
Rotation and Lighting Invariant Template Matching ∗

Kimmo Fredriksson† Veli Mäkinen‡ Gonzalo Navarro§

Abstract

We address the problem of searching for a two-dimensional pattern in a two-dimensional
text (or image), such that the pattern can be found even if it appears rotated and it is brighter
or darker than its occurrence. Furthermore, we consider approximate matching under several
tolerance models. We obtain algorithms that are almost optimal both in the worst and the
average cases simultaneously. The complexities we obtain are very close to the best current
results for the case where only rotations, but not lighting invariance, are supported. These are
the first results for this problem under a combinatorial approach.

1 Introduction

We consider the problem of finding the occurrences of a two-dimensional pattern of size m×m cells
in a two-dimensional text of size n × n cells, when all possible rotations of the pattern are allowed
and also the pattern and the text may have differences in brightness. This stands for rotation and
lighting invariant template matching. Text and pattern are seen as images formed by cells, each of
which has a gray level value, also called a color.

Template matching has numerous important applications from science to multimedia, for ex-
ample in image processing, content based information retrieval from image databases, geographic
information systems, and processing of aerial images, to name a few. In all these cases, we want to
find a small subimage (the pattern) inside a large image (the text) permitting rotations (a small
degree or any). Furthermore, pattern and text may have been photographed under different lighting
conditions, so one may be brighter than the other.

The traditional approach to this problem [5] is to compute the cross correlation between each
text location and each rotation of the pattern template. This can be done reasonably efficiently
using the Fast Fourier Transform (FFT), requiring time O(Kn2 log n) where K is the number of
rotations sampled. Typically K is O(m) in the two-dimensional (2D) case, and O(m3) in the 3D
case, which makes the FFT approach very slow in practice. In addition, lighting-invariant features
may be defined in order to make the FFT insensitive to brightness. Also, in many applications,
“close enough” matches of the pattern are also accepted. To this end, the user may specify, for

∗A short version of this paper appeared in Proc. LATIN 2004, pp. 39–48, LNCS 2976.
†Department of Computer Science, University of Joensuu. kfredrik@cs.joensuu.fi.
‡Department of Computer Science, University of Helsinki. vmakinen@cs.helsinki.fi. Part of this work was done

while visiting University of Chile under a researcher exchange grant from University of Helsinki.
§Department of Computer Science, University of Chile. gnavarro@dcc.uchile.cl. Funded by Millennium Nucleus

Center for Web Research, Grant P04-067-F, Mideplan, Chile.

1

example, a parameter κ such that matches that have at most κ differences with the pattern should
be accepted, or a parameter δ such that gray levels differing by no more than δ are considered
equal. The definition of the matching conditions is called the “matching model” in this paper.

Rotation invariant template matching was first considered from a combinatorial point of view
in [16, 17]. Since then, several fast filters have been developed for diverse matching models [18, 9,
19, 14, 13, 15]. These represent large performance improvements over the FFT-based approach.
The worst-case complexity of the problem was also studied [1, 14, 15]. However, lighting invariance
has not been considered in this scenario.

On the other hand, transposition invariant string matching was considered in music retrieval
[7, 20]. The aim is to search for (one-dimensional) patterns in texts such that the pattern may
match the text after all its characters (notes) are shifted by some value. The reason is that such
an occurrence will sound like the pattern to a human, albeit in a different scale. In this context,
efficient algorithms for several approximate matching functions were developed [21]. Recently,
average-optimal algorithms for several variants of the problem have appeared [10, 11].

We note that transposition invariance becomes lighting invariance when we replace musical notes
by gray levels of cells in an image. This is of course just a general statement. Not only human
perception of light is not linear with the gray level value, but also lighting involves a non-linear
transformation of gray levels. There exist, however, several well-known techniques to transform
the gray level values to another scale so that perceptual changes due to lighting conditions become
approximately linear in the transformed gray level [24]. Two examples of such techniques are
histogram equalization and variance normalization. In this paper we disregard this aspect and
assume that lighting introduces a constant shift in the gray level values.

The aim of this paper is to enrich the existing algorithms for rotation invariant template match-
ing [14, 15] with the techniques developed for transposition invariance [21, 10, 11] so as to obtain
rotation and lighting invariant template matching. It turns out that lighting invariance can be
added at very little extra cost. The key technique exploited is incremental distance computation:
We show that several lighting-invariant distances can be computed incrementally by taking the
computation done for the previous rotation into account in the next rotation angle. This problem
cannot be solved by straightforwardly combining techniques from previous work.

Let us now determine which are reasonable matching models for our case. In [14, 15], some
of the models considered were useful only for binary images, a case where obviously we are not
interested in in this paper. We will consider models that make sense for gray level images. We
define three lighting-invariant distances: Hamming distance dt,δ

H , which counts how many pattern

and text cells differ by more than δ; Maximum Absolute Differences distance dt,κ
MAD, which is the

maximum color difference between pattern and text cells when up to κ outliers are permitted; and
Sum of Absolute Differences distance dt,κ

SAD, which is the sum of absolute color differences between
pattern and text cells permitting up to κ outliers.

We consider two types of cell values. General values means that the cell contents are real
numbers, while discrete values means that the cell contents belong to a range of integers of size σ.
Any complexity achieved for general cell values is valid for discrete cell values as well. Table 1 shows
the time complexities (under the word RAM computation model) of our algorithms for computing
these distances for every possible rotation of a pattern centered at a fixed text position. We remark
that a lower bound to this problem is Ω(m3), and an algorithm whose time complexity matches

2

this lower bound was given in [14, 15] without lighting invariance (see Section 3 for more on lower
bounds). On the other hand, in the integer case it is trivial to obtain O(σm3) time by trying out
each possible transposition (i.e., difference among gray levels).

Distance General Discrete

dt,δ
H m3 log m m3(δ + 1)

dt,κ
MAD m3(κ + (log log m)2) m3(κ + log log σ)

dt,κ
SAD m3(κ + (log log m)2) m3(κ + log log σ)

Table 1: Worst-case time complexities (O(·) omitted) to compute the different distances defined.
We give complexities for general and discrete cell values, under the word RAM model.

We also define three search problems, consisting in finding all the lighting-invariant rotated
occurrences of P in T such that: there are at most κ cells of P differing by more than δ from
their corresponding text cell (δ-matching); the sum of absolute differences between cells in P and
T , except for κ outliers, does not exceed γ (γ-matching); and P matches both criteria at the same
time, for a given transposition and set of outliers ((δ, γ)-matching).

Table 2 shows our worst-case and average-case search complexities (the latter are valid only for
integer cell values independently and uniformly distributed over their σ possible contents). Without
transposition invariance the worst cases are all O(m3n2), which are optimal [14, 15] 1. Again, it is
trivial to obtain O(σm3n2) on integer cell values, by simply trying out every possible transposition.
Algorithms for δ-matching with δ = 0 (but permitting κ outliers) and for γ-matching with κ = 0,
without lighting invariance in both cases, are given in [15] (see also [11]). The respective average
complexities are O(n2(κ+logσ m)/m2) and O(n2(γ/σ+log σ

1+γ/m
m)/m2). Both are average-optimal

[15, 11]. Thus our complexities are rather close to be optimal.

2 Definitions

Let T = T [1..n, 1..n] and P = P [1..m, 1..m] be arrays of unit squares, called cells, in the (x, y)-plane.
Each cell has a value in an alphabet called Σ, sometimes called its gray level or its color. Two types
of alphabets are of interest: general alphabets assume Σ ⊆ R; while discrete alphabets assume finite
Σ ⊂ Z and max(Σ)−min(Σ) = σ. The corners of the cell for T [i, j] are (i−1, j−1), (i, j−1), (i−1, j)
and (i, j). The center of the cell for T [i, j] is (i − 1

2 , j − 1
2). The array of cells for pattern P is

defined similarly. The center of the whole pattern P is the center of the cell in the middle of P .
Precisely, assuming for simplicity that m is odd, the center of P is the center of cell P [m+1

2 , m+1
2].

Assume now that P has been moved on top of T using a rigid motion (translation and rotation),
such that the center of P coincides exactly with the center of some cell of T (we call this the center-
to-center assumption). The location of P with respect to T can be uniquely given as ((i, j), θ)
where (i, j) is the cell of T that matches the center of P , and θ is the angle between the x-axis of T

1Recently, an algorithm whose worst case scanning time is O(m2n2) was obtained [2]. The algorithm is for exact
matching only, and it is based on linearizing all the pattern rotations, and then relying on one-dimensional linear
time dictionary matching algorithms. However, if all the occurrences at their angles must be reported, any algorithm
still requires Ω(m3n2) time in the worst case.

3

Problem Worst case (general) Worst case (discrete)

δ-matching m3n2 log m m3n2(δ + 1)
m3n2(κ + (log log m)2) m3n2(κ + log log σ)

γ-matching m3n2(κ + (log log m)2) m3n2(κ + log log σ)

(δ, γ)-matching m3n2((κ + 1)
√

γ + log log σ)

Problem Average case (discrete)

δ-matching n2

m2 (κ + (1 + κ
m) log σ

δ+1
((δ + 1)m)), if δ < σ−2

4 and κ < m2

4

γ-matching n2

m2 (κ+γ+κγ/m
σ + (κ + 1) log σ

1+γ/m
(γ + m)),

if κ ≤ m/(2
√

2) and γ/κ ≤ σm/(2
√

2e)(1 − O(1/σ)),

or m/(2
√

2) ≤ κ = O(m2/ log m) and γκ/m2 ≤ σm/(16
√

2e)(1 − O(1/σ))

γ-matching n2

m2 (κ + (1 + γ
σ + κ

m) log(σm)), if κ ≤ m2/8 and γ ≤ mσ/(8
√

2)

(δ, γ)-matching Best of all the above

Table 2: Complexities for different search problems (conditions of applicability for average cases
are simplified).

and the x-axis of P . The (approximate) occurrence between T and P at some location is defined
by comparing the values of the cells of T and P that overlap. We will use the centers of the cells of
T for selecting the comparison points. That is, for the pattern at location ((i, j), θ), we look which
cells of the pattern cover the centers of the cells of the text, and compare the corresponding values
of those cells. Figure 1 illustrates.

x

y’

x’

j

θ

y

(0,0)

i

Figure 1: Each text cell is matched against the pattern cell that covers the center of the text cell.
As a consequence, some pattern cells may have to match several text cells simultaneously, whereas
some others may not have to match any text cell at all (right).

More precisely, we define a matching function M from the cells of T to the cells of P as follows.
Assume that P is at location ((i, j), θ). For each cell T [r, s] of T whose center belongs to the area
covered by P , let P [r′, s′] be the cell of P such that the center of T [r, s] belongs to the area covered

4

by P [r′, s′]. Then M([r, s]) = [r′, s′].
Now consider what happens to M when angle θ grows continuously, starting from θ = 0.

Function M changes only at the values of θ such that some cell center of T hits some cell boundary
of P . It was shown [16] that this happens O(m3) times as P rotates full 2π radians (or within
any fixed angle). A lower bound of Ω(m3) was also proved [1]. Hence there are Θ(m3) relevant
orientations of P to be checked. The set of angles for 0 ≤ θ ≤ π/2 is

A = {β, π/2 − β, β = arcsin
h + 1

2
√

i2 + j2
− arcsin

j
√

i2 + j2
;

i = 1, 2, . . . , ⌊m/2⌋; j = 0, 1, . . . , ⌊m/2⌋;h = 0, 1, . . . , ⌊
√

i2 + j2⌋}.

By symmetry, the set of possible angles θ, 0 ≤ θ < 2π, is

A = A ∪ (A + π/2) ∪ (A + π) ∪ (A + 3π/2) ,

where A + cπ is the set of angles in A with cπ added to each angle.
Furthermore, pattern P matches at location ((i, j), θ) with lighting invariance if there is some

integer transposition t such that T [r, s] + t = P (M [r, s]) for all [r, s] covered by P .
Once the position and rotation ((i, j), θ) of P in T define the matching function, we can compute

different kinds of distances between the pattern and the text. Lighting-invariant versions of the
distances choose the transposition minimizing the basic distance. The following distances are
interesting for gray level images.

Hamming Distance (H): The number of times T [r, s] + t 6= P [r′, s′] occurs, over all the covered
cells of T , that is

dH(i, j, θ, t) =
∑

r,s

if T [r, s] + t 6= P (M [r, s]) then 1 else 0

dt
H(i, j, θ) = min

t
dH(i, j, θ, t)

This can be extended to distance dδ
H and its transposition-invariant version dt,δ

H , where colors
must differ by more than δ in order to be considered different, that is, T [r, s]+t 6∈ [P (M [r, s])−
δ, P (M [r, s]) + δ].

Maximum Absolute Difference (MAD): The maximum value of |T [r, s]+ t−P [r′, s′]| over all
the covered cells of T , that is,

dMAD(i, j, θ, t) = max
r,s

|T [r, s] + t − P (M [r, s])|

dt
MAD(i, j, θ) = min

t
dMAD(i, j, θ, t)

This can be extended to distance dκ
MAD and its transposition-invariant version dt,κ

MAD, so that
κ pattern cells are freed from matching the text. Then the problem is to compute the MAD
distance with the best choice of κ outliers that are not included in the maximum.

5

Sum of Absolute Differences (SAD): The sum of the |T [r, s] + t−P [r′, s′]| values over all the
covered cells of T , that is,

dSAD(i, j, θ, t) =
∑

r,s

|T [r, s] + t − P (M [r, s])|

dt
SAD(i, j, θ) = min

t
dSAD(i, j, θ, t)

Similarly, this distance can be extended to dκ
SAD and its transposition-invariant version dt,κ

SAD,
where κ cells can be removed from the summation.

Once the above distances are defined, we can define the following search problems:

δ-Matching: Report triples (i, j, θ) such that dt
MAD(i, j, θ) ≤ δ. A tolerance κ can be permitted, so

that we only require dt,κ
MAD(i, j, θ) ≤ δ. Observe that this condition is the same as dt,δ

H (i, j, θ) ≤
κ.

γ-Matching: Report triples (i, j, θ) such that dt
SAD(i, j, θ) ≤ γ. Again, permitting tolerance κ

means requiring dt,κ
SAD(i, j, θ) ≤ γ.

(δ, γ)-Matching: Report triples (i, j, θ) such that dMAD(i, j, θ, t) ≤ δ and dSAD(i, j, θ, t) ≤ γ for
some t. Tolerance κ can be handled similarly, but the κ excluded cells must be the same for
both distances.

Figure 2 illustrates some cases.

3 Efficient Worst-Case Algorithms

In [1] it was shown that the worst case lower bound for the problem of the two dimensional pattern
matching allowing rotations is Ω(n2m3). A simple way to achieve this lower bound for any of the
distances under consideration (without lighting invariance) is shown in [14, 15].

The idea is that we check each possible text center, one by one. So we have to pay O(m3) per
text center to achieve the desired complexity. What we do is to compute the distance we want
for each possible rotation, by reusing most of the work done for the previous rotation. Once the
distances are computed, it is easy to report the triples (i, j, θ) where these values are smaller than
the given thresholds (δ and/or γ). Only distances dH (with δ = 0) and dSAD (with κ = 0) were
considered in [14, 15].

Assume that, when computing the set of angles A = (β1, β2, . . .), we also sort the angles so that
βi < βi+1, and associate with each angle βi the set Ci containing the corresponding cell centers that
hit a cell boundary at βi. This is done in a precomputation step that depends only on m, not on
P or T . Hence we can evaluate the distance functions (such as dSAD) incrementally for successive
rotations of P . That is, assume that the distance has been evaluated for βi, then to evaluate it
for rotation βi+1 it suffices to re-evaluate the cells restricted to the set Ci. This is repeated for
each β ∈ A. Therefore, the total number of cell (re)evaluations when P is centered at some fixed
position in T , for all possible angles, is

∑

i |Ci|. This is O(m3) because each fixed cell center of

6

(0,0)

i

j

x

y

θ

(a)

(0,0)

i

j

x

y

θ

(b)

Figure 2: Some examples of matches. In (a) we show a 3× 3 pattern over three gray levels, a 5× 5
text, and a rotated occurrence. Note that every text center covered by some pattern cell matches
the color of the corresponding pattern cell, with the exception of the text cell in the third column
and second row (counting from below). This text cell is light gray and is aligned with a white
pattern cell. This alignment will be declared as an occurrence, for example, if we permit Hamming
distance 1, as dH(i, j, θ, 0) = 1. In (b) we illustrate matching with lighting invariance using four gray
levels. The matching cells are the same as in (a) provided we shift all the gray levels of the text cells
by t = 1 (assuming colors go from black = 0 to white = 3). That is, dH(i, j, θ, 1) = dt

H(i, j, θ) = 1.

T , covered by P , can belong to at most O(m) different Ci sets. To see this, note that when P is
rotated the whole angle 2π, any cell of P traverses through O(m) cells of T . It is easy to update
distances dH and dSAD in constant time upon a cell reevaluation, thus the overall cost is O(n2m3).

If we want to add lighting invariance to the above scheme, a naive approach is to run the
algorithm for every possible transposition, for a total cost of O(n2m3σ) on discrete alphabets. In
case of a general alphabet there are O(m2) relevant transpositions at each rotation (that is, each
pattern cell can be made to match its corresponding text cell). Hence the cost raises to O(n2m5).

In order to do better, we must be able to compute the optimal transposition for the initial
angle and then maintain it when some characters of the text change (because the pattern has been
aligned over a different text cell). If we take f(m) time to do this, then our lighting invariant
algorithm becomes worst-case time O(n2m3f(m)). In the following we show how we can achieve
this for each of the distances under consideration. Additionally, some of our results give relevant
complexities for the case of no transpositions, for example for dMAD distance.

This technique can be inserted into the filters that we present later in order to make them near

7

optimal in the worst case. All our filtration algorithms are based on discarding most of the possible
(i, j, θ) locations and leaving a few of them to be verified. If we avoid verifying a given text center
more than once, then we can apply our verification technique and ensure that, overall, we do not
pay more than O(n2m3f(m)).

3.1 Distance d
t,δ
H

and δ-Matching

In this section we show how to compute distance dt,δ
H between a pattern and a text center in time

O((δ +1)m3), as well as to perform δ-matching with tolerance κ in overall time O((δ +1)m3n2), on
integer alphabets of size σ. On general alphabets, we show how to compute distances in O(m3 log m)
time, and how to perform δ-matching in O(n2m3 log m) time. Note that the search times are
independent on κ.

As proved in [21], the optimal transposition for Hamming distance is obtained as follows. Each
cell P [r′, s′], aligned to T [r, s], votes for a range of transpositions [P [r′, s′] − T [r, s] − δ, P [r′, s′] −
T [r, s]+δ], for which it would match. If a transposition receives v votes, then its Hamming distance

is m2 − v. Hence, the transposition that receives most votes is the one yielding distance dt,δ
H . The

problem is equivalent to the so-called point of maximum overlap in the literature. We are in
particular interested in the dynamic version of the problem, and give different solutions for integer
and general alphabets.

3.1.1 Integer Alphabet

The algorithm in [21], for one-dimensional transposition invariant string matching, obtains O(σ +
|P |) time on integer alphabet, by bucket-sorting the range extremes and then traversing them
linearly so as to find the most voted transposition (a counter is incremented when a range starts
and decremented when it finishes).

We will use a different method to find, in O((δ + 1)m2) time, the optimal transposition for
the first rotation angle. This method will enable us to recompute, in O(δ + 1) time, the optimal
transposition once some text cell T [r, s] changes its value (due to a small change in rotation angle).
The net effect of such a change is that the range of transpositions given by the old cell value loses
a vote and a new range gains a vote.

We use the fact that the alphabet is an integer range, so there are at most 2σ − 1 possible
transpositions. An array St of size 2σ−1 tells the number of votes each transposition has. There are
also m2 + 1 counters Li, 0 ≤ i ≤ m2, maintaining the number of transpositions that currently have
i votes. Hence, when a range of transpositions loses/gains one vote, at most 2δ + 1 transpositions
are moved to refer to the lower/upper counter (that is, if t loses/gains one vote and St = i, then
St is decremented/incremented, Li is decremented and Li−1/Li+1 incremented). We need to keep
control of which is the highest-numbered non-zero Li counter, which is easily done in constant time
per operation because transpositions move from one counter to the next/previous.

Arrays S and L are initialized in constant time [22, Section III.8.1], so that we assume that
all uninitialized St values are zero, and all Li values are also zero except for L0 = 2σ − 1. Then,
we spend O((δ + 1)m2) time to process the votes of all the cells in angle θ = 0, and then process
O(δ+1) changes for each cell that changes as we rotate P . Overall, when we consider all the O(m3)
cell changes, the total complexity is O((δ + 1)m3).

8

Thus the overall complexity to compute distance dt,δ
H between a pattern and a text center,

considering all possible rotations and transpositions, is O((δ+1)m3). δ-Matching can be done simply

by computing dt,δ
H distances at each text center and reporting triples (i, j, θ) where dt,δ

H (i, j, θ) ≤ κ.
The overall search time is thus O((δ + 1)n2m3).

3.1.2 General Alphabet

Our problem is a slight variant of the dynamic point of maximum overlap of a set of intervals.
Given a multiset S of one-dimensional closed ranges, we are interested in obtaining a point p that
is included in most ranges, that is maxvote(S) = maxp |{[ℓ, r] ∈ S, ℓ ≤ p ≤ r}|. Each update
consists of a new range that is added to or an old range that is deleted from S, and we must return
maxvote(S) after each update.

Given an algorithm for this problem, we can easily compute dt,δ
H from one rotation angle to the

next. Our multiset is S = {[P (M [r, s])−T [r, s]−δ, P (M [r, s])−T [r, s]+δ]}. From one rotation angle
to the next, some M [r, s] changes its value and thus we have to delete the old range and add the

new one, after which maxvote(S) is requested in order to compute distance dt,δ
H = m2−maxvote(S)

for the new angle.
The problem of maintaining the point of maximum overlap upon interval insertions and deletions

can be found, for example, in [6, Problem 14-1]. We present here a solution that differs from the
one suggested in there and thus can be of independent interest, yet it achieves the same O(log |S|)
time per operation. This immediately gives an O(m3 log m) time algorithm for computing dt,δ

H

between a pattern and a text center, considering all possible rotations and transpositions, as well
as an O(log(m)m3n2) worst-case time solution for δ-matching with tolerance κ (the complexity is
independent of κ).

First, notice that the point that gives maxvote(S) can always be chosen among the endpoints
of ranges in S. We store each endpoint e in a balanced binary search tree with key e. Let us denote
the leaf whose key is e simply by (leaf) e. With each endpoint e we associate a value vote(e) (stored
in leaf e) that gives the number |{[ℓ, r], ℓ ≤ e ≤ r, [ℓ, r] ∈ S}|, where the set is considered as a
multiset (same ranges can have multiple occurrences). In each internal node v, value maxvote(v)
gives the maximum of the vote(e) values of the leaves e in its subtree. After all the endpoints e
are added and the values vote(e) in the leaves and values maxvote(v) in the internal nodes are
computed, the static case is solved by taking the value maxvote(root) = maxvote(S) in the root
node of the tree.

A straightforward way of generalizing the above approach to the dynamic case would be to
recompute all values vote(e) that are affected by the insertion/deletion of a range. This would,
however, take O(|S|) time in the worst case. To get a faster algorithm, we only store the changes
of the votes in the roots of certain subtrees so that vote(e) for any leaf e can be computed by
summing up the changes from the root to the leaf e.

For now on, we refer to vote(e) and maxvote(v) as virtual values, and implement them with
counters diff(v) and values maxdiff(v). Counters diff(v) are defined implicitly so that for all leaves
of the tree it holds

vote(e) =
∑

v∈path(root,e)

diff(v), (1)

9

where path(root, e) is the set of nodes in the path from the root to a leaf e (including e). We
note that there are several possible ways to choose diff(v) values so that they satisfy the definition.
Values maxdiff(v) are defined as the maximum sum of differences across a path from a child of v
to a leaf. It is easy to see that

maxdiff(v) = max(maxdiff(v.left) + diff(v.left),maxdiff(v.right) + diff(v.right)), (2)

where v.left and v.right are the left and right child of v, respectively. In particular, maxdiff(e) = 0
for any leaf node e. One also easily notices that

maxvote(v) = maxdiff(v) +
∑

v′∈path(root,v)

diff(v′),

which also gives as a special case Equation (1) once we notice that maxvote(e) = vote(e) for each
leaf node e.

Our goal is to maintain diff() and maxdiff() values correctly during insertions and deletions.
We have three different subproblems to consider: (i) How to compute the value diff(e) for a new
endpoint of a range, (ii) how to update the values of diff() and maxdiff() when a range is in-
serted/deleted, and (iii) how to update the values during rotations to rebalance the tree. An
insertion involves subproblems (i–iii), while a deletion involves only (ii) and (iii).

Problem (i) is handled by storing in each leaf an additional counter end(e) that gives the number
of ranges whose rightmost endpoint is e. Assume that this value is computed for all existing leaves.
When we insert a new endpoint e, we either find a leaf labeled e or otherwise there is a leaf
e′ after which e is inserted. In the first case vote(e) remains the same and in the latter case
vote(e) = vote(e′) − end(e′), because e is included in the same ranges as e′ except those that end
at e′. Notice also that vote(e) = 0 in the degenerate case when e is the leftmost leaf. To make
vote(e) =

∑

v′∈path(root,e) diff(v′), we define diff(e) = vote(e) −
∑

v′∈path(root,v) diff(v′), where v is
the parent of e. Once the maxdiff() values are updated in the path from e to the root, we have
solved the subproblem in O(log |S|) time. Note that the +1 vote induced by the new range whose
endpoint is e has not yet been considered, as it is handled as subproblem (ii).

Let us then consider subproblem (ii). Recall the one-dimensional range search on a balanced
binary search tree (see, e.g., [8, Section 5.1]). We use the fact that one can find in O(log |S|) time
the minimal set of nodes F such that the range [ℓ, r] of S is partitioned by F : The subtrees starting
at nodes of F contain all the points in [ℓ, r] ∩ S and only those. It follows that when inserting
(deleting) a range [ℓ, r], we can set diff(v) = diff(v) + 1 (diff(v) = diff(v) − 1) at each v ∈ F . This
is because all the values vote(e) in these subtrees change by ±1 (including leaves ℓ and r). Note
that some diff(v) values may go below zero, but this does not affect correctness.

To keep also the maxdiff() values correctly updated, it is enough to recompute the values in the
nodes in the paths from each v ∈ F to the root using Equation (2); other values are not affected
by the insertion/deletion of the range [ℓ, r]. The overall number of nodes that need updating is
O(log |S|). To see this, note that the nodes in F are either left children of a unique rightwards
path, or right children of a unique leftwards path. Therefore the set of ancestors of F is of size
O(log |S|).

Finally, let us consider subproblem (iii). Counters diff(v) are affected by tree rotations, but in
case a tree rotation involving e.g. subtrees v.left, v.right.left and v.right.right takes place, values

10

diff(v) and diff(v.right) can be “pushed” down to the roots of the affected subtrees, and hence they
become zero. Then the tree rotation can be carried out without further considerations. Note that
here we are taking advantage of the fact that the diff(v) values need not be unique as long as we
maintain their path sums. Subtree maxima are easily maintained through tree rotations.

Hence, each insertion/deletion takes O(log |S|) time, and maxvote(S) = maxdiff(root) +
diff(root) is readily available in the root node.

3.2 Distance d
t,κ
MAD

and δ-Matching

In this section we show how to compute distance dt,κ
MAD between a pattern and a text center

in time O((κ + (log log m)2)m3) on general alphabets. On integer alphabets we can also obtain
O((κ+log log σ)m3). These methods yield a δ-matching algorithm alternative to that of Section 3.1,
needing overall time O((κ + (log log m)2)n2m3) on general alphabets and O((κ + log log σ)n2m3)
on integer alphabets. This time the complexities are sensitive to κ.

Let us start with κ = 0. As proved in [21], the optimal transposition for distance dt
MAD is

obtained as follows. Each cell P [r′, s′], aligned to T [r, s], votes for transposition t = P [r′, s′]−T [r, s].
Then, the optimal transposition is the average between the minimum and maximum votes. The
corresponding dt

MAD distance is the difference of maximum minus minimum, divided by two. Hence
an O(|P |) algorithm is immediate.

In our case, we need O(m2) time to obtain the optimal transposition for the first angle, θ = 0.
Then, in order to address changes of text characters (because, due to angle changes, the pattern
cell was aligned to a different text cell), we must be able to maintain the minimum and maximum
votes. Every time a text character changes, a vote disappears and a new vote appears. This can be
solved with min- and max-priority queues supporting insertion, deletion, and min/max operations.

In the case of integer alphabets, the transpositions belong to a universe of size O(σ). Thus van
Emde Boas priority queues [26, 25] permit implementing each operation in time O(log log σ), using
O(σ) space. On general alphabets, it is possible to obtain O((log log m)2) time per operation on the
word RAM model [4] 2. Hence dt

MAD distance between a pattern and a text center can be computed
in O(m3 log log σ) time on integer alphabets or O(m3(log log m)2) time on general alphabets, for
all possible rotations and transpositions.

In order to account for up to κ outliers, it was shown [21] that it is optimal to choose them from
the pairs that vote for maximum or minimum transpositions. That is, if all the votes are sorted
into a list t1 . . . tm2 , then distance dt,κ

MAD is the minimum among distances dt
MAD computed in sets

t1 . . . tm2−κ, t2 . . . tm2−κ+1, and so on until tκ+1 . . . tm2 . Moreover, the optimum transposition of the
i-th value of this list is simply the average of maximum and minimum, that is, (tm2−κ−1+i + ti)/2.

So our algorithm for dt,κ
MAD is as follows. We maintain plain sorted arrays S and L with the

κ + 1 smallest and largest votes, respectively. All the other votes not in S ∪ L are maintained in
a priority queue Q. Upon an insertion, we determine in constant time which of the three cases
apply: (i) the element must be inserted into S and the largest element of S must be moved to Q,
(ii) the element must be inserted into L and the smallest element of L must be moved to Q, (iii)

2This solution is in AC0. If we wish to stick to a weaker computation model, we can still solve the problem using a
balanced search tree in O(log(m2)) = O(log m) time. Note in passing that this weaker computation model is assumed

for the results in [21]. In particular, the O(m log m) complexity for dt,δ

H and O(κ log κ) terms for dt,κ

MAD and dt,κ

SAD in
[21] correspond to sorting, and they become respectively O(m log log m) and O(κ log log κ) on the stronger model [3].

11

the element must be inserted into Q. Similarly, upon a deletion we might have to delete from S or
L (in which case the minimum or maximum of Q must be moved to S or L), or we might have just
to delete the element from Q. In any case the cost of the insertion/deletion is O(κ + log log σ) on
integer alphabets and O(κ + (log log m)2) on general alphabets.

After each cell change (deletion plus insertion), we retraverse the κ + 1 pairs in S and L
and recompute the minimum among the tm2−κ−1+i − ti differences. Overall, the process takes
O((κ + log log σ)m3) on integer alphabets and O((κ + (log log m)2)m3) on general alphabets. Note
that on integer alphabets the result is interesting only if κ < σ, as otherwise a trivial algorithm
obtains O(σm3) time, by just trying out each transposition.

The δ-matching problem can be alternatively solved by computing this distance for ev-
ery text cell, and reporting triples (i, j, θ) where dt,κ

MAD(i, j, θ) ≤ δ. This gives an alternative
O((κ + log log σ)n2m3) or O((κ + (log log m)2)n2m3) time algorithm to solve the δ-matching prob-
lem.

Note, on the other hand, that a similar algorithm solves the problem of computing dκ
MAD and

doing δ-matching, without lighting invariance, with the same complexity. Instead of votes, we
maintain all the |P [r′, s′] − T [r, s]| values in a max-priority queue and find the smallest maximum
across all rotations. Outliers are handled similarly by using an array L of largest differences.

3.3 Distance d
t,κ
SAD

and γ-Matching

In this section we show how to compute distance dt,κ
SAD between a pattern and a text center within

the same time complexities obtained for dt,κ
MAD in Section 3.2. This in turn yields a γ-matching

algorithm with the same complexity of the δ-matching algorithm of Section 3.2.
Let us first consider case κ = 0. This corresponds to the SAD model of [21], where it was shown

that, if we collect votes P [r′, s′] − T [r, s], then the median vote (either one if |P | is even) is the
transposition that yields distance dt

SAD. The actual distance can be obtained by using the formula
for dSAD. Hence an O(|P |) time algorithm was immediate.

In this case we have to pay O(m2) to compute the distance for the first rotation (θ = 0), and
then have to maintain the median transposition and current distance when some text cell changes
its value due to a small rotation.

We maintain a max-priority queue S and a min-priority queue L. The first contains the small-
est ⌈m2/2⌉ votes and the second the largest ⌊m2/2⌋ votes. Then the median vote is always the
maximum element in S.

Each time a vote changes because a pattern cell aligns to a new text cell, we must remove the
old vote and insert the new one. In either case, we determine which priority queue the insertion
and deletion belong to. If they occur at different halves of the set of votes (that is, one is larger
and the other is smaller than the median), then we must transfer one element from S to L or vice
versa to maintain the invariant on their sizes. This requires a constant number of priority queue
operations.

The distance value dt
SAD itself change upon two events. One event is that any of the votes

changes its value. Given a fixed transposition, it is trivial to remove the appropriate summand
and introduce a new one in the formula for dSAD (Section 2). The other event is that the median
position changes from a transposition in the sorted list to the next or previous. It was shown in
[21] how to modify in constant time distance dt

SAD in this case. The idea is very simple: If we

12

move from transposition tj to tj+1, then all the j smallest |P [r′, s′]−T [r, s]− tj| summands of dSAD

increase their value by tj+1 − tj (as they become |P [r′, s′]−T [r, s]− tj+1|), while the m2 − j largest
summands decrease by tj+1 − tj. Hence distance dSAD at the new transposition is the value at the
old transposition plus (2j − m2)(tj+1 − tj). Thus the distance can be updated in constant time.

Hence, we can traverse all the rotations in time O(m3 log log σ) on integer alphabets and
O(m3(log log m)2) on general alphabets.

If we want to compute distance dt,κ
SAD, we have again that the optimal values to free from

matching are those voting for minimum or maximum transpositions. If we remove those values,
then the median lies at positions between ⌈m2/2⌉ − ⌊κ/2⌋ and ⌊m2/2⌋+ ⌈κ/2⌉ in the sorted list of
votes.

We add a new plain array M holding the κ+1 intermediate votes t⌈m2/2⌉−⌊κ/2⌋ . . . t⌊m2/2⌋+⌈κ/2⌉.
The remaining smallest and largest values are maintained in priority queues S and L, respectively.
As in Section 3.2, it is easy to perform the insertions/deletions in the appropriate set S, M , or L,
and move elements among them to maintain the size invariants.

We need now to maintain all the κ + 1 possible median values. Those can be updated one by
one in constant time each, and we can choose the minimum distance among the κ + 1 options.
This gives us an O(m3(κ + log log σ)) time algorithm to compute dt,κ

SAD on integer alphabets, and
O(m3(κ+(log log m)2)) on general alphabets. In addition, this gives us O((κ+log log σ)m3n2) and
O((κ + (log log m)2)m3n2) time algorithms for γ-matching. It is a matter of computing dt,κ

SAD at

each text position and reporting triples (i, j, θ) such that dt,κ
SAD(i, j, θ) ≤ γ.

3.4 (δ, γ)-Matching with Tolerance κ

In this section we show how to perform (δ, γ)-matching with tolerance κ in time O((κ + 1)
√

γ +
log log σ)n2m3), on integer alphabets. We have no result for general alphabets.

There are two reasons why solving this problem is not a matter of computing dt,κ
MAD and dt,κ

SAD

at each text position and reporting triples (i, j, θ) where both conditions dt,κ
MAD(i, j, θ) ≤ δ and

dt,κ
SAD(i, j, θ) ≤ γ hold. One is that the transposition achieving this must be the same, and the other

is that the κ outliers must be the same.
Let us first consider the case κ = 0. A simple (δ, γ)-matching algorithm is as follows. We

run the δ-matching algorithm based on dt
MAD distance, and the γ-matching algorithm based in

dt
SAD distance at the same time. Every time we find a triple (i, j, θ) that meets both criteria, we

compute the range of transpositions t such that dMAD(i, j, θ, t) ≤ δ. This is very simple: Say that
dt
MAD(i, j, θ) ≤ δ, which is obtained at the optimal transposition tMAD. Then, dMAD(i, j, θ, t) ≤ δ

for t ∈ [tMAD
1 , tMAD

2] = [tMAD − (δ − dt
MAD(i, j, θ)), tMAD + (δ − dt

MAD(i, j, θ))].
The problem is now to determine whether dSAD(i, j, θ, t) ≤ γ for some t in the above range. As

a function of t, dSAD(i, j, θ, t) has a single minimum at its optimum transposition tSAD (which does
not have to be the same tMAD). Hence, we have three choices: (i) tMAD

1 ≤ tSAD ≤ tMAD
2 , in which

case the occurrence can be reported; (ii) tSAD < tMAD
1 , in which case we report the occurrence

only if dSAD(i, j, θ, tMAD
1) ≤ γ; (iii) tSAD > tMAD

2 , in which case we report the occurrence only if
dSAD(i, j, θ, tMAD

2) ≤ γ.
As in the worst case we may have to check O(m3n2) times for a (δ, γ)-match, and computing

dSAD(i, j, θ, t) takes O(m2) time, we could pay as much as O(m5n2), which is as bad as the naive
approach. However, on integer alphabet, we can do better. As we can recompute in constant

13

time dSAD from one transposition to the next (as explained in Section 3.3), we can move stepwise
from tSAD to tMAD

1 or tMAD
2 . Moreover, as we move away from tSAD, distance dSAD increases and

it quickly exceeds γ. As we move j votes away from the median, say from tj to tj+1, we have j
summands contributing each tj+1− tj ≥ 1 to dSAD, so after we move j times dSAD has increased by
Ω(j2) (this assumes that the alphabet is integer and that we pack equal votes so as to process them
in one shot). Hence we cannot work more than O(

√
γ) before having dSAD out of range. Overall,

the search time is O((
√

γ + log log σ)n2m3).

The situation is more complex if we permit κ outliers. Fortunately, both in dt,κ
MAD and dt,κ

SAD it
turns out that the relevant outliers are those yielding the κ minimum or maximum votes, so the
search space is small. That is, even when the selection of outliers that produces distance dt,κ

MAD is

not the same producing distance dt,κ
SAD, it holds that if there is a selection that produces a dt,κ

MAD

distance of at most δ and a dt,κ
SAD distance of at most γ, then the same is achieved by a selection

where only those producing minimum or maximum votes can be chosen. This is easily seen because
distances dt,κ

MAD and dt,κ
SAD can only increase if we replace the votes in their initial selection by

excluded minimum or maximum votes.
Now we compute dt,κ

MAD and dt,κ
SAD distances and consider every triple (i, j, θ) where both match-

ing criteria are met. There are only κ+1 relevant selections of outliers (that is, choosing κ′ smallest
and κ′′ largest votes such that κ′ + κ′′ = κ). For each such selection we have dt,κ

MAD and dt,κ
SAD dis-

tances already computed. Hence we have to run the above verification algorithm for each triple
(i, j, θ) and each of the κ + 1 selections of outliers. This gives a worst-case search algorithm of
complexity O(((κ + 1)

√
γ + log log σ)n2m3). We remark that this works only for integer alphabets

and that it is interesting only when κ < σ.

4 Features

As shown in [16, 14, 15], any match of a pattern P in a text T allowing arbitrary rotations must
contain some so-called “features”, that is, one-dimensional strings obtained by reading a line of
the pattern in some angle. These features are used to build a filter for finding the position and
orientation of P in T . Figure 3 shows features of different lengths taken at different positions. In
our algorithms we will take all features of the same length.

The length of a particular feature is denoted by u, and the feature for angle θ and row q is
denoted by F q(θ). Assume for simplicity that u is odd. To read a feature F q(θ) from P , let P be
on top of T , on location ((i, j), θ). Consider cells T [i− m+1

2 +q, j− u−1
2], . . . , T [i− m+1

2 +q, j + u−1
2].

Denote them as tq1, t
q
2, . . . , t

q
u. Let cq

i be the value of the cell of P that covers the center of tqi . The
feature of P with angle θ and row q is the string F q(θ) = cq

1c
q
2 · · · c

q
u. Note that this value depends

only on q, θ and P , not on T .
The sets of angles for the features are obtained the same way as the set of angles for the whole

pattern P . Note that the set of angles Bq for the feature set F q is subset of A, that is Bq ⊂ A
for any q. The size of B varies from O(u2) (the features crossing the center of P) to O(um) (the
features at distance Θ(m) from the center of P). In other words, the matching function M can
change as long as F q(θ) does not change.

More precisely, assume that Bq = (γ1, . . . , γK), and that γi < γi+1. Therefore, feature F q(γi) =
F q(θ) can be read using any θ such that γi ≤ θ < γi+1. If there is an occurrence of F q(θ), then

14

y

(0,0)

i

θ θ

y’

x’

θ θ

xj

Figure 3: Some features read from P at angle θ. We show F 0(α), F 1(α), and F 2(α).

P may occur with any angle β ∈ A such that γi ≤ β < γi+1. We say that those angles β are
compatible with θ, that is, they belong to the same range [γi, γi+1).

The idea of using features is as follows. Assume we read from P a range of features F i(θ),
m−r

2 ≤ i ≤ m+r
2 for some odd r. Then, if we scan one text row out of r, every occurrence of P at

an angle compatible with θ will contain some feature F i(θ) within some scanned row. Moreover, if
we scan one text row out of ⌊r/j⌋, then every occurrence of P at an angle compatible with θ will
contain at least j features F i(θ) within some scanned row 3. Therefore, a multipattern search for
the features in the selected text rows will spot all the possible occurrences of P in T .

These results can be extended to account for γ tolerance and κ outliers in the occurrences. The
following lemmas are a generalization of other well-known results in approximate string matching
[23].

Lemma 1 Assume we read from P a range of features F i(θ), m−r
2 ≤ i ≤ m+r

2 for some odd r.
Then, if we scan one text row out of ⌊r/j⌋, every occurrence of P at an angle compatible with θ
with up to κ non-matching positions will contain at least p features F i(θ) matching with at most
⌊ κ

j−p+1⌋ non-matching positions each, within some scanned row. This holds for any 1 ≤ p ≤ j.

Proof. Assume otherwise. Consider a particular occurrence of P . As we scan one text row
out of ⌊r/j⌋, there are j features of P that appear in the scanned rows, corresponding to this
occurrence. If the lemma does not hold, then there are at least j − p + 1 features requiring at least
1+ ⌊ κ

j−p+1⌋ > κ
j−p+1 mismatches to occur. Therefore, just matching those features requires strictly

more than κ mismatches in total, and therefore the whole P cannot match with just κ mismatches.
�

We note that Lemma 1 holds verbatim if we consider γ-tolerance instead of κ outliers. In
addition, δ-tolerance and transposition invariance do not affect at all its correctness.

Lemma 1 is the key to the algorithms of the next section, where we rely on existing one-
dimensional string matching algorithms. Let us first review the non-transposition invariant al-
gorithms. In [12] it is shown how to perform approximate searching (under edit distance) of r
patterns of length u in a text of length n, with distance at most k, in optimal average time
O(n(k+logσ(ru))/u), for k/u ≤ 1/2−O(1/

√
σ). In [15] the same technique is applied to Hamming

distance, obtaining the same (optimal) complexity for k/u ≤ 1/2−O(1/σ). In [10, 11], δ-matching
is considered, as well as δ-matching combined with edit, Hamming, and other distances. The re-
sulting average complexity is O(n(k + log σ

δ+1
(ru))/u), with the same limits as before on k/u, and

3There is no guarantee that those features will be different if they repeat in P .

15

the constraint 2δ + 1 < σ. This result is shown to be average-optimal. On the other hand, γ-
matching is considered in [15], where they obtain O(n(γ/σ + log σ

1+γ/m
(ru))/u) average time4 for

γ/m ≤ σ/(4e)−O(1). In [10, 11] they show that it is difficult to combine this γ-matching algorithm
with k outliers.

Several transposition-invariant versions of the above algorithms are given in [10, 11]. They
obtain, with the same restrictions as above on δ, γ and k, O(n(k + log σ

δ+1
(ru(δ + 1)))/u) for δ-

matching with outliers and O(n(γ/σ + log σ
1+δ/m

(r(γ + u)))/u) for γ-matching. On the other hand,

the approximate search algorithms with edit, Hamming, and other similar distances, stay with their
optimal average complexity O(n(k + logσ(ru))/u) when transpositions are allowed.

5 Efficient Average-Case Time Algorithms

Following [15], we choose features of length u from r pattern rows around the center, at all relevant
rotation angles θ, and search for them all using different multipattern one-dimensional search
algorithms permitting transpositions [10, 11]. To simplify the presentation we assume from the
beginning u = r = m/

√
2, which are in fact the optimal values5. The number of relevant rotations

is O(rumax(r, u)) = O(m3) [14, 15].
The results of this section are valid only for integer alphabets where text and pattern cell values

are independently and uniformly chosen over σ different values. We remind that, as the techniques
consist essentially on leaving a few (i, j) text centers to check, we can maintain the worst cases of
all the algorithms of this section within the bounds obtained in Section 3. It is a matter of running
the worst-case-oriented distance computation algorithms only for the text centers (i, j) we could
not discard, taking care of not verifying the same text center twice. As there are at most n2 text
centers to verify, the worst-case complexities follow.

5.1 δ-Matching with Tolerance κ

In this section we show how to perform transposition-invariant δ-matching with tolerance κ on
integer alphabets of size σ in average time O(n2(κ + (1 + κ/m) log σ

δ+1
((δ + 1)m))/m2), whenever

(roughly) 4δ + 2 < σ and κ < m2/4. By following the same procedure without transposition
invariance, we obtain O(n2(κ + log σ

δ+1
m)/m2), which is shown to be average-optimal.

We follow Lemma 1. We extract r = O(m) features from P , at all the possible O(m2) rotations
for each, totalizing O(m3) one-dimensional strings to search for. Then we scan one text row out
of r with the one-dimensional transposition invariant algorithm that permits multiple patterns,
δ-matching, and κ mismatches. According to Lemma 1 (with j = p = 1), every occurrence of P
will be spotted by the occurrence of a feature in our one-dimensional search. Thus, it is enough
to check for a complete occurrence of P in T only upon finding the occurrence of a feature. The
matching feature and its position indicates the text center cell that must be considered, as well as
the range of angles [γi, γi+1) ∩ A to try.

4They give the base of the logarithm in the form 1/x and then quickly switch to the worst case x = Θ(1). We
present here a more refined version.

5Actually these are the maximum possible values that guarantee that we can take r features of length u at any
possible rotation.

16

Note, however, that 0 ≤ κ ≤ m2, and thus searching for a feature of length u permitting κ
outliers might be too permissive (in particular the feature will match everywhere if κ ≥ u). In
this case, we scan one text row out of ⌊r/j⌋, for some j to be determined soon. Now Lemma 1
guarantees that at least one feature (p = 1) will appear with at most ⌊κ/j⌋ mismatches. Thus we
have to use the one-dimensional algorithm with tolerance ⌊κ/j⌋, which gives us the possibility of
adjusting j so that the tolerance is low enough.

To analyze this algorithm we have to consider both the scanning and the verification cost. Let
us start with the latter. Every time a feature matches we have to verify the possible occurrence of
the complete pattern. We start by analyzing the probability of matching.

Let us consider a given feature F of length u. To upper bound the number of strings that δ-
match F with tolerance k, we note that there are

(u
k

)

ways to choose the nonmatching positions, and
then σk ways to choose the characters at those nonmatching positions. The other u − k positions
must δ-match the feature and thus there are (2δ + 1)u−k ways to choose them. If we consider in
addition transposition invariance, each of those strings matches at most 2σ − 1 other strings, for a
grand total of at most (2δ + 1)u−k

(u
k

)

2σk+1. As each of those strings match with probability 1/σu,
the probability of each feature matching at a given text position is at most

(2δ + 1)u−k
(

u
k

)

2σ

σu−k
= O





(

2δ + 1

α
α

1−α (1 − α)σ

)m(1−α)/
√

2

σ



 ,

where we have defined α = k/u (0 ≤ α < 1) and used Stirling’s approximation to convert
(

u
k

)

=
(

1
αα(1−α)1−α

)u
Θ(1). For α bounded away from 1, the probability has the form O(amσ), and we are

interested in determining the condition on α to ensure amσ = O(cm) for some constant c < 1, that is,

a ≤ c σ−1/m. We simplify the formula by noting that α
α

1−α ≥ 1/2 if 0 ≤ α ≤ 1/2 (the method is not

used beyond this limit), and then it is easy to obtain condition α ≤ 1− 2(2δ+1)

cσ1−1/(
√

2m)
= 1−O((δ+1)/σ).

Note that it is necessary that 4δ + 2 < σ for the limit on α to be nonempty (asymptotically on m).
Let us now consider the cost of a verification. Even if we check all the O(m3) possible rotations

(instead of restricting to the relevant angle [γi, γi+1)), we would pay O(m3(log log m)2) = o(m4) time
by using the algorithm of Section 3.2 to compute dt,κ

MAD at the proper text center. On the other hand,
we are searching for O(m3) features, each of which triggers verifications independently. Therefore,
the total average cost of verifications, run over n/r text rows of length n, is o(n2m4m3amσ/r) =

o(n2m6σam). This is negligible whenever a ≤ c (2σ)−1/m, that is, α ≤ 1− 2(2δ+1)

cσ1−1/(
√

2m)
and α ≤ 1/2.

Let us now consider scanning time. The transposition-invariant multipattern one-dimensional δ-
matching scanning algorithm given in [10, 11] will search for the O(rumax(r, u)) = O(m3) (rotated)
features of length u = Θ(m) permitting k mismatches in O(n(k + log σ

δ+1
((δ + 1)m))/m) average

time per text row, provided α = k/u ≤ 1/2 − O(1/σ) and 2δ + 1 < σ.
If κ/u ≤ 1 − O((δ + 1)/σ) and κ/u ≤ 1/2 − O(1/σ), then we can use j = 1 and traverse one

text row out of r. Adding the scanning time over all the O(n/r) text rows, we obtain the final
complexity O(n2(κ + log σ

δ+1
((δ + 1)m))/m2).

As explained, if κ turns out to be too large, we must scan one text row out of ⌊r/j⌋, for some
sufficiently large j. As we use the one-dimensional algorithm with tolerance k = ⌊κ/j⌋, the total
scanning time becomes O(n

r/j n(κ/j + log σ
δ+1

((δ + 1)m))/m) = O(n2(κ + j log σ
δ+1

((δ + 1)m))/m2).

17

A j value that satisfies both restrictions on k/u is Θ((κ/m)/(1 − (δ + 1)/σ)). Using this value the
scanning time is O(n2(κ + κ

m log σ
δ+1

((δ + 1)m))/m2.

Considering both cases, we get complexity O(n2(κ + (1 + κ
m) log σ

δ+1
((δ + 1)m))/m2. The limit

of applicability of this method is reached when j = r, as we cannot increase it anymore. At this
point we can apply the algorithm provided k/u ≤ 1/2 − O(1/σ) where k = ⌊κ/r⌋, that is, for

κ ≤ m2

4 (1−O(1/σ)). The other condition on r yields κ ≤ m2

2 (1−O((δ + 1)/σ)). All the limits are
constant on κ/m2. Finally, it is necessary that 4δ + 2 < σ. The space required by the algorithm is
polynomial in mσ.

Finally, we note that, if we do not wish to allow lighting invariance and use the one-dimensional
algorithm of [10, 11] without transpositions, the complexity becomes O(n2(κ + log σ

δ+1
m)/m2).

It is easy to see that this is average-optimal by following previous arguments [15, 11]: On one
hand, we have that O(n2 logσ(m)/m2) complexity is average-optimal for two-dimensional exact
matching (allowing rotations or not) [15]. On the other hand, if we can do δ-matching in less
than Ω(|T | log σ

δ+1
(|P |)/|P |) (in one or two dimensions), a simple trick [11] permits doing exact

matching in less than Ω(|T | logσ(|P |)/|P |), which is optimal. Finally, it is impossible to match
in two dimensions allowing κ mismatches in less than Ω(n2κ/m2): We must access at least κ + 1
characters in each m × m text area in order to discard it. Adding both lower bounds, we have the
average-case lower bound Ω(n2(κ + log σ

δ+1
m)/m2).

5.2 γ-Matching with Tolerance κ

In this section we show how to perform γ-matching with tolerance κ on integer alphabets of size
σ in average time O(n2((κ + γ + κγ/m)/σ + (κ + 1) log σ

1+γ/m
(γ + m))/m2), whenever (i) κ ≤

m/(2
√

2) and γ/κ ≤ σm/(2
√

2e)(1 −O(1/σ)), or (ii) m/(2
√

2) ≤ κ = O(m2/ log m) and γκ/m2 ≤
σm/(16

√
2e)(1 − O(1/σ)). We then present an alternative complexity based on δ-matching and

discuss how to do (δ, γ)-matching.
We now make use of the full potential of Lemma 1. We scan one text row out of ⌊r/(j +h−1)⌋,

for j and h to be determined. Then Lemma 1 (with its j being our j + h − 1 and p being h)
guarantees that each occurrence of P will trigger at least h feature occurrences, each with k = ⌊κ/j⌋
mismatches. If the occurrence of P γ-matches the text, then at least one of those h features must
γ′-match the text, where γ′ = ⌊γ/h⌋.

Yet, we are unable to combine γ′-matching and mismatches with an efficient one-dimensional
algorithm. Thus, let us partition the features into k + 1 pieces (substrings) of length ⌊u/(k + 1)⌋.
Each feature occurrence must contain the occurrence of at least one piece without any mismatch.

Therefore, we search for the r(k + 1) = O(r(κ/j + 1)) pieces permitting γ′-matching and no
mismatches. Upon the occurrence of any piece, we verify the corresponding text center(s). Using
the multipattern transposition invariant γ′ matching algorithm in [11] for n(j+h−1)/r text rows we
get complexity O(n2(j +h)(κ/j +1)(γ/(σh)+log σ

1+γ/(mh)
(γ/h+m))/m2), subject to the conditions

j + h ≤ r and (γ/h)/(u/(κ/j)) = γκ/(huj) ≤ σ/(2e) − O(1).
By expanding the first summations we get that the term accompanying n2/m2 is

O

((

κ +
κh

j
+ j + h

)

(γ

σh
+ log σ

1+γ/(mh)
(γ/h + m)

)

)

.

18

Any j between Θ(min(h, κ)) and Θ(max(h, κ)) yields the same complexity, O(κ + h), for the
expanded sum. We will manage to maintain j within those bounds, so substituting and expanding
again we get

O
(γκ

σh
+

γ

σ
+ (κ + h) log σ

1+γ/(mh)
(γ/h + m)

)

,

where it is clear that h = Θ(κ) is the optimum, but maybe this optimum is outside the bounds for
h. The best choices turn out to be j = min(κ + 1,m/(2

√
2)) and h = min(κ + 1,m/(2

√
2), γ + 1).

It is immediate that all the conditions hold: j + h ≤ m/
√

2, j ≤ κ + 1, h ≤ γ + 1, h ≤ j ≤ κ + 1.
Substituting we obtain the complexity

O

(

γ + κ + γκ/m

σ
+ (κ + 1) log σ

1+γ/m
(γ + m)

)

,

which applies as long as γκ/(huj) ≤ σ/(2e) − O(1). This is γ/κ ≤ σm/(2
√

2e)(1 − O(1/σ)) if
κ + 1 ≤ m/(2

√
2), and γκ/m2 ≤ σm/(16

√
2e)(1 − O(1/σ)) otherwise.

We have considered, however, only scanning time. We must derive a sufficient condition on γ
and κ to make verification cost insignificant. In [15] it is shown that the probability of two strings of
length ℓ to γ′-match each other (without transpositions) is a = 2(1+β)(1+1/β)β/σ ≤ 2(1+β)e/σ,
where β = γ′/ℓ.

We consider O(m3) rotations, searching for r(κ/j + 1) pieces from each, of length ℓ = u/(κ/j +
1), with γ′ = γ/(h + 1). Each such piece, in addition, matches with transpositions, so we in
practice generate σ strings from each. Therefore, the average number of verifications triggered is
O(n2m3r(κ/j + 1)σau/(κ/j+1)) = O(n2m4(κ/j)σamj/(κ

√
2)).

According to Section 3.3, we can verify a text center in time O(m3(log log m)2), and thus the

overall average verification cost is O(n2m7(log log m)2(κ/j)σamj/(κ
√

2)). For this not to affect the

average scanning time, it is sufficient to make it O(n2/m2). Thus the condition is σamj/(κ
√

2) =
O(j/(κm9(log log m)2).

We wish to make a ≤ cσ−1/ℓ, for some c < 1, so that σaℓ = cℓ < 1. For this sake, it is sufficient
that β = (γ/(h + 1))/(u/(k/j + 1)) < σ1−1/ℓ/(2e) − 1. This is asymptotically the same condition
we have been considering for the feature scanning algorithm.

Once this holds, the condition to make the average verification cost negligible is cmj/(κ
√

2) =
O(j/(κm9(log log m)2)). There are two cases: if κ+1 ≤ m/(2

√
2), then j = κ+1 and the condition

is cm/
√

2 = O(m−9(log log m)−2), always true; yet if κ + 1 > m/(2
√

2), then j = m/(2
√

2) and the
condition becomes cm2/(4κ) = O(m−10(log log m)−2), that is κ/m2 ≤ 1

40 log1/c m(1 + o(1)).

Let us consider some particular cases of our results. If we do not permit outliers, κ = 0, the cost
of our algorithm is O(n2(γ/σ +log σ

1+γ/m
(γ +m))/m2) for γ ≤ mσ/(2

√
2e)(1−O(1/σ)). This is the

same complexity obtained without transpositions in previous work [15], yet for a stricter condition
on γ.

On the other hand, our results with κ outliers without transposition invariance are also relevant.
By using the feature scanning algorithm of [15] (that does not permit transpositions) we arrive at
essentially the same complexity, except the argument of the logarithm is m instead of γ + m.

Finally, it is not hard to adapt the lower bounds in [11] to show that a lower bound on the
transposition-invariant version of this problem is Ω(n2(κ + γ/σ + logσm/γ m)/m2), not far away
from what we have obtained.

19

An alternative method based on δ-matching. Another idea for γ-matching is to search for
the features using δ-matching, with δ = ⌊γ/h⌋. This will obviously spot all the γ′-occurrences,
where γ′ = δ. Then, for each occurrence of a feature, we check the corresponding text center
for a γ-occurrence of P . We can use the scanning algorithm of Section 5.1, as well as most of
the analysis because the verification costs are identical (Section 3.3). That is, we obtain average

search time O(n2(j + h)(κ/j + (1 + κ/j
m) log σ

1+γ/h
(σm))/m2), provided j ≥ 2

√
2κ/m(1 − O(1/σ)),

j ≥
√

2κ/m(1 − O((1 + γ/h)/σ)), 4γ/h + 2 < σ, and j + h ≤ r.
By calling L = log σ

1+γ/h
(σm) and distributing the sums, we get that the term accompanying

n2/m2 is

O(κ + hκ/j + jL + hL +
κ

m
L +

hκ

jm
L).

By setting j = h, the formula reduces to O(κ + hL + κ
mL). We choose h as small as possible,

h = 1 + 4γ/(σ − 2). With this choice, the final complexity is

O
(

n2
(

κ +
(

1 +
γ

σ
+

κ

m

)

log(σm)
)

/m2
)

.

Let us check whether j and h satisfy the boundary conditions. It holds j + h ≤ r if γ ≤ (m −
2
√

2)(σ − 2)/(8
√

2). The strictest lower bound on j is j ≥ 2
√

2κ/m(1 − O(1/σ)). If this does
not hold, we instead increase j and h to j = h = 2

√
2κ/m. The complexity stays the same, and

now condition j + h ≤ r becomes κ/m2 ≤ 1/8. Thus the (slightly simplified) final conditions are
γ ≤ mσ/(8

√
2) and κ ≤ m2/8, much looser on κ than with the previous technique, and we have

obtained an alternative complexity where κ does not multiply the logarithm. On the other hand,
the logarithm is multiplied by γ/σ, and we do not yet reach the lower bound we have proved.

Note also that we can use this algorithm without transposition invariance, with the only differ-
ence that the σ inside the logarithm disappears.

(δ, γ)-matching with tolerance κ. We can just use either the δ-matching algorithm of Sec-
tion 5.1 or the γ-matching algorithm of Section 5.2, using the verification algorithm of Section 3.4.
The resulting complexity is the minimum among those we obtained for δ- or γ-matching.

6 Conclusions and Future Work

We have presented the first combinatorial approach to the problem of two-dimensional template
matching permitting rotations and lighting invariance, where in addition there is some tolerance for
differences between the pattern and its occurrences. We have defined a set of meaningful distance
measures and search problems, which extend previous search problems [14, 15]. We have built
on top of previous rotation-invariant (but not lighting-invariant) search techniques [14, 15] and of
previous one-dimensional transposition-invariant search algorithms [21, 10, 11].

We have developed algorithms to compute the defined distances, as well as algorithms for all
the search problems, which are at the same time efficient in the worst and average case. We have
shown that adding lighting invariance poses a small computational price on top of previous rotation
invariant search algorithms [14, 15], several of which are already optimal. In particular, we have

20

obtained in some cases average complexities that match the optimal existing results that do not
permit lighting invariance.

The results can be extended to more dimensions. In three dimensions, for example, there are
O(m12) different matching functions for P [18], and O(um2) features of length u. The worst-case
time algorithms retain their complexity as long as we replace O(m3n2) by O(m12n3). Average case
algorithms also retain their complexity if we replace O(n2/m2) by O(n3/m3).

It is also possible to remove some restrictions we have used for simplicity, such as the center-
to-center assumption. In this case the number of relevant rotations and small displacements grows
up to O(m7) [9], so the worst case complexities shift to O(. . . m7n2). Average case complexities are
not affected.

Future work involves trying to close the gap between our complexities and the known lower
bounds, pushing in either way, both for worst-case and average-case complexities. Finally, it would
be good to obtain an algorithm for (δ, γ)-matching that works for general alphabets, as the one we
have proposed only works for integer alphabet.

References

[1] A. Amir, A. Butman, M. Crochemore, G. Landau, and M. Schaps. Two-dimensional pattern
matching with rotations. In Proc. 14th Annual Symposium on Combinatorial Pattern Matching
(CPM 2003), LNCS 2676, pages 17–31, 2003.

[2] A. Amir, O. Kapah, and D. Tsur. Fast two-dimensional pattern matching with rotations.
In Proc. 15th Annual Symposium on Combinatorial Pattern Matching (CPM 2004), LNCS v.
3109, pages 409–419, 2004.

[3] A. Andersson, T. Hagerup, S. Nilsson, and R. Raman. Sorting in linear time? In Proc. 27th
Annual ACM Symposium on Theory of Computing (STOC’95), pages 427–436, 1995.

[4] A. Andersson and M. Thorup. Tight(er) worst-case bounds on dynamic searching and priority
queues. In Proc. 32nd Annual ACM Symposium on Theory of Computing (STOC’00), pages
335–342, 2000.

[5] L. G. Brown. A survey of image registration techniques. ACM Computing Surveys, 24(4):325–
376, 1992.

[6] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms. The MIT Press,
2nd edition, 2001.

[7] T. Crawford, C. Iliopoulos, and R. Raman. String matching techniques for musical similarity
and melodic recognition. Computing in Musicology, 11:71–100, 1998.

[8] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry:
Algorithms and Applications. Springer-Verlag, 2nd rev. edition, 2000.

[9] K. Fredriksson. Rotation invariant histogram filters for similarity and distance measures be-
tween digital images. In Proc. 7th String Processing and Information Retrieval (SPIRE 2000),
pages 105–115. IEEE CS Press, 2000.

21

[10] K. Fredriksson, V. Mäkinen, and G. Navarro. Flexible music retrieval in sublinear time. In
Proc. 10th Prague Stringology Conference (PSC’05), pages 174–188, 2005.

[11] K. Fredriksson, V. Mäkinen, and G. Navarro. Flexible music retrieval in sublinear time.
In Proceedings of the 10th Prague Stringology Conference (PSC’05), pages 174–188, 2005.
Extended version to appear in IJFCS.

[12] K. Fredriksson and G. Navarro. Average-optimal single and multiple approximate string match-
ing. ACM Journal of Experimental Algorithmics (JEA), 9(1.4), 2004.

[13] K. Fredriksson, G. Navarro, and E. Ukkonen. Faster than FFT: Rotation Invariant Combina-
torial Template Matching, volume II, pages 75–112. Transworld Research Network, 2002.

[14] K. Fredriksson, G. Navarro, and E. Ukkonen. Optimal exact and fast approximate two dimen-
sional pattern matching allowing rotations. In Proc. 13th Annual Symposium on Combinatorial
Pattern Matching (CPM 2002), LNCS 2373, pages 235–248, 2002.

[15] K. Fredriksson, G. Navarro, and E. Ukkonen. Sequential and indexed two-dimensional combi-
natorial template matching allowing rotations. Theoretical Computer Science A, 347(1–2):239–
275, 2005.

[16] K. Fredriksson and E. Ukkonen. A rotation invariant filter for two-dimensional string matching.
In Proc. 9th Combinatorial Pattern Matching (CPM’98), LNCS 1448, pages 118–125, 1998.

[17] K. Fredriksson and E. Ukkonen. Combinatorial methods for approximate image matching
under translations and rotations. Patt. Recog. Letters, 20(11–13):1249–1258, 1999.

[18] K. Fredriksson and E. Ukkonen. Combinatorial methods for approximate pattern matching
under rotations and translations in 3d arrays. In Proc. 7th String Processing and Information
Retrieval (SPIRE 2000), pages 96–104. IEEE CS Press, 2000.

[19] G. Navarro K. Fredriksson and E. Ukkonen. An index for two dimensional string matching
allowing rotations. In J. van Leeuwen, O. Watanabe, M. Hagiya, P.D. Mosses, and T. Ito,
editors, IFIP TCS2000, LNCS 1872, pages 59–75, 2000.

[20] K. Lemström and J. Tarhio. Detecting monophonic patterns within polyphonic sources. In
Content-Based Multimedia Information Access Conference Proceedings (RIAO 2000), pages
1261–1279, 2000.

[21] V. Mäkinen, G. Navarro, and E. Ukkonen. Transposition invariant string matching. Journal
of Algorithms, 56(2):124–153, 2005.

[22] K. Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching. Springer Verlag,
1984.

[23] G. Navarro. A guided tour to approximate string matching. ACM Computing Surveys,
33(1):31–88, 2001.

[24] C. Russ. The Image Processing Handbook. CRC Press, 4th edition, 2002.

22

[25] P. van Emde Boas. Preserving order in a forest in less than logarithmic time and linear space.
Information Processing Letters, 6(3):80–82, 1977.

[26] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an efficient priority
queue. Mathematical Systems Theory, 10:99–127, 1977.

23

