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The Quickheap (QH) is a recent data structure for implementing priority queues which
has proved to be simple and efficient in practice. It has also been shown to offer log-
arithmic expected amortized complexity for all of its operations. Yet, this complexity

holds only when keys inserted and deleted are uniformly distributed over the current set
of keys. This assumption is in many cases difficult to verify, and does not hold in some
important applications such as implementing some minimum spanning tree algorithms
using priority queues. In this paper we introduce an elegant model called a Leftmost
Skeleton Tree (LST) that reveals the connection between QHs and randomized binary
search trees, and allows us to define Randomized QHs. We prove that these offer logarith-
mic expected amortized complexity for all operations regardless of the input distribution.
We also use LSTs in connection to α-balanced trees to achieve a practical α-Balanced
QH that offers worst-case amortized logarithmic time bounds for all the operations.
Both variants are much more robust than the original QHs. We show experimentally
that randomized QHs behave almost as efficiently as QHs on random inputs, and that
they retain their good performance on inputs where that of QHs degrades.
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1. Introduction

A priority queue is a data structure which allows maintaining a set of elements in a

partially ordered way. Typically, the elements are of the form (key, item), where key
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is the priority and item is satellite data (which is not used to sort the set, thus from

now on we neglect it). A priority queue enables efficient element insertion (Insert),

minimum finding (FindMin), and minimum extraction (ExtractMin) —or, alterna-

tively, maximum finding and extraction. The set of operations can be extended

to construct a priority queue from a given array (Heapify), increase or decrease

the priority of an arbitrary element (IncreaseKey and DecreaseKey, respectively),

delete an arbitrary element from the priority queue (Delete), and many others. In

the following we focus on the operations we have mentioned explicitly.

The classic priority queue implementation uses a binary heap [Wil64]. Wegener

[Weg93] proposes a bottom-up deletion algorithm, which addresses operation Ex-

tractMin performing only log2 m + O(1) key comparisons per extraction on aver-

age, in heaps of m elements. Other well-known priority queues are sequence heaps

[San00], binomial queues [V ui78], Fibonacci heaps [FT 87], pairing heaps [FSST 86],

skew heaps [ST 86], and van Emde Boas queues [vEBKZ77].

In previous work [NP10], a so-called IncrementalQuicksort algorithm (IQS)

was developed, and a data structure for implementing priority queues based on IQS,

coined Quickheaps (QHs), was proposed and empirically tested, showing that QHs

are very competitive in practice. Moreover, they offer logarithmic expected amor-

tized complexity for all the operations (except DecreaseKey), when keys inserted

and deleted are uniformly distributed over the current set of keys. This assumption

on the key distribution is not only somewhat awkward and difficult to verify, but

also it does not hold in some emblematic applications, such as implementing Prim’s

Minimum Spanning Tree algorithm [Pri57]. Thus, the quest for more robust QHs,

which retain practicality, was raised.

In this paper we introduce the Leftmost Skeleton Tree (LST), a simple and ele-

gant model that reveals the connection between QHs and randomized binary search

trees. The LST allows us to define stronger QHs based on randomization, coined

Randomized QH, which override the QH key distribution assumption. We prove

that Randomized LST-based QHs enable efficient implementation of all the opera-

tions, offering logarithmic expected amortized complexity for all of them regardless

of the input distribution. This makes them much more robust than the original

QHs. We also use LSTs in connection to α-balanced trees to achieve a practical α-

Balanced QH that offers worst-case amortized logarithmic time bounds for all of the

operations. Like the original QH, both Randomized and α-Balanced QH versions

require to store only O(logm) (expected or worst-case, respectively) extra integers

for a queue of m elements. Furthermore, they exhibit a local access pattern, which

makes them excellent alternatives for a secondary memory implementation.

We experimentally compare randomized LSTs-based QHs with the original ones,

showing that the randomized variants are at most 12% slower when the uniformity

assumption holds (in which case the original QHs were already shown to be com-

petitive with the state of the art [NP10]). Furthermore, the randomized QHs retain

their good performance on inputs where that of original QHs degrades.
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The rest of this paper is organized as follows. In the next section we describe the

original Quickheap data structure. In Section 3 we present the Leftmost Skeleton

Tree and its basic operations. Then, in Section 4 we show how to use LSTs in

order to implement a randomized priority queue, and in Section 5 we empirically

show that it is competitive in practice. In Section 6 we combine LSTs and General

Balanced Trees [And99] in order to provide worst-case amortized guarantees, and

in Section 7 we analyze our variants under the cache-oblivious model, showing that

their locality of reference makes them apt for a secondary-memory implementation.

Finally, in Section 8 we give our conclusions and some directions for further work.

2. Quickheaps (QHs)

In [NP10], the IQS algorithm was introduced and the QH was built on it. Given

an unsorted set A, IQS retrieves its k smallest elements in increasing order for any

k, that is unknown to the algorithm, in optimal expected time O(m+ k log k). The

IQS algorithm can be seen as a nonrecursive variant of Quicksort [Hoa62].

The work performed the first time we process an arrayA using IQS is the same as

that performed by Quickselect in order to find the smallest element of A[0,m−1]

(while this cost is quadratic in the worst case, IQS was focused on average costs,

in which case the operation takes linear time). Figure 1 illustrates in the first row

an original array and in the second the resulting array after calling Quickselect

using the first element of the current partition as the pivot. The key point is that

Quickselect generates a sequence of pivots in decreasing order and we can use

this pivot sequence in the following operations. In the figure, we have added ovals

indicating pivots and an ∞ mark signaling a fictitious pivot in the last array cell.

Finally, we have stored all the pivot positions in an auxiliary stack S.

12  18  29  25  33  41  49  37  51  67  86  92  58  63  74  81       S = {  , 8, 4, 1, 0}

8
8

51  81  74  12  58  92  86  25  67  33  18  41  49  63  29  37       S = {  }

16 _   _           _               _                              __0         1         2          3          4         5         6          7          8         9       10         11       12       13       14       15

                                                                __0         1         2          3          4         5         6          7          8         9       10         11       12       13       14       15 16

16

16

Fig. 1. IQS operation. First row, the original array. Second row, the result after calling Quickse-

lect for the first element. All the pivot positions are stored in stack S. We use this partitioned
array in the QH implementation. In the example we use the first element of the current partition
as the pivot, but it could be any other element.

If we need to find the second smallest element, we could call Quickselect on

A[1,m − 1]. Instead, IQS checks if we have the position 1 on top of S, that is, if

S.top() = 1, in which case we are done as A[1] is the second smallest element. Else,

it calls Quickselect on A[1, S.top()− 1] and pushes the new resulting pivots onto

S. We can use IQS to retrieve the next elements, if we need to. In order to preserve

the IQS invariant (either the minimum is the element on top of S or it is within
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the leftmost chunk) from the first time, we initialize S containing the position of

the fictitious pivot ∞. The experimental results [NP10] showed that IQS is up to

4 times faster than the classical alternative that uses binary heaps.

If we read the resulting array from right to left (Figure 1), we see a sequence

of pivots and chunks starting from the fictitious pivot ∞ (at position 16) with a

chunk of elements smaller than it (and greater than the next pivot), until the last

pivot 18 (at cell 1) and a last chunk (in this case, without elements). This structure

resembles a priority queue and is exploited by the original QH.

Briefly, the QH implements the basic priority queue operations as follows (for

further details see [NP10]). To find the minimum we simply call IQS. To extract it,

after finding it, we remove it from the array and pop its position from the stack. To

insert a new element x we need to find the chunk in which we can properly add x.

As we have all the pivot positions in the stack, we can directly access array cells in

order to shift pivots one cell to the right and move the first element of each chunk

to the hole left at the previous pivot position. So, we insert x by moving pivots and

elements starting from the fictitious pivot until we reach the first pivot smaller than

x, in which case we place x in the empty cell left by the last shifted pivot (which

was still ≥ x).

If we augment the QH with a dictionary managing the current element positions

within the array, we can also implement operation Delete. To remove an element, we

obtain its position from the dictionary and then extract it from the array, placing in

the hole the last element of its chunk. So we have an empty cell to shift the next pivot

at its right (that is, the one immediately larger than it) one cell to the left, and we go

on until reaching the fictitious pivot. Operations IncreaseKey and DecreaseKey can

be implemented by performing a deletion followed by a (re)insertion. We remark

that including operation Delete, DecreaseKey and/or IncreaseKey involves O(m)

additional space for the dictionary and O(logm) extra time per operation in order

to query and update it. These costs must be added to the analyses that follow if

these operations are to be included.

It was shown that the expected amortized complexity of QH operations is loga-

rithmic, when keys inserted and deleted are uniformly distributed over the current

set of keys [NP10]. In the next section we introduce a novel model that allows us

to override the QH key distribution assumption.

3. Leftmost Skeleton Trees (LSTs)

We define a data structure called the Leftmost Skeleton Tree (LST) which, depend-

ing on the update algorithms we use, represents the leftmost path of a binary search

tree (BST) from a given family. We use LSTs for implementing priority queue op-

erations within time bounds that depend on the type of BST represented. In this

section we define LSTs and show how to implement the operations of interest on

them.

Definition 1. A Leftmost Skeleton Tree (LST) T over a totally ordered domain Z
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is either

• T = bucket(B), a multiset of |B| elements of Z; or

• T = tree(r, L,B), where r ∈ Z is the root key, L is an LST containing only

elements x ≤ r, and B is a multiset containing only elements y ≥ r.

We will denote Tv = (v, Lv, Bv) the subtree of T rooted at pivot v.

Definition 2. The size of an LST is

s(bucket(B)) = |B|,

s(tree(r, L,B)) = 1 + s(L) + |B|.

Definition 3. The length of an LST is

ℓ(bucket(B)) = 1,

ℓ(tree(r, L,B)) = 1 + ℓ(L).

Definition 4. The depth of a bucket B in an LST is a

d(B, bucket(B)) = 0,

d(B, tree(r, L,B)) = 1,

d(B, tree(r, L,B′)) = 1 + d(B,L), if B 6= B′.

3.1. LST structures

To implement the LST T = tree(r, L,B) we use an array A to store the elements

of T and a stack S to manage the pivot positions (i.e., roots of subtrees).

Definition 5. The representation of an LST in terms of an array A and a stack

S is defined as follows (where ‘:’ is the sequence concatenation operator and the

left-to-right order in S corresponds to top-to-bottom order):

A(bucket(B)) = B,

A(tree(r, L,B)) = A(L) : r : B,

S(bucket(B)) = s(bucket(B)),

S(tree(r, L,B)) = S(L) : s(tree(r, L,B)).

That is, A consists of the sequences of buckets of T , from leftmost to rightmost

(which in A will be called chunks) separated by the pivots that constitute the subtree

roots in T . The stack contains the positions of the pivots in A, in left-to-right order

as we read S top-to-bottom.

Figure 2 shows an LST example and its memory layout, and will be used to

illustrate the LST operations as we describe them next. We use pv to denote the

aBy B 6= B′ in the third line we mean they are different buckets in the data structure, not that
they are different multisets.
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Fig. 2. A Leftmost Skeleton Tree example and its representation as an array A and a stack S. The
tree is the logical view and the array plus stack is the physical view.

position of pivot v in array A, starting from cell 0, thus S contains the pv values of

the successive nodes v of T . As in the original QH, we also use an auxiliary integer

p∞= size(T ) at the bottom of S. This ficticious pivot is the only element of S that

does not correspond to any LST node. This way, we always have a pivot following

a chunk, even when the LST contains no elements.

3.2. LST Operations

We now describe a set of operations of interest on LSTs and analyze them in terms

of number of basic operations performed. For a more detailed description we refer

the reader to the original QH article [NP10].

Convert an array B into T = bucket(B). We create stack S = 〈p∞ = |B|〉 with

one element. If we can use the array B as the array A we are done; this costs O(1).

Else, we copy the elements within B onto array A, which costs O(|B|).

Compute s(Tv). It is the position of the pivot at the right of Tv, easily computed

in O(1) time if we know where is v in S.

Insert/Delete x into/from a bucket. We reach the corresponding chunk from

the right of A and from the bottom of S. For inserting, we must reach the correct

chunk Bv and create an empty cell within it. We start by incrementing p∞, this

way making space in the rightmost chunk B. As long as the current chunk B is not

Bv (i.e., B is not the leftmost chunk and x is smaller than the pivot to the left of

B), we move the first element of B to the empty space at its end, shift the pivot

at the left of B one cell to the right, and move on to the next chunk (to the left of

A and toward the top of S), which now has a free space at its end. Once we reach

bucket Bv, we place x into its last cell, which is free. This costs O(d(Bv , T )).

To delete an element x we need a dictionary, as explained, in order to know its

current position px in the array A. With px we find the chunk Bv containing x by

traversing S bottom-to-top. Then, position px of Bv is now a free cell. From now

on, the extraction is dual to the insertion; that is, we repeat the following until

processing the rightmost chunk: we move the last element of the current chunk B

to its free cell, move the pivot following B one position to the left, and move on to
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the next chunk to the right (whose first position is now a free cell, the one left by

the moved pivot). This costs O(d(Bv , T )) time (as explained, we are neglecting the

cost of operating and updating the dictionary).

Extract the leftmost node (when the leftmost bucket is empty). This could

be done just as a special case of deletion, but we optimize this common operation

by using the memory allocated for the data in circular fashion, just as the original

QHs. Thus, we simply increase by 1 the starting position of the data in the memory

array and pop the stack S. Therefore, this extraction needs O(1) time.

Flatten subtree Tv into a bucket. Flattening Tv = tree(v, Lv, Bv) corresponds

to removing all of its pivots from S. As all these are on top of the stack, we discard

them all at once by updating the stack size to d(Bv, T ). As Tv’s buckets and pivots

are already consecutive in A, we can just consider them all as a single bucket. The

total flattening cost is O(1).

Structure bucket Bv with pivot x. We use the traditional Quicksort parti-

tioning algorithm on Bv. Thus we carry out |Bv| − 1 comparisons. Then, we push

px, the final position of x after the partitioning, onto S. The total time is O(|Bv |).

4. Randomized Priority Queues using LSTs

We now introduce Randomized QHs, by means of combining LSTs with a scheme

inspired in Mart́ınez and Roura’s randomized BST [MR98]. The idea is that the

LST will represent the leftmost path of a random BST (RBST). We explain now

the operations, giving their actual time, and later carry out an amortized analysis.

Figure 3 shows the relevant pseudocodes.

Heapifying. Given an array of elements, we convert it into an LST by regarding

it as a bucket, in linear time.

Insertion. To insert a new element x into T we look for its insertion point. When-

ever it belongs to a right child (or left child of the last node), we just add it to

the corresponding bucket and finish. Yet, with probability inversely proportional to

the current subtree size plus 1, we flatten the current subtree into a single bucket

and insert the element in there. The overall time is O(d(B, T )), being B the bucket

where we insert x.

For simplicity we assume in the pseudocode that all keys are different. Otherwise

the solution to maintain an RBST, following Mart́ınez and Roura [MR98] is that,

whenever we opt for entering a child (instead of reconstructing the tree) and x is

equal to the key at the root v of the current subtree Tv = tree(v, Lv, Bv), that is

x = v, we go left with probability s(Lv)+1
s(Tv)+1 and right with probability |Bv |+1

s(Tv)+1 . All

these sizes can be computed in constant time in the LST.

Minimum Finding and Extraction.

To extract the minimum element from T we successively structure the leftmost

bucket, using a random bucket element as the pivot, until the leftmost bucket be-

comes empty. At this point we extract the leftmost node and return its key. Its right
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Insert(LST T, x ∈ Z)
1. If T = bucket(B) Then Add x to bucket B // O(depth)
2. Else

3. Let T = tree(r,L,B)
4. If random(s(T ) + 1) 6= 1 Then

5. If x < r Then Insert(L, x)
6. Else Add x to bucket B // O(depth)
7. Else

8. Flatten T into bucket(B′) // O(1)
9. Add x to bucket B′ // O(depth)

Partition(LST T ) // assumes T = bucket(B) and |B| > 0
1. Let T = bucket(B)
2. r ← B[random(|B|)]
3. Partition B = B′ · r · B′′, such that x′ ∈ B′, x′′ ∈ B′′ ⇒ x′ < r < x′′ // O(|B|)
4. T ← tree(r, bucket(B′), bucket(B′′)) // O(1)

ExtractMin(LST T ) // assumes s(T ) > 0
1. If T = bucket(B) Then Partition(T ) // O(|B|)
2. Let T = tree(r,L, B′)
3. If s(L) = 0 Then

4. Flatten T into bucket(B′) // O(1)
5. Remove r from bucket B′ // O(1)
6. Return r

7. Else Return ExtractMin(L)

FindMin(LST T ) // assumes s(T ) > 0
1. If T = bucket(B) Then Partition(T ) // O(|B|)
2. Let T = tree(r,L, B′)
3. If s(L) = 0 Then Return r

4. Else Return FindMin(L)

Delete(LST T, x ∈ Z)
1. If T = bucket(B) Then Remove x from bucket B // O(depth)
2. Else

3. Let T = tree(r,L,B′)
4. If x < r Then Delete(L,x)
5. Else If x > r Then Remove x from bucket B′ // O(depth)
6. Else

7. Flatten T into bucket(B′′) // O(1)
8. Remove x from bucket B′′ // O(depth)

Fig. 3. Randomized priority queue operations implemented using a Leftmost Skeleton Tree. Op-
eration random(k) returns a uniformly distributed integer in [1, k]. The tail recursion of Extract-
Min/FindMin can be easily removed.

child becomes the new leftmost bucket. Finding the minimum is identical except

that the leftmost node is not extracted. The process takes time O(|B|) on average,
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where B is the original leftmost bucket.

Deletion. Assume we know the position of an element x to delete from T , that is,

we know the position it has in its bucket. We look for its bucket and remove it from

there. If, however, x corresponds to a tree node, we flatten the whole subtree into

a bucket and then remove x. The overall time is O(d(B, T )), where B is the bucket

where x belongs.

Again, in the pseudocode we assume for simplicity that all keys are different. If

they are not, we can use its bucket position to identify it.

Increasing and Decreasing Keys. We can implement these by means of a dele-

tion followed by a (re)insertion.

4.1. Properties of RBSTs and LSTs

An RBST is a classical BST built by inserting the set of keys in random order

(each permutation having the same probability). Via randomization one can achieve

RBSTs independently of the actual insertion order of the keys [MR98].

We first prove a few properties of RBSTs. Some are well known, others are more

specific of our purposes. Then we prove a crucial LST property. From now on we

use the notation Hn =
∑n

i=1
1
i = lnn+O(1).

First, the next term will arise in the amortized cost of minimum extractions.

Lemma 6. Let v be the leftmost node in an RBST of n nodes (hence it has no left

child). Then the expected subtree size of the right child of v is O(log n).

Proof. With probability 1
n the root is the smallest value, and thus v is the root

and its right child is of size n − 1. Otherwise, the left child of the root is of size i

with probability 1
n for i ∈ [1, n−1]. Thus the recurrence for the expected size of our

subtree is L(1) = 0 and L(n) = n−1
n + 1

n

∑n−1
i=1 L(i). The solution is L(n) = Hn− 1.

Most of our operations will have a cost proportional to the leftmost path length.

We now show that E(ℓ(T )), and thus E(d(B, T )) for any B, is O(log s(T )).

Lemma 7. The expected length of the leftmost branch of an RBST of n nodes is

O(log n).

Proof. This is a well known property, that can be derived from the recurrence

D(0) = 0 and D(n) = 1 + 1
n

∑n−1
i=0 D(i) = Hn.

The following lemma will be useful to show that the expected value of our

potential function Φ (to be defined later) is O(s(T )).

Lemma 8. The expected sum of the sizes of all the subtrees of nodes in the leftmost

branch of an RBST of n nodes is O(n).
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Proof. This measure corresponds to the expected cost of Quickselect [Hoa61]

when looking for the first element of an array of size n. It can be derived from

Q(1) = 0 and Q(n) = n− 1 + 1
n

∑n−1
i=0 Q(i) = 2n− 2Hn.

Finally, we prove that our LSTs maintain the property that the leftmost branch

of an LST is a prefix of the leftmost branch of the RBST.

Lemma 9. If all the buckets of an LST are expanded into RBSTs, then the result

is an RBST.

Proof. We essentially show that our operations correctly mimic those for random-

ized BSTs [MR98] up to the point where we end up in a bucket.

Heapifying. As this creates an LST formed by a single bucket, the property obvi-

ously holds.

Insertion. The original algorithm finds the insertion point, yet for any considered

subtree T , with probability 1
s(T )+1 , it converts T into a random tree rooted by x.

Our algorithm follows the same process on the leftmost path, and simply inserts the

element into the corresponding bucket when it has to go to the right child. When

the randomization forces it to rebuild the current tree, it just converts the subtree

into a bucket. In all cases, the property is obviously maintained.

Minimum Finding and Extraction. The algorithm just extends the leftmost

path into a full random leftmost path (thus preserving the property). In the case

of extractions, it also removes the minimum. The result has the same distribution

as if the minimum had never been inserted, since the subtree that should be rooted

by it is replaced by a bucket.

Deletion. The result is as if the element x had never been inserted: We change

nothing until the insertion algorithm decides to use x as the root; then we convert

the subtree into a bucket.

4.2. Amortized Analysis

We use the so-called potential debt method [NP10].b This is a slight variant of

the potential method, as follows: Let real costs be ci and amortized costs be c̃i =

ci−∆Φi, where ∆Φi is the change in potential caused by the i-th operation. Then,

adding over all the operations, we obtain that the overall cost is
∑

ci =
∑

c̃i +

Φm − Φ0. Hence, Φ represents a debit, not a credit, and the final debt Φm − Φ0

must be split among all the operations.

bThis was used instead of the traditional potential method in [NP10] because the only successful
potential function we found was the sum of pivot positions, which grows when we partition the
leftmost chunk (which is the operation whose cost we need to amortize). That is, our potential
(credit) function would be negative.
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Definition 10. The potential debt function Φ of an LST is

Φ(bucket(B)) = 0,

Φ(tree(r, L,B)) = s(tree(r, L,B)) + Φ(L).

Note that, due to Lemma 8, the expected value of Φ(T ) is E(Φ(T )) = O(s(T )).

Thus, after carrying out m operations starting with an empty tree and ending with

LST T , we have s(T ) ≤ m and thus Φm = O(s(T )) = O(m), hence the accumulated

debt adds just O(1) to each operation.

We now compute the amortized costs of the operations. In most cases we count

comparisons, and show this is always proportional to the total work. We will refer

to Φ(T ) simply as Φ when T is the global LST (and not a subtree of it), to the

Φ value after executing the ith operation as Φi, and to the difference between two

consecutive Φ values as ∆Φ = ∆Φi = Φi − Φi−1. We will use n = s(T ) sometimes.

Heapifying. This operation costs O(1) if the array can be used directly as the

bucket, otherwise it has to copy the n array elements into another location, at cost

O(n). It retains Φ1 = 0. However, it breaks the assumption that s(T ) ≤ m, for

example just heapifying followed by a minimum extraction costs time linear in the

array size. To include this gracefully in our model, we state that the amortized cost

of heapifying an array of size n is O(n).

Insertion. Assume we end up inserting element x in bucket Bv. Then we have

carried out d(Bv, T ) comparisons, and have to work O(d(Bv , T )) to carry out the

insertion in the bucket (Section 3.2). Hence the number of comparisons is of the same

order of the total complexityc. We now analyze the change in the potential debt,

once we have inserted x into bucket Bv. Assume T = tree(r, L,B) and B 6= Bv, and

call T ′ = tree(r, L′, B) the LST after the insertion. Call ∆Φ(T ′, T ) = Φ(T ′)−Φ(T ),

then

∆Φ(T ′, T ) = Φ(tree(r, L′, B))− Φ(tree(r, L,B))

= s(tree(r, L′, B)) + Φ(L′)− s(tree(r, L,B))− Φ(L)

= 1 +∆Φ(L′, L).

This continues until T = bucket(Bv) or T = tree(r, L,Bv) and thus x is inserted

into bucket Bv. Let B
′
v be the bucket after the insertion. In the first case we have

∆Φ(T ′, T ) = Φ(bucket(B′
v))− Φ(bucket(Bv)) = 0, and in the second

∆Φ(T ′, T ) = Φ(tree(r, L,B′
v))− Φ(tree(r, L,Bv))

= s(tree(r, L,B′
v)) + Φ(L)− s(tree(r, L,Bv))− Φ(L) = 1.

Therefore ∆Φi = d(Bv, T ), and thus c̃i = ci −∆Φi = 0.

After inserting, however, with probability 1
s(T ) , we choose to flatten T into a

bucket. This actually has constant cost (Section 3.2), but the potential Φ decreases

abruptly, and this increases c̃i. Fortunately this occurs with low probability. To

cPlus O(1) in case d(Bv , T ) = 0, but we will omit this for simplicity.
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be precise, the decrease in the global Φ is exactly the potential Φ(T ) of the flat-

tened subtree, Φ(bucket(Bv))−Φ(T ) = −Φ(T ). Thus the expected value for −∆Φi

associated to this operation is

E(−∆Φi) =

(

1−
1

s(T )

)

· 0 +
1

s(T )
·E(Φ(T ))

=
1

s(T )
O(s(T )) = O(1)

and therefore this flattening of T has O(1) expected amortized cost.

Structuring the Leftmost Bucket. When partitioning a bucket B, we carry out

|B|−1 comparisons and this is of the same order of the total work done (Section 3.2).

We then convert bucket(B) into tree(r, B′, B′′), changing the potential debt as

follows:

∆Φ = Φ(tree(r, B′, B′′))− Φ(bucket(B))

= s(tree(r, B′, B′′)) + Φ(bucket(B′))− Φ(bucket(B))

= (1 + |B′|+ |B′′|) + 0− 0 = |B|.

Thus the amortized cost of the operation is c̃i = ci −∆Φi ≤ 0.

Minimum Finding and Extraction. For minimum finding, we successively struc-

ture the leftmost bucket until it becomes empty. Since the structuring operations

have zero total amortized cost, the amortized cost of FindMin is O(1).

ExtractMin, in addition, flattens the tree rooted at the leftmost node and ex-

tracts it from the resulting bucket. This costs O(1), but it also reduces the po-

tential. Using the same ∆Φ(T ′, T ) defined for the insertion, we have ∆Φ(T ′, T ) =

−1 + ∆Φ(L′, L) when both T and T ′ are not buckets. When we reach the point

where T = tree(r, B∅, B) (being B∅ an empty bucket) and T ′ = bucket(B), we have:

∆Φ(T ′, T ) = Φ(bucket(B))− Φ(tree(r, B∅, B))

= 0− s(tree(r, B∅, B))

= −1− |B|,

and therefore −∆Φi = ℓ(T ) + |B|. This B is the right child of the leftmost node in

the tree, and thus its expected size is O(log s(T )) by Lemma 6. Hence the expected

amortized cost of minimum extraction isO(ℓ(T )+log s(T )) = O(log n), by Lemma 7.

Deletion. Once the position px of element x is obtained, operation Delete traverses

the leftmost nodes until finding the bucket B where x lies. Thus it carries out

d(B, T ) operations and pays also O(d(B, T )) to remove x from the bucket, thus

the operations are of the same order of the total cost. With an analysis similar

to that for insertion and minimum extraction, it can be seen that the potential

function decreases by d(B, T ), and thus the amortized cost is O(d(B, T )), which in

expectation is at most O(log n) (Lemma 7).

If, however, x is the root of a subtree T , then we flatten T into a bucket before

removing x. The cost of flattening is constant but its effect on the potential is
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−Φ(T ) just as for the insertion. As the root of T has been chosen randomly, the

probability that the root of T is equal to the element to delete is 1
s(T ) . Hence this

subtracts just Φ(T )
s(T ) = O(1) in expectation from the potential debt, and thus adds

just O(1) to the amortized complexity.

Increasing and Decreasing Keys. Obviously the cost of IncreaseKey and De-

creaseKey fits also into the amortized cost of the other operations.

Theorem 11. The expected amortized cost of operations Insert, FindMin, Extract-

Min, Delete, IncreaseKey and DecreaseKey over an initially empty LST simulating

an RBST is O(log n), where n is the number of elements in the LST at the moment

of executing the operation. An LST initialized by heapifying an array of n elements

adds O(n) to the overall cost of the sequence of operations.

5. Experimental Results

We compare the performance of Randomized QHs with the original QHs on se-

quences of operations of the form (ins-(del-ins)k)m(del-(ins-del)k)m, where ins

stands for inserting a random number and del for extracting the minimum [San00].

These sequences start and end with an empty heap. For k = 0 this is equivalent to

Heapsort algorithm [Wil64], that is, we insert m random elements to the heap

and then extract the minimum m times. The uniformity assumption holds in this

sequence, so this is a good case for the original QHs. For larger k values, however,

the inserted elements tend to be larger than the current average of the QH, thus

breaking the uniformity assumption.

Figure 4 shows the performance for k = 0 to 4. We include the original QHs

(QH), our new Randomized QHs (RQH), and the clasical binary heap (BH) im-

plementing Wegener’s speedup [Weg93]. Our machine is a 2.4 GHz Intel Core i5,

with 4 GB of RAM and local disk, running Mac OS X Snow Leopard version 10.6.4.

The algorithms were coded in C++, and compiled with g++ version 4.2.1 optimized

with -O3 -DNDEBUG -m32 -ffast-math. For each experimental datum shown, we

averaged over at least 10 repetitions. We measure user times.

On the left we can see that BHs behave independently of k for smallm values, but

they worsen asm grows. This is a consequence of their poor locality of reference (the

effect diminishes as k grows because more operations are carried out in the same

area of the bottom of the heap). QHs perform logarithmically (straight line) for

k = 0, exhibiting high locality of reference. However, as we move to k = 1 the cost

increases because the del operation creates buckets and thus insertions are not all as

cheap as with k = 0 (where they all fall in a single bucket). Apart from this, k > 0

deviates from the uniformity assumption and QH times become superlogarithmic,

more markedly as k grows. Instead, RQHs are clearly logarithmic for any k. The

only effect of k is, just as explained for QHs, the sudden increase from k = 0 to 1.

On the right side we compare the different techniques for k = 0 and k = 2. For

k = 0 the first place is disputed between BHs and QHs for small m, and QHs take
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Fig. 4. Time performance of QHs, RQHs, and BHs, for the sequences of operations corresponding
to k = 0 to 3. The x axis is m (logscale) and the y axis is the user time per operation. On the left
we separate per data structure, on the right per k value. We use logscale in y for the last plot.

over for already small m > 216 (RQHs are always pretty close, at most 12% slower).

For larger k, BHs are the best for moderate m values, but RQHs take over for larger

m > 222 . . . 224, where they become significantly faster than QHs for k = 1 (up to

28%), k = 2 (up to 30%), k = 3 (up to 48%), and k = 4 (up to 56%).

In the last right plot we give the results for a variant of sequence k = 2 (wc) where

the ins instructions insert the values in decreasing order. This produces a quadratic

behavior on QHs, whereas RQHs stay logarithmic, their times just increased by at

most 57% for k = 1, 32% for k = 2, 21% for k = 3, and 17% for k = 4.
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6. Providing Worst-Case Amortized Guarantees

We now use LSTs to implement QHs in a way that guarantees logarithmic amor-

tized cost for all the operations in the worst, rather than expected, case while still

maintaining simplicity and practical efficiency. The idea is, as before, to maintain

the property that the LST contains a leftmost path of a tree whose properties are

known. This time our solution, α-Balanced QH, is inspired in Andersson’s General

Balanced Trees (GBTs) [And99] instead of RBSTs.

We assume the buckets of our LST represent α-balanced BSTs, that is, the size

of the smallest subtree is at least α times the total, for some parameter 0 < α < 1/2.

Moreover, we assume that the nodes in the LST contain redundant elements, which

are created and used only for delimiting the buckets (and later might not be present

in the QH). That is, the set of elements is formed by those contained in the buckets.

We will also enforce that no bucket contains less than 1−α
α elements (except if the

whole T is just a bucket); otherwise it will be merged with another bucket.

With these changes in mind, we (re)define the size s(v) and the height h(v) of

an LST node.

Definition 12. The size of an LST is

s(bucket(B)) = |B|,

s(tree(r, L,B)) = s(L) + |B|.

Definition 13. Let β = 1
1−α , thus 1 < β < 2. The height of an LST is

h(bucket(B)) = 1 + ⌈logβ |B|⌉,

h(tree(r, L,B)) = 1 +max(h(L), 1 + ⌈logβ |B|⌉).

Note that ℓ(v) ≤ h(v), and that h(bucket(B)) is the maximum possible height

of an α-balanced LST built from the elements in B, considering that nodes will

be redundant: The recurrence H(n) ≤ 1 +H((1 − α)n), H(1−α
α ) = 0, has solution

H(n) ≤ 1 + logβ n− logα
log(1−α) , thus our h value is the minimum safe integer bound.

While s(v) can be computed in constant time, all the ℓ(v) and h(v) values for

all the nodes v can be computed in O(ℓ) overall time. The number of elements in

our LST T will be n = s(T ) (that is, we do not count the redundant elements). We

will also maintain a global number d, the number of deletions since the last global

reconstruction, and enforce the following two conditions, for some constants c > 1

and b > 1:

Condition 1. h(T ) ≤ 1 + ⌈c logβ(n + d)⌉, otherwise we shorten the longest tree

path somehow.

Condition 2. d < (β
b−1

c − 1)n, else we rebuild T to α-balance and reset d = 0.

As a consequence, an LST T of n nodes will ensure that h(T ) ≤ ⌈c logβ(n) + b⌉.

It will achieve O(ℓ(T )) = O(log n) amortized time for any sequence of operations.

For technical reasons that will be clear soon, our results will hold for any constant

c ≥ 2.
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6.1. Adapting LST Operations

As we now manage redundant elements, we need to adapt the LST structures and

operations to this case. Array A is as in the original LST (Section 3.2). However,

in the stack S we store pairs (bx, x), where bx is the position of the first cell of

the bucket (not the pivot position, which as mentioned may no longer exist in the

bucket), starting from cell 0, and x is a copy of the pivot value. So integer p∞ is

now a pair (p∞,⊥). Additionally, we add a new operation to merge buckets.

Convert an array B into T = bucket(B). Remains with no change.

Compute s(Tv): It is the next bx value at the right of Tv, computed in constant

time.

Insert/Delete x into/from bucket Bv: For the insertions/deletions, we have to

move the first/last bucket element in order to create an empty cell. However, as we

have copies of pivots in S, instead of moving a pivot we just increase/decrease its

bucket bound. The rest is as in the original LST.

Extract the leftmost node (when the leftmost bucket is empty). Remains

with no change.

Flatten subtree Tv into bucket(B′
v). Assuming that Tv is a tree, we need to

remove all the pairs (bx, x) in Tv from the stack S, in time O(1). The rest is as in

the original LST.

Structure bucket Bv with pivot x: The partitioning is as in the original LST,

where px is the final position of x after the partitioning. Then we push pair (px, x)

into S in constant time.

Merge two consecutive buckets: Consider a tree Tu = tree(u, Tv =

tree(v, Lv, Bv), Bu). To merge Bv with Bu we have to delete the pair (bu, u) from

S, obtaining T ′
v = tree(v, Lv, Bv · Bu). This costs O(ℓ(Tu)).

6.2. Priority Queue Operations

Heapifying. We simply convert the array into a bucket. As h(bucket(B)) = 1 +

⌈logβ |B|⌉ ≤ 1 + ⌈c logβ |B|⌉, the invariant is established.

Insertion. We follow the normal insertion procedure, until we have to insert into

a bucket B. At this point we simply use the LST insertion operation (which takes

O(d(B, T )) time).

Next, we get back to the root computing s(v) and h(v) for all the nodes v in

the leftmost path to B, recalling only the current values and the lowest v for which

h(v) > 1+⌈c logβ s(v)⌉, in O(ℓ(T )) overall time. If h(root) = h(T ) > 1+⌈c logβ(n+

d)⌉, then Condition 1 is violated and we have to restore it by doing some rebalancing

at v (note that there must exist such a v).

As we see in Section 6.3, B cannot be a direct child of v, but rather must

descend by v from the left. Let Tv = tree(v, Tu = tree(u, Lu, Bu), Bv). We convert

the subtree into T ′
u = tree(u, Lu, Bu ·Bv). This is carried out via the LST operation
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of merging two buckets and it costs time O(d(B, T )). This reduces the height of the

subtree by one (as shown in Section 6.3), and it is enough to restore the condition

h(T ) ≤ 1 + ⌈c logβ(n + d)⌉, which was lost due to a height growth by 1 inside the

left child of v (we will also show that h can only increase by 1).

Finding and Extracting Minimum. We structure the leftmost bucket essen-

tially as in the randomized version, with some differences. (1) We structure until

the leftmost bucket becomes of size ≤ 1−α
α2 , not zero. This guarantees that a fur-

ther α-partitioning will not create blocks under the minimum size. We then look

sequentially for the minimum within the leftmost block. (2) The pivot is copied, not

moved, to the LST node we create, that is, the new node contains a redundant ele-

ment. (3) We do not use a random pivot, but one that guarantees an α-partitioning,

that is, so that the smallest of the two blocks is of size at least α|B|. If we have to

extract the minimum, and if after this the leftmost bucket gets below the minimum

size, we concatenate the two leftmost buckets, in O(1) time.

We also increase counter d during an extraction, and if Condition 2 does not

hold anymore, we flatten the whole tree into a bucket in constant time and reset

d = 0.

For producing an α-partition, we can for example use the idea of introspective

selection [Mus97, V al00]: we try a constant number κ of random pivots and, if

none produces an α-partition, we run a classical linear worst-case time median

selection algorithm [BFP+73]. This one is rather slow, but will be invoked with

low probability, (2α)κ. On average, 1
1−2α attempts would be sufficient to find an

α-partition. The process should behave in practice similarly to the randomized

version, yet with a worst-case time guarantee.

Deletion. Using the dictionary, we find the node and, if it is in bucket B, we

remove it in time O(d(B, T )). If B becomes below the minimum size, we remove

it from the LST, together with its corresponding node (recall that nodes contain

redundant keys, which might have been deleted), by merging with a neighbor bucket,

in O(d(B, T )) time. We also increase d, and if Condition 2 does not hold anymore,

we flatten the whole tree into a bucket in constant time, resetting d = 0.

6.3. Amortized Analysis

We will combine the potential debt function Φ used in Section 4.2 (which now uses

our modified s(v) definition) with a classical (credit) function Ψ inspired in the

analysis by Andersson [And99]. Let v be an LST node and let vH and vL its higher

and shorter children, respectively, that is, h(vH) ≥ h(vL) (note that one of the two

is indeed a bucket(B)). In case of ties, vH should be the left child. Now, we define

δ(v) = max(0, s(vH)−
1− α

α
s(vL)),

where we note that δ(v) = 0 on a tree built by α-partitioning a bucket.
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Definition 14. The potential function Ψ of an LST is

Ψ(bucket(B)) = 0,

Ψ(tree(r, L,B)) =
1

γ
· δ(tree(r, L,B)) + Ψ(L), where γ =

β1−1/c − 1

β − 1
.

We note that 0 < γ < 1, thus 1
γ > 1. The next lemma is essential for the

analysis.

Lemma 15 ([And99]) Let T be such that h(T ) > 1+⌈c logβ n⌉, and v be the lowest

node on a longest path of T such that h(v) > 1+ ⌈c logβ s(v)⌉. Then δ(v) > γ · s(v).

Proof. The proof is similar to that of Andersson’s Lemma 1 [And99]. Since

v is the lowest node violating the balancing condition, vH does not, that is,

h(vH) ≤ 1 + ⌈c logβ s(vH)⌉. Since h(v) > 1 + ⌈c logβ s(v)⌉ and h(v) = 1 + h(vH) ≤

2 + ⌈logβ s(vH)⌉, we have ⌈c logβ s(v)⌉ < 1 + ⌈c logβ s(vH)⌉. Thus the ceilings can

be removed to obtain s(vH) > β−1/cs(v). On the other hand, δ(v) ≥ s(vH) −
1−α
α s(vL) = s(vH)− 1−α

α (s(v)−s(vH)) = 1
αs(vH)− 1−α

α s(v). By substituting s(vH)

with the lower bound just derived we get δ(v) > (β
−1/c

α − 1−α
α )s(v) = γ · s(v).

We now prove some further technical lemmas that are needed. The first gives a

lower bound to h(v), the second establishes that an insertion can make a tree height

grow by at most one, and the third shows that the insertion cannot occur too close

to the lowest node that gets unbalanced.

Lemma 16. For any node or bucket v, h(v) ≥ 1 + ⌈logβ s(v)⌉.

Proof. This is immediate if v is a bucket, by definition. Now, if v = tree(r, Lv, Bv),

assume inductively that h(Lv) ≥ 1 + ⌈logβ s(Lv)⌉, whereas by definition h(Bv) =

1+⌈logβ |Bv|⌉. Assume s(Lv) ≥ |Bv|, thus s(v) ≤ 2s(Lv). Then h(v) ≥ 1+h(Lv) ≥

2+ ⌈logβ s(Lv)⌉ ≥ 2− logβ 2+ ⌈logβ s(v)⌉ ≥ 1+ ⌈logβ s(v)⌉. The case |Bv| ≥ s(Lv)

is symmetric.

Lemma 17. After a single insertion converting node or bucket v into v′, it holds

h(v′) ≤ 1 + h(v).

Proof. If v = B is a bucket converted into v′ = B′, then h(B) = 1+ ⌈logβ |B|⌉ and

h(B′) = 1+ ⌈logβ(|B|+1)⌉. If h(B′) > 1+ h(B), then logβ(|B|+1) > 1+ logβ |B|,

thus |B| + 1 > β|B|, which implies |B| < 1
β−1 = 1−α

α . This size is below the

minimum permitted for any bucket B. Once the base case is proved, the inductive

case where v = tree(r, Lv, Bv) is trivial.

Lemma 18. Assume v is the lowest node such that h(v) > 1 + ⌈c logβ s(v)⌉ after

an insertion. Then the insertion cannot have occurred in the child nor grandchild

buckets of v if c ≥ 2.
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Proof. Let v = tree(rv , Tu = (ru, Lu, Bu), Bv), and let B be the bucket where

the insertion occurred. We first show that B 6= Bv if c ≥ 2: If that were true,

then if h(v) had grown due to an insertion in B = Bv, then h(v) = 2 + ⌈logβ |B|⌉.

On the other hand, s(v) ≥ |B|. Hence h(v) > 1 + ⌈c logβ s(v)⌉ can hold only if

c <
1+logβ |B|

logβ |B| . Note |B| ≥ 1 + 1−α
α = 1 + 1

β−1 as we have just inserted there. Thus

1+logβ |B|

logβ |B| ≤
1+logβ(1+

1

β−1
)

logβ(1+
1

β−1
)
, which can be proven analytically to be < 2 whenever

1 < β < 2. Thus we get c < 2, a contradiction with the assumption c ≥ 2.

Using a similar argument, we can show that B 6= Bu either: If that were the case,

h(v) = 3+⌈logβ |B|⌉, and s(v) ≥ |B|+ |Bu|, thus it must be c <
2+logβ |B|

logβ(|B|+|Bu|)
. Since

|B|+ |Bu| ≥ 1 + 2
β−1 , we have c <

2+logβ(1+
1

β−1
)

logβ(1+
2

β−1
)
, which can be shown analytically

to be < 2, contradicting again the assumption.

(Interestingly, the argument holds for one more level; two more levels require a

larger c.)

We will define the amortized cost of operation i as c̃i = ci−∆Φi+∆Ψi. Our final

amortized cost will be
∑

ci =
∑

c̃i + (Φm − Φ0)− (Ψm −Ψ0) =
∑

c̃i +Φm −Ψm.

We consider now each operation in turn.

The final debt. The final debt, Φm−Ψm, must be split among all the operations.

We show that these two values cancel each other so that this final debt is O(m) and

thus adds a constant amortized cost to each operation. Let v = tree(r, L,B), then

Φ(v) = s(v)+Φ(L) = |B|+s(L)+Φ(L). Let us consider two cases: (1) s(L) > |B| and

(2) s(L) ≤ |B|. In the first case, as h(B) = 1+⌈logβ |B|⌉ and h(L) ≥ 1+⌈logβ s(L)⌉

(Lemma 16), it follows that h(L) ≥ h(B) and thus δ(v) ≥ s(L) − 1−α
α |B|. Thus

Φ(v)−Ψ(v) = (1+ 1−α
αγ )|B|−( 1γ−1)s(L)+Φ(L)−Ψ(L) < (1+ 1−α

αγ )|B|+Φ(L)−Ψ(L).

In case (2), it can be that Φ(v) − Ψ(v) ≤ s(v) + Φ(L) − Ψ(L), but we note that

s(L) ≤ s(v)/2. For the final bucket both Φ and Ψ are zero. Hence, as we go down

the leftmost path, there are two types of nodes. Those of type (1) add 1 + 1−α
αγ

times their bucket size; those of type (2) form a recurrence that is never larger

than the form R(n) = n+R(n/2). Thus, we have a recurrence of the form R(n) ≤

max{(1 + 1−α
αγ )k +R(n− k), n+ R(n/2)}, for arbitrary k, which can be proved to

be R(n) ≤ (1 + 1−α
αγ )n by induction.

Heapifying. The analysis is identical to Section 4.2. The operation keeps Φ1 =

Ψ1 = 0.

Insertion. As in Section 4.2, if inserting into a bucket B, we carry out ci = d(B, T )

comparisons, and also ∆Φ = d(B, T ). As for Ψ, we can at most increase by 1 each

of the δ(v) values we go through, hence ∆Ψ ≤ 1
γ · d(B, T ). Overall, the amortized

cost of an insertion is c̃i = ci −∆Φ+∆Ψ ≤ 1
γ · d(B, T ) = O( c

γ logβ n).

In addition, we might have to merge the child and grandchild buckets of a

node v in the insertion path after the insertion. By Lemma 18 we can assume

that the subtree rooted at v is of the form Tv = tree(v, Tu = tree(u, Lu, Bu), Bv)
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and the insertion did not occur in Bv but within Tu, thus the merging produces

T ′
u = tree(u, Lu, Bu · Bv).

As promised when we described insertion, we prove now that this merging re-

duces the height of the subtree by 1. Again by Lemma 18, the insertion must have

occurred inside Lu. As h(Lu) grew by 1 (Lemma 17) and made h(v) grow, the

height of v after the insertion and before merging the blocks was h(v) = 2+ h(Lu).

The new height of the subtree is h(u′) = 1 + max(h(Lu), 1 + ⌈logβ(|Bu| + |Bv|)⌉).

So we have to prove that 2 + h(Lu) > 2 + ⌈logβ(|Bu| + |Bv|)⌉. If this were false,

then 2 + ⌈logβ(|Bu| + |Bv|)⌉ ≥ 2 + h(Lu) > 1 + ⌈c logβ s(v)⌉ = 1 + ⌈c logβ(|Bu| +

|Bv| + s(Lu))⌉. Hence 2 + logβ(|Bu| + |Bv|) > 1 + c logβ(|Bu| + |Bv|) and thus

β(|Bu|+ |Bv|) > (|Bu|+ |Bv|)
c, which cannot happen if c ≥ 2 since |Bu|, |Bv| ≥

1
β−1

and 1 < β < 2.

Now that we established correctness, we focus on the change of potential caused

by this merging. We note that node v satisfies the condition of Lemma 15, and thus

δ(v) > γ · s(v). To see this, notice that the insertion path made h(T ) grow, and

therefore v is the lowest node of a longest path, and its vH is strictly higher than

its vL. Nodes lower than v within the insertion bucket B are sufficiently balanced

and thus they cannot be candidates lower than v.

The merging of Bu · Bv produces ∆Φ = −|Bu| − s(Lu). On the other hand, we

have ∆Ψ = 1
γ (δ(u

′)− δ(v)− δ(u)). Observe that, because h(Lu) > 1 + ⌈logβ |Bu|⌉,

δ(u) = max(0, s(Lu) −
1−α
α |Bu|), and because 2 + h(Lu) > 2 + ⌈logβ(|Bu|+ |Bv|)⌉

(see above), it follows that h(Lu) ≥ 1 + ⌈logβ(|Bu| + |Bv|)⌉, and thus δ(u′) =

max(0, s(Lu) −
1−α
α |Bu| −

1−α
α |Bv|). Thus, δ(u

′) − δ(u) ≤ 0, and therefore ∆Ψ <

− 1
γ (γ · (|Bu|+ |Bv|+ s(Lu))) = −|Bu| − |Bv| − s(Lu). Thus −∆Φ+∆Ψ < −|Bv|,

and therefore c̃i = ci −∆Φ+∆Ψ < ci = ℓ(T ) +O(1) = O(c logβ n).

Finding and Extracting Minimum. Similarly to Section 4.2, the cost of struc-

turing the leftmost bucket cancels out with the increase of ∆Φ. As our partitioning

is α-balanced, δ(v) = δ(tree(r, B,B′)) = 0 and thus ∆Ψ = 0. Hence c̃i ≤ 0. On top

of this we have a cost of at most 1−α
α2 = O(1), the maximum size of the leftmost

bucket after structuring it, to find the minimum sequentially.

Removing the minimum also costs O(1) because we use circular arrays. It causes

∆Φ = −d(B, T ) and may cause each δ(v) in the path grow by 1−α
α (if all the left

children of nodes v happen to be vL), thus ∆Ψ ≤ 1−α
αγ d(B, T ). Thus the amortized

cost is c̃i = ci −∆Φ+∆Ψ ≤ (1 + 1−α
αγ )ℓ(T ) +O(1) = O((1 + 1−α

αγ )c logβ n).

In case we have to remove the leftmost bucket because its size becomes < 1−α
α ,

the merging causes ∆Φ = −|B′| − |B|, but also δ(v) ≥ |B′| − 1−α
α |B| disappears

from Ψ, thus −∆Φ+∆Ψ ≤ −( 1γ − 1)|B′|+ (1 + 1−α
αγ )|B|. Thus the amortized cost

is c̃i < ci+(1+ 1−α
αγ )1−α

α = O(1). Further effects of the deletion of r are considered

next.

Deletion. Removing a node at bucket B costs d(B, T ) comparisons and ∆Φ =

−d(B, T ). It can also increase each δ(v) in the path by 1−α
α , thus ∆Ψ ≤ 1−α

αγ ·d(B, T ).

Overall, c̃i ≤ (2 + 1−α
αγ ) d(B, T ) = O((2 + 1−α

αγ )c logβ n).
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Let v = tree(r, L,B), where the deletion occurs in B. If B becomes smaller than
1−α
α , it is removed (via merging with the bucket to its right) together with r. This

changes the potential debt, ∆Φ > −s(L)− 1−α
α , and also the credit, ∆Ψ = − 1

γ δ(v) <

− 1
γ (s(L) −

(1−α)2

α2 ). Hence, apart from the extra cost d(B, T ) = O(c logβ n) of the

merging, we have−∆Φ+∆Ψ < −( 1γ−1)s(L)+(1+ 1−α
αγ )1−α

α = O(1) extra amortized

cost. The situation is similar if B is the leftmost bucket, as seen in the previous

operation.

If, however, the bucket that gets too small is the right child of the root, then we

must merge it with the bucket to the left. Here ∆Φ = −n and ∆Ψ ≤ − 1
γ (s(rootH )−

1−α
α |B|) = − 1

γ (n − 1
α |B|) < − 1

γ (n − 1−α
α2 ). Thus the amortized cost is c̃i < ci −

( 1γ − 1)n+O(1) < ci +O(1) = ℓ(T ) +O(1) = O(c logβ n).

We note that a deletion decreases n, increases d, and cannot increase h(T ), thus

if h(T ) ≤ 1+ ⌈c logβ(n+d)⌉ held before the operation, it holds afterwards. We only

carry out a global flattening of T when d reaches (β
b−1

c −1)n. This guarantees that

1+ ⌈c logβ(n+ d)⌉ ≤ 1+ ⌈c logβ(β
b−1

c n)⌉ = ⌈c logβ(n) + b⌉ as promised. The global

reconstruction costs O(1) but it sets Φ = Ψ = 0. The same analysis of the final debt

shows that the amortized cost of the flattening is at most (1+ 1−α
αγ )n, and therefore

we can split this cost among (β
b−1

c − 1)n deletions. Thus we must charge deletions

with an additional amortized cost of 1+(1−α)/(αγ)

β
b−1

c −1
= O(1).

Just as in Section 4.2, we can now state a theorem with worst-case guarantees.

Theorem 19. The amortized cost of operations Insert, FindMin, ExtractMin,

Delete, IncreaseKey and DecreaseKey over an initially empty LST that simulates

a GBT is O(log n), where n is the number of elements in the LST at the moment

of executing the operation. An LST initialized by heapifying an array of n elements

adds O(n) to the overall cost of the sequence of operations.

7. Going Cache-Oblivious

Both the original QHs and the variants introduced in this paper display high locality

of reference, which explains their empirical success. This makes them good candi-

dates for secondary memory implementations as well. Indeed, it was shown that

the average amortized I/O cost of the original QHs is O((1/B) log(n/M)), where

B is the disk block size and M the amount of main memory available, assuming

M = Ω(B logn) for a QH of n elements [NP10] (this is not a standard assumption,

but a pretty realistic one).

This result was obtained for the cache-oblivious model [FLPR99, BF03], where

the algorithm is designed without knowledge ofB orM , and then analyzed assuming

an optimal paging strategy. This is not unrealistic for the asymptotics because, for

example, LRU is 2-competitive if it uses twice the memory of the optimal algorithm

[ST 85]. The result is not yet the optimal O((1/B) logM/B(n/B)) [BF03], indeed
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achieved by cache-oblivious priority queues [San00, DKS07], but rather close, and

with the added value of the simplicity of the data structure.

We show now that that analysis [NP10] can be extended to our new variants.

That is, without any modification, our QHs achieve O((1/B) log(n/M)) amortized

I/O cost per operation (in the expected or the worst case, depending on the variant).

Just as in the previous article [NP10], we consider only operations Heapify, Insert,

FindMin, and ExtractMin. The others require a dictionary for locating the elements

in the array, which in secondary memory does not achieve the stated I/O bounds.

A first simple result arises from noticing that all our accesses to memory are

either sequential traversals over a prefix of A or the top of S, or in the positions

of A corresponding to block beginnings. Those positions move slowly, each of them

at most one position forward per operation. It was shown [NP10] that, if the page

scheduler caches the first two blocks of A, the whole S, and the page containing the

beginnings of all the blocks, then the amortized I/O cost of each atomic operation

is O(1/B), and thus the amortized cost of the QH operations is O(log(n)/B). This

analysis translates verbatim to our new variants. Note that we needM = Ω(B logn)

in order to maintain the pages where each block starts.

To improve the result, the analysis assumes that the scheduler splits M into

two equal parts, leaving M/2 = Θ(M) memory for the above, and other M ′ =

M/2 = Θ(M) ≥ 2 for caching a longer prefix of A. Therefore, any operation that

occurs within A[1,M ′] is I/O-free. Using a slightly modified potential function, it

is shown that the amortized number of operations performed out of the prefix is

O(log(n/M)). Then one applies the argument of O(1/B) amortized cost per such

operation to obtain the final bound. We state now the theorem and then prove the

details within each variant.

Theorem 20. The amortized I/O-cost of operations Insert, FindMin, and Extract-

Min over an initially empty QH, under the cache-oblivious model with disk page size

B and memory size M = Ω(B logn), is O((1/B) log(n/M)), where n is the number

of elements in the QH at the moment of executing the operation. A QH initialized by

heapifying an array of n elements adds O(n/B) to the overall cost of the sequence

of operations. These bounds hold in the expected case for Randomized QHs and in

the worst case for α-Balanced QHs.

7.1. Randomized QHs

We follow the proof of the original article [NP10], showing that it applies to our

Randomized QHs as well. It is first shown that only O(log(n/M)) pivots point out-

side the “free” area, using an exponential-decreasing property that is a consequence

of the uniform-key-distribution assumption. We can easily show that this is also the

case in our structure, without any assumption.

Lemma 21. Let T be an LST of size larger than M ′. The average number of sub-

trees with size exceeding M ′ is 1 +Hn −HM ′ = O(log(n/M)).
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Proof. The 1 comes from the whole LST; then we have to count how many times

we choose pivots until falling within the first M ′ cells of A. We choose the first

pivot at random. With probability M ′/n it is already within that area; otherwise

the pivot falls in the area A[M ′ + 1, n], where we count 1 and continue recursively.

The recurrence is p(M ′) = 0 and p(n) = 1
n

∑n
i=M ′+1(1 + p(i − 1)), whose solution

is p(n) = Hn −HM ′ .

A new potential debt function is defined. We adapt it slightly because we do

not include the leftmost bucket in our potential functions:

Φ′(bucket(B)) = 0,

Φ′(tree(r, L,B)) = max(s(tree(r, L,B)) −M ′, 0) + Φ′(L).

It can then be shown that the partitioning operation has zero amortized cost

under this function: If we partition a leftmost block of size s, we work on max(s−

M ′, 0) non-free cells, and this is precisely the amount by which ∆Φ′ increases when

structuring the bucket, thus cancelling out with the real cost.

We now reconsider the analysis of the operations in a Randomized QH (Sec-

tion 4.2), focusing only in the parts where the amortized cost is O(log n), to show

that now it is O(log(n/M)) (in particular, Heapify and FindMin are already O(1)

amortized time). It is convenient to redefine d(B, T ) as the depth of B in T , yet

limited to counting only the blocks that start out of the prefix A[1,M ′]. Hence

d(B, T ) = O(log(n/M)) by Lemma 21.

Insertion Assume we end up inserting element x in bucket Bv. Then we carry out

d(Bv, T ) accesses (those within A[1,M ′] are free). The change in the potential debt

Φ′ can be adapted from that of Section 4.2 as follows:

∆Φ′(T ′, T ) = Φ′(tree(r, L′, B))− Φ′(tree(r, L,B))

= max(s(T ′)−M ′, 0) + Φ′(L′)−max(s(T )−M ′, 0)− Φ′(L)

= 1 +∆Φ′(L′, L).

This continues until T = bucket(Bv) or T = tree(r, L,Bv) and thus x is inserted

into bucket Bv, where the difference is also 1. It also finishes once s(T ′) ≤ M ′,

that is, T ′ falls within the free prefix. This happens after d(Bv, T ) steps, thus

∆Φi = d(Bv, T ), and therefore c̃i = ci−∆Φi = 0. Flattening is easily seen to retain

constant amortized cost.

Extraction. We must reanalyze the effect of flattening the leftmost node using

the new potential function. We have ∆Φ′(T ′, T ) = −1 + ∆Φ′(L′, L) when both T

and T ′ are not buckets and are outside of the free prefix (thus the −1 is added

through O(log(n/M)) recursive steps). If we reach the case T = tree(r, B∅, B) and

T ′ = bucket(B), and T is still outside the free prefix, we have:

∆Φ′(T ′, T ) = Φ′(bucket(B))− Φ′(tree(r, B∅, B))

= 0−max(s(tree(r, B∅, B))−M ′, 0)

= −1− |B|+M ′,



January 11, 2011 15:12 WSPC/INSTRUCTION FILE paper

24 G. Navarro et al.

and therefore −∆Φ′
i = O(log(n/M)) + |B| − M ′. This B is the right child of the

leftmost node in the tree, and thus its expected size is Hn by Lemma 6. Hence we

require M ′ ≥ Hn in order to cancel it and retain O(log(n/M)) expected amortized

cost. This is not a problem because we are already assuming M ′ = Ω(B logn).

7.2. α-Balanced QHs

The α-balancing implies that there are at most logβ(n/M
′) block beginnings out of

the free prefix, and therefore again d(B, T ) = O(log(n/M)) under our redefinition

of d(B, T ). We use the same Φ′ debt function, and a new Ψ′ credit function that

differs from Ψ in that Ψ′(T ) = 0 if s(T ) ≤ M ′. The final debt and operation Heapify

are trivial because they already add O(1) cost per operation.

Insertion As in Section 6.3, if inserting into a bucket B, we carry out ci = d(B, T )

accesses (recall that d(B, T ) does not count the accesses within the free prefix),

and also ∆Φ′ = d(B, T ). On the other hand, Ψ′ increases by 1 each of the δ(v)

values we go through, yet it accounts only for those outside the free prefix, hence

∆Ψ′ ≤ 1
γ · d(B, T ). Thus c̃i = ci −∆Φ′ +∆Ψ′ = O(log(n/M)).

Another point to analyze is the merging of blocks Bu and Bv. This does not

change the potential unless s(Tv) > M ′, in which case ∆Φ′ ≥ −|Bu| − s(Lu) +M ′.

On the other hand, ∆Ψ′ ≤ 1
γ δ(v) (which is counted because Tv is larger than

M ′). Hence −∆Φ′ + ∆Ψ′ < |Bv| − M ′ and therefore the amortized cost stays

O(log(n/M)).

Extracting Minimum The change in the potentials is easily seen to be

O(d(B, T )) = O(log(n/M)). Possible removal of the empty leftmost bucket causes

only a constant change in the potential.

8. Conclusions

We have presented a randomized variant of Quickheaps (QHs), a recent priority

queue implementation that is simple to code, efficient in practice, and offers loga-

rithmic expected time for all the basic operations when some uniformity distribu-

tion properties hold on the sequence of operations. We proved that Randomized

QHs offer the same time guarantees without any assumption on the distribution

of operations, which makes them more robust than the original QHs, and useful

in applications where the distribution assumptions do not hold. Our experimental

results show that Randomized QHs are almost as fast as the original ones when the

operations follow the uniformity assumption, and retain their good performance on

sequences that make the original QHs much slower.

We have also introduced a variant of QHs that offers worst-case amortized log-

arithmic time bounds for all the operations. It retains locality of access and is only

slightly more complicated than randomized QHs.

The original QHs are also cache-efficient, and offer a cache-oblivious implemen-

tation on secondary memory [NP10]. We have also shown that these properties are
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inherited in our stronger variants.

Future work involves implementing the worst-case variant and comparing it with

the original and randomized QHs, especially in concrete applications where the

uniform distribution properties assumed in the analysis of the original QHs do not

hold. We expect the worst-case variant not to be much slower than the randomized

one, in exchange for guaranteeing worst-case amortized performance.
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