building the Burrows-Wheeler transform of a textT (and also for building compressed indexes) in
O(u log1+ǫ u) time, for anyǫ > 0, which useso(u) bits of working space if the alphabet size is a constant. If
we make the algorithm from Kärkkäinen [35] useo(u) bits of working space,the construction time becomes
ω(u log2 u). However, that complexity holds for any alphabet size, not only for constant-size alphabets [16].

As seen, many works study the space-efficient construction of the CSA and the FM-index. However,
the space-efficient construction of LZ-indexes has not beenaddressed. The original construction algorithm
requiresO(u log σ) time, butO(u log u) bits of main memory in the worst case, just as the uncompressed
construction of CSAs and FM-indexes. Since LZ-indexes are competitive in practice for locating pattern
occurrences and extracting text substrings [56, 5, 17] (which is very important for self-indexes), their space-
efficient construction is certainly an important issue.

Our Contribution. We present a practical and efficient algorithm to construct Navarro’s LZ-index [55, 56]
using little space. Our idea is to replace, at construction time, the (space-inefficient) intermediate representa-
tions of the tries that conform the index by space-efficient counterparts. Basically, we define an intermediate
representation for the tries, supporting fast incrementalconstruction directly from the text and requiring little
space compared with the traditional (pointer-based) representation. The resulting intermediate data structure
consists of a tree whose nodes are small connected components of the original trie, orblocks. These small
tries are represented succinctly in order to require littlespace. Notice also that the blocks are easier and

cheaper to update, since they are small. The idea is inspiredin the work of Clark and Munro [13], yet ours
differs in numerous aspects (structuring inside the blocks, overflow management policies, etc.).

Our algorithm builds the LZ-index inO(u(log σ+log log u)) time, while requiring4|LZ|(1+o(1)) bits
of space, where|LZ| is the bit-size of the output of the LZ78-compression ofT . This is the same asymptotic
space the final LZ-index requires to operate. This size can becompared with that of compressed suffix
array via the (not always tight) upper bound|LZ| 6 uHk(T) + o(u log σ). At the time of the preliminary
version of this work [4], this was thefirst construction algorithm for a compressed self-index requiring
space proportional toHk(T) instead ofH0(T). Recently, however, a construction algorithm for the so-
called Alphabet FriendlyFM-index (AF-FMI) [19] has appeared, requiringuHk(T) + o(u log σ) bits of
space, andO(u log u log σ) time [44], and evenO(u log u log σ

log log u) [24]. Yet, the time obtained in the present
paper is far better, and it also improves significantly upon theO(σu) worst-case time of our early result [4].

We show how the reduced-space versions of the LZ-index [6, 5,7] can similarly be constructed within
asymptotically the space required by the final index. We alsopresent an alternative model to construct the
indexes, in which we assume that the available main memory tocarry out the indexing process is smaller
than the space required by the final index, and we must use the disk for the rest. This model has applications
in cases where the indexing process must be carried out in a computer that is not so powerful to maintain
the whole index in main memory, leaving a more powerful equipment exclusively to answer user queries.
We show that, under this model, the LZ-indexes can be constructed within|LZ|(1 + o(1)) bits of space, for
any0 < ǫ < 1, in O(u(log σ + log log u)) time andO(|LZ|) I/O cost. This means that the LZ-indexes can
be built within asymptotically the same space than that required by the LZ78-compressed text.

We implement and empirically test a simplification of our algorithm, and demonstrate that in many
practical scenarios the indexing space requirement is almost the same as that of the final index. Thus, we
conclude thatwherever the LZ-index can be used, we can build it. For example, we show that our algorithm
is able to build the LZ-index for the Human Genome in less than5 hours on a 3 Ghz CPU, and requiring 3.5
GB of main memory, so that this work can be carried out in a commodity PC. Under the reduced-memory
scenario, our experimental results show that the LZ-index for the Human Genome can be constructed within
1.6 GB of main memory, which is about half of the space required by the uncompressed genome (assuming
the base pairs are represented by bytes), and also in less than 5 hours. This is competitive with the best
current algorithms to build suffix arrays [15].

Table 1 summarizes the results obtained in this paper and compares with existing approaches.2 Preliminary Concepts

2.1 Model of Computation

We assume the standardword RAM model of computation, in which we can access any memory word of w
bits, such thatw = Θ(log u), in constant time. Standard arithmetic and logical operations are assumed to
take constant time under this model. We measure the size of our data structures in bits.

Usually, after an indexing algorithm builds a text index in main memory, the index is stored on disk along
with the text database, for persistence purposes. In the case of compressed self-indexes, the index by itself
represents the database. At query time, the index is loaded into main memory in order to answer (many) user
queries. Thus, by saving the index the (usually costly) indexing process is amortized over several queries.
Yet, in other scenarios, one builds the index in main memory and answers queries on the fly.

We will initially assume that there is enough main memory to hold the final index. Later we will consider
reduced-main-memory scenarios, where we will resort to secondary memory to hold the intermediate results.
In this case, as the final index must reside on disk, we will assume that there is enough secondary memory
to hold the index we build.

Table 1.Comparison of different algorithms for constructing text indexes. The reduced-space LZ-index versions can be constructed
within the same space required by the final indexes. In all casesǫ stands for any positive (and usually small) value.

Index Indexing space (in bits) Indexing time

Suffix Array (SA) [21] u log u O(u log u)
SA [31] O(u log σ) (*) O(u log log σ)
CSA [30] u(H0(T) + 2 + ǫ) + o(u log σ) (†) O(u log u)

CSA [54] O(u log σ(logσ u)log3 2) (*) O(u)

AF-FMI [24] uHk(T) + o(u log σ) (§) O(u log u(1 + log σ
log log u

))

LZ-index (original) [55, 56] O(u log u) O(u log σ)
LZ-index (our early result) [4] (4 + ǫ)uHk(T) + o(u log σ) (‡) O(σu)
LZ-index (this paper) 4uHk(T) + o(u log σ) (‡) O(u(log σ + log log u))
Reduced LZ-indexa (this paper) (1 + ǫ)uHk(T) + o(u log σ) (‡) O(u(log σ + log log u))
Reduced LZ-indexb (this paper) (2 + ǫ)uHk(T) + o(u log σ) (‡) O(u(log σ + log log u))
Reduced LZ-indexc (this paper) (3 + ǫ)uHk(T) + o(u log σ) (‡) O(u(log σ + log log u))

(*) This is o(u log u) bits if log σ = o(log u). (†) This isO(u log σ) in the worst case. (§) For anyk 6 α logσ u and any constant
0 < α < 1. (‡) For anyk = o(logσ u). In fact this is an upper bound, as the real space isc|LZ|(1 + o(1)), for various constantsc.

Since, depending on the scenario, we might or might not have to read the text from disk, and we might
or might not have to write the final index to disk, and because those costs are fixed, we will not mention
them. Yet, in the reduced-main-memory scenarios we will usethe disk to read/write intermediate results,
and in this case we will also consider the amount of extra I/O performed. When accessing the disk, we
assume the standard model [69] where a disk page ofB bits is transferred to/from secondary storage with
each access. Finally, the space required by the text is not accounted for in the space required by the indexing
algorithms. If it resides on disk one can process it sequentially so it does not require any significant main
memory. Moreover, in most of our algorithms one could erase the text at an early stage of the construction.

2.2 Empirical Entropy

A concept related to text compression is that of thek-th order empirical entropy of a sequence of symbols
T [1..u] over an alphabet of sizeσ, denoted byHk(T) [47]. The valueuHk(T) provides a lower bound to
the number of bits needed to compressT using any compressor that encodes each symbol considering only
the context ofk symbols that precede it inT .

2.3 Lempel-Ziv Compression

The Lempel-Ziv compression algorithm of 1978 (usually named LZ78 [73]) is based on adictionary of
phrases, in which we add every newphrasecomputed. At the beginning of the compression, the dictionary
contains a single phraseb0 of length 0 (i.e., the empty string). The current step of the compression is as
follows: If we assume that a prefixT [1..j] of T has been already compressed into a sequence of phrases
LZ = b1 . . . br, all of them in the dictionary, then we look for the longest prefix of the rest of the text
T [j + 1..u] which is a phrase of the dictionary. Once we have found this phrase, saybs of lengthℓs, we
construct a new phrasebr+1 = (s, T [j + ℓs + 1]), write the pair at the end of the compressed fileLZ, i.e.
LZ = b1 . . . brbr+1, and add the phrase to the dictionary.

We will call Bi the string represented by phrasebi, thusBr+1 = BsT [j +ℓs +1]. In the rest of the paper
we assume that the textT has been compressed using the LZ78 algorithm inton+1 phrases,T = B0 . . . Bn,
such thatB0 = ε (the empty string). We say thati is thephrase identifiercorresponding toBi, for 0 6 i 6 n.

Therefore the output size of the LZ78 compression algorithmis |LZ| = n(log n + log σ). Although
we will usually give detailed space results, when we summarize we will assumelog σ = o(log n), and thus
|LZ| = n log n(1 + o(1)). We now point out some useful properties.

Property 1. For all1 6 t 6 n, there existsℓ < t andc ∈ Σ such thatBt = Bℓ · c.

That is, every phraseBt (exceptB0) is formed by a previous phraseBℓ plus a symbolc at the end. This
implies that the set of phrases isprefix closed, meaning that any prefix of a phraseBt is also an element of
the dictionary. Hence, a natural way to represent the set of stringsB0, . . . , Bn is a trie, which we callLZTrie.

Property 2. Every phraseBi, 0 6 i < n, represents a different text substring.

The only exception to this property is the last phraseBn. We deal with the exception by appending toT a
special symbol “$”6∈ Σ, assumed to be smaller than any other symbol in the alphabet.The last phrase will
contain this symbol and thus will be unique too.

In Fig. 1 we show the LZ78 phrase decomposition for our running example textT =“alabar a la
alabarda para apalabrarla”, where for clarity we replace blanks by ‘’, which will be assumed

to be lexicographically larger than any other symbol in the alphabet. We show the phrase identifiers above
each corresponding phrase in the parsing. In Fig. 4(a) we show the correspondingLZTrie. Inside eachLZTrie
node we show the corresponding phrase identifier.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
a l ab ar a la a lab ard a p ara ap al abr arl a$

Fig. 1. LZ78 phrase decomposition for the running example text
T =“alabar a la alabarda para apalabrarla”, and the corresponding phrase identifiers.

The compression algorithm isO(u) time in the worst case and efficient in practice provided we use the
LZTrie, which allows rapid searching of the new text prefix (for eachsymbol ofT we move once in the trie).

Property 3 ([73]).It holds that
√

u 6 n 6
u

logσ u . This implieslog n = Θ(log u) andn log u 6 u log σ.

We shall use the following result of Kosaraju and Manzini [38] to bound the size of the output of the
LZ78 parsing of textT in terms of thek-th order empirical entropy ofT .

Lemma 1 ([38]). It holds thatn log n 6 uHk(T) + O(u1+k log σ
logσ u) for anyk.

In particular, fork = o(logσ u), we have that in the worst casen log n = uHk(T) + o(u log σ). This
requires assuminglog σ = o(log u) to allow fork > 0, i.e., high-order compression. Note this is equivalent
to thelog σ = o(log n) simplifying assumption we have mentioned above.

We also prove the following result, which is related to Lemma1 and shall be useful in our work.

Lemma 2. It holds thatn log u 6 uHk(T) + o(u log σ) for anyk = o(logσ u).

Proof. Note thatn log u = n log n+n log u
n . By Lemma 1, the former term is at mostuHk(T)+o(u log σ),

for anyk = o(logσ u). The latter term is increasing inn for n 6 u/e, so forn = o(u) we can pessimistically
replacen by u

logσ u due to Property 3. This yieldsn log u
n 6

u
logσ u log logσ u = o(u log σ). If, instead,

n = Θ(u) then, again by Property 3, we have thatlog σ = Θ(log u) and the latter term isO(n) = o(u log σ).
⊓⊔

2.4 Succinct Representations of Sequences and Permutations

A succinct data structurerequires space close to the information-theoretic lower bound, while supporting the
corresponding operations efficiently. We review some results on succinct data structures, which are needed
in our work.

Data Structures for rank and select Given a bit vectorB[1..n], we define the operationrank0(B, i)
(similarly rank1) as the number of 0s (1s) occurring up to thei-th position ofB. The operationselect0(B, i)
(similarly select1) is defined as the position of thei-th 0 (i-th 1) inB. We assume thatselect0(B, 0) always
equals 0 (similarly forselect1). These operations can be supported in constant time and requiring n + o(n)
bits [51], or evennH0(B) + o(n) bits [62]. Theo(n) overhead can be made as small asO(n/ logc n) for
any constantc [61].

There exist a number of practical data structures supporting rank andselect, like the one by González
et al. [23], Kim et al. [37], Okanohara and Sadakane [60], etc. Among these, the first [23] is very (perhaps
the most) efficient in practice to computerank, requiring little space on top of the sequence itself. Operation
select is implemented by binary searching the directory built for operationrank, and thus without requiring
any extra space for that operation (yet, the time forselect becomesO(log n)).

Given a sequenceS[1..u] over an alphabetΣ, we generalize the above definition torankc(S, i) and
selectc(S, i) for any c ∈ Σ. If σ = O(polylog(u)), the solution of Ferragina et al. [19] allows one to
compute bothrankc andselectc in constant time and requiringuH0(S)+ o(u) bits of space. Otherwise the
time isO(log σ

log log u) and the space isuH0(S) + o(u log σ) bits. Mäkinen and Navarro [44] showed how to
handle in addition insertions and deletions on bitmaps and sequences, achievingO(log u log σ) time for all
operations. This was later improved [24] toO(log u(1 + log σ

log log u)), always within the same space bounds.

Data Structures for Searchable Partial SumsGiven an arrayA[1..n] of n integers ofk′ bits each, a data
structure for searchable partial sums allows one to retrieve A[i] and supports operationsSum(A, i), which
computes

∑i
j=1 A[j]; Search(A, i), which finds the smallestj′ such thatSum(A, j′) > i; Update(A, i, δ),

which setsA[i]← A[i]+δ; Insert(A, i, e), which adds a new elemente to the set between elementsA[i−1]
andA[i]; andDelete(A, j), which deletesA[j].

A simple data structure [44] supports all these operations in O(log n) worst-case time, and requires
nk′ + o(nk′) bits of space. For this work, it is interesting that the spacecan be madenk′ + O(n) bits.

Succinct Representation of PermutationsThe problem here is to represent a permutationπ of {1, . . . , n},
such that we can compute bothπ(i) and its inverseπ−1(j) in constant time and using as little space as
possible. A natural representation forπ is to store the valuesπ(i), i = 1, . . . , n, in an array ofn log n bits.

An efficient solution to computingπ−1(j) within little extra space [52] is based on thecycle notation
of a permutation. We explain it in some detail, as this will benecessary later in this work. The cycle for the
i-th element ofπ is formed by elementsi, π(i), π(π(i)), and so on untili is found again. Notice that every

element occurs in exactly one cycle ofπ. For example, the cycle notation for permutationπ of Fig. 2(a)
is shown in Fig. 2(b). So, we computeπ−1(j) looking for j only in its cycle:π−1(j) is just the value
“pointing” to j in the diagram. To computeπ−1(13) in our example, we start at position 13, then move to
positionπ(13) = 7, then toπ(7) = 12, then toπ(12) = 2, then toπ(2) = 17, and asπ(17) = 13 we
conclude thatπ−1(13) = 17. Since there are no bounds for the size of a cycle, this takesO(n) time in the
worst case. Yet, it can be improved for a more efficient computation ofπ−1(j).

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
π[i] 1 17 3 15 14 4 12 10 16 6 11 2 7 9 5 8 13

(a) An example of permutationπ.

2 17 13 7 12 4 15 5 14 9 16 8 10 6 1131

(b) Cycle notation of permutationπ.

Fig. 2. Cycle representation for a given permutationπ. Each solid arrowi → j in the diagram meansπ(i) = j. Dashed arrows
represent backward pointers.

Given 0 < ǫ < 1, we create subcycles of sizeO(1/ǫ) by adding abackward pointerout of O(1/ǫ)
elements in each cycle ofπ. Dashed arrows in Fig. 2(b) show backward pointers for1/ǫ = 2. To compute
π−1 we follow the cycles as before, yet now we follow a backward pointer if we reach it. We store the
backward pointers compactly in an array ofǫn log n bits. We mark the elements having a backward pointer
by using a bit vector supportingrank queries, which also help us find the backward pointer corresponding
to an element (see Munro et al. [52] for details). The whole solution uses(1 + ǫ)n log n + n + o(n) bits.

Next we present a result that shall be useful later for our purposes of constructing the LZ-index for a
textT . Our result states that any permutationπ can be inverted in-place in linear time and using onlyn extra
bits of space. This can be seen as a particular case ofrearranging a permutation[20], where we are given
an array and a permutation, and want to rearrange the array according to the permutation.

Lemma 3. Given a permutationπ of {1, . . . , n} represented by an array usingn log n bits of space, we can
compute on the same array the inverse permutationπ−1 in O(n) time and requiringn bits of extra space.

Proof. Let Aπ[1..n] be an auxiliary bit vector requiringn bits of storage, which is initialized with all zeros
(this is just the raw bit vector, no additional data structure for rank and select is added). Letπ be the
array representing the permutation, usingn log n bits of space. The idea to constructπ−1 is to use the cycle
structure ofπ to reverse the “arrows” conforming the cycles (i.e., “i → j” in a cycle of π, which means
π[i] = j, now becomes “i ← j”, which meansπ−1[j] = i). So, the main idea is to regard the cycles ofπ
as “linked lists”. Thus, constructingπ−1 is a matter of reversing the pointers in the lists, and therefore we
shall need three auxiliary pointers to do that job. We followthe cycles ofπ, usingAπ to mark with a1 those
positions which have been already visited during this process.

We start with the cycle at positiona← 1, and traverse it from positionp← π[a]. We then setb← π[p],
π[p] ← a (i.e., we store the positiona which brings us to the current one), andAπ[p] ← 1. Then we move
to positiona← p, setp← b, and repeat the process again, stopping as soon as we find a1 in Aπ. Then we

try with the cycle starting at positionp + 1, which is the next one after the position that started the previous
cycle, and follow it just if the corresponding bit inAπ is 0.

Thus, each element in the permutation is visited twice: elements starting a cycle are visited at the be-
ginning and at the end of the cycle, while elements in the middle of a cycle are visited when traversing the
cycle to which they belong, and when trying to start a cycle from them. Thus, the overall time isO(n), and
we usen extra bits on top of the space ofπ, and the lemma follows. ⊓⊔

2.5 Succinct Representation of Trees

Given a (general and unlabeled) tree withn nodes, there exist a number of succinct representations requiring
2n + o(n) bits. Since the number of distinct trees ofn nodes isCn = 1

n+1

(2n
n

)

= Θ(4n/n3/2), this is close
to the information-theoretic lower bound of at leastlog Cn = 2n−Θ(log n) bits.

Balanced ParenthesesThe problem of representing a sequence of balanced parentheses is highly related
to the succinct representation of trees [53]. Given a sequence par of 2n balanced parentheses, we want to
support the following operations onpar: findclose(par, i), which given an opening parenthesis at position
i, finds the position of the matching closing parenthesis;findopen(par, j), which given a closing paren-
thesis at positionj, finds the position of the matching opening parenthesis;excess(par, i), which yields the
difference between the number of opening and closing parentheses up to positioni; andenclose(par, i),
which given a parentheses pair whose opening parenthesis isat positioni, yields the position of the opening
parenthesis corresponding to the closest matching parentheses pair enclosing the one at positioni.

Munro and Raman [53] show how to compute all these operationsin constant time and requiring2n +
o(n) bits of space. They also show one of the main applications of maintaining a sequence of balanced
parentheses: the succinct representation of general trees, with the so-calledBP representation. Among the
practical alternatives, we have the representation of Geary et al. [22], the one of Sadakane and Navarro [67],
and the one by Navarro [55, Section 6.1]. The latter has shownto be very effective for representing LZ-
indexes [56, 3].

DFUDSTree RepresentationTo get this representation, named after Depth-First Unary Degree Sequence [8],
we perform a preorder traversal on the tree, and for every node reached we write its degree in unary using
parentheses. For example, a node of degree 3 reads ‘((()’ under this representation. Notice that a leaf is
represented by ‘)’. What we get is almost a balanced parentheses representation: we only need to add a
fictitious ‘(’ at the beginning of the sequence. A node of degreed is identified by the position of the first of
thed + 1 parentheses representing the node.

This representation requires2n+o(n) bits, and supports operationsparent(x) (which gets the parent of
nodex), child(x, i) (which gets thei-th child of nodex), subtreesize(x) (which gets the size of the subtree
of nodex, includingx itself), degree(x) (which gets the degree, i.e., the number of children, of nodex),
childrank(x) (which gets the rank of nodex within its siblings [34]), andancestor(x, y) (which tells us
whether nodex is an ancestor of nodey), all in O(1) time. If we assume thatpar represents theDFUDS

sequence of the tree, then we have:

parent(x) ≡ select)(par, rank)(par, findopen(par, x − 1))) + 1

child(x, i) ≡ findclose(par, select)(par, rank)(par, x) + 1)− i) + 1

Operationdepth(x) (which gets the depth of nodex in the tree) can also be computed in constant time on
DFUDS by using the approach of Jansson et al. [34], requiringo(n) extra bits.

Given a node in this representation, say at positioni, its preorder position can be computed by counting
the number of closing parentheses before positioni; in other words,preorder(x) ≡ rank)(par, x − 1).
Given a preorder positionp, the corresponding node is computed byselectnode(p) ≡ select)(par, p) + 1.

Representingσ-ary Trees withDFUDS For cardinal trees (i.e., where each node has at mostσ children,
labeled by distinct symbols in the set{1, . . . , σ}) we use theDFUDS sequencepar plus an arrayletts[1..n]
storing the edge labels according to aDFUDS traversal of the tree: we traverse the tree in depth-first preorder,
and every time we reach a nodex we write the symbols labeling the children ofx. In this way, the labels of
the children of a given node are all stored contiguously inletts, which will allow us to compute operation
child(x, α) (which gets the child of nodex with labelα ∈ {1, . . . , σ}) efficiently. In Fig. 4(c) we show the
DFUDS representation ofLZTrie for our running example (plus an arrayids with the phrase identifiers).

We support operationchild(x, α) as follows. Suppose that nodex has positionp within the DFUDS

sequencepar, and letp′ = rank((par, p) − 1 be the position inletts for the symbol of the first child
of x. Let nα = rankα(letts, p′ − 1) be the number ofαs up to positionp′ − 1 in letts, and leti =
selectα(letts, nα + 1) be the position of the(nα + 1)-th α in letts. If i lies between positionsp′ and
p′ + degree(x) − 1, then the child we are looking for ischild(x, i − p′ + 1), which, as we said before, is
computed in constant time overpar; otherwisex has not a child labeledα. We can also retrieve the symbol
by whichx descends from its parent, withletts[rank((par, parent(x)) − 1 + childrank(x) − 1], where
the first term stands for the position inletts corresponding to the first symbol of the parent of nodex.

Thus, the time for operationchild(x, α) depends on the representation we use forrankα andselectα
queries (see Section 2.4). Notice thatchild(x, α) could be supported in a straightforward way by binary
searching the labels of the children ofx, in O(log σ) worst-case time and not using any extra space on top of
arrayletts. The scheme we have presented to representletts is slightly different from the original one [8],
which achievesO(1) time for child(x, α) for any σ. However, our method is simpler to build, since the
original one is based on perfect hashing, which is expensiveto construct.

3 The LZ-index Data Structure

3.1 Definition of the Data Structures

Assume that the textT [1..u] has been compressed using the LZ78 algorithm inton + 1 phrasesT =
B0 . . . Bn, as explained in Section 2.3. The data structures that conform the LZ-index are [55, 56]:

1. LZTrie: is the trie formed by all phrasesB0 . . . Bn. Given the properties of LZ78 compression, this trie
has exactlyn + 1 nodes, each one corresponding to a phraseBi.

2. RevTrie: is the trie formed by all the reverse stringsBr
0 . . . Br

n. In this trie there could be internal nodes
not representing any phrase. We call these nodesempty.

3. Node: is a mapping from phrase identifiers to their node inLZTrie.
4. Range: is a data structure for two-dimensional searching in the space[0 . . . n] × [0 . . . n]. We store the

points{(revpreorder(t), preorder(t + 1)), t ∈ 0 . . . n− 1} in this structure, whererevpreorder(t) is
theRevTriepreorder of node for phraset (considering only non-empty nodes in the preorder enumera-
tion), andpreorder(t+1) is theLZTriepreorder for phraset+1. For each such point, the corresponding
t value is stored.

3.2 Succinct Representation of the Data Structures

The data structures that compose the LZ-index are built and represented as follows.

LZTrie. For the construction ofLZTriewe traverse the text and at the same time build a trie representing the
Lempel-Ziv phrases, spending (as usual) one pointer per parent-child relation. At stept (assumeBt = Bℓ ·c),
we read the text that follows and step down the trie until we cannot continue. At this point we create a new
trie leaf (child of the trie node of phraseℓ, by symbolc, and assigning the leaf phrase numbert), go to the
root again, and go on with stept + 1 to read the rest of the text. The process completes when the last phrase
finishes with the text terminator “$”. In Fig. 4(a) we show theLempel-Ziv trie for the running example,
using pointers. After we build the trie, we can erase the textas it is not anymore necessary, since we have
now enough information to build the remaining index components.

Then we build the final representation of the topology ofLZTrie, bitmappar, using the parentheses
representation of Munro and Raman [53], yet newer versions of the LZ-index [7] use theDFUDS represen-
tation [8]. We also create the arrayids[1..n], storing the LZ78 phrase identifiers in preorder, andletts[1..n],
storing the symbols that label the trie edges, in preorder. The final size isn log n + n log σ + O(n) bits.

Node. OnceLZTrie is built, we free the space of the pointer-based trie and build Node. This is just an array
with the n nodes ofLZTrie. If the i-th position of theids array corresponds to thej-th phrase identifier
(i.e., ids[i] = j), then thej-th position ofNode stores the position of thei-th node within the balanced
parentheses. As there are2n parentheses,Node requiresn log 2n = n log n + O(n) bits.

RevTrie. To constructRevTriewe traverseLZTrie in preorder, generating each LZ78 phraseBi stored in
LZTrie in constant time, and then inserting it into atrie of reversed strings(represented with pointers). For
simplicity, empty unary paths are not compressed in the pointer-based trie. When we finish, we traverse the
trie in preorder and represent the trie topology ofRevTriein bitmaprpar, the phrase identifiers in array
rids, and the labels of the edges in arrayrletts. Empty unary nodes are removed only at this step, and so
the final numbern′ of nodes inRevTriesatisfiesn 6 n′ 6 2n.

Notice that if we usen′ log n bits for therids array, then in the worst caseRevTrierequires2n log n +
O(n log σ) bits of storage, which would increase the space usage of the index. Instead, we can represent the
rids array withn log n bits (i.e., only for the non-empty nodes), plus a bitmap of2n + o(n) bits supporting
rank queries inO(1) time [51]. Thej-th bit of the bitmap is1 if the node represented by thej-th opening
parenthesis is not an empty node, otherwise the bit is0. Therids index corresponding to thej-th opening
parenthesis isrank1(j). Using this representation,RevTrierequires at mostn log n + 2n log σ + O(n) bits
of storage. This was unclear in the original LZ-index paper [55, 56].

Range.The data structure of Chazelle [12] permits two-dimensional range searching in a grid ofn pairs of
integers in the range[1..n]× [1..n]. This structure can be represented withn log n + O(n) bits of space. We
explain the simpler case, which is the one that arises in our work, where the points represent a permutation
of {1, . . . , n} [43], i.e., there is exactly one point with first coordinatei for any1 6 i 6 n, and one point
with second coordinatej for any1 6 j 6 n.

To constructRange, we sort the set by the second coordinatej, and then divide the set according to the
first coordinatei, to form a perfect binary tree where each node handles an interval of the first coordinatei,
and thus knows only the points whose first coordinate falls inthat interval. The root handles the points with
first coordinate within[1..n] (i.e., all), and the children of a node handling the interval[i..i′] are associated
to [i..⌊(i + i′)/2⌋] and[⌊(i + i′)/2⌋ + 1..i′]. Leaves handle intervals of the form[i..i].

Every tree nodev is then represented with a bit vectorBv indicating for each point handled byv whether
the point belongs to the left or right child. In other words,Bv[r] = 0 iff the r-th point handled by nodev (in
the order given by the second coordinatej) belongs to the left child. Every level of the tree is represented as
a single bit vector ofn bits, using data structures for constant-timerank andselect [51], which are needed
to support the search (as well as, given a node, finding the corresponding starting position within the level,
see Mäkinen and Navarro [43] for more details). Thus, we only needO(log n) pointers to represent the
levels of the tree, avoiding in this way the need to store the pointers that represent the balanced tree. The
totalo(n log n) extra space for supportingrank andselect over all the bitmaps can be madeO(n) by using
Pătraşcu’s representation [61].

This data structure supports counting the number of points that lie within a two-dimensional range in
O(log n) time, as well as reporting theocc points inside the search range inO((1 + occ) log n) time [43].

RNode. In the practical implementation of the LZ-index [55, 56], the Rangedata structure is replaced
by RNode, which is a mapping from phrase identifiers to their node inRevTrie. After we free the space
of the pointer-based reverse trie, we buildRNode from rids in the same way asNode is built from ids.
It is important to note that, by usingRNode instead ofRange, the LZ-index cannot provide worst-case
guarantees at search time, but just average-case guarantees. However, this approach has shown to be effective
in practice since it has a good average-case search time [56].

Time Performance.The original LZ-index locates theocc occurrences of a pattern of lengthm in worst-
case timeO(m3 log σ + (m + occ) log n). The practical variant usingRNode instead ofRange requires
average timeO(m2(1 + log σ

log log u) + u
σm/2), which isO(m2(1 + log σ

log log u)) for m > 2 logσ u, if we assume
the representation forletts given in Section 2.4.

3.3 Indexing and Final Space

Using the succinct representations, the four structures that conform the LZ-index add up to at most4n log n+
3n log σ + O(n) bits of space. According to Lemma 1, this is at most4uHk(T) + o(u log σ) bits, for any
k = o(logσ u).

The LZ-index can be built inO(u log σ) time [55]. However, a large amount of storage is needed to
construct it [56], mainly because of the pointer representation of the tries used at construction time. In theory,
representing empty unary nodes inRevTrierequires worst-case spaceO(u log u) bits. By compacting it, the
space would becomeO(n log u), yet still with a large constant due to the use of pointers.

In the original experiments [56], the largest extra space needed to buildLZTrie is that of the pointer-based
trie, which is 1.7–2.0 times the text size. However, as expected, the peak space usage is that of building
the pointer-based reverse trie, which is in some cases 4 times the text size. In practice representing the
empty unary nodes does not add much to the space, but the reverse trie has a number of empty non-unary
nodes, which cannot be compacted and sharply increase the space usage. The overall indexing space is
4.8–5.8 times the text size for English text, and 3.4–3.7 times the text size for DNA. As a comparison, the
construction of a plain suffix array without any extra data structure requires 5 times the text size [48].

3.4 Reduced Space Versions of the LZ-index

New versions of the LZ-index have been introduced recently [6, 7, 5], which require less space than the
original LZ-index, in some cases also improving its search performance. The approach introduced to reduce

the space is the so-callednavigational-schemeapproach, which consists in regarding the original LZ-index
(in particular, the version usingRNode instead ofRange, see Section 3.2) as a navigation structure which
allows us moving among the LZ-index components (i.e.,LZTrienodes,LZTriepreorders, phrase identifiers,
RevTrienodes, andRevTriepreorders). All searches are carried out by navigating among these components.

In Fig. 3 we illustrate the original LZ-index navigation scheme, where the four main structures of the
index are shown as solid arrows:

Node : phrase identifier7→ LZTrienode;

RNode : phrase identifier7→ RevTrienode;

ids : LZTriepreorder7→ phrase identifier; and

rids : RevTriepreorder7→ phrase.

Fig. 3.The original LZ-index navigation structures over index components.

As we have seen in Section 2.5 for theDFUDS representation, trie nodes and the corresponding preorders
are “connected” by means ofpreorder andselectnode operations, so we have a navigation scheme that al-
lows us moving back and forth from any index component to any other. We will subindicate these operations
with lz if they refer toLZTrieand withr if they refer toRevTrie.

This approach allows us to study the redundancy introduced by the original index. As a result, several
new reduced space schemes have been introduced [5], allowing the same navigation yet requiring less space.

Scheme 2The so-called Scheme 2 of the LZ-index [5] represents the componentsids : LZTriepreorder7→
phrase identifier;rids−1 : phrase identifier7→ RevTriepreorder; andR : RevTriepreorder7→ LZTriepreorder.
The original search algorithm remains the same, since we cansimulate the missing data structures:rids(i) ≡
ids[R[i]], RNode(i) ≡ selectnoder(rids−1[i]), andNode(i) ≡ selectnodelz(R[rids−1[i]]), all in constant
time. The space requirement [5] is3n log n + 3n log σ + 2n log log u + O(n) + o(u) bits. According to
Lemma 1, this is3uHk(T)+o(u log σ) bits of space, for anyk = o(logσ u). Although this scheme does not
provide worst-case guarantees at search time, it has shown to be efficient in practice, outperforming com-
peting indexes in many real-life scenarios [5]. Thus, we arealso interested in its space-efficient construction
in order to extend its applicability. There exists another alternative requiring the same space as Scheme 2,
which shall be disregarded in this paper, since Scheme 2 outperforms it in most practical cases [5].

Scheme 3This LZ-index variant representsids : LZTriepreorder7→ phrase identifier;ids−1 : phrase iden-
tifier 7→ LZTriepreorder;rids : RevTriepreorder 7→ phrase identifier; andrids−1 : phrase identifier7→
RevTriepreorder. The missing data structures can be simulated as:Node(i) ≡
selectnodelz(ids−1(i)) and RNode(i) ≡ selectnoder(rids−1(i)), all in O(1/ǫ) time. Since arraysids
andrids are represented with the data structure for permutations ofMunro et al. [52], they require a total
space of(2+ǫ)n log n+2n+o(n) bits, for any0 < ǫ < 1. The overall space requirement is(2+ǫ)n log n+
3n log σ + 2n log log u + O(n) + o(u) bits, which according to Lemma 1 is(2 + ǫ)uHk(T) + o(u log σ)
bits, for anyk = o(logσ u). This scheme has also shown to be efficient in practice, outperforming competing
indexes in many real-life scenarios and being able to require less space than Scheme 2 (yet, when requiring
the same space, Scheme 2 usually outperforms Scheme 3).

Scheme 4 This variant represents the following data:ids : LZTriepreorder 7→ phrase identifier;ids−1 :
phrase identifier7→ LZTriepreorder;R : RevTriepreorder7→ LZTriepreorder; andR−1 : LZTriepreorder7→
RevTriepreorder. The missing arrays are simulated asrids(i) ≡ ids[R[i]], Node(i) ≡ selectnodelz(ids−1(i)),
andRNode(i) ≡ selectnoder(R

−1(ids−1(i))), all of which takeO(1/ǫ) time. The inverse permutations are
also represented by the data structure of Munro et al. [52]. Hence, the space requirement is(2 + ǫ)n log n +
3n log σ + 2n log log u + O(n) + o(u), which according to Lemma 1 is(2 + ǫ)uHk(T) + o(u log σ) bits of
space, for anyk = o(logσ u).

Although Scheme 3 outperforms Scheme 4 in most practical scenarios [5], Scheme 4 is interesting by
itself since its space can be reduced even more, achieving interesting theoretical results [7]. The idea is to
replace arrayR by a data structure allowing us to compute anyR[i], yet requiring less than then log n
bits required by the original array. Thus, for everyRevTriepreorder1 6 i 6 n we define functionϕ such
thatϕ(i) = R−1(parentlz(R[i])), andϕ(0) = 0 (operationparentlz is the parent operation inLZTrie, yet
working on preorders instead of on nodes as originally defined). Functionϕ works as asuffix linkin RevTrie:
given aRevTrienode with preorderi representing stringax (for a ∈ Σ,x ∈ Σ∗), theRevTrienode with
preorderϕ(i) represents stringx. An important result is thatR[i] can be computed by means of function
ϕ [7]. We also sampleǫn values ofR in such a way that the computation ofR[i] (by means ofϕ) takes
O(1/ǫ) time in the worst case.

Functionϕ has the same properties as functionΨ of Compressed Suffix Arrays [26, 65], thus this can
be also compressed ton log σ + O(n log log σ) bits of space (in this paper we show how to compress it to
n log σ + O(n) bits and still compute any entry in constant time). The computation of R−1 is supported
also inO(1/ǫ) time, by reverting the process used to computeR. For this, functionϕ′ is defined asWeiner
links [70] in RevTrie4. Functionϕ′ is supported by two arrays,SW [1..n] (of n log σ bits storing, for every
RevTrienode, in preorder, the symbols by which the node has Weiner links defined), andVW [1..2n] (a bit
vector storing, for everyRevTrienode, in preorder, the bit sequence10

d such thatd is the number of Weiner
links defined for the node). The space requirement isǫn log n + n log σ + O(n) bits. By rewriting2ǫ asǫ,
which does not change time complexities, we have:

Lemma 4 ([7]). Let textT [1..u], over an alphabet of sizeσ, be parseable inton phrases by the LZ78 algo-
rithm. Then there exists a Lempel-Ziv compressed full-textself-index requiring(1 + ǫ)n log n + 5n log σ +
O(n) bits of space, for any0 < ǫ < 1. This is(1+ǫ)uHk(T)+o(u log σ) for anyk = o(logσ u). The index is

4 Given aRevTrienodev representing stringx ∈ Σ∗, the Weiner link forv and symbola ∈ Σ is a pointer to theRevTrienode
representing stringax.

able to locate (and count) theocc occurrences of a patternP [1..m] in textT in O(m2

ǫ (1+ log σ
log log u)+ u

ǫσm/2)

average time, which isO(m2

ǫ (1 + log σ
log log u)) if m > 2 logσ u.

Thus the LZ-index can be represented with almost optimal space under the LZ78 compression model
(recall that|LZ| = n log n+n log σ), and also under the empirical entropy modelHk(T) in the (usual) case
Hk(T) = Θ(log σ)). Yet, we cannot provide worst-case guarantees at search time within this space.

We can get such worst-case guarantees at search time by adding Range, the two-dimensional range
search data structure, as defined for the original LZ-index.This requiresn log n + O(n) extra bits of space.

Lemma 5 ([7]). Let textT [1..u], over an alphabet of sizeσ, be parseable inton phrases by the LZ78 algo-
rithm. Then there exists a Lempel-Ziv compressed full-textself-index requiring(2 + ǫ)n log n + 5n log σ +
O(n) bits of space, for any0 < ǫ < 1. This is(2 + ǫ)uHk(T) + o(u log σ) bits for anyk = o(logσ u). The
index is able to locate theocc occurrences of a patternP [1..m] in T in O(m2

ǫ (1+ log σ
log log u)+(m+occ) log u)

worst-case time; count the number of pattern occurrences intimeO(m2

ǫ (1+ log σ
log log u)+m log u+ occ); and

determine whether patternP exists inT in O(m2

ǫ (1 + log σ
log log u) + m log u) time.

Finally, we can add theAlphabet-Friendly FM-index[19] of textT to this index, to get:

Lemma 6 ([7]). Let textT [1..u] be a text over an alphabet of sizeσ. Then there exists a Lempel-Ziv com-
pressed full-text self-index requiring(3 + ǫ)uHk(T) + o(u log σ) bits of space, for anyk = o(logσ u) and
any0 < ǫ < 1, which is able to locate theocc occurrences of a patternP [1..m] in T in O((m(1+ log σ

log log u)+
occ
ǫ) log u) worst-case time; and count the number of pattern occurrences (or determine if the pattern exists

or not in the text) inO(m(1 + log σ
log log u)) time.

Note we have used only theHk-related notation in this latter lemma as it contains an FM-index, whose
space is not related to|LZ|. Note also that the practical Schemes 2–4 contain a term space of the form
O(n log log u) + o(u), the latter of which is not alwayso(|LZ|). These terms owe to the representation of
the Patricia skips [49] in the reverse trie. While not strictly necessary in theory (and hence not present in
the theoretical Lemmas 4 to 6), in practice these skips speedup the index considerably and do not increase
much the space. Similarly, the5n log σ space of the last lemmas can be reduced to3n log σ by not storing
the letters ofRevTrie. These can in theory be obtained fromLZTrie, but the1 + log σ

log log u time factor (coming
from the representation ofrletts using the structure of Section 2.4) worsens tolog σ. Also, in practice it is
a good idea to maintain the symbols explicitly.

4 Space-Efficient Construction of the LZ-index

The LZ-index is a compressed full-text self-index, and as such it allows large texts to be indexed and stored
in main memory. However, the construction process requiresa large amount of main memory, mainly to
support the pointer-based tries used to build the final versions ofLZTrie andRevTrie(recall Section 3.3).
So our problem is: given a textT [1..u] over an alphabet of sizeσ, we want to construct the LZ-index forT
using as little space as possible and within reasonable time. We aim at an efficient algorithm to build those
tries in little memory, by replacing the pointer-based tries with space-efficient data structures that support
insertions. These can be seen as hybrids between pointer-based tries and the final succinct representations.

Note that we could simply use succinct dynamic trees [11] anddynamic sequences [44] to create the
tries. However, the construction time would become at bestO(u log n(1 + log σ

log log n)).

Our early space-efficient construction algorithm for the LZ-index [4] partitions the tree into moderately-
sized connected components, which are updated in naive form. As a result, it has a construction time of the
form O(σu), which is impractical for moderately-large alphabets.

In the sequel we shall achieveO(u(log σ + log log u)) time by combining the best from both ideas, i.e.,
using advanced succinct dynamic representations on moderately-sized connected components of the tries.

In Sections 4.1 to 4.5 we assume that we have enough main memory to store the final LZ-index. In
Section 4.6 we study how to manage the memory dynamically, which is an important aspect of dynamic data
structures, using a standard model [63] of memory allocation. In Section 4.7, we shall adapt our algorithm
to the cases in which there is not enough space to store the whole final index in main memory.

We show next how to space-efficiently construct the LZ-indexcomponents. From now on we assume
σ > 2, as otherwise the whole indexing problem is trivial.

4.1 Space-Efficient Construction ofLZTrie

The space-efficient construction ofLZTrie is based on a compact representation supporting a fast incremental
construction as we traverse the text. In either theBP or DFUDS representations, the insertion of a new node
at any position of the sequence implies to rebuild the sequence from scratch, which is expensive. To avoid
this we define ahierarchical representation, such that we rebuild only a small part of the entire original
sequence upon the insertion of a new node.

We incrementally cut the trie into disjointblockssuch that every block stores a subset of nodes represent-
ing a connected component of the whole trie. We arrange theseblocks in a tree by adding someinter-block
pointers, and thus the entire trie is represented by a tree ofblocks.

If a nodex is a leaf of a blockp, but is not a leaf of the whole trie, then nodex stores an inter-block
pointer to the representation of its subtree. Let us say thatthis pointer points to blockq. We say thatq is a
child blockof p. In our representation, nodex is also stored in blockq, as a fictitious root node. Thus, every
block is a tree by itself, which shall simplify the navigation as well as the management of each block. Thus
every such fictitious nodex has two representations: (1) as a leaf in blockp; (2) as the root node of block
q. Note that the number of extra nodes introduced by duplicating nodes equals the number of blocks in the
representation (minus one). We not only enforce that the parent of any (non-fictitious) node is stored in the
same block of the node, but also that all its sibling nodes arestored in the same block.

Rather than using a static representation for the trie blocks [4], which are rebuilt from scratch upon
insertions, we represent each block by using dynamic data structures, which can be updated in time less than
linear in the block size. We adapt the approach used by Arroyuelo [2] to represent succinct dynamicσ-ary
trees: We first reduce the size of the problem by dividing the trie into small blocks, and then represent every
block (i.e., smaller trie) with a dynamic data structure to avoid the total rebuilding of blocks upon updates.

Defining Block SizesWe divideLZTrie into blocks ofN nodes each, whereNm 6 N 6 NM , for minimum
block sizeNm = Θ(log2 u) nodes and maximum block sizeNM > 2σNm nodes. We also needNM =
(σ log u)O(1), for exampleNM = Θ(σ log3 u) (we do not show the roundings, but it should be clear that
these values must be integers). Hence, notice that we shall have one inter-block pointer out of at leastNm

nodes. Since each pointer is represented withlog u bits, and since we haven nodes in the tree, we have
n

Nm
log u = O(n/ log u) bits overall for inter-block pointers. The definition ofNM , on the other hand, is

such that it ensures that a blockp has room to store at least the potentialσ children of the block root (recall
that sibling nodes must be stored all in the same block). Also, when a block overflows we should be able to

split the block into two blocks, each of size at leastNm. By definingNM as we do, in the worst case (i.e.,
the case where the overflown block has the smallest possible size) the root of the block has some child with
at leastNm nodes, asNM > 1 + σNm. Thus, upon an overflow, we can create a new block of size at least
Nm from such subtree, requiring little space for inter-block pointers and maintaining the properties of our
data structure. The stricter factor 2 shall be useful for ouramortized analysis of block partitioning, whereas
the polylog upper bound is necessary to ensure that pointerswithin blocks are short enough.

Defining the Block Layout Each blockp of N nodes consists of:

– The representationTp of the topology of the block, using any suitable tree representation. In particular,
we will use theDFUDS [8], which is particularly well suited for our goals.

– A bit-vectorFp[1..N] (theflags) such thatFp[j] = 1 iff the j-th node ofTp (in preorder) has an associ-
ated inter-block pointer. We shall representFp with a data structure forrank andselect queries.

– log NM bits to count the current numberN of nodes stored in the block.
– The sequenceidsp[1..N] of LZ78 phrase identifiers for the nodes ofTp, in preorder. Except for the

LZTrie root, every block root is replicated as a leaf in its parent block, as explained. In that case we store
the corresponding phrase identifier only in the leaf of the parent block. That is, fictitious roots in each
block do not store phrase identifiers. We uselog u bits per phrase identifier, instead of usinglog n bits
as in the final representation ofids. This is because before constructing the LZ78 parsing of thetext we
do not known, the number of phrase identifiers.

– The symbols (lettsp) labeling the edges in the block (the order of the symbols depends on the represen-
tation used forTp, recall Section 2.5). Each symbol useslog σ bits of space.

– A variable number of inter-block pointers, stored in data structureptrp. The number of inter-block
pointers varies from0 to N , and it corresponds to the number1s inFp.

In Fig. 4(b) we show an example of hierarchical representation of LZTrie for the running example text.
If the subtree of thej-th node (in preorder) of blockp is stored in blockq, thenq is a child block ofp and
thej-th flag inp has the value1. If the number of flags with value1 before thej-th flag inp is h, then the
h-th inter-block pointer ofp points toq. Note thath can be computed asrank1(Fp, j).

Since blocks are tries by themselves, inside a blockp we use the traditional trie-like descent process,
using operationchildp(x, α) onTp. From now on we use the subscriptp with the trie operations, to indicate
operations which are local to a blockp, i.e., disregarding the inter-block structure (e.g.,preorderp computes
the preorder of a node within blockp, and not within the whole trie, and so on). When we reach a block
leaf (with preorderj inside the block), we check thej-th flag inp. If Fp[j] = 1 holds in that block, then
we computeh = rank1(Fp, j) and follow theh-th inter-block pointer inp to reach the corresponding child
block q. Then we follow the descent insideq as before. Otherwise, ifFp[j] = 0, then we are in a leaf of the
whole trie, and we cannot descend anymore.

We represent the above components for blockp in the following way.

Representation of the Trie Topology,Tp To represent the trie topology of blockp we use the data structure
for dynamic balanced parentheses of Chan et al. [11] to represent theDFUDS [8] of the block. The main
idea of Chan et al. is to divide the original parentheses sequence into segmentsSi of O(log N) bits. Every
segmentSi is stored in the leaves of a balanced binary treeT ′

p, such that concatenating the leaves from left to
right gives us back the original sequenceTp. Some information is stored in the internal nodes ofT ′

p in order
to support the operations on the parentheses sequence, as well as support insertions and deletions ofpairs of

0

0

1

1

17

2
$

3

3

15

4
r

b

14

5
l

4

6

12

7
a

10

8
d

16

9
l

r

6

10

11

11

p

a

2

12

7

13

9

14
b

a

l

5

15

8

16

13

17

p

a

1

(a) Lempel-Ziv Trie (LZTrie), represented in the traditional (pointer-
based) way.

p
6

11

la d
4

161012

3

15

r

a

p

1 2

0

5

8

13

la _
(((())) () ())

 0 1 1 0 0 0

 0 1 2 5 8 13

 a l _ a p

Tp

Fp

idsp

pletts
ptrp

$ b l r _
1

3 14 4 617
b

a
2

7

9

(b) Hierarchical representation ofLZTrie, Nodes having an inter-block
pointer are duplicated as the root of the child block. We showthe actual
succinct representation for the root block.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

par: (((() ((((()) ())) ((()))) ()) () ()) () ())
ids: 1 17 3 15 14 4 12 10 16 6 11 2 7 9 5 8 13

letts: a l $ b l r r a d l p a b a p
(c) DFUDS representation ofLZTrie. The phrase identifiers are stored in preorder, and the sym-
bols labeling the edges of the trie are stored according to aDFUDS traversal.

Fig. 4. Different representations of the Lempel-Ziv trie and related data structures for the running example.

matching parentheses. All the operations of Section 2.5 are supported inO(log N) time by navigatingT ′
p.

In addition, we store in every internal node ofT ′
p the number of opening parentheses within the left subtree,

as well as the total number of parentheses within the left subtree, such as in Mäkinen and Navarro [44], in
order to support operationsrank(, rank), select(, andselect) overTp in O(log N) time.

All these operations on the sequence of parentheses allow usto support theDFUDS operations (recall
Section 2.5):parentp, childp(x, i), subtreesizep, degreep, preorderp, selectnodep, etc., all of them in
O(log N) = O(log NM) time. As we shall explain later in this section, the insertion of a new node in
DFUDS can be simulated by inserting a new pair of matching parentheses inTp, and thus we can handle it in
a straightforward way with the data structure of Chan et al. [11]. Deletions of leaves are handled in a similar
way. The space requirement isO(N) bits per block, which adds up toO(n) bits overall5.

Representation of the Flags,Fp We represent the flags of blockp in preorder and using a dynamic data
structure forrank andselect over a binary sequence [44]. It supportsrank, select, and updates onFp in
O(log N) worst-case time, and requiresN+o(N) bits of space. This data structure can be connected withTp

via operationspreorderp andselectnodep: Given a nodex in p, the corresponding flag isFp[preorderp(x)].
GivenFp[j], on the other hand, the corresponding node inTp is selectnodep(j). When we insert a new node
in Tp, we insert a new flag (with value0 because the new node is inserted with no related inter-block
pointer) at the corresponding position (given bypreorderp). This data structure addsn + o(n) extra bits to
our representation. Arroyuelo [2] gives a more involved representation forFp, requiringo(n) bits, yet the
one we are using here is simpler and still adequate for our purposes.

Representation of the Symbols,lettsp We represent the symbols labeling the edges of the block according
to a DFUDS traversal onTp (see Section 2.5), yet this time we store them in differential form, except for
the symbol of the first child of every node, which is represented in absolute form. We then represent this
sequence ofN integers ofk′ = log σ bits each with the dynamic data structure for searchable partial sums
of Mäkinen and Navarro [44], which supports all the operations (including insertions and deletions) in time
O(log N), and requiresNk′ +O(N) = N log σ+O(N) bits of space. These add up ton log σ +O(n) bits.

We can connectlettsp with Tp by usingrank(overTp. Given a nodex in Tp, the subsequencelettsp

[rank((Tp, x)..rank((Tp, x) + degreep(x) − 1] stores the symbols labeling the children ofx. To support
operationchildp(x, α), which shall be used to descend in the trie at construction time, we first computei←
rank((Tp, x) to obtain the position inlettsp for the first child ofx. We then computes← Sum(lettsp, i−
1), which is the sum of the symbols inlettsp up to positioni − 1 (i.e., the sum before the first child
of x). To compute the position of symbolα within the symbols of the children of nodex, we perform
j ← Search(lettsp, s + α). Thus, the node we are looking for is the(j − i + 1)-th child of x, which can
be computed bychildp(x, j − i + 1), in O(log N) time overall. To make surej is a valid answer, we use
operationdegreep(x) to check whetherj − i + 1 is smaller or equal to the degree ofx, and then we check
whetherSum(lettsp, j − i + 1) − s = α actually holds.

Representation of the Phrase Identifiers,idsp To store the phrase identifiers of the trie nodes, we define
a list Lidsp for block p, storing the identifiers in preorder. Given a new inserted node x in Tp, we must
insert the corresponding phrase identifier at positionpreorderp(x) within Lidsp , so we must support the
efficient search of this position. The required functionality is easily achieved by regarding the vector ofN

5 The space requirement of the trie topology can be reduced to2n + o(n) bits overall [2, 67]. However,O(n) bits is sufficient for
our purposes.

idsp values, each of widtht, as a bitmap of lengthtN . The dynamic data structure for bitmaps of Mäkinen
and Navarro [44] would easily permit inserting, deleting, and accessing any identifier (i.e.,t-bit chunk) in
timeO(log N) providedt = O(log u), which is the case. Its space overhead would beO(N) bits.6

These identifiers will ultimately requiret = ⌈log n⌉ bits, but we do not known at this time. Therefore,
we will use an amortized scheme as follows. All the identifiers idsp of a blockp will use the sametp value.
At stepr of the parsing process, wherer phrases have been identified, this value will betp 6 ⌈log r⌉. Every
time an insertion arrives at blockp with a value ofr larger than2tp , we will increasetp to ⌈log r⌉, and make
a pass over the whole listLidsp adding the new highest 0-bits to each number. This work amortizes over the
whole construction process, as at mostn/2t identifiers are modifiedt times.

Therefore, we needN log n+O(N) bits of space to maintain the identifiers, which adds up ton log n+
O(n) bits overall.

Representation of the Inter-Block Pointers,ptrp For the inter-block pointers, we use also a listLptrp ,
managed in a similar way as forLidsp (this time the pointers always use⌈log u⌉ bits). Since blocks have at
leastNm nodes, we have a pointer out of (at least)Θ(log2 u) nodes, which addsO(n/ log u) bits overall.

Construction ProcessThe construction ofLZTrieproceeds as explained in Section 3.2, using the symbols
in the text to descend in the trie, until we cannot descend anymore. This indicates that we have found the
longest prefix of the rest of the text that equals a phraseBℓ already in the LZ78 dictionary. Thus, we form a
new phraseBt = Bℓ · c, wherec is the next symbol in the text, and then insert a new leaf representing this
phrase. However, this time the nodes are inserted in our hierarchicalLZTrie, instead of a pointer-based trie.

The insertion of a new node for the LZ78 phraseBt in the trie implies to update only the blockp in
which the insertion is carried out. Assume that the new leaf must become thej-th node (in preorder) within
the blockp, and that the new leaf is a new child of nodex in blockp (i.e., nodex represents phraseBℓ). We
explain next how to carry out the insertion of the new leaf within theDFUDS of Tp.

We must insert a new ‘(’ within the representation ofx (which simulates the increase of the degree of
nodex, because of the insertion of the new child), and inserting also a new ‘)’ to represent the new leaf
we are inserting. Assume that the new leaf will become the newi-th child of nodex. Therefore the new ‘(’
must be inserted to the right of the opening parenthesis already at positioni′ = x + degree(x) − i (recall
from Section 2.5 how operationchild(x, i) uses the opening parentheses defining nodex to descend to the
i-th child). Then, the new ‘)’ must be inserted at positioni′′ = findclose(Tp, i

′ + 1), shifting to the right
the last ‘)’ in the subtree of the(i − 1)-th child of x, which now becomes the new leaf. As a result, the
two inserted parentheses form a matching pair, which can be handled in a straightforward way with the data
structure of Chan et al. [11]. See Fig. 5 for an illustration.

Then, we add a new flag0 at positionj in Fp. Also, c is inserted at the corresponding position within
lettsp, andt is inserted at positionj within the identifiers of blockp (since these are stored in preorder). All
this process takesO(log N) time.

Managing Block Overflows A block overflowoccurs when, at construction time, the insertion of a new
node must be carried out within a blockp of NM nodes. In such a case, we need to make room inp for the
new node by selecting a subset of nodes to be copied to a new child block (of p) and then will be deleted
from p. We explain this procedure in detail.

6 To achieve this time and space, the balanced tree used by the structure must be modified to use leaves ofΘ(log NM log u) bits,
instead ofΘ(log2 NM). For the purists: this may require using universal tables ofsizeO(uǫ), for some constant0 < ǫ < 1, but
this iso(n) if we chooseǫ < 1/2, given thatn >

√
u by Property 3.

)1st child 2nd child
3rd
child 4th child)(((()))

(a) A nodex of degree 4 and its corresponding subtree in theDFUDS represen-
tation ofLZTrie. Notice the relation among the four opening parentheses in the
definition ofx and the subtrees of the children of nodex.

1st child 2nd child
3rd
child))(((()()) 5th child)

(b) Insertion of a new child of nodex. The new leaf is inserted as the new fourth
child of x, and thus it is represented by the new bold pair of matching parentheses.
Notice how the degree ofx is increased to 5 with the new opening parenthesis. The
last closing parenthesis in the subtree of the third child ofx is shifted to the right and
now represents the new inserted leaf.

Fig. 5. Illustration of the insertion of a new leaf node in theDFUDS representation ofLZTrie.

First we select a nodez in p whose local subtree (along withz itself) will be copied to a new child block.
In this way we ensure that a node and its children (and therefore all sibling nodes) are always stored in the
same block (recall that a copy ofz, as a leaf, will be kept inp).

Suppose that we have selected in this way the subtree of thej-th node (in preorder) in the block. Both
the selected nodez and its subtree are copied to a new blockp′, via insertions inTp′ . We must also copy to
p′ the flagsFp[preorderp(z) + 1..preorderp(z) + subtreesizep(z) − 1] (via insertions inFp′) as well as
the corresponding inter-block pointers within the subtreeof the selected nodez, which are stored in array
ptrp from positionrank1(Fp, preorderp(z)) + 1 up torank1(Fp, preorderp(z) + subtreesizep(z)− 1).

Next we add inp a pointer top′. The new pointer belongs toz, thej-th node in preorder inp (because
we selected its subtree). We compute the position for the newpointer asrank1(Fp, j), adding the pointer at
this position inLptrp , and then we set to1 the j-th flag inFp, updating accordingly therank/select data
structure forFp (the portion copied toFp′ must be deleted fromFp). Finally, we delete inp the subtree ofz
(via deletions inTp), leavingz as a leaf inp.

Thus, the reinsertion process can be performed in time proportional to the size of the reinserted subtree
(timesO(log NM)), by using the insert and delete operations on the corresponding dynamic data structures
that conform a block. However, we must be careful with the selection of nodez. If, upon a block overflow,
we traverse blockp to select nodez, we will takeO(NM) time, which is too long. Instead, we will look for
z in advance to overflows, by looking for possible candidates in the insertion path of new nodes.

To quickly select nodez, we maintain in each blockp acandidate listCp [2], storing the local preorders
of the nodes that can be copied to a new child blockp′ upon block overflow. Withselectnode we can obtain
the candidate node corresponding to such a preorder. A subtree must have size at leastNm to be considered
a candidate. Thus, after a number of insertions we will find that a node (within the insertion path) becomes
a candidate. Let us think for a moment that we only maintain a candidate per block, and not a list of them.
It can be the case that a few children of the block root have received (almost) all the insertions, so we have a
few large subtrees within the block. When blockp overflows, we reinsert the only candidate to a new child
block, so we have no candidate anymore forp. We have to use the next insertions in order to find a new
one. However, it can be also the case that different childrenof the root ofp receive the new insertions, and

hence blockp could overflow again within a few insertions, without findinga new subtree large enough so
as to be considered a candidate (recall that we just use the insertion path to look for candidates). Thus, by
maintaining a list of candidates in each block, instead of a unique candidate per block, we can keep track of
all the nodes inp whose subtree is large enough, avoiding this problem.

Since the preorder of a node within a blockp can change after the insertion of a new node inp, we must
updateCp in order to reflect these changes. In particular, we must update the preorders stored inCp for
all candidate nodes whose preorder is greater than that of the new inserted node. To perform these updates
efficiently, we representCp using a searchable partial sum data structure [44]. Thus, the original preorder
Cp[i] is obtained by performingSum(Cp, i) in O(log N) time. Letx be the new inserted node. Then, with
j = Search(Cp, preorderp(x)) we find the first candidate (in preorder) whose preorder must be updated,
and we perform operationUpdate(Cp, j, 1). In this way, we are increasingCp[j] by 1, automatically updat-
ing all the preorders inCp that have changed after the insertion ofx, in O(log N) time overall.

If we keep track of every candidate of size at leastNm, then every timep overflows there will be already
candidate blocks. The reason is, again, thatNM > 1+ σNm, and thus that at least one of the children of the
root must have size at leastNm. Since we use the descent process to look for candidates, we will find them
as soon as their subtrees become large enough. In other words, the subtree of a node becomes larger as we
descend through the node many times to insert new nodes, until eventually becoming a candidate.

We must also ensure thatCp requires little space (so we cannot have too many candidates). The size of
the local subtree (i.e., only considering the descendant nodes stored in blockp) of every candidate must be
at leastNm. Also, we enforce that no candidate node descends from another candidate, in order to bound
the number of candidates. To maintainCp, every time we descend in the trie to insert a new LZ78 phrase,
we maintain the last nodez in the path such thatsubtreesizep(z) > Nm. When we find the insertion point
of the new nodex, say at blockp, before addingz to Cp we first performp1 = Search(Cp, preorderp(z)),
and thenp2 = Search(Cp, preorderp(z) + subtreesizep(z)). Then,z is added toCp whenever: (1)z is
not the root of blockp, and (2) there is no other candidate in the subtree ofz (that is,p1 = p2 holds).

If we find a candidate nodez′ which is an ancestor of the prospective candidatez, then after inserting
z to Cp we deletez′ from Cp. Thus, we keep the lowest possible candidates, avoiding that the subtree of
a candidate becomes too large after inserting it inCp, which would not guarantee a fair partition into two
blocks of size betweenNm andNM . Because of Condition (2) above, there are one candidate outof (at
least)Nm nodes; thus, the total space forCp is n

Nm
log NM + O(n) bits, which iso(n/ log u).

The reinsertion cost is in this way proportional to the size of p′, since finding nodez now takesO(log NM)
time (because of the partial-sum data structure used to representCp). Notice that the first time a node is
reinserted, the reinsertion cost amortizes with the cost ofthe original insertion. Unfortunately, there are no
bounds on the number of reinsertions for a given node. However, we shall show that multiple reinsertions of
a node over time amortize with the insertion of other nodes. We use the followingaccounting argument[14]
to prove the amortized cost of insertions. Letĉ = 2 be the amortized cost of normal insertions (without
overflows), beingc = 1 the actual cost of an insertion. Therefore, every insertionspends one unit for the
insertion itself, and reserves the remaining unit for future (more costly) operations. Let us think that we have
separate reserves, one per block of the data structure. We shall prove that every time a block overflows, it
has enough reserves so as to pay for the costly operation of reinserting a set of nodes.

In particular, every time a block overflows, its reserve isNM − I, whereI was the initial number of
nodes for the block (I = 0 holdsonly for the root block). LetI ′ be the number of nodes of the new block
p′. Then we must prove thatNM − I > I ′ always holds, that is,NM > I + I ′. We need to prove:

Lemma 7. For every candidate nodez in blockp, it holds thatsubtreesizep(z) < σNm.

Proof. By maintaining the lowest possible candidates, we find the smallest possible ones. If a node cannot
be chosen as a candidate, this means that its subtree size is smaller thanNm nodes (another possibility is that
there is another candidate within the subtree, yet this caseis not interesting here). Therefore, the smallest
subtree that can be chosen as a candidate may have up toNm− 1 nodes in each children, and hence its total
size is at most1 + σ(Nm − 1) < σNm. ⊓⊔

Because of this, blocks are created withI ′, I < σNm nodes. As we have chosenNM > 2σNm, it
follows thatNM > I + I ′. This means that every reinsertion of a node has already beenpaid for by some
node at insertion time.7 Thus, the insertion cost isO(log NM) amortized. Aftern insertions, the overall cost
amortizes toO(n log NM).

Once we solved the overflow, the insertion of the new node is carried out either inp′ or in p, depending
on whether the insertion point lies within the moved subtreeor not, respectively. Notice that there is room
for the new node in either block.

Hierarchical LZTrie Construction Analysis As the trie hasn nodes, we needO(n) + (n + o(n)) +
(n log σ + O(n)) + (n log n + O(n)) + O(n/ log u) + o(n/ log u) = n log n + n log σ + O(n) bits to
represent the trie topology, flags, symbols, identifiers, inter-block pointers, and candidate lists, respectively.

When constructingLZTrie, the navigational costper symbol of the text isO(log NM) = O(log σ +
log log u), for a total worst-case timeO(u(log σ + log log u)). On the other hand, the amortized cost of
updating blocks after an insertion isO(log NM) per node, and therefore the total update cost adds up to
O(n(log σ + log log u)). Therefore, the totalLZTrieconstruction time isO(u(log σ + log log u)).

Representing the FinalLZTrie Once we construct the hierarchical representation forLZTrie, we delete
the text since it is not anymore necessary,8 and then use the hierarchicalLZTrie to build the final version of
LZTrie in O(n(log σ+log log u)) time. We allocaten log σ bits of space for the final arrayletts, n log n bits
for arrayids, andO(n) for par. Then we perform a preorder traversal on the hierarchical tree, transcribing
the nodes to a linear representation. Every time we copy a node, we check the corresponding flag, and then
decide whether to descend to the corresponding child block or not.

Thus, the maximum amount of space used is2n log n + n log σ + O(n) bits, since at some point we
store both the hierarchical and final versions ofids (this is also true forletts, but we can first convertids,
then delete all theidsp structures, and only then allocateletts, filling it in a second pass over the hierarchy).
We then free the hierarchicalLZTrie, and end up with a representation requiringn log n + n log σ + O(n)
bits. Thus, we have proved:

Lemma 8. Let textT [1..u], over an alphabet of sizeσ, be parseable inton phrases by the LZ78 algorithm.
Then there exists an algorithm to construct the LZTrie forT in O(u(log σ + log log u)) time and using
2n log n + n log σ + O(n) = 2|LZ|(1 + o(1)) bits of space.

7 More generally we could have setNM > (1 + α)σNm for any constantα > 0, and the analysis would have worked with
ĉ = 1 + 1/α.

8 If allowed, we can even reuse the space occupied by the text aswe parse it. Even if the textT is uncompressible (i.e.,|LZ| = |T |),
the extra space required to buildLZTrieunder this model would beO(n) = O(|T |/ log u) bits.

4.2 Space-Efficient Construction ofRevTrie

For the space-efficient construction ofRevTrie, we use the technique of Section 4.1, to represent not the
original reverse trie but itsPatricia tree [49], which compressesemptyunary paths, yielding an important
saving of space. As we still maintain empty non-unary nodes,the number of nodes inRevTrieis n′ 6 2n.

Throughout the construction process we store in the nodes ofthe reverse trie “pointers” toLZTrienodes,
instead of the corresponding phrase identifiersrids stored by the finalRevTrie. Each such “pointer” is an
offset into theLZTrie topology sequence of2n bits (recall thatLZTrie is already in final static form), and
thus it useslog 2n bits. We store these pointers toLZTrie in the same way as for arrayidsp in Section 4.1
(with fixed widtht), in preorder according toRevTrieand spendingO(n) extra bits for the list functionality.
The aim is to obtain the text of the phrase represented by aRevTrienode, since we are compressing empty-
unary paths and the string represented by a node is not available otherwise (unlike what happens with the
traditional Patricia trees). This connection is given byNode in the final LZ-index. However, at construction
time we avoid accessingNode when building the reverse trie, so we can buildNode after both tries have
been built, thus reducing the peak indexing space.

Empty non-unary nodes are marked by storing in each blockp a bit vectorBp (represented in the same
way asFp, with a dynamic data structure supportingrank andselect queries). We store pointers toLZTrie
nodes only for non-emptyRevTrienodes, so we storen of them. This shall reduce the indexing space of
the preliminary definition of the algorithm [4], which shallbe useful later when constructing reduced-space
versions of the LZ-index.

As we compress empty-unary paths, the trie edges are labeledwith strings instead of single symbols.
The Patricia tree stores only the first symbol of the edge labels. We do the same in our reverse trie, using the
same partial sum approach as forLZTrie, on arrayrletts. However, we do not store the Patricia-tree skips,
as their space consumption is problematic. Instead, we use the following procedure to find out inO(ℓ) time
the skip valueℓ of the edge leading to a nodey from its parentx [50]. Let X andY be the strings labeling
the paths from the root of the reverse trie to nodesx andy, respectively, thenℓ = |Y | − |X|. We find
the leftmost and rightmost leavesv1

r andv2
r descending fromy, and map them toLZTrie nodesv1

lz andv2
lz

using the reverse trie pointers. Sincev1
r andv2

r are labeled by strings that start withY and differ in the next
character,v1

lz andv2
lz are labeled by strings ending atY r, and that differ in the previous character. Therefore,

we carry outparent in LZTrie consecutively|X| times, starting fromv1
lz and fromv2

lz, and then continue
moving to the parents in synchronization until the characters leading to both nodes differ. The total number
of parent operations executed is2|Y |, from what we can inferℓ. The first|X| parent operations can be
executed with a single operation calledlevel-ancestor, which can be executed in constant time usingo(n)
extra bits on top of theLZTrie topology representation [34]. Thus the overall time isO(|Y | − |X|) = O(ℓ).
Since the total amount of skips traversed along the construction process isu, computing the skips in this
way addsO(u(1+ log σ

log log u)) to the overall time (the1+ log σ
log log u) factor is due to our representation ofletts).

Note, additionally, that with this process we do compare allthe characters of a string as we descend in
the reverse trie, so we do not need to carry out the final Patricia tree check that is necessary in the classical
implementation.

Construction Process To construct the reverse trie we traverse the finalLZTrie in depth-first order, gener-
ating each LZ78 phraseBi stored inLZTrie, and then inserting its reverseBr

i into the reverse trie.
Note that our proposed scheme to compute skips can be simplified when the nodey corresponds to a

phrase. In this case it is sufficient to mapy itself to LZTrie, as the depth of the mapped node will be|Y |.

For the case of empty nodes, we note that the general scheme wedescribed above works equally well if we
choose any descendant of the first and second children ofy, as they will also differ at the next character. Such
children will exist because empty nodes cannot be unary. Therefore, it is sufficient to obtain any non-empty
descendant of a nodevr, wherevr is the first or second child ofy. For example, theLZTrie pointer corre-
sponding to the first non-empty descendantv′r of vr can be found at positionrank1(Bp, preorderp(vr))+1
within the pointer array.

However, there exists an additional problem: thelocal subtree of nodevr can be exclusively formed by
empty nodes, in which case finding the non-empty nodev′r is not as straightforward as explained, sincev′r
is stored in a descendant block. This problem comes from the fact that, upon a block overflow in the past,
we might have chosen empty nodesz descending fromvr, whose subtrees were reinserted into new blocks.

To solve this problem, we store in every blockp a pointer toLZTrie, which is representative for the
nodes stored in the blockp. If a block is created from a non-empty node, then we can storethe pointer of
that node. In case of creating a new blockp′ from an empty node, if the new blockp′ is going to be a leaf
in the tree of blocks, then it will contain at least a non-empty node. Thus, we associate withp′ the pointer
to LZTrie of this non-empty node. If, otherwise,p′ is created as an internal node in the tree of blocks, then
it can be the case that all of the nodes inp′ are empty. In this case, we choose any of the descendants blocks
of p′ and copy its pointer top′. This pointer has been “inherited” (in one or several steps)from a leaf block,
thus this corresponds to a non-emptyRevTrienode. Thus, in case that the local subtree ofvr is formed only
by empty nodes, we take one of the blocks descending fromvr (say the first in preorder) and use theLZTrie
pointer associated to that block.

An important difference with theLZTrieconstruction is that inRevTriewe do not only insert new leaves:
there are cases where we insert a new non-emptyunary internal node (corresponding to the phrase we are
inserting inRevTrie). A unary node is represented as ‘()’ in DFUDS, which is a matching pair and hence
the insertion can be handled by the data structure of Chan et al. [11]. If we insert the new node as the parent
of an existing nodex, then the insertion point is just before the representationof x in theDFUDS sequence.

Hierarchical RevTrie Construction Analysis The hierarchical representation of the reverse trie requires
O(n′)+(n′+o(n′))+(n′+o(n′))+(n log 2n+O(n))+(n′ log σ+O(n′))+O(n′/ log u)+o(n′/ log u) 6

n log n+2n log σ+O(n) bits of storage to represent the trie topology, flags, bit vector of empty nodes, point-
ers toLZTrie stored in the nodes, symbols, pointers (both inter-block and extraLZTrie pointers associated
to each block), and candidates, respectively.

For each reverse phraseBr
i to be inserted in the reverse trie,1 6 i 6 n, the navigational cost is

O(|Br
i | log NM) (this subsumes theO(|Br

i |) time needed to compute the skips). Since
∑n

i=1 |Br
i | = u,

the total navigational cost to construct the hierarchicalRevTrieis O(u log NM). Since the number of node
insertions isn′ = O(n), the total cost isO(u(log σ + log log u)), just as forLZTrie.

Constructing the Final RevTrie After we construct the hierarchical reverse trie, we construct RevTriedi-
rectly from it inO(n′ log NM) time, replacing the pointers toLZTrieby the corresponding phrase identifiers
(rids). Since we have to preallocaterids[1..n], the space is raised to3n log n + 3n log σ + O(n) bits.
We avoid a similar blowup forrletts by deleting all therlettsp structures once the hierarchicalRevTrie
is built, and only then allocating the staticrletts. It is still possible to find each letter value along a pre-
order traversal ofRevTrieby mapping toLZTrieas done for computing the skips. This must be done before
the pointers toLZTrie are converted intorids. Finally, we free the hierarchical trie, dropping the spaceto
2n log n + 3n log σ + O(n) bits.

Lemma 9. Given the LZTrie ofn nodes for a textT [1..u] over an alphabet of sizeσ, there exists an algo-
rithm to construct the corresponding RevTrie inO(u(log σ + log log u)) worst-case time and using a total
space of2n log n + 2n log σ + O(n) bits on top of the space required by the final LZTrie.

4.3 Space-Efficient Construction ofRange

To construct theRangedata structure, recall that for every LZ78 phraseBt of T we must store the point
(preorderr(vr), preorderlz(vlz)), wherevr is theRevTrienode corresponding toBr

t , andvlz is theLZTrie
node corresponding to phraseBt+1. We allocate memory space for a temporary arrayRQ[1..n] of n log n
bits, storing the points to be represented byRange. Array RQ is initially sorted by the first coordinates of
the points. Notice that since there is a point for every first coordinate1 6 i 6 n, the first coordinate of
every point is represented simply by the index of arrayRQ, thus saving space. In other words,RQ[i] = j
represents the point(i, j). Notice also thatRQ is a permutation of{1, . . . , n}. (In fact, thepreorderr values
that participate inRange are{0, . . . , n− 1}, so we must shift them by one.)

To generate the points, we first notice that for aRevTriepreorderi = 0, . . . , n − 1 (corresponding only
to non-empty nodes) representing the reverse phraseBr

t , we can obtain the corresponding phrase identifier
t = rids[i + 1], and then with the inverse permutationids−1[t + 1] we obtain theLZTrie preorder for the
node corresponding to phraseBt+1. Thus, we defineRQ[i + 1] = ids−1[rids[i + 1] + 1].

Therefore, we start by computingids−1 on the same space ofids, using the algorithm of Lemma 3,
requiringO(n) time andn extra bits of space. Then, we allocaten log n bits for arrayRQ, and traverse
RevTriein preorder. For every non-empty node with preorderi we setRQ as defined above. The total space
is thus raised to3n log n + 3n log σ + O(n) bits. Next, we recoverids from ids−1, using again Lemma 3.

After building RQ, to constructRange we must sort the points inRQ by the second coordinate (recall
Section 3.2), which in our space-efficient representation of the points means using the second coordinates as
array indexes, and storing the first coordinates as array values9. This means sorting the current values stored
in arrayRQ. However, since these values along with the corresponding array indexes represent points, after
sorting the points we must recall the original array index for every value, so as to store that value in the array.
This is straightforward if we store both coordinates of the points, requiring2n log n bits of space. However,
we are trying to reduce the indexing space, and therefore usean alternative approach.

Notice that sinceRQ[i] = j represents the point(i, j), RQ−1[j] = i shall also represent the point(i, j),
yet the points in the inverse permutationRQ−1 are sorted by their second coordinate (i.e., inRQ−1 the
second coordinates are used as array indexes). Thus, we use the algorithm of Lemma 3 to constructRQ−1

on top of the space forRQ, in O(n) time and requiringn extra bits of space. Now, we can finally build
Range from RQ−1 just as explained in Section 3.2.

However, to save space, we will not allocate space for thelog n bit vectors ofn bits in advance. Rather,
we will allocate then bits for the top-level bitmap, fill it, and thencompactarrayRQ−1 so that the most
significant bits of all the elements are dropped. This can be done in-place and will saven bits. Only then we
will allocate then bits of the second-level bitmap, fill it, then compactRQ−1 once again, and so on. Notice
that for this to work we must decide whether a value goes left or right in theRange structure by considering
its highest bit and not whether its value belongs to the left or right half of the interval. This may at worst

9 We could choose to defineRQ in a different way, storing the first coordinate of the pointsand using the second coordinate as
array index. However, by using our approach we can constructarrayRQ with a sequential scan over arraysrids andRQ itself.
The importance of this fact shall be made clear later in this section.

yield aRange structure that has one more level than the original one, thuswastingO(n) bits. In exchange,
we buildRange from RQ−1 using onlyO(n) extra space.10

Lemma 10. Let textT [1..u], over an alphabet of sizeσ, be parseable inton phrases by the LZ78 algorithm.
Then, given the LZTrie and RevTrie data structures forT , there exists an algorithm to construct theRange
data structure requiring a maximum space ofn log n+O(n) further bits, and takesO(n log n) = O(u log σ)
time.

4.4 Construction of theNode Mapping and Remaining Data Structures

Finally, we proceed to construct theNode mapping as follows: we traverseLZTrie in preorder, and for every
nodex with LZ78 identifieri, we store inNode[i] the node position within the corresponding parentheses
sequence. This increases the total space requirement to4n log n + 3n log σ + O(n) bits, which is the final
space required by the LZ-index. The process can be carried out in O(n) = O(u/ logσ u) time.

As we said in Section 3.2, in a practical implementation theRangedata structure is replaced by the
RNode mapping [56]. This is built fromrids in the same way asNode is built from ids. The process
explained in Section 4.3 is not carried out in such a case.

The original LZ-index is able to report the pattern occurrences in the formatJt, offsetK, wheret is
the phrase number where the occurrence starts, andoffset is the distance between the beginning of the
occurrence and the end of the phrase. To map these occurrences into text positions, Arroyuelo et al. [7]
add a bit vectorTPos marking the phrase beginnings, which is then represented with a data structure for
rank andselect and requiringn log u

n + O(n) + o(u) = o(u log σ) bits of space [62]. A more practical
approach [5] consists in sampling the starting positions ofsome phrases, and then representing the starting
position of every other phrase as an offset from the previoussampled phrase (thus saving space). With high
probability, the space requirement of this alternative approach isn + O(n log log u) = o(u log σ) bits if
sample rates are properly chosen. Both data structures can be constructed without requiring any extra space,
and thus to simplify we omit them in this paper.

4.5 The Whole Compressed Indexing Process

The whole compressed construction of the LZ-index is summarized in the following steps:

1. We build the hierarchicalLZTrie from the text. We can then erase the text.
2. We buildLZTrie from its hierarchical representation. We then free the hierarchicalLZTrie.
3. We build the hierarchical representation of the reverse trie from LZTrie.
4. We buildRevTriefrom its hierarchical representation, and then free the hierarchicalRevTrie.
5. We buildRange.
6. We buildNode from ids.

In Table 2 we show the total space and time requeriment at eachstep.

10 Another slight complication is that the recursive procedure cannot be used, but we must proceed levelwise. This is not really
problematic because the tree is perfectly balanced.

Table 2.Space and time requirements of each step in the whole compressed indexing process.

Indexing step Maximum total space Space after step Indexingtime

1 n log n + n log σ + O(n) n log n + n log σ + O(n) O(u(log σ + log log u))
2 2n log n + n log σ + O(n) n log n + n log σ + O(n) O(u(log σ + log log u))
3 2n log n + 3n log σ + O(n) 2n log n + 3n log σ + O(n) O(u(log σ + log log u))
4 3n log n + 3n log σ + O(n) 2n log n + 3n log σ + O(n) O(u(log σ + log log u))
5 3n log n + 3n log σ + O(n) 3n log n + 3n log σ + O(n) O(u log σ)
6 4n log n + 3n log σ + O(n) 4n log n + 3n log σ + O(n) O(u/ logσ u)

4.6 Managing Dynamic Memory

The model of memory allocation is a fundamental issue of succinct dynamic data structures, since we must
be able to manage the dynamic memory fast and without requiring much extra memory space due to memory
fragmentation [63]. We assume a standard model where the memory is regarded as an array, with words
numbered0 up to 2w − 1. The space usage of an algorithm at a given time is the highestmemory word
currently in use by the algorithm. This corresponds to the so-calledMB memory model [63], which is the
standard on the RAM model and assumes the least from the system: in modelMB there are no system
calls for allocation and deallocation of memory, but the program must handle memory by itself. We set
w = Θ(log u), as we needΘ(n log n) bits of space to build our index but we do not known in advance.

We manage the memory of every trie block separately, each in a“contiguous” memory space. However,
trie blocks are dynamic as we insert new nodes, hence the memory space for trie blocks must grow accord-
ingly. If we use anExtendible Array(EA) [9] to manage the memory of a given block, we end up with
a collection of at mostO(n/Nm) = O(n/ log2 u) EAs, which must be maintained under the operations:
create, which creates a new empty EA in the collection;destroy, which destroys an EA from the collection;
grow(A), which increases the size of arrayA by one cell;shrink(A), which shrinks the size of arrayA by
one cell; andaccess(A, i), which access thei-th item in arrayA.

Raman and Rao [63] show how operationaccess can be supported inO(1) worst-case time,create,
grow andshrink in O(1) amortized time, anddestroy in O(s′/w) time, wheres′ is the nominal size (in bits)
of arrayA to be destroyed. The whole space requirement iss + O(a∗w +

√
sa∗w) bits, wherea∗ is the

maximum number of EAs that ever existed simultaneously, ands is the nominal size of the collection.
To simplify the analysis we store every component of a block in different EA collections (i.e., we have a

collection forTps, a collection forlettsps, and so on). The memory forlettsp, Fp, Cp, Tp, Lidsp , etc. inside
the corresponding EAs is managed as in the original work [44].

Thus, we use operationgrow on the corresponding EAs every time we insert a node in the tree, and
operationcreate to create a new block upon block overflows, both inO(1) amortized time. Operationshrink,
on the other hand, is used by our representation after we reinsert the subtree upon a block overflow, inO(1)
amortized time. Finally, operationdestroy over the blocks is used when destroying the whole hierarchical
trie. As the cost to build the trie isO(log NM) per element inserted, which addsΘ(log u) bits to the data
structure, the cost per bit inserted isO(log σ+log log u

log u). The cost fordestroy is justO(1/w) = O(1
log u) per

bit, which is subsumed by the earlier construction cost.
Let us analyze the space overhead due to EAs for the case ofTp. Since we only insert nodes into our tries,

we have that the maximum number of blocks that we ever have isa∗ = O(n/Nm). As the nominal size of

the EA collection forTp is O(n) bits, the EA requiresO(n)+ O(nw
Nm

+ n
√

w
Nm

) = O(n) bits of space [63].

A similar analysis can be done for the collections supporting Fp andCp. The nominal size of the collection

for lettsp is n log σ +O(n), and thus we haven log σ +O(n)+O(nw
Nm

+n
√

w log σ
Nm

) = n log σ +O(n) bits

overall. For the collection supportingidsp we obtainn log n+O(n)+O(nw
Nm

+n
√

w log u
Nm

) = n log n+O(n)

bits of space. In general, the whole space overhead due to memory management isO(n) bits.
To complete the definition of our memory allocation model, itremains to say that we can store the

EAs representing the block components within a unique global EA. In this case, the number of EAs in
the collection isa∗ = O(1), since we have a constant number of block components. The nominal size
of the whole collection iss = n log n + n log σ + O(n) bits (where theO(n) term includes the space
for the EA memory management of these collections). Hence, the space overhead of this global EA is
O(w +

√
wn log u) = o(n) bits.

Now that we have defined our memory allocation model, we can conclude:

Theorem 1. Let textT [1..u], over an alphabet of sizeσ, be parseable inton phrases by the LZ78 algorithm.
Then there exists an algorithm to construct the LZ-index forT using4n log n+3n log σ+O(n) bits of space
andO(u(log σ+log log u)) time. The space and time bounds are valid in the standard model MB of memory
allocation.

Note that this construction space may differ from the final LZ-index space only in theO(n) extra-
bit space, which isO(|T |/ log u). The total space can also be written as4uHk(T) + o(n log σ) for any
k = o(logσ u).

4.7 Constructing the LZ-index in Reduced-Memory Scenarios

We assume next a model where we have restrictions in the amount of main memory available, such that
we cannot maintain the whole index in main memory. So, we aim at reducing as much as possible the
main memory usage of our algorithms. We shall prove that the LZ-index can be constructed as long as the
available memory isn log n + 3n log σ + O(n) bits (i.e., essentially, the compressed text can be stored in
main memory). This has applications, for instance, in text search engines, where we can use a less powerful
computer to carry out the indexing process, devoting a more powerful one to answer user queries.

Since we have assumed that we have enough secondary storage space so as to store the final index (see
Section 2.1), we will use that space to temporarily store on disk certain LZ-index components which will
not be needed in the next indexing step, and then possibly loading them back to main memory when needed.
However, and as we have seen throughout Section 4, our indexing algorithm is independent of this fact, and
we can choose not to use the disk at all when enough main memoryis available.

In the following, we show how to adapt our original algorithmto this scenario. At every step we will
analyze the maximum and final amount of main memory required at that step. The total amount of memory
(main plus secondary) and time complexities will be omittedas they are always as in Section 4, that is, as if
we did not use the disk along the construction process. We will only mention them in special cases. Instead,
we consider the amount of I/O carried out, in bits.

Step (1)We build the hierarchicalLZTrie from the text. We can then erase the text. The maximum and final
main-memory space isn log n + n log σ + O(n) bits.

Step (2)We buildLZTrie from its hierarchical representation. To construct the final ids array while trying to
reduce the maximum main-memory space, we do not allocate space for it at once. Since this array is stored
in preorder, and since we perform a preorder traversal on thetrie, the values in arrayids are produced by a
linear scan. Thus, we only allocate main-memory space for a constant number of components of the array
(e.g., a constant number of disk pages), which are stored on disk upon filling them. This process performs
n log n + O(n) bits of I/O, and at the end we free all the hierarchicalidsp components.

Then the symbols (letts) and the trie topology (par) are converted into static form in memory, and
their hierarchical versions are freed. The static versionsare maintained in main memory for the next step,
requiring onlyn log σ + O(n) bits. The maximum main-memory space used along this step isn log n +
n log σ + O(n) bits.

Step (3) We build the hierarchical representation of the reverse trie from LZTrie. Recall that every non-
empty RevTrienode stores a pointer to the correspondingLZTrie node. These pointers,par and letts
are necessary to obtain the skips for navigatingRevTrie. The maximum and final main-memory usage is
n log n + 3n log σ + O(n) bits (recall that arrayids is on disk).

Step (4) We build RevTriefrom its hierarchical representation as follows. We first erase the hierarchical
rlettsp components and recompute them using level-ancestor queries onLZTrie, as in Section 4.2. In this
way the static arrayrletts is generated in preorder directly on disk. After this the already static arrayletts
is also moved to disk (that is, progressively written as it isdeleted from main memory).

Now we generaterids. We store the pointers toLZTrie associated withRevTrienodes in a linear array,
in the same way as done in Step (2) for arrayids in LZTrie. In this way we do not need extra main-memory
space on top of the hierarchicalRevTrie. After storing the pointers on disk, the total space is raised to
3n log n + 3n log σ + O(n) bits, since we have at the same time the finalLZTrie (arrayids is on disk), the
hierarchicalRevTriepointers (in main memory), and the staticRevTriepointers (on disk). Now we free the
hierarchicalRevTriepointers, thus reducing the main-memory space toO(n) bits.

Then, we proceed to replace the pointers by the corresponding phrase identifiers (rids). We first load
array ids into main memory (leaving a copy of it on disk, for further use). Now we perform a sequential
scan on the array of pointers, bringing to main memory just a constant number of disk pages, then following
these pointers toLZTrie to get the phrase identifier stored inids (note this means that the accesses toids
are at random, hence we needids in main memory) and storing these identifiers in the same space of the
pointers, writing them to disk and loading the next portion of the pointer array. We leave the copy of array
ids in main memory (this shall be useful for the next step).

The maximum main-memory space needed along this step isn log n + 3n log σ + O(n) bits, and we
finish withn log n + O(n) bits in use. The amount of I/O performed is4n log n + 3n log σ + O(n) bits.

Step (5) We build Range as in Section 4.3, yet with some care for the peak of main memory usage. We
computeids−1 on the same space required byids, using the algorithm of Lemma 3. Then, we traverserids
in preorder, creating arrayRQ[i + 1] ← ids−1[rids[i + 1] + 1]. Notice that both arraysrids andRQ are
accessed sequentially, which means that we can maintain just a constant number of components of these
arrays in main memory. Arrayids−1, on the other hand, is accessed randomly, so we maintain it inmain
memory. In this way, the maximum main-memory space needed along this process isn log n + O(n) bits.

When this process finishes, the total space is raised to4n log n + 3n log σ + O(n) bits, and then we free
arrayids−1 (recall that we still have a copy of the original arrayids on disk), dropping the main-memory
space toO(n) bits, since we maintain just the trie topologies ofLZTrieandRevTrie.

After building RQ on disk, we move it to main memory and constructRange within O(n) extra bits of
space using the algorithm of Section 4.3. ThenRange is moved to disk. Thus, the maximum main-memory
space requirement to constructRange is n log n + O(n) bits. At the end we have onlyO(n) bits of main
memory in use. The amount of I/O is4n log n + O(n) bits.

Step (6) We build Node from ids, by traversingLZTrie in preorder. In this way, arrayids is sequentially
traversed, whileNode is randomly accessed. Thus, we allocaten log 2n bits of space forNode, and maintain
it in main memory. Arrayids, on the other hand, is brought by parts to main memory, according to a
sequential scan. Finally, we saveNode to disk. The amount of I/O is2n log n + O(n) bits. The amount
of main memory used isn log n + O(n) bits. We use the same procedure in case of using theRNodedata
structure instead ofRange. At the end we move to disk both trie topologies.

The overall amount of I/O is11n log n + 3n log σ + O(n) bits. Thus, we have proved:

Theorem 2. Let textT [1..u], over an alphabet of sizeσ, be parseable inton phrases by the LZ78 algorithm.
Then there is an algorithm to build the LZ-index ofT using a maximum main-memory space ofn log n +
3n log σ + O(n) bits andO(u(log σ + log log u)) time. The algorithm requires7n log n + O(n) bits of I/O,
plus those needed to write the final index. The total space used by the algorithm is4n log n+3n log σ+O(n)
bits. The space and time bounds are valid in the standard model MB of memory allocation.

Note that the total I/O is less than 3 times the one required ifwe can build the whole index in main
memory and then store the final result on disk.

5 Space-Efficient Construction of Reduced-Space LZ-indexes

There exist new reduced versions of the LZ-index, some of which are able to replace the original LZ-index in
many practical scenarios [5]. Henceforth, in this section we show how to adapt our space-efficient algorithm
to build these new indexes. The result is, again, that we can build the indexes within the space of the final
index except for a lower-order term ofO(n) bits, and that we can build them using just the main memory
required for storing the LZ78-compressed text, plusO(n log σ) bits. In the latter case, an amount of I/O is
required that varies depending on the variant we build.

Throughout this section we assume the reduced-memory scenario as in Section 4.7. We will present the
space usage of our algorithms in two ways: the total maximum main-memory space and the maximum total
space (main-memory plus secondary-memory space) at every step. The latter is also the maximum space
usage of the algorithm if we build it entirely in main memory.

5.1 Space-Efficient Construction of Scheme 2

We perform the following steps to build Scheme 2 of the LZ-index (recall its definition in Section 3.4).

1. We build the hierarchicalLZTrie from the text. This takesO(u(log σ + log log u)) time, and the maxi-
mum space requirement isn log n + n log σ + O(n) bits.

2. We derive the finalLZTriefrom the hierarchical one, which is then freed. The conversion takesO(u(log σ+
log log u)) time because of the traversals on the hierarchicalLZTrie. It creates the static trie topology
par, the symbolsletts, and the phrase identifiersids, and requiresn log n extra bits. We use the ap-
proach of Section 4.7 to constructids on disk, without requiring extra main-memory space. Thus the

total space usage is again2n log n + n log σ + O(n) bits, while the maximum main-memory usage is
n log n + n log σ + O(n) bits. Arrayspar andletts are kept in main memory for the next steps, so the
main-memory space after this step isn log σ +O(n) bits. The resulting amount of I/O isn log n+O(n)
bits, for the construction of arrayids.

3. We build the hierarchicalRevTriefrom LZTrie, as in Section 4.2. This takesO(u(log σ + log log u))
time. The total space usage is raised to2n log n + 3n log σ + O(n) bits. The maximum main-memory
space isn log n + 3n log σ + O(n) bits.

4. We build the finalRevTriefrom the hierarchical one, storing the trie topologyrpar, the symbolsrletts,
and bit vectorB marking the empty nodes. As before, we can erase therlettsp structures and re-create
the static arrayrletts directly on disk, from the topologyrpar and the staticLZTrie, so that no extra
space is required. ArrayR is now built from the pointers toLZTrie, by replacing the pointers with the
correspondingLZTriepreorder (recall that we applyrank onpar to get theLZTriepreorder of a node).
We constructR by using the same approach as for arrayids in Step (2), performingn log n + O(n)
bits of extra I/Os. The total time isO(u(log σ + log log u)). We then free the space of the hierarchical
RevTriepointers. The maximum total space is3n log n + 3n log σ + O(n) bits, while the maximum
main-memory space isn log n + 3n log σ + O(n) bits. At this point we can moveletts and both tries
topologies definitely to disk, and leave the main memory empty.

5. To space-efficiently construct arrayrids−1, we first constructrids in the following way: we start by
moving arrayids to main memory. Then we computerids[j]← ids[R[j]] for increasing values ofj. As
arraysrids andR are traversed sequentially, we can store/load them to/fromdisk by parts (respectively),
without requiring extra main-memory space. After we buildrids, the total space has raised to3n log n+
3n log σ + O(n) bits. We then move arrayids back to disk. Finally, we loadrids to main memory, and
use the procedure of Lemma 3 to constructrids−1 on top ofrids, to finally storerids−1 to disk. The
overall time isO(n). The maximum total space is3n log n + 3n log σ + O(n) bits, while the maximum
main-memory space isn log n + 3n log σ + O(n) bits. The total number of disk I/O performed by this
process is6n log n + O(n) bits.

This is a practical version of the LZ-index, and thus we do notstoreRange. Thus, we conclude:

Theorem 3. Let textT [1..u], over an alphabet of sizeσ, be parseable inton phrases by the LZ78 algorithm.
Then there exists an algorithm to construct the Scheme 2 of the LZ-index forT using a total space of
3n log n + 3n log σ + O(n) bits andO(u(log σ + log log u)) time. The maximum main-memory space used
at any time to construct Scheme 2 can be reduced ton log n+3n log σ+O(n) bits, in such a case performing
5n log n + O(n) bits of I/O, plus those needed to write the final index. The space and time bounds are valid
in the standard modelMB of memory allocation.

5.2 Space-Efficient Construction of Scheme 3

To build Scheme 3 of the LZ-index, we first buildLZTrie in O(u(log σ+log log u)) time, storingpar, letts,
andids, the latter directly on disk using the procedure of Section 4.7, Step (2). This requires a maximum
of 2n log n + n log σ + O(n) bits of total space,n log n + n log σ + O(n) bits of main memory, and
n log n + O(n) bits of I/O. It ends up usingn log σ + O(n) bits in main memory.

We then construct the hierarchicalRevTrie. The space requirement raises to2n log n + 3n log σ + O(n)
bits. We build the finalRevTriestoring justrpar andrletts in main memory, and discard the pointers to

LZTrie, temporarily losing the connectivity between tries. We usethe method of Section 4.7 to generate
rletts, i.e., we erase the hierarchicalrlettsp arrays and then re-create the staticrletts from the staticLZTrie
par and letts components. This time, before discarding the pointers, we will create explicitly the static
skips[1..n′] array, so thatskips[i] is the skip by which one arrives at thei-th node ofRevTriein preorder.

Array skips is created together withrletts and in similar fashion, by traversingRevTrieand using the
information ofLZTrie. The total time isO(u(1+ log σ

log log u)) because, as explained in Section 4.2, all the skips
add up at most tou. We reduce the number of skips stored to at mostn′/2 6 n, by not storing the skips of
the leaf nodes. As we see soon, these will not be necessary. The topology representationrpar allows one to
count the number of leaves to the left of a node [8], so that we can index into the reduced arrayskips.

Note that each skip may be as large asu. However, as they are at mostn and add up to at mostu, we
can set up a bitmapS[1..u] where we write each skip asskip[i]− 1 0s followed by a 1. Hence later we can
recoverskip[i] = select1(S, i) − select1(S, i − 1). By choosing a suitable static bitmap encoding method
for S [60], the structure requires at mostn log u

n +O(n) bits, and answersselect queries in constant time11.
The peak of memory usage right after freeing the pointers is thusn log n + n log u + 3n log σ + O(n),

of which all but the firstn log n term is in main memory. After freeing the pointers, the main memory space
becomesn log u

n + 3n log σ + O(n) bits.
Next we allocate main memory space for arrayrids, requiringn log n + O(n) extra bits. We traverse

LZTrie in preorder, and generate every phraseBi stored in it (wherei is the preorder of theLZTrienode). We
then look forBr

i in RevTrie. Recall that at this point we do not have the connectivity between tries, which
is generally used to search inRevTrie, but we haverletts andskips. Moreover, since stringBr

i exists for
sure inRevTrie(because it exists as an LZ78 phrase inLZTrie), we only need to descend inRevTriewithout
the Patricia-tree verifications, up to consumingBr

i . For this reason we do not need the skips at the leaves
either: when we arrive at a leaf we must have consumedBr

i . When we arrive at the (leaf or internal) node for
Br

i , which has preorderj in RevTrie, we setrids[j] ← ids[i]. Notice the sequential scan onids, which is
brought to main memory by parts. The overall work onLZTrie is O(n log σ), since each string is generated
in O(log σ) time (because of the data structure used to representletts). ForRevTrie, on the other hand, we
have that

∑n
i=1 |Br

i | 6 u, and thus the overall time isO(u log σ).
Finally we moverletts and trie topologies to disk. The skips can be erased or moved to disk, as desired

for the final representation. Note that arrayrids is still in main memory. Before moving it to disk, we create
rids−1 within ǫn log n+O(n) extra main-memory bits, and then move bothrids andrids−1 to disk. Finally,
we moveids to main memory, createids−1 in the same way, and move it back to disk, writingids−1 as
well. The whole process of creatingrids, rids−1 andids−1, requires(4+ 2ǫ)n log n + O(n) extra I/O bits.

For creatingids−1 (the process forrids−1 is identical) we build onids the data structure of Munro et
al. [52] (Section 2.4), as follows. LetAids[1..n] be an auxiliary bitmap, andBids[1..n] be a bitmap marking
which elements ofids have an associated backward pointer. Both bitmaps are initialized to all zeros.

We start from the first position ofids, and follow the cycles of the permutation. We mark every visited
position i of the permutation asAids[i] ← 1. We also mark one out of1/ǫ elements when following the
cycles, by setting to1 the appropriate position inBids. We stop following the current cycle upon arriving to
a positionj such thatAids[j] = 1; then, we move sequentially from positionj to the next positionj′ such
thatAids[j

′] = 0, and repeat the previous process.

11 Although Okanohara and Sadakane report a non-constant timein their article [60], this is easily converted into constant by using
a constant-timeselect implementation for their internal dense array ofO(n) bits. Note also that this space is preferable to the
O(n log log u) + o(u) used in previous static versions [5] whenn/u is sufficiently small. We prefer it in this paper to free us
from any super-logarithmic dependence onu

Each element inids is visited twice in this process (this is similar to the process done in the proof of
Lemma 3), thus this first scan takesO(n) time.

Then, we go on a second scan on the cycles ofids. We setAids to all zeros again, and allocate array
Bwd of ǫn log n bits of space, which shall store the backward pointers of thepermutation. We preprocess
arrayBids with data structures to supportrank. We start from the first element and follow the cycles once
again. Visited elements are marked inAids, as before. Every time we reach a positioni in the permutation
such thatBids[i] = 1, we store a backward pointer to the previously visited position j in the cycle, such that
Bids[j] = 1 (this means that there are1/ǫ elements between these two positions within the cycle). In other
words, we setBwd[rank1(Bids, i)]← j.

This second scan takes alsoO(n) time. We finally free the space ofAids and maintain bit vectorBids as
a marker of the positions storing the backward pointers. By adjustingǫ to ǫ/2 as in the static case we obtain:

Theorem 4. Let textT [1..u], over an alphabet of sizeσ, be parseable inton phrases by the LZ78 algorithm.
Then there exists an algorithm to construct the Scheme 3 of the LZ-index forT usingn(log n + max((1 +
ǫ) log n, log u)) + 3n log σ + O(n) bits of space andO(u(log σ + log log u)) time, for any0 < ǫ < 1. The
main-memory space used at any time to construct Scheme 3 can be reduced ton max((1+ ǫ) log n, log u)+
3n log σ + O(n) bits, in such a case performing3n log n + O(n) bits of I/O, plus those needed to write the
final index. The space and time bounds are valid in the standard modelMB of memory allocation.

Note that, by virtue of Lemma 2, the total space can be upper bounded by(2 + ǫ)uHk(T) + o(u log σ),
which is asymptotically the same space of the final index under this weaker model. Similarly, the main-
memory space is at most(1 + ǫ)uHk + o(u log σ), the same of the compressed text.

5.3 Space-Efficient Construction of Index of Lemma 4 and Relatives

The LZ-index of Lemma 4 is the smallest variant, requiring just (1 + ǫ)n log n + 3n log σ + O(n) bits (plus
the space for the skips, if desired). Recall from Section 3.4that this LZ-index is a reduced-space version of
Scheme 4. Hence, the procedure below

To construct it using the minimum possible extra space, we will need two passes over the text, and
several traversals overLZTrie andRevTrie(yet the number of traversals is a constant). We carry out the
following steps:

1. We build the hierarchicalLZTrie, just storing the trie topologyTp and the symbolslettsp, without storing
the phrase identifiersidsp in each trie blockp. This requiresn log σ + O(n) bits of space, and takes
O(u(log σ + log log u)) time. We cannot yet erase the text, as we need it at a later step.

2. We build the finalLZTrie from its hierarchical representation, inO(u(log σ + log log u)) time and re-
quiring 2n log σ + O(n) bits of space. Recall that we do not store the phrase identifiers ids. We then
free the hierarchicalLZTrie, leavingn log σ + O(n) bits in use.

3. We traverseLZTrie in preorder, generating each LZ78 phraseBi in constant time per string, and insertBr
i

into a hierarchicalRevTrie. We store pointers toLZTrienodes in theRevTrienodes, just as in Section 4.
This requires a maximum ofn log n + 3n log σ + O(n) bits of space after the hierarchicalRevTrieis
built, and takesO(u(log σ + log log u)) time.

4. We build the finalRevTriefrom its hierarchical representation, storing the tree topology rpar and re-
creating theskips andrletts arrays, which requiresn log u + 3n log σ + O(n) bits. The pointers to
LZTrie nodes are now deleted, as these were used just to provide the connectivity between tries while

constructingRevTrie. This takesO(u(log σ +log log u)) time. After freeing the hierarchicalRevTriewe
end up using justn log u

n + 3n log σ + O(n) bits.
5. We allocate memory for arrayR[1..n], of n log n + O(n) bits, which is constructed as follows. We

traverseLZTrie in preorder, and for every phraseBi corresponding to nodevlz, we look for Br
i in

RevTrie, obtaining nodevr as in Section 5.2. Then we storeR[preorder(vr)] ← preorder(vlz). The
overall work isO(u log σ). At this point we free the skip information (or we could retain it if desired
for the final structure). ArrayR will be represented more space-efficiently (using functionϕ, which
represents suffix links inRevTrie, see below). We then sampleǫn values ofR, as explained in Arroyuelo
et al. [7], ensuring that at mostO(1/ǫ) suffix links are followed in order to compute a givenR[i].

6. We allocate space for arraysVW andSW [7], which are used to compute functionϕ′ in RevTrie. This
addsn log σ + O(n) extra bits. We traverseRevTriein preorder, and for every non-empty node with
preorderi we map toLZTrie using R[i], and then write sequentially the degree ofR[i] in unary in
VW , and the symbols labeling the children ofR[i] in SW . Then we preprocessVW andSW with data
structures to supportrank andselect on them. This takesO(n log σ) time overall.

7. We build onR the data structure for inverse permutations of Munro et al. [52], using the same procedure
as in Section 5.2. This takesO(n) time. In a similar way as done for arrayR in Step 5 above, we
sampleǫn values ofR−1, as explained in Arroyuelo et al. [7]. The overall space requirement raises to
(1 + 3ǫ)n log n + 4n log σ + O(n) bits.

8. We use the approach of Chan et al. [11] to constructϕ, which is originally defined for building function
Ψ of Compressed Suffix Arrays [26, 65] requiring onlyO(u log σ) bits of space. In our case we compute
ϕ[i] = R−1(parentlz(R[i])) for consecutivei values, each in timeO(1/ǫ) as we haveR stored in
plain form andR−1 represented with the structure of Munro et al. [52]. Since there is no point in using
ǫ = o(1

log n) (as by thenǫn log n = o(n), so the times would increase without any asymptotic space
gain), the overall time isO(n/ǫ) = O(n log n) = O(u log σ). We produceϕ left-to-right, and thus we
can directly generate it in compressed form: Theϕ[i] values for all the preordersi of RevTrienodes that
descend from the same child of the root form an increasing sequence of values up ton [7]. So each of
the (at mostσ) increasing sequences can be represented using Okanohara and Sadakane’s bitmaps [60],
for a total space ofn log σ + O(n) bits. Eachϕ[i] value is then retrieved in constant time usingselect1.
The space has reached(1 + 3ǫ)n log n + 5n log σ + O(n) bits. We freeR now.

9. We finally allocate memory for arrayids, and set it with all zeros. We also seti ← 1. We perform
a second pass onT to enumerate the LZ78 phrases (this yieldsu log σ extra I/O bits in case the text
is stored on disk), descending inLZTrie with the symbols ofT . Every time we reach a nodevlz in
LZTrie, we check whetherids[preorder(vlz)] is 0 or not. In the affirmative case, this means that the
corresponding phrase has not yet been enumerated, and thus we storeids[preorder(vlz)] ← i and set
i ← i + 1. We go back to theLZTrie root and go on with the next symbol ofT . In case we arrive at a
nodevlz with ids[preorder(vlz)] 6= 0, then we continue the descent from this node, since its phrase has
been already enumerated. This takesO(u log σ) time. Finally, we can erase the text.

By rewriting 3ǫ asǫ, which does not change time complexities, we obtain:

Theorem 5. Let textT [1..u], over an alphabet of sizeσ, be parseable inton phrases by the LZ78 al-
gorithm. Then there exists an algorithm to construct the LZ-index of Lemma 4 forT using n max((1 +
ǫ) log n, log u) + 5n log σ + O(n) bits of space andO(u(log σ + log log u)) time. This holds for any
0 < ǫ < 1. The algorithm performs two passes over textT , thus requiringu log σ I/O bits in addition

to those for writing the final index. The space and time boundsare valid in the standard modelMB of
memory allocation.

We can use this algorithm to construct the LZ-index of Lemma 5, which only adds theRangedata
structure. For this sake, we do not deleteR at the end of Step (8) of the previous algorithm, but rather move
it to disk and then execute Step (9), after which we haveids in main memory. Now we readR sequentially
from disk and compose it withids, progressively replacingR by rids on disk. Now we invertids in main
memory (usingO(n) extra bits, Lemma 3), and readrids sequentially from disk, progressively replacing it
by arrayRQ[i + 1] = ids−1[rids[i + 1] + 1]. Now we invert againids−1 to obtainids, which is swapped
with theRQ array that is on disk. Finally,Range is built from RQ as explained in Section 4.7, Step (5),
and the result written to disk.

Corollary 1. Let textT [1..u], over an alphabet of sizeσ, be parseable inton phrases by the LZ78 algorithm.
Then there exists an algorithm to construct the LZ-index of Lemma 5 forT usingn log n + n max((1 +
ǫ) log n, log u) + 5n log σ + O(n) bits of space andO(u(log σ + log log u)) time. This holds for any0 <
ǫ < 1. The algorithm requiresu log σ + 5n log n + O(n) bits of I/O in addition to those needed to write the
final index to disk. The space and time bounds are valid in the standard modelMB of memory allocation.

Finally, the LZ-index of Lemma 6 adds theAlphabet-Friendly FM-index[19], which according to
González and Navarro [24] can be constructed withuHk(T) + o(u log σ) bits of space inO(u log u(1 +

log σ
log log u)) time. Then, we have:

Corollary 2. There exists an algorithm to construct the LZ-index of Lemma6 for a textT [1..u] over an
alphabet of sizeσ, and withk-th order empirical entropyHk(T), using(3 + ǫ)uHk(T) + o(u log σ) bits of
space andO(u log u(1+ log σ

log log u)) time. This holds for any0 < ǫ < 1 and anyk = o(logσ u). The algorithm
requiresu log σ + 5uHk(T) + o(u log σ) I/O bits, in addition to those needed to write the final index.The
space and time bounds are valid in the standard modelMB of memory allocation.

6 Experimental Results

We implemented a simplification of the algorithm presented in Section 4, which shall be tested in this
section. We run our experiments on an Intel(R) Pentium(R) 4 processor at 3 GHz, 4 GB of RAM and
1MB of L2 cache, running version 2.6.13-gentoo of Linux kernel. We compiled the code withgcc 3.3.6
using full optimization. The disk is a Maxtor DiamondMax Plus 9 of 120GB and 7,000 rpm, with interface
DMA/ATA-133 (Ultra) Fast Drives, buffer of 2MB, average seek time of 9 ms, and transfer rate of 133
MB/sec (yet we will soon show that the influence of the disks inour performance is very slight). Construction
times were averaged over 10 repetitions.

6.1 A Practical Implementation of Hierarchical Tries

We implement our construction algorithms for Scheme 2 and Scheme 3, and use a simpler representation
for the hierarchical trie, just as defined in our original work [4]. In this simpler representation, every block
in the tree uses contiguous memory space, which stores all the block components. We define different block
capacitiesNm < N2 . . . < NM , and say that a block of sizeNi is able to store up toNi nodes. When we
want to insert a node in a blockp of sizeNi < NM which is already full, we first create a new block of size

Ni+1, copy the content ofp to the new one, and then insert the new node within this block.This is called
a grow operation. If the full blockp is of sizeNM , we say thatp overflows. In such a case we proceed as
explained in Section 4.1, with the only difference that the subtree to be reinserted is searched by traversing
the whole block (we choose the subtree of maximum size not exceedingNM/2 nodes, just as in our previous
work [4]).

To ensure a minimum fill ratio0 < α < 1 in the trie blocks, thus controlling the wasted space, we define
Ni = Ni−1/α, for i = 2, . . . ,M , and1 6 Nm 6 1/α. Notice that parameterα allows us for time/space
trade-offs: smaller values ofα yield a poor utilization of blocks, yet they trigger a smaller number ofgrow
operations (which are expensive) as we insert new nodes. Theopposite occurs for large values ofα.

The block representation is completely static: the whole block is rebuilt from scratch upon insertions, or
upon block overflows. Each block is allocated as a single chunk of main memory, using the standard function
malloc. We represent the trie topologies with balanced parentheses rather than withDFUDS. We do not
store information to quickly navigate the parentheses within each block. So, we navigate them by brute force
(using precomputed tables to avoid a bit-per-bit scan, justas for the balanced parentheses data structure of
Navarro [56]). In the case ofRevtrie, we storerletts in each block, yet the skips value are not stored, but
computed by successively going to the parent inLZTrie (which is by then already in static form). In this
way, navigations can be a little bit slower, yet we save spaceand time reconstructing these data structures
after every insertion. We will show, however, that we achieve competitive results in practice.

We use the following parameters throughout our experiments: Nm = 2, NM = 1024, andα = 0.95,
according to the preliminary results obtained in our previous work [4]. We implement the reduced-memory
model presented in Section 4.7. We also show the results for the model in which only main memory is
used, where in most cases the maximum total space coincides with the size of the final LZ-index. We use
thememusage application by Ulrich Drepper12 to measure the peaks of main memory usage. Since our
algorithms need to use the disk to store intermediate partial results, we measure the user time plus the
system time of our algorithms.

We show the results only for Scheme 2 and Scheme 3, since theseare the most competitive in prac-
tice [5], and also because the most critical points along theindexing algorithm (i.e., the construction of the
hierarchical tries) is the same for all schemes (including the original LZ-index). For Scheme 3, we choose
parameters1/ǫ = 1 and1/ǫ = 15 for the inverse-permutation data structures. These represent the extreme
cases (both for time and space requirements) tested in Arroyuelo and Navarro [5]; intermediate values offer
interesting results as well. Note that when1/ǫ = 1 the space requirement of Scheme 3 is the same as that of
the original LZ-index.

6.2 Indexing English Texts

For the experiments with English texts we use the 1-GB file provided in thePizza&Chili Corpus, download-
able fromhttp://pizzachili.dcc.uchile.cl/texts/nlang/english.1024MB.gz.

In Table 3(a) we show the results for English text. As it can beseen, the most time-consuming tasks
along the construction process are that of building the hierarchical representations of the tries, taking up
96–98% of the time. ForLZTrie, the construction rate is about 1.01 MB/sec, while forRevTriethe result
is about 0.39 MB/sec. Thus,RevTrieis much slower thanLZTrie to be built. The overall average indexing
rate is 0.29 MB/sec for Scheme 2, 0.29 MB/sec for Scheme 3 (1/ǫ = 1), and 0.28 MB/sec for Scheme 3

12 http://pizzachili.dcc.uchile.cl/utils/memusage/memusage-2.2.2.tar.gz

(1/ǫ = 15). As it can be seen, the sample rate of the inverse permutations in Scheme 3 does not affect much
the indexing speed. Furthermore, because the constructionof tries is an in-memory task, one can see that
the impact of moving data from/to disk is very low, thus the practical performance of our reduced-memory
schemes is almost the same as those using all the main memory they need.

Table 3.Experimental results for English text and Human Genome. Numbers in boldface indicate the final index size in every case.

(a) English Text.

Index Indexing Main-memory Total space Time
step space (bytes) (bytes) secs

Scheme 2 1 411,928,076 411,928,076 909.37
2 505,729,592 822,801,159 17.55
3 574,548,639 819,749,431 2,554.07
4 454,026,216 883,576,755 15.01
5 & 6 491,169,360 965,869,767 52.19
Peak 574,548,639 965,869,767 3,549.20

Scheme 3 1 411,928,076 411,928,076 898.40
1/ǫ = 1 2 505,729,592 822,801,159 17.51

3 574,548,639 819,749,431 2,590.78
4 454,026,216 883,576,755 14.86
5 & 6 491,169,3601,204,608,375 62.00
Peak 574,548,639 1,204,608,375 3,583.56

Scheme 3 1 411,928,076 411,928,076 896.88
1/ǫ = 15 2 505,729,592 822,801,159 17.46

3 574,548,639 819,749,431 2,588.83
4 454,026,216 883,576,755 14.81
5 & 6 274,463,684 771,197,007 102.80
Peak 574,548,639 883,576,755 3,620.87

(b) Human Genome.

Index Indexing Main-memory Total space Time
step space (bytes) (bytes) secs

Scheme 2 1 1,233,336,206 1,233,336,206 2,440.33
2 1,428,595,278 2,442,409,424 51.73
3 1,677,938,853 2,467,406,392 13,966.22
4 1,405,350,330 2,665,257,752 45.00
5 & 6 1,579,033,6962,985,958,274 181.96
Peak 1,677,938,853 2,985,958,274 16,685.28

Scheme 3 1 1,233,336,206 1,233,336,206 2,443.83
1/ǫ = 1 2 1,428,595,278 2,442,409,424 51.98

3 1,677,938,853 2,467,406,392 13,791.08
4 1,405,350,330 2,665,257,752 44.93
5 & 6 1,579,033,6963,775,475,122 211.81
Peak 1,677,938,853 3,775,475,122 16,543.63

Scheme 3 1 1,233,336,206 1,233,336,206 2,445.02
1/ǫ = 15 2 1,428,595,278 2,442,409,424 51.61

3 1,677,938,853 2,467,406,392 13,812.29
4 1,405,350,330 2,665,257,752 44.92
5 & 6 841,516,9322,300,440,426 365.18
Peak 1,677,938,853 2,665,257,752 16,719.02

For Scheme 2, the maximum main-memory peak is reached at Step3, and it is of about 548 MB. This
means about 0.54 times the size of the original text needed toconstruct the Scheme 2 for the English text.
Also, this space is 0.59 times that of the final Scheme 2. When comparing the space required by the hier-
archical trie representations with that required by the final trie representations, we have 411,928,076 bytes
for the hierarchicalLZTrie and 408,876,348 bytes for the hierarchicalRevTrie, versus 410,873,083 bytes
for LZTrie and 309,412,004 bytes forRevTrie. This means that the hierarchicalLZTrie requires about 1.01
times the size of the finalLZTrie, while the hierarchicalRevTrierequires about 1.32 times the size of the fi-
nalRevTrie. The bigger difference betweenRevTrierepresentations comes from the fact that the hierarchical
RevTriestores the symbols labeling the arcs, while the finalRevTriedoes not. Table 4(a) summarizes.

The results are very similar for Scheme 3 and1/ǫ = 1. For 1/ǫ = 15, however, the peak of memory
usage when considering the total indexing space at each stepis reached at Step 4, and it is slightly greater
than the space needed by the final Scheme 3 (more precisely, 1.15 times the size of the final Scheme 3).

As a comparison, we indexed a 500-MB prefix of this text with the original construction algorithm of
Scheme 2, using an approach similar to that used in Navarro [56], with non-space-efficient intermediate
representation for the tries. The peak of main memory is 1,566 MB (this means 3.13 times the size of the

original text)13, with an indexing rate of about 1.29 MB/sec (see Table 4(b)).Applied on this same prefix, our
new indexing algorithm is 6.45 times slower than the original one (see column “Slowdown” in Table 4(b)),
yet it requires 4.29 times less memory than the original (seecolumn “Space reduction” in Table 4(b)).
The intermediateLZTrie of the original algorithm required 751,817,455 bytes (thisis 2.65 times the size
of our hierarchicalLZTrie on this same prefix, see column “IntermediateLZTrie” in Table 4(b)), while the
intermediateRevTrierequired 1,185,969,250 bytes (this is 4.31 times the size ofour hierarchicalRevTrie, see
column “IntermediateRevTrie” in Table 4(b)). Note the bigger difference amongRevTrierepresentations.
This is because we are not only using a space-efficient representation, but also because we are compressing
empty unary paths at reverse-trie construction time. Thus,we can conclude that our space-efficient trie
representations are effective to reduce the indexing spaceof LZ-index schemes. The price is, on the other
hand, a slower construction.

6.3 Indexing the Human Genome

For the test on DNA data we indexed the Human Genome14, whose size is about 3,182MB. In Table 3(b)
we show the results obtained with our construction algorithm. The indexing rate for the hierarchicalLZTrie
is about 1.30 MB/sec, while forRevTrieit is about 0.23 MB/sec. The total indexing time (user time plus
system time) is about 4.63 hours, which means an overall indexing rate of about 0.19 MB/sec.

See Table 4(a) for the statistics regarding the memory peak of the algorithm, as well as a compari-
son between intermediate and final trie representations. See Table 4(b) for a comparison with the original
construction algorithm for Scheme 2, indexing a 500-MB prefix of the Human Genome.

Now we show that the running times of our algorithms are comparable to those of state-of-the-art meth-
ods. Hence, we test the practical indexing times for the bestindexing algorithms we know of:

– The space-efficient algorithm from Sirén [32] to build the Burrows-Wheeler transform of a text collec-
tion. In particular, the algorithm is used to build the Run-length Compressed Suffix Array [45] (RL-CSA
for short). We divided the Human Genome into several equal-size files. To obtain different space/time
trade-offs, we used 25 (which was the value tested by Sirén [32]), 50, 100 and 500 files. We used the
same construction parameters as in the original article [32]. The program was run in our machine.

– The algorithm for constructing suffix arrays from Dementievet al. [15]. Most of the work of this al-
gorithm is carried out on secondary storage, using just a constant amount of main memory. Therefore
its performance depends basically on the speed of the disk used, whereas ours depend mostly on the
CPU speed. As the disks they used are similar or faster than ours, we directly report their experimental
results [15] instead of rerunning them in our machine. They report results in two scenarios: (i) a 2.0GHz
Intel Xeon processor, 1GB of RAM and eight 80GB ATA IBM 120GXPdisks (these are similar to those
in our machine: 7,200 rpm, 8.5 ms seek time, 2MB buffer, 100 MB/sec transfer rate); and (ii) a more
powerful SMP system with four 64-bit AMD Opteron 1.8 GHz processors (just one processor was used),
8GB of RAM (just 1GB was used by the algorithms) and eight 73GBSCSI Seagate ST373453LC disks
(these spin at 15,000 rpm, have 8 MB buffers and 3.6 ms seek time; their transfer rate is 320 MB/sec).

Table 5 shows the results. As can be seen, for 25 files the indexing time for the RL-CSA is4.33 hours,
with a memory peak of 2,299 MB. Thus, the construction time issligthly better than ours, though using more

13 It is important to note that the original algorithm uses justmain memory to construct Scheme 2
14 http://hgdownload.cse.ucsc.edu/goldenPath/hg18/bigZips/est.fa.gz.

Table 4.Some statistics for our construction algorithms.

(a) Statistics for our space-efficient indexing algorithm for Scheme 2. The results for
Scheme 3 are similar.

Text Main-memory Size hierarchical Size hierarchical
peak LZTrie RevTrie

English 0.54 times text size. 411,928,076 bytes 309,412,004 bytes
(1 GB) 0.59 times size of final (1.01 times size of (1.32 times size of

Scheme 2. finalLZTrie) final RevTrie)

Human Genome 0.50 times text size. 1,233,336,206 bytes 1,209,073,218 bytes
(3.11 GB) 0.44 times size of final (1.02 times size of (1.27 times size of

Scheme 2. finalLZTrie) final RevTrie)

XML 0.40 times text size. 90,563,835 bytes 84,591,900 bytes
(285 MB) 0.61 times size of final (1.07 times size of (1.29 times size of

Scheme 2. finalLZTrie) final RevTrie)

Proteins 1.05 times text size. 839,446,471 bytes 807,660,745 bytes
(1 GB) 0.51 times size of final (0.99 times size of (1.28 times size of

Scheme 2. finalLZTrie) final RevTrie)

(b) Statistics for the construction of Scheme 2 versus the non-space-efficient original algo-
rithm. The first two columns refer to the latter. Column “Slowdown” shows the slowdown ex-
perienced by using our space-efficient algorithm instead ofthe original one. “Space reduction”
indicates the factor of space reduction gained by using our algorithm instead of the original
one. Finally, columns “IntermediateLZTrie” and “IntermediateRevTrie” show the size of the
(non-space-efficient) intermediate data structures used to build the final tries, as a fraction of
the size of the final trie representations.

Text Main-memory Indexing rate Slowdown Space Intermediate Intermediate
peak (MB/sec) reduction LZTrie RevTrie

English 1,566 MB 1.29 6.45 4.29 2.65 4.31
(500 MB) (3.13× text)

Genome 1,275 MB 1.86 8.86 4.46 2.74 3.47
(500 MB) (2.55× text)

XML 862 MB 2.31 5.25 7.50 2.68 9.02
(285 MB) (3.02× text)

Proteins 1,781 MB 1.82 8.27 3.63 2.68 3.41
(500 MB) (3.56× text)

main memory. For 500 files, the indexing time raises to 18.79 hours, whereas the memory peak decreases to
1,799 MB. This is closer but still higher than our memory usage. Hence, the indexing space can be reduced
to approach ours, yet at the price of degrading much the indexing time.

Using computer (i) above, the algorithm of Dementiev et al. [15] indexes the Human Genome in about
8.52 hours, using secondary storage and just a constant amount of main memory. By using computer (ii),
on the other hand, the indexing times are reduced to 5.11 hours. This is comparable to our results (yet,
remember that different structures are being built, so thisis not a direct competition but rather tries to put
the practicality of our LZ-index construction in context).

The comparison shows that our LZ-index construction is at least as practical as the best constructions
of suffix-array-based indexes. This is a very relevant result, specifically for biological research, since it
demonstrates that it is feasible to index the Human Genome within less than 5 hours and in the main memory
of a desktop computer.

Table 5.Comparison of the best indexing algorithms to construct an index for the Human Genome.

Index Construction Indexing Maximum indexing
algorithm time space (RAM)

Run-length Compressed Suffix Arrays – 25 files [32] 4.33 hours 2,299 MB
Run-length Compressed Suffix Arrays – 50 files [32] 4.98 hours 2,038 MB
Run-length Compressed Suffix Arrays – 100 files [32] 6.33 hours 1,904 MB
Run-length Compressed Suffix Arrays – 500 files [32] 18.79 hours 1,799 MB
Suffix array – on computer(i) [15] 8.52 hours 1,024 MB
Suffix array – on computer(ii) [15] 5.11 hours 1,024 MB
Scheme 2 of LZ-index This paper 4.63 hours 2,847 MB
Scheme 2 – reduced-memory model This paper 4.63 hours 1,597 MB

As a historical note to illustrate the evolution of text indexing technologies, there are several results on
indexing the Human Genome in the literature:

– Kurtz [39] indexed this text in less than 9 hours on a Sun-UltraSparc 300 MHz, 192 MB of main memory,
under Solaris 2. The main-memory usage was of about 45.31 GB.

– Sadakane and Shibuya [68] constructed the suffix array for the Human Genome, and used it to construct
the Compressed Suffix Array. They used an IBM SP-2 (450MHz CPU) with 64GB of RAM to achieve
7 hours of indexing time. The indexing space was about 12GB.

– Hon et al. [29, 28] indexed the Human Genome with the CSA in about 24 hours, using a Pentium IV
processor at 1.7 GHz with 512 KB of L2 cache, and 4 GB of main memory, running Solaris 9 operating
system. They also constructed the FM-index in about 4 extra hours, for a total of about 28 hours.

6.4 Indexing XML Data

Another relevant application is that of compressing and searching XML texts. Nowadays many applica-
tions handle text data in XML format, which are automatically generated in large amounts. It is interesting
therefore to be able to compress such data, while at the same time being able to search and extract any

part of the text, since XML data is usually queried and navigated by other applications. We indexed the file
http://pizzachili.dcc.uchile.cl/texts/xml/dblp.xml.gz of about 285 MB provided
in thePizza&Chili Corpus. This text is highly compressible.

In Table 6(a) we show the results for XML text. The indexing rate for LZTrie is about 1.43 MB/sec,
while for RevTrieit is about 0.65 MB/sec. The overall indexing rate is about 0.44 MB/sec. See Table 4(a)
for statistics regarding the memory peak of the algorithm, as well as a comparison between intermediate and
final trie representations. See Table 4(b) for a comparison with the original construction algorithm.

Table 6.Experimental results for XML text and proteins. Numbers in boldface indicate the final index size in every case.

(a) XML text.

Index Indexing Main-memory Total space Time
step space (bytes) (bytes) secs

Scheme 2 1 90,563,835 90,563,835 199.74
2 111,467,467 175,009,211 3.82
3 120,592,538 169,037,276 435.20
4 98,337,536 185,878,936 3.23
5 & 6 97,231,032198,518,068 9.29
Peak 120,592,538 198,518,068 651.28

Scheme 3 1 90,563,835 90,563,835 201.43
1/ǫ = 1 2 111,467,467 175,009,211 3.88

3 120,592,538 169,037,276 441.91
4 98,337,536 185,878,936 3.24
5 & 6 97,231,032245,871,260 11.02
Peak 120,592,538 245,871,260 661.41

Scheme 3 1 90,563,835 90,563,835 200.91
1/ǫ = 15 2 111,467,467 175,009,211 3.79

3 120,592,538 169,037,276 441.34
4 98,337,536 185,878,936 3.20
5 & 6 54,641,864160,692,920 18.66
Peak 120,592,538 185,878,936 667.91

(b) Proteins.

Index Indexing Main-memory Total space Time
step space (bytes) (bytes) secs

Scheme 2 1 839,446,471 839,446,471 1,087.58
2 1,018,660,027 1,681,050,175 33.82
3 1,133,180,292 1,649,264,449 4,105.11
4 895,675,465 1,766,181,601 27.83
5 & 6 1,032,374,1441,990,895,000 112.75
Peak 1,133,180,292 1,990,895,000 5,374.88

Scheme 3 1 839,446,471 839,446,471 1,095.56
1/ǫ = 1 2 1,018,660,027 1,681,050,175 33.49

3 1,133,180,292 1,649,264,449 4,113.27
4 895,675,465 1,766,181,601 27.55
5 & 6 1,032,374,1442,502,718,500 134.72
Peak 1,133,180,292 2,502,718,500 5,404.62

Scheme 3 1 839,446,471 839,446,471 1,097.09
1/ǫ = 15 2 1,018,660,027 1,681,050,175 33.86

3 1,133,180,292 1,649,264,449 4,117.30
4 895,675,465 1,766,181,601 27.62
5 & 6 575,948,0721,589,866,364 232.25
Peak 1,133,180,292 1,766,181,601 5,508.14

6.5 Indexing Proteins

Another interesting application of text-indexing tools inbiological research is that of indexing proteins.
We indexed the texthttp://pizzachili.dcc.uchile.cl/texts/protein/proteins.gz
of about 1 GB provided in thePizza&Chili Corpus. This is a not so compressible text.

In Table 6(b) we show the results for proteins. The indexing rate for the hierarchicalLZTrie is about 0.92
MB/sec, while forRevTrieit is about 0.24 MB/sec. The indexing rate forRevTrieis much slower than for
other texts. This could be mainly because proteins are not socompressible, and then the tries have a greater
number of nodes to be inserted, making the process slower. The overall indexing rate is about 0.19 MB/sec.

See Table 4(a) for the statistics regarding the memory peak of the algorithm, as well as a compari-
son between intermediate and final trie representations. See Table 4(b) for a comparison with the original
construction algorithm for Scheme 2, indexing a 500-MB prefix of Proteins.

7 Conclusions and Future Work

The space-efficient construction of compressed full-text self-indexes is a very important aspect regarding
their practicality. In this paper we proposed a space-efficient algorithm to construct Navarro’s LZ-index [55].
Given the data structures that conform the LZ-index, this problem is highly related to the representa-
tion of succinct dynamicσ-ary trees. Thus, the basic idea is to construct the tries of the LZ-index using
space-efficient intermediate representations supportingfast incremental insertion of nodes. Our algorithm
requires asymptotically the same space as the final LZ-index. Let a textT [1..u] over an alphabet of size
σ be compressed by the LZ78 algorithm into a representationLZ. Then the size of Navarro’s LZ-index
is 4|LZ|(1 + o(1)) bits, and this is also the space needed by the algorithm introduced in this article to
build such index, withinO(u(log σ + log log u)) time. We also show that all LZ-index variants presented
in previous work [7, 5], requiring from(1 + ǫ)|LZ|(1 + o(1)) to 3|LZ|(1 + o(1)) bits, can be constructed
within the same asymptotic space needed by the final index (theo(1)-factor is small,O(1

log |LZ|)) and within
the same time as before. These smaller indexes are able to replace the original LZ-index in many practical
scenarios [5], hence the importance to space-efficiently construct them.

We defined an alternative model in which we have a reduced amount of main memory to perform the
indexing process (perhaps less memory than that needed to accommodate the whole index). We show that
several LZ-indexes can be constructed within|LZ|(1 + o(1)) bits of main memory space, inO(u(log σ +
log log u)) time and withO(|LZ|) I/Os. Others need slightly more space,ǫ|LZ| for a small value0 < ǫ < 1
or |LZ| log u

log |LZ| . This means that the LZ-indexes can be constructed essentially within the same space than
that required to store the compressed text.

Our experimental results indicate that all LZ-index versions can be constructed in practice within almost
the same amount of memory than needed by the final index. Underthe reduced-memory scenario, we have
that the LZ-index versions can be constructed requiring main memory to hold 0.40 – 1.05 times, and using
overall space 0.66 – 1.84 times, the size of the original text, depending on its compressibility. This means
about 3.39 – 7.50 times less space than that needed by the original construction algorithm (which works
assuming that there is enough memory to store the whole indexin main memory). Our indexing rate is about
0.19 – 0.44 MB/sec., which is 5.25 – 8.86 times slower than theoriginal construction algorithm. In conclu-
sion, our algorithm requires much less memory than the original one, in exchange for a higher construction
time. Still, our indexing algorithm is competitive with existing indexing technologies. For example, we are
able to construct the LZ-index for the Human Genome in less than 5 hours, indexing algorithms in the
literature for constructing other indexes like suffix arrays [15] and Compressed Suffix Arrays [32].

An interesting application of our indexing algorithm is in the construction of the LZ78 parsing of a
text T . Grossi and Sadakane [66] define an alternative representation for the LZ78 parsing, which has the
nice property of supporting optimal-time access to any textsubstring. The parsing consists basically of
LZTrie (the trie topology and the array of edge symbols), plus an array that, for any phrase identifieri,
stores the preorder of the correspondingLZTrie node. Using our notation, the latter is just arrayids−1.

Jansson et al. [33] propose an algorithm to construct the parsing inO(u
logσ u

(log log u)2

log log log u) time and requiring
uHk(T) + o(u log σ) bits of space. The algorithm, however, needs two passes overthe text, which involves
|T | = u log σ extra bits of I/O if it is stored on disk, which can be expensive. We can reduce the number of
disk accesses as follows, mainly when the text is compressible:

– We construct the hierarchicalLZTrie for T , storing the phrase identifier for each node. We can eraseT
since it is not anymore necessary. This takesO(u(log σ + log log u)) time.

– We build the finalLZTrie, storing arrayids on disk, as explained in Section 4.7. This takesO(u(log σ +
log log u)) further time, and carries out|LZ| extra bits of I/O.

– We then free the hierarchicalLZTrie and load arrayids back to main memory, performing|LZ| bits of
further I/O.

– We computeids−1 in place, using the algorithm of Lemma 3, and this way we complete the representa-
tion for the LZ78 parsing of textT .

As seen, we exchange the|T | bits of extra I/O of Jansson et al. [33] by2|LZ|. This can be much better
in the case of large compressible texts. The total time isO(u(log σ + log log u)), and the maximum main-
memory space used is|LZ|(1 + o(1)) bits. We think that our methods could be extended to build related
LZ-indexes [18, 64] within limited space.

Finally, recent advances [27, 59] (not all refereed yet) seem to indicate that it is possible to handle
all the classical operations on a tree ofn nodes within2n + o(n) bits andO(log n

log log n) time; and that a
dynamic sequence of lengthn over an alphabet of sizeσ can be handled withinn log σ(1 + o(1)) bits and
O(log n

log log n(1+ log σ
log log n)) time per operation, which also may extend to partial sums. Insuch a case, we would

be able to handle the operations of our tree blocks of sizeN within timeO(log N
log log u), and as a consequence

all our construction times would drop fromO(u(log σ + log log u)) to the familiarO(u(1 + log σ
log log u)). This

is the time for carrying outu operations on astatic FM-index, whereas a dynamic FM-index construction
would pose an extraO(log u

log log u) factor in the time complexity.

References

1. A Apostolico. The myriad virtues of subword trees. InCombinatorial Algorithms on Words, NATO ISI Series, pages 85–96.
Springer-Verlag, 1985.

2. D. Arroyuelo. An improved succinct representation for dynamick-ary trees. InProc. 19th Annual Symposium on Combinato-
rial Pattern Matching (CPM), LNCS 5029, pages 277–289, 2008.

3. D. Arroyuelo, R. Cánovas, G. Navarro, and K. Sadakane. Succinct trees in practice. InProc. 11th Workshop on Algorithm
Engineering and Experiments (ALENEX), pages 84–97, 2010.

4. D. Arroyuelo and G. Navarro. Space-efficient construction of LZ-index. InProc. 16th Annual International Symposium on
Algorithms and Computation (ISAAC), LNCS 3827, pages 1143–1152. Springer, 2005.

5. D. Arroyuelo and G Navarro. Practical approaches to reduce the space requirement of Lempel-Ziv-based com-
pressed text indices. Technical Report TR/DCC-2008-9, Dept. of Computer Science, University of Chile, 2008.
http://www.dcc.uchile.cl/TR/2008/TR DCC-2008-009.pdf. Submitted.

6. D. Arroyuelo, G. Navarro, and K. Sadakane. Reducing the space requirement of LZ-index. InProc. 17th Annual Symposium
on Combinatorial Pattern Matching (CPM), LNCS 4009, pages 319–330, 2006.

7. D. Arroyuelo, G. Navarro, and K. Sadakane. Stronger Lempel-Ziv based compressed
text indexing. To appear in Algorithmica, DOI 10.1007/s00453-010-9443-8. See also
http://www.dcc.uchile.cl/∼darroyue/papers/algor2010.pdf., 2010.

8. D. Benoit, E. Demaine, J. I. Munro, R. Raman, V. Raman, and S. S. Rao. Representing trees of higher degree.Algorithmica,
43(4):275–292, 2005.

9. A. Brodnik, S. Carlsson, E. Demaine, J. I. Munro, and R. Sedgewick. Resizable arrays in optimal time and space. InProc.
WADS, LNCS 1663, pages 37–48. Springer, 1999.

10. M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm. Technical Report 124, Digital Equipment
Corporation, 1994.

11. H.-L. Chan, W.-K. Hon, T.-W. Lam, and K. Sadakane. Compressed indexes for dynamic text collections.ACM Transactions
on Algorithms, 3(2):article 21, 2007.

12. B. Chazelle. A functional approach to data structures and its use in multidimensional searching.SIAM Journal on Computing,
17(3):427–462, 1988.

13. D. Clark and J. I. Munro. Efficient suffix trees on secondary storage. InProc. 7th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 383–391, 1996.

14. T. Cormen, C. Leiserson, R. Rivest, and C. Stein.Introduction to Algorithms. Prentice–Hall, second edition, 2001.
15. R. Dementiev, J. Kärkkäinen, J. Mehnert, and P. Sanders. Better external memory suffix array construction.Journal of

Experimental Algorithmics (JEA), 12:1–24, article 3.4, 2008.
16. P. Ferragina, T. Gagie, and G. Manzini. Lightweight dataindexing and compression in external memory. InProc. 8th Latin

American Symposium on Theoretical Informatics (LATIN), pages 697–710, 2010.
17. P. Ferragina, R. González, G. Navarro, and R. Venturini. Compressed text indexes: From theory to practice.ACM Journal of

Experimental Algorithmics (JEA), 13:article 12, 2009.
18. P. Ferragina and G. Manzini. Indexing compressed text.Journal of the ACM, 54(4):552–581, 2005.
19. P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representations of sequences and full-text indexes. ACM

Transactions on Algorithms, 3(2):article 20, 2007.
20. F. Fich, J. I. Munro, and P. Poblete. Permuting in place.SIAM Journal on Computing, 24(2):266–278, 1995.
21. G. Franceschini and S. Muthukrishnan. In-place suffix sorting. In Proc. of 34th International Colloquium on Automata,

Languages and Programming (ICALP), LNCS 4596, pages 533–546, 2007.
22. R. Geary, N. Rahman, R. Raman, and V. Raman. A simple optimal representation for balanced parentheses.Theoretical

Computer Science, 368(3):231–246, 2006.
23. R. González, S. Grabowski, V. Mäkinen, and G. Navarro.Practical implementation of rank and select queries. InPoster Proc.

Vol. of 4th Workshop on Experimental and Efficient Algorithms (WEA), pages 27–38. CTI Press and Ellinika Grammata, 2005.
24. R. González and G. Navarro. Rank/select on dynamic compressed sequences and applications.Theoretical Computer Science,

410:4414–4422, 2008.
25. R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes. InProc. 14th Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA), pages 841–850, 2003.
26. R. Grossi and J. S. Vitter. Compressed suffix arrays and suffix trees with applications to text indexing and string matching.

SIAM Journal on Computing, 35(2):378–407, 2005.
27. M. He and I. Munro. Succinct representations of dynamic strings. InProc. 17th International Symposium on String Processing

and Information Retrieval (SPIRE), 2010. To appear.
28. W.-K. Hon.On the Construction and Application of Compressed Text Indexes. PhD thesis, University of Hong Kong, 2004.
29. W. K. Hon, T. W. Lam, K. Sadakane, and W. K. Sung. Constructing compressed suffix arrays with large alphabets. InProc.

14th Annual International Symposium on Algorithms and Computation (ISAAC), LNCS 2906, pages 240–249, 2003.
30. W. K. Hon, T. W. Lam, K. Sadakane, W.-K. Sung, and M. Yiu. A space and time efficient algorithm for constructing compressed

suffix arrays.Algorithmica, 48(1):23–36, 2007.
31. W.-K. Hon, K. Sadakane, and W.-K. Sung. Breaking a time-and-space barrier in constructing full-text indices.SIAM J.

Comput., 38(6):2162–2178, 2009.
32. Sirén J. Compressed suffix arrays for massive data. InProc. 16th International Symposium on String Processing and Informa-

tion Retrieval (SPIRE), LNCS 5721, pages 63–74, 2009.
33. J. Jansson, K. Sadakane, and W.-K. Sung. Compressed dynamic tries with applications to LZ-compression in sublineartime

and space. In27th Int. Conf. on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), pages
424–435, 2007.

34. J. Jansson, K. Sadakane, and W.-K. Sung. Ultra-succinctrepresentation of ordered trees. InProc. 18th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 575–584, 2007.

35. J. Kärkkäinen. Fast BWT in small space by blockwise suffix sorting. Theoretical Computer Science, 387(3):249–257, 2007.
36. J. Kärkkäinen and E. Ukkonen. Lempel-Ziv parsing and sublinear-size index structures for string matching. InProc. 3rd South

American Workshop on String Processing (WSP), pages 141–155, 1996.
37. D. Kim, J. Na, J. Kim, and K. Park. Efficient implementation of rank and select functions for succinct representation.In Proc.

4th Workshop on Experimental and Efficient Algorithms (WEA), pages 315–327. LNCS 3503, 2005.
38. R. Kosaraju and G. Manzini. Compression of low entropy strings with Lempel-Ziv algorithms.SIAM Journal on Computing,

29(3):893–911, 1999.
39. S. Kurtz. Reducing the space requeriments of suffix trees. Software Practice and Experience, 29(13):1149–1171, 1999.
40. J. Larsson and K. Sadakane. Faster suffix sorting.Theoretical Computer Science, 387(3):258–272, 2007.
41. V. Mäkinen. Compact suffix array - a space-efficient full-text index.Fundamenta Informaticae, 56(1–2):191–210, 2003.
42. V. Mäkinen and G. Navarro. Succinct suffix arrays based on run-length encoding.Nordic Journal of Computing, 12(1):40–66,

2005.
43. V. Mäkinen and G. Navarro. Rank and select revisited andextended.Theoretical Computer Science, 387(3):332–347, 2007.

44. V. Mäkinen and G. Navarro. Dynamic entropy-compressedsequences and full-text indexes.ACM Transactions on Algorithms,
4(3):article 32, 2008.

45. V. Mäkinen, G. Navarro, J. Sirén, and N. Välimäki. Storage and retrieval of highly repetitive sequence collections.Journal of
Computational Biology, 17(3):281–308, 2010.

46. U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches.SIAM Journal on Computing, 22(5):935–
948, 1993.

47. G. Manzini. An analysis of the Burrows-Wheeler transform. Journal of the ACM, 48(3):407–430, 2001.
48. G. Manzini and P. Ferragina. Engineering a lightweight suffix array construction algorithm.Algorithmica, 40(1):33–50, 2004.
49. D. R. Morrison. Patricia – practical algorithm to retrieve information coded in alphanumeric.Journal of the ACM, 15(4):514–

534, 1968.
50. I. Munro, V. Raman, and S. Rao. Space efficient suffix trees. Journal of Algorithms, 39(2):205–222, 2001.
51. J. I. Munro. Tables. InProc. 16th Conference on Foundations of Software Technology and Theoretical Computer Science

(FSTTCS), LNCS 1180, pages 37–42, 1996.
52. J. I. Munro, R. Raman, V. Raman, and S. S. Rao. Succinct representations of permutations. InProc. 30th International

Colloquium on Automata, Languages and Computation (ICALP), LNCS 2719, pages 345–356, 2003.
53. J. I. Munro and V. Raman. Succinct representation of balanced parentheses and static trees.SIAM Journal on Computing,

31(3):762–776, 2001.
54. J. Na and K. Park. Alphabet-independent linear-time construction of compressed suffix arrays usingo(n log n)-bit working

space.Theoretical Computer Science, 385:127–136, 2007.
55. G. Navarro. Indexing text using the Ziv-Lempel trie.Journal of Discrete Algorithms (JDA), 2(1):87–114, 2004.
56. G. Navarro. Implementing the LZ-index: Theory versus practice.ACM Journal of Experimental Algorithmics (JEA), 13(article

2), 2009.
57. G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Computing Surveys, 39(1):article 2, 2007.
58. G. Navarro, E. Moura, M. Neubert, N. Ziviani, and R. Baeza-Yates. Adding compression to block addressing inverted indexes.

Information Retrieval, 3(1):49–77, 2000.
59. G. Navarro and K. Sadakane. Fully-functional static anddynamic succinct trees. Technical Report arXiv:0905.0768v4, ArXiv,

2010.
60. D. Okanohara and K. Sadakane. Practical entropy-compressed rank/select dictionary. InProc. Workshop on Algorithm Engi-

neering and Experiments (ALENEX), pages 60–70, 2007.
61. M. Pătraşcu. Succincter. InProc. 49th Annual IEEE Symposium on Foundations of ComputerScience (FOCS), pages 305–313,

2008.
62. R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries with applications to encodingk-ary trees and multisets.

In Proc. 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 233–242, 2002.
63. R. Raman and S. S. Rao. Succinct dynamic dictionaries andtrees. InProc. 30th International Colloquium on Automata,

Languages and Computation (ICALP), LNCS 2719, pages 357–368, 2003.
64. L. Russo and A. Oliveira. A compressed self-index using aZiv-Lempel dictionary.Information Retrieval, 5(3):501–513, 2007.
65. K. Sadakane. New text indexing functionalities of the compressed suffix arrays.Journal of Algorithms, 48(2):294–313, 2003.
66. K. Sadakane and R. Grossi. Squeezing succinct data structures into entropy bounds. InProc. 17th Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA), pages 1230–1239, 2006.
67. K. Sadakane and G. Navarro. Fully-functional succinct trees. InProc. 21st Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), pages 134–149, 2010.
68. K. Sadakane and T. Shibuya. Indexing huge genome sequences for solving various problems.Genome Informatics, 12:175–

183, 2001.
69. J. S. Vitter.Algorithms and Data Structures for External Memory. Series on Foundations and Trends in Theoretical Computer

Science. Now Publishers, 2008.
70. P. Weiner. Linear pattern matching algorithms. InProc. 14th Annual Symposium on Foundations of Computer Science (FOCS),

pages 1–11, 1973.
71. I. Witten, A. Moffat, and T. Bell.Managing Gigabytes. Morgan Kaufmann Publishers, second edition, 1999.
72. J. Ziv and A. Lempel. A universal algorithm for sequential data compression.IEEE Transactions on Information Theory,

23(3):337–343, 1977.
73. J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding.IEEE Transactions on Information

Theory, 24(5):530–536, 1978.

