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ABSTRACTThis paper presents a study of di�erent 1-irregular 
uboids (
uboids with at most one Steiner point on ea
h edge)that 
an appear when meshes are generated using extensions of the modi�ed o
tree approa
h [5℄, and then gives are
ommendation how to handle them. The study is divided into two parts depending on the type of re�nement used:First, for the bise
tion based approa
h (Steiner points are midpoints of the 
uboid edges), the 1-irregular 
uboidsare 
lassi�ed into equivalen
e 
lasses (ea
h element of the 
lass is partitioned in the same way) and the exa
t valueof the number of equivalen
e 
lasses is 
omputed. As this value is not too big, all 1-irregular 
uboids 
an be handledusing a hash table, and then a tessellation 
an be always found in 
onstant time. Se
ond, for the interse
tion basedapproa
h (Steiner points 
an be lo
ated at any position along a 
uboid edge), the total number of 1-irregular 
uboids,and upper and lower bounds for the number of equivalen
e 
lasses are 
omputed . The lower bound is too big tohandle all the equivalen
e 
lasses in a hash table. In this 
ase, a mixed approa
h, i.e., the use of an pattern-wisealgorithm for 1-irregular elements with bise
ted edges and an algorithm that 
omputes in real time the tessellationfor the other 1-irregular 
uboids, is re
ommended.Keywords: 
ontrol volume, 
uboid tessellation, modi�ed o
trees1. MOTIVATIONSin
e the last twenty years, modi�ed o
trees havebeen used very often in geometri
 modeling and meshgeneration[11, 10℄. The modi�ed o
tree approa
hworks as follows: The 3-D domain is en
losed in a
ube, whose o
tants are repeatedly re�ned at theiredge midpoints until the boundary and internal quan-tities are suÆ
iently approximated. Elements withand without edge midpoints are partitioned into tetra-hedra. In 
ase of using a o
tree based mesh generationfor numeri
al methods, the �nal elements have to ful-�ll additional requirements.Several aspe
ts in the generation of meshes based ono
trees and modi�ed o
trees have been already gener-alized in order to get a �nal domain representation

that 
ontains fewer basi
 elements than former ap-proa
hes [5℄: (1) The domain 
an be en
losed for a
uboid. A 
uboid has re
tangular fa
es. (2) The in-ternal elements (ma
ro-elements) 
an belong to a setof well shaped elements, su
h as pyramids, prismsand tetrahedra, and 
uboids. The set of elements thatis 
alled well-shaped depends on the appli
ation. Thisset has to be 
losed under the re�nement operator,i.e, ea
h element 
an be re�ned in su
h a way thatall newly generated elements belong to this set. Thetrees that 
an handle di�erent element types as in-ternal nodes are 
alled mixed element trees [7℄. (3)The re�nement 
an be either bise
tion or what wehave 
alled the interse
tion based approa
h [6, 5℄.Using the bise
tion based approa
h the re�nement isalways made at the edge midpoints. Using the inter-se
tion based approa
h the re�nement is made at the



most 
onvenient edge point. The best point|the onewhose asso
iated re�nement generates 
hildren withthe smallest aspe
t ratio |is 
hosen from the avail-able Steiner points (points generated by the re�nementof the neighboring elements) and interse
tion points(points generated by the interse
tion between the ob-je
t geometry and the 
urrent element). (4) Internalelements 
an be re�ned into a di�erent number of ele-ments and into elements of di�erent type depending onthe type of the internal node and on the re�nement di-re
tion. For example, if a re�nement is required alongone, two, or three 
oordinate axes, 
uboids, are sub-divided into two halves, four quadrants, and eight o
-tants, respe
tively. (5) The set of �nal elements isde�ned by the appli
ation. This set 
an be the setof ma
ro-elements or a set 
omposed of other elementtypes. What we keep of the modi�ed o
tree approa
his the re�nement parallel to the axes of the 
oordinatesystem.The mesh generators known as 
mebi [6℄ and 
mein [5℄have in
luded several of the extensions mentionedabove. Both mesh generators follow the same step se-quen
e: (1) �t �rst exa
tly the obje
t geometry (if pos-sible) with a set of ma
ro elements (
uboids, prisms,pyramids, and tetrahedra), (2) re�ne ea
h element un-til the required mesh density is obtained, (3) generatea 1-irregular mesh (all the leaves are 1-irregular) thatallows the generation of a Delaunay mesh by the unionof the Delaunay tessellation of ea
h leaf. (Note that inthis 
ase, the lo
al 
omputation of the 1-irregular ele-ments must be done after the 
omputation of the 2-Dtessellations of the 1-irregular element fa
es, and afterall these new fa
es ful�lled the empty sphere 
riterion.)and (4) generate the Delaunay mesh by 
omputing thelo
al tessellation of ea
h leaf. The di�eren
es betweenboth are that ea
h ma
ro-element is re�ned by bise
t-ing its edges, while 
mein generates a non
onforminginitial mesh where the ma
ro-element edges 
an getseveral Steiner points at any position. The requireddensity is obtained either bise
ting the target edgesor 
utting the element at the position of one of thealready inserted Steiner points.The number of 1-irregular 
on�gurations depends onthe element type (
uboid, prism, pyramid, et
) andon the re�nement approa
h. The number of useful1-irregular 
on�gurations, i.e, the ones that gener-ate well-shaped �nal elements, depends also on thenumeri
al method. In this 
ase we 
onsider thatthe �nal mesh is a Delaunay tessellation. Ea
h 
o-
ir
ular(spheri
al) set of points is not divided intomore simple elements, su
h that, tetrahedra, if it satis-�es the Delaunay 
ondition. An algorithm that tessel-lates any 1-irregular 
on�guration into elements whoseverti
es are 
o-spheri
al was presented in [8℄. That pa-per does not in
lude any 
omputation of the numberof di�erent 1-irregular 
on�gurations and equivalen
e


lasses that 
an be produ
ed.This paper presents a study of the number ofdi�erent 1-irregular 
uboids that 
an appear inmixed-element meshes generated by mesh genera-tors 
mebi and 
mein, and re
ommends a way tohandle them. It 
ounts and �nds all the equivalen
e
lasses for 1-irregular 
uboids using a bise
tion basedapproa
h, and shows that is possible to �nd all thetessellations using a hash table (pre-
omputed tessella-tions). For the interse
tion based approa
h, it presentsupper and lower bounds, and re
ommends the use ofa mixed approa
h.Whenever possible, the use of pre-
omputed tessella-tions as a method to �nd the tessellation of any 1-irregular element (independent of the algorithm usedto generate them) should be preferred over other meth-ods, be
ause it is a robust method. It always 
omputesthe right tessellation and avoids pre
ision problems.2. BASIC CONCEPTSDe�nition 1 A d-
uboid is the notation for a
uboid of dimension d: 0-
uboid is point, 1-
uboidis a segment, 2-
uboid is a re
tangle and a 3-
uboidis the 
uboid (default).De�nition 2 A tessellation T of a set of pointsS is a Delaunay tessellation if there exists a point-free 
ir
umsphere for ea
h �nal element.We use the term Delaunay tessellation and not De-launay triangulation [3, 1, 4, 9℄ be
ause our meshesin
lude element types other than tetrahedra if theirverti
es are 
o-spheri
al. The most known of theseelements are 
uboids and some kinds of prisms andpyramids. Note that mesh generators based on o
-trees normally generate points that are not lo
ated ina general position, then it is possible to �nd many
o-spheri
al 
on�gurations.Delaunay tessellations are very useful in 
ontrol vol-ume methods that use the Voronoi region as integra-tion volume. Co-spheri
al 
on�gurations (elements)that satisfy the Delaunay 
ondition are not requiredto be tessellated into smaller elements be
ause the nu-meri
al method only need the Delaunay edges with as-so
iated Voronoi edge in 2D (fa
e in 3D) whose length(area) is not equal to 0.The following de�nition introdu
es the 
on
ept ofequivalen
e 
lass and pattern type.De�nition 3 Let 
1 and 
2 be two 1-irregular
on�gurations, 
1 and 
2 belong to the same equiv-alen
e 
lass if 
1 
an be transformed to 
2 throughrotations or re
e
tions. The representative ele-ment of an equivalen
e 
lass is 
alled pattern type.



1-irregular 
on�gurations that belong to the sameequivalen
e 
lass are partitioned in the same way.Ea
h pattern type 
an have a bounded number ofpossible Delaunay tessellations depending on its edgelength ratio. Figure 1(a) shows a 1-irregular re
tanglewhere depending on ratio between w (its width) and h(its height), the verti
es 5, 7 are 
onne
ted (Figure 1(b)), or verti
es 4 and 6 are 
onne
ted (Figure 1 (
)),or 4,5,6,7 are 
o-
ir
ular (Figure 1 (d)).
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Figure 1. The tessellation of a 1-irregular re
tangle with 4Steiner points depends on the edge length ratio2.1 Bise
tion Based Approa
hCuboids 
an be split into two halves, four quarters oreight o
tants as shown in Figure 2. The Steiner pointsde�ning a 1-irregular element are always lo
ated atthe edge midpoints. In this 
ase, the lo
ation of theSteiner points 
an be used to represent uniquely ea
h1-irregular 
uboid.
Figure 2. Bri
ks re�ned in one, two, or three dire
tions gener-ate two, four, and eight 
uboids, respe
tivelyFigure 3 shows several 1-irregular 
uboids. The 1-irregular 
uboid of Figure 3(b) 
an be transformedto the 1-irregular 
uboid if Figure 3(a) by rotating itproperly. We say then that the 1-irregular 
uboidsof Figure 3(a) and (b) belong to the same equiva-len
e 
lass. The two 1-irregular 
uboids of Figure 3(
)and (d), respe
tively, have three bise
ted edges butthey do not belong to the same equivalen
e 
lass.Conti [2℄ has already used the idea of equivalen
e
lasses in the implementation of a mesh generatorbased on modi�ed o
trees [11℄. The information aboutthe most 
ommon 1-irregular 
uboids were stored ina hash table, whose hash fun
tion is a value obtainedfrom a 
odi�
ation of the split edges. The edges are
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(a) (b) (d)(c)Figure 3. Di�erent 1-irregular 
on�gurationslabeled in the order shown in Figure 4(a) and the ver-ti
es in the order shown in Figure 4(b). For ea
h 1-irregular 
uboid, the hash table stores the pattern typeand the 
orner permutation to transform the 
urrent
on�guration to the 
on�guration of the pattern type.For example, if Figure 4(
) is the pattern type forthe 1-irregular elements with one split edge, the in-formation stored in the hash table for the 1-irregular
uboid shown in Figure 4(d) is the bit
ode of the pat-tern type (00000000001) and its 
orner permutation(1,4,0,5,2,7,3,6). Only the tessellation for the patterntype is 
omputed and stored. The elements of the �-nal tessellation were tetrahedra, pyramids, prisms and
uboids.
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Figure 4. (a) Cuboid edge numeration, (b) 
uboid vertex nu-meration, (
) one split edge pattern type, and (d) one split edge1-irregular 
uboidThe Conti's mesh generator only stored the twentymost used pattern types in a hash table. The timeto �nd the tessellation of a 1-irregular 
uboid thatwas stored was 
onstant. But if the pattern type wasnot stored, new points were inserted until all the 1-irregular 
uboids 
ould be solved. This approa
h wasextended for other element types in the implementa-tion of a mixed element mesh generator [7℄.2.2 Interse
tion Based Approa
hCuboids are split into two halves, four quarters or eighto
tants as before but edges are not ne
essary bise
ted.Figure 5 shows the di�erent ways to split a 
uboid us-ing arbitrary re�nement points. The only restri
tionis that parallel edges have to be split at the same rela-tive position from their endpoints in order to generate
uboids and not general polyhedra.



Figure 5. Bri
ks re�ned in one, two, or three dire
tions gener-ate two, four, and eight 
uboids, respe
tivelyDuring the tessellation of 1-irregular elements using abise
tion-based approa
h, the type of the element, itsaspe
t ratio, and the edges 
arrying a Steiner pointare enough to identify uniquely a 1-irregular element.This 
ondition does not hold for an interse
tion-basedapproa
h.Figure 6 shows a set of 1-irregular 
uboids with thesame four split edges. Using a bise
tion-based ap-proa
h, only the 1-irregular 
uboid shown in Fig. 6(a)
an o

ur. The four edges are bise
ted and the 1-irregular element is partitioned into two 
uboids. Us-ing an interse
tion based approa
h all these 
asesshown in Figure6 
an o

ur.
(a) (b) (
)Figure 6. 1-irregular 
uboids with the same split edges butdi�erent tessellationsIn the event that Steiner points are lo
ated on orthog-onal edges, (e.g., in a 
uboid, at most three Steinerpoints), the tessellation is the same for both ap-proa
hes: only the size of the �nal elements 
hanges.Figure 7 shows two 1-irregular 
uboids with the sameSteiner-point but in a di�erent position along the sameedge. Both 
ases are tessellated in the same way.

Figure 7. Tessellation of slightly di�erent 1-irregular 
uboidsinto four pyramids

3. 1-IRREGULAR CUBOIDS ANDEQUIVALENCE CLASSES USING ABISECTION BASED APPROACHIt is already known that the total number of 1-irregular
uboids is 212. However, the number of equivalen
e
lasses or pattern types is not known. Its value ismu
h lower than the total number of 1-irregular 
on-�gurations as we will show in this se
tion.3.1 Theoreti
al Lower BoundTheorem 1 A d-
uboid has 2d verti
es andd2d�1 edges.Proof. This is known and 
an be shown by indu
tion.2Theorem 2 Let be a d-
uboid. Then, the num-ber of 1-irregular 
on�guration is 2d2d�1 .Proof. As we have said before, ea
h edge 
an be bi-se
ted or not. Then, there are two possibilities forea
h edge (to have one or no one Steiner point) and so2number of edges possible 1-irregular 
on�gurations.Using theorem 2, a d-
uboid has 2d2d�1 1-irregular
on�gurations.2Corollary 3 The total number of 1-irregular
on�gurations is an upper bound of the number ofequivalen
e 
lasses.Theorem 4 A lower bound for the numberof equivalen
e 
lasses in a d-
uboid of is2d2d�1�2d�lg dProof. The lower bound 
an be obtained 
onsideringthat all the rotations and re
e
tions are useful, i.e,ea
h one transforms a di�erent 1-irregular 
on�gura-tion into the pattern type.(a) Ea
h re
e
tion divides the set of 1-irregular 
on-�gurations into two parts. There is d re
e
tions andtherefore 2d possible 
on�gurations generated usingre
e
tions.(b) Using rotations, it is possible to bring any edge toa �xed edge. In addition, it is possible to 
hose twoorientations. Then, the number of 1-irregular 
on�g-urations that 
an be generated through rotations istwi
e the number of edges: 2d2d�1 = d2dIn the best 
ase, the 2d 1-irregular obtained after dre
e
tions and the d2d 
on�gurations obtained afterrotations are independents. The redu
tion fa
tor isthen 1=d4d and the lower bound for the number of
on�gurations is 2d2d�1=d4d = 2d2d�1�lgd�2d.2In the 
ase d = 3, the lower bound for the number ofequivalen
e 
lasses is 22. This means, there is at least22 di�erent pattern types.



3.2 Exhaustively Counting in Three Dimen-sionsIn order to 
ount exa
tly the number of equivalen
e
lasses, a program that generates the 4096 
on�gura-tions , and 
he
ks whi
h of them are equivalent, wasdeveloped.The algorithm is very simple. For ea
h one of the 4096
on�gurations, it generates all the possible 
ombina-tions of rotations and re
e
tions. The pattern typeis the 
ube that has the lowest numeri
al representa-tion. After applying this algorithm, 144 pattern typeswere obtained. (This number is the square of 12, thenumber of edges in 3-D. Then it 
ould be expe
tedthat there is a relation between the number of patterntypes and the number of edges. But in 2-D it 
an beeasy shown that this is not true be
ause there are 4edges and only 6 pattern types (not 16)).This algorithm 
an be used to generate automati
allythe 
orner permutations between any 
on�gurationand its pattern type, and hen
e to identify the righttessellation in O(1). The previous algorithm 
an beimproved to redu
e the number of super
uous rota-tions and re
e
tions. But sin
e this algorithm is usedonly on
e, when that hash table is initialized, its eÆ-
ien
y is not important. The tessellation of the patterntypes 
an be ful�lled with an ad ho
 algorithm as theone presented in [8℄.3.3 Number of Delaunay Tessellation for Pat-tern TypesTheorem 5 The number of possible Delaunaytessellation for ea
h d-
uboid pattern type isbounded by F (d) =Qd�1d=1(2d� 1); F (1) = 1.Proof. As we have shown in Figure 1 using a 1-irregular re
tangle, the Delaunay tessellation of a pat-tern type depends on its edge length ratio. The worst
ase is when there exists a di�erent tessellation forea
h edge length ratio. In the 
ase of a re
tangle, edgelengths 
an vary in two dire
tions: one edge length 
anbe smaller than, equal to or greater than the other edgelength. That is why it is possible to have at most threepossible Delaunay tessellations for 1-irregular re
tan-gle pattern type. In 
uboids, the edge lengths 
an varyin three dire
tions. The �rst edge length 
an be 
ho-sen in one way, the se
ond edge length 
an be 
hosensmaller than, equal to or greater than the �rst edgelength, and third, smaller than, in between, equal toor greater than the previous ones.In general, the previous analysis 
an be des
ribed us-ing the following expression. Let F (d) be the maxi-mum number of possible Delaunay tessellations for ad-
uboid pattern type. (The maximum value is ob-tained by 
onsidering that ea
h edge length variation

produ
es a new Delaunay tessellation). Then,F (d+ 1) = (2d+ 1)F (d)F (d+ 1) = dYd=1(2d+ 1); F (1) = 1This formula 
an be shown by indu
tion. It is easy tosee, that if F (d) is already 
omputed, the new edgelength 
an be the length of one of the previous edges(there are d possible lengths) or 
an be in between theprevious ones (there are d+1 possible lengths). Then,the possible lengths in the new dire
tion are (2d+1).Therefore, the total number of edge length ratio indimension d+ 1 is (2d+ 1)F (d).The number of possible tessellation of a 1-irregular
uboid is bounded by F (3) = 15. 24. 1-IRREGULAR CUBOIDS ANDEQUIVALENCE CLASSES USING ANINTERSECTION BASED APPROACHThe number of 1-irregular 
uboids and the numberof equivalen
e 
lasses using an interse
tion based ap-proa
h are still unknown. In this se
tion, we will �rstde�ne a new notion of equal 1-irregular 
on�gurations,and then 
ompute the number of 1-irregular 
uboids,and a theoreti
al upper and lower bound for the num-ber of equivalen
e 
lasses in 2D and 3D.In order to generate the Delaunay tessellation of a 1-irregular 
on�guration with Steiner points at any po-sition, together with the element aspe
t ratio, the rel-ative position of the Steiner points is relevant (see Fig-ure 6 of se
tion 2.2).De�nition 4 A 1-irregular 
on�guration i1 is
onsidered equal to a 1-irregular 
on�guration i2if the relative position between the Steiner pointslo
ated in the parallel edges of i1 and i2 is the samewith respe
t to a normalized 1-irregular 
on�gura-tion.A

ording to de�nition 4, the 1-irregular 
uboids ofFigure 8(a) and Figure 8(b) are equal and the 1-irregular 
uboid shown in Figure 8(
) is not equal tothe ones shown in Figure 8(a) and (b). The 1-irregular
uboid in Figure 8(d) is also not equal to the ones inFigure 8(a) and (b) but it belongs to their same equiv-alen
e 
lass, be
ause it 
an be 
onsidered equal to theones in Figure 8(a) and (b) after two rotations aboutthe y axis.
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(a) (b) (d)(c)Figure 8. 1-irregular 
uboids: (a) and (b) are 
onsidered equal,(
) is di�erent from (a) and (b), and (a),(b) and (d) belong tothe same equivalen
e 
lass.4.1 Number of 1-Irregular Con�gurationsThis se
tion introdu
es �rst several properties thatsimplify the 
omputation of the number of 1-irregular
uboids, and then presents the results.Proposition 1 Let 
 be a d-
uboid and n thenumber of the 1-irregular 
uboids with Steinerpoints in only one of the orthogonal axis. The totalnumber of 1-irregular 
uboids of 
 is ndProof. The 
omputation of the total number of 1-irregular 
uboids 
an be done by �rst 
ounting thenumber of 1-irregular 
uboids in ea
h orthogonal dire
-tion independently. These numbers 
an then be mul-tiplied together be
ause the insertion of a new Steinerpoint has only an in
uen
e in the 
omputation if it
an be lo
ated to the left, right or on the same lineof already inserted Steiner points. This o

urs only innonorthogonal edges. Sin
e the 
uboid has d orthogo-nal dire
tions and has the same shape in ea
h one, thetotal number of 1-irregular 
uboids is nd. 2Proposition 2 Let ni be, the number of 1-irregular d-
uboids with i Steiner points on par-allel edges (only one of the orthogonal dire
tionsis used), then n is :n = 2d�1Xi=0 niProof. The parameter i is bounded by 0 and the num-ber of parallel edges in any of the orthogonal axes ofthe d-
uboid. The number of parallel edges of a d-
uboid 
an be 
omputed dividing the number of edgesby the dimension. Using the theorem 1, the numberof parallel edges is 2d�1.2Proposition 3 Let 
 be a d-
uboid with i Steinerpoints on parallel edges. The number of lo
ationsto insert a new Steiner point along a target emptyedge 
onsidering the already inserted points is 2i+1.

Proof. Ea
h Steiner point 
an be inserted along a tar-get empty edge to the left, to the right or aligned toone of the already inserted points. If there are i in-serted points, the number of possible lo
ations amongthe inserted points is i+1. In addition, the number ofpossible lo
ations aligned to one of the inserted pointsis i. Then, the number of possible lo
ations for thenew point is 2i+ 1.2Theorem 6 The number of 1-irregular re
tan-gles are 62Proof. In 2D, the expression for n is the following:n = 2Xi=0 niIt 
an be easy shown that n0 = 1, n1 = 1 � 2 = 2,n2 = 3 � 1 and n = 6 Then, the number of 1-irregularre
tangles is N = n2 = 62. 2Theorem 7 The number of 1-irregular 
uboidsis N = 1873Proof. In 3d, the expression for n is the following:n = 4Xi=0 niThe next table shows the values of ea
h ni. Ea
h niwas 
omputed separately using proposition 3:i ni0 11 42 183 604 105Case i = 0: If there is no point inserted, n0 = 0.Case i = 1: If we insert one point in a 
uboid with nopoint, on
e one edge is 
hosen, there is only one wayto 
hoose the lo
ation on it (2 � 0+1). Sin
e there arefour parallel edges, n1 = 4.Case i = 2: If we have already inserted one point on a
uboid edge (Figure 9(a)), on
e we 
hoose the emptyedge on whi
h we will insert the next point, we havethree possibilities (2 � 1 + 1 = 3). The empty edge
an be 
hosen in two ways: (1) the new edge belongsto the same fa
e of the previous edge (Figure 9(b)).Sin
e there are four fa
es, this 
ase produ
es 4 � 3 1-irregular 
uboids. (2) The new edge is opposite to



previous one ((Figure 9(
)) . Sin
e there are two waysto sele
t opposite edges, this 
ase produ
es 2 � 3 1-irregular 
uboids. Then, n2 = 18.
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Figure 9. (a) 1-irregular 
uboids with one Steiner point, (b)and (
) possibilities of inserting a new pointCase i = 3: We already know that the �rst point isinserted in one way, the se
ond point in three ways andthe third point in 5 ways, then on
e we have 
hosen thethree edges we have 1 � 3 � 5 = 15 1-irregular 
uboids.Sin
e there are 4 ways to 
hoose the three involvededges, n3 = 60.Case i = 4: Ea
h edge get a point. The number of1-irregular 
uboids is 1 � 3 � 5 � 7 = 105.n = (4 + 18 + 60 + 105) = 187;N = 187324.2 Number of Equivalen
e ClassesAn upper bound for the number of equivalen
e 
lassesis the number of 1-irregular 
uboids.In the same way as in the bise
tion based approa
h,a lower bound for the equivalen
e 
lasses 
an be ob-tained if the total number of 1-irregular 
uboids is di-vided by the number of possible rotation and re
e
tiontransformations.Corollary 8 Let N be the number of 1-irregulard-
uboids. A lower bound for the number of equiv-alen
e 
lasses of 1-irregular d-
uboids is Nd4d . Inthe parti
ular 
ase of the 
uboid, the value is1873192 > 34; 0585. CONCLUSIONSThis paper presents the 
omputation of the exa
t num-ber of 1-irregular re
tangles and 
uboids for both a bi-se
tion and an interse
tion based approa
h. In 
ase ofthe bise
tion based approa
h, it presents the theoret-i
al 
omputation of upper and lower bounds, and theempiri
al 
omputation of the exa
t number of equiv-alen
e 
lasses. In 
ase of an interse
tion based ap-proa
h, it presents the theoreti
al 
omputation of the

upper and lower bounds for the number of equivalen
e
lasses.The number of equivalen
e 
lasses of a 
uboid in abise
tion based approa
h is 144. This allows us tostore the ne
essary information of all the 1-irregular
uboids (212) and the tessellation of all the patterntypes in a hash table. Then, the time to get the righttessellation of any 1-irregular 
uboid is O(1).The number of equivalen
e 
lasses of a 
uboid usingan interse
tion based approa
h is too high for stor-ing all of them in a hash table. It is also not 
learif there exists a good hash fun
tion, be
ause the rela-tive position between Steiner points on parallel edgesshould also be 
onsidered. Sin
e the mesh generatorthat uses an interse
tion based approa
h to �t the de-vi
e geometry, re�nes the 
oarse elements by bise
tingtheir edges wherever required, most of the 1-irregularelements have bise
ted edges. Then, it is 
onvenient touse a mixed approa
h, i.e, an hash table for 1-irregularelements with bise
ted edges and an algorithm for therest of 1-irregular elements.The use of pre-
omputed tessellations as a methodto �nd the tessellation of any 1-irregular element (in-dependent of the algorithm used to generate them)should be preferred over other methods, be
ause it isa robust method (for example, it avoids the pre
isionproblems that 
an o

ur, when 1-irregular elementsbelong to very thin layers). In addition it 
omputesalways the right tessellation and take less 
omputa-tional time than a real time algorithm.ACKNOWLEDGMENTThis work was supported by Fonde
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