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ABSTRACT

We design a succinct full-text index based on the idea of Huffman-compressing the
text and then applying the Burrows-Wheeler transform over it. The resulting structure
can be searched as an FM-index, with the benefit of removing the sharp dependence
on the alphabet size, σ, present in that structure. On a text of length n with zero-
order entropy H0, our index needs O(n(H0 + 1)) bits of space, without any significant
dependence on σ. The average search time for a pattern of length m is O(m(H0 + 1)),
under reasonable assumptions. Each position of a text occurrence can be located in
worst case time O((H0 + 1) log n), while any text substring of length L can be retrieved
in O((H0 + 1)L) average time in addition to the previous worst case time. Our index
provides a relevant space/time tradeoff between existing succinct data structures, with
the additional interest of being easy to implement. We also explore other coding variants
alternative to Huffman and exploit their synchronization properties. Our experimental
results on various types of texts show that our indexes are highly competitive in the
space/time tradeoff map.

1. Introduction

A full-text index is a data structure that enables one to determine the occ occur-

rences of a short pattern P = p1p2 . . . pm in a large text T = t1t2 . . . tn without the

need of scanning the whole text T . Text and pattern are sequences of characters

over an alphabet Σ of size σ. In practice one wants to know not only the value occ,

i.e., how many times the pattern appears in the text (a counting query) but also

the text positions of those occ occurrences (a locating query), and usually also a

text context around them (a displaying query).

A classic example of a full-text index is the suffix tree [24], which achieves O(m)

and O(m + occ) time complexities for counting and locating queries, respectively.

Unfortunately, a suffix tree requires O(n log n) bits of spacea, and also the constant

factor is large. A smaller space complexity factor is achieved by the suffix array

[15], where term m in the time complexities becomes m log n or m+log n depending

on the variant. Still the space usage is high and may rule out the structure from

some applications, for example in computational biology.

The large space requirement of traditional full-text indexes has raised a natural

interest in succinct full-text indexes that achieve good tradeoffs between search time

and space complexity [3, 5, 10, 11, 12, 13, 16, 18, 20, 23]. A truly exciting perspective

originated in the work of Ferragina and Manzini [3]: They showed that a full-text

index may allow discarding the original text, as it contains enough information to

recover the text and even access any arbitrary substring of it. We denote a structure

with such a property a self-index.

The FM-index of Ferragina and Manzini [3], in addition, had a space complexity

proportional to Hk, the kth order (empirical) entropy of T . The space complexity,

however, contains an exponential dependence on the alphabet size σ. A dependence

on σ also appears in the time used to solve a locating or displaying query. Such

weaknesses make the original FM-index appealing only for texts with very small

alphabets, such as DNA.

More precisely, the FM-index needs up to 5Hkn + O
(

(σ log σ + log log n) n
log n+

aBy log we mean log2 in this paper.
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nγσσ+1
)

bits of space, where 0 < γ < 1. The time needed to solve a count-

ing query is just O(m). The text position of each occurrence can be located in

O
(

σ log1+ε n
)

time, for some 0 < ε < 1 that shows up in the sublinear terms of

the space complexity. Finally, the time needed to display a text substring of length

L is O
(

σ (L + log1+ε n)
)

. The last operation is important not only to show a text

context around each occurrence, but also because a self-index replaces the text and

hence it must provide the functionality of retrieving any desired text substring.

This alphabet dependence is eliminated in a practical implementation of the FM-

index [4], at the price of not achieving the optimal search time anymore. Further

developments [5] achieve nHk + o(n log σ) bits of space for any k ≤ α logσ n and

constant α < 1. The counting time complexity now raises to O(m log σ), yet the σ

terms multiplying the locating and displaying complexities of the FM-index become

now log σ.

The compressed suffix array (CSA) of Sadakane [23] offers another tradeoff re-

lated to the dependence on σ. The CSA needs (H0/ε+O(log log σ))n bits of space.

Its counting time is O(m log n). Each occurrence can be located in O (logε n) time,

and a text substring of length L can be displayed in time O (L + logε n). Other

later developments in the line of the CSA [10, 11] achieve results similar to those

in [5].

In this paper we present an alternative approach to removing the large space

dependence of the FM-index. We Huffman-compress the text and then, as in the

FM-index, apply the Burrows-Wheeler transform over it. The resulting structure

can be regarded as an FM-index built over a binary sequence. As a result, we

remove any significant dependence on the alphabet size.

Our index needs n(2H0 + 3 + ε)(1 + o(1)) bits of space, for any 0 < ε < 1.

It solves counting queries in O(m(H0 + 1)) average time. The text position of

each occurrence can be located in worst-case time O
(

1
ε (H0 + 1) log n

)

. Any text

substring of length L can be displayed in O ((H0 + 1) L) average time, in addition

to the mentioned worst-case time required to locate a text position. In the worst

case all the terms (H0 + 1) in the time complexities become log n. It is possible to

convert this log n into log σ without affecting the average complexities [8], but we

refrain from this idea in a real implementation.

We also study several variants of the original index that reduce the term 2 in

front of the space complexity, such as K-ary Huffman and Kautz-Zeckendorf coding.

Our experimental results on English and proteins show that, although not among

the most succinct, our index is faster than the others in many aspects, even letting

the others use significantly more space. On the other hand, on DNA our index is

both the fastest and smallest compared to previous work. Furthermore, our index

is attractive for its simplicity.

2. The FM-index Structure

The FM-index [3] is based on the Burrows-Wheeler transform (BWT) [1], which

produces a permutation of the original text denoted by T bwt = bwt(T ). String T bwt

is the result of the following forward transformation:
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1. Append to the end of T a special end marker $, which is lexicographically

smaller than any other character.

2. Form a conceptual matrix M whose rows are the cyclic shifts of the string

T $, sorted in lexicographic order.

3. Construct the transformed text L by taking the last column ofM. The first

column is denoted by F .

The suffix array (SA) A of text T $ is essentially the matrixM: A[i] = j iff the

ith row ofM contains string tjtj+1 · · · tn$t1 · · · tj−1. The occurrences of any pattern

P = p1p2 · · · pm form an interval [sp, ep] in A, such that suffixes tA[i]tA[i]+1 · · · tn,

sp ≤ i ≤ ep, contain the pattern as a prefix. This interval can be searched for by

using two binary searches in time O(m log n).

The suffix array of text T is represented implicitly by T bwt. The novel idea of

the FM-index is to store T bwt in compressed form, and to simulate the search in

the suffix array. To describe the search algorithm, we need two definitions that will

be useful later as well.

Definition 1 Given a text T over an ordered alphabet Σ = {c1, . . . , cσ}, C[c1, cσ]

stores in C[ci] the number of occurrences of characters {c1, . . . , ci−1} in T .

Definition 2 Let X be a sequence, then Occ(X, c, i) is the number of occurrences

of character c in the prefix X [1, i].

With these definitions we can introduce the backward BWT that produces T

given T bwt.

1. Compute the array C for T . Notice that C[c] + 1 is the position of the first

occurrence of c in F (if any).

2. Define the LF-mapping LF [1, n + 1] as LF [i] = C[L[i]] + Occ(L, L[i], i).

3. Reconstruct T backwards as follows: set s = 1 (because M[1] = $T ) and

then, for each i ∈ n, . . . , 1 do s← LF [s] and T [i]← L[s].

We are now ready to describe the search algorithm given in [3] (Fig. 1). It

finds the interval of A containing the occurrences of the pattern P , and returns the

number of occurrences. The algorithm uses the array C and function Occ(X, c, i)

defined above. Using the properties of the backward BWT, it is easy to see that

the algorithm maintains the following invariant [3]: After phase i, with i from m to

1, the variable sp points to the first row of M prefixed by P [i, m] and the variable

ep points to the last row ofM prefixed by P [i, m]. The correctness of the algorithm

follows from this observation.

Ferragina and Manzini [3] describe an implementation of Occ(T bwt, c, i) that

uses a compressed form of T bwt. They show how to compute Occ(T bwt, c, i) for any

c and i in constant time. However, to achieve this they need exponential space (in

the size of the alphabet).

The FM-index can also locate the text positions where P occurs, and display

any text substring. The details are deferred to Section 4.

4



Algorithm FM Count(P ,T bwt)
(1) i = m;
(2) sp = 1; ep = n;
(3) while ((sp ≤ ep) and (i ≥ 1)) do

(4) c = P [i];
(5) sp = C[c] + Occ(T bwt, c, sp − 1)+1;
(6) ep = C[c] + Occ(T bwt, c, ep);
(7) i = i − 1;
(8) if (ep < sp) then return 0 else return ep − sp + 1.

Figure 1: Algorithm for counting the number of occurrences of P [1, m] in T [1, n].

3. First Huffman, then Burrows-Wheeler

We now introduce our new index. From now on assume T already contains the

terminator $ at the endb. To begin, this text T will be Huffman-compressed into

a binary stream T ′ and the codeword beginnings marked in Th (the final index

will not store T ′ nor Th). The idea is that, instead of searching T for P , we can

Huffman-encode P into P ′ and search the binary text T ′ for P ′. Yet we have to

ensure that the occurrences of P ′ are codeword-aligned.

Definition 3 Let T ′[1, n′] be the binary stream resulting from Huffman-compressing

T , where n′ < (H0 + 1)n since (binary) Huffman poses a maximum representation

overhead of 1 bit per symbol. Let Th[1, n′] be a second binary stream such that

Th[i] = 1 iff i is the starting position of a Huffman codeword in T ′. In the Huffman

code, we ensure that the last bit assigned to the end marker “$” is zero.

The reason for the final condition will be clear later. Note that this can always

be done, by making the node corresponding to “$” a left child of its parent in the

Huffman tree.

3.1. Structure

We apply the Burrows-Wheeler transform over text T ′, so as to obtain B =

(T ′)bwt. Yet, in order to have a binary alphabet, T ′ will not have its own special

terminator character “$” (note that the end marker of T is encoded in binary at

the end of T ′, just as any other character of T ). To formally define B we resort to

the suffix array A′ of T ′, yet the final index will not store A′.

Definition 4 Let A′[1, n′] be the suffix array for text T ′, that is, a permutation

of [1, n′] such that T ′[A′[i], n′] < T ′[A′[i + 1], n′] in lexicographic order, for all

1 ≤ i < n′. In these lexicographic comparisons, if a string x is a prefix of y, we

assume x < y.

Our index will represent A′ in succinct form, via array B and another array Bh

used to track the codeword beginnings in (T ′)bwt.

bThus the term nH0 will refer to this new text with terminator included. The difference with
the term nH0 corresponding to the text without the terminator is only O(log n), and will be
absorbed by the o(n) terms that will appear later in the space complexity.
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Definition 5 Let B[1, n′] be a binary stream such that B[i] = T ′[A′[i]− 1] (except

that B[i] = T [n′] if A′[i] = 1). Let Bh[1, n′] be another binary stream such that

Bh[i] = Th[A′[i]]. This tells whether position i in A′ points to the beginning of a

codeword.

3.2. Searching

Our goal is to search B exactly like the FM-index. For this sake we need array

C and function Occ of Definitions 1 and 2, now applied to T ′ and B. As we are

dealing with binary sequences, C and Occ are easy to compute using the well-known

function rank.

Definition 6 Given a binary sequence X, rank(X, i) is the number of 1’s in X [1, i].

In particular rank(X, 0) = 0. The inverse function, select(X, j), tells the occur-

rence of the jth 1 in X.

Functions rank and select can be computed in constant time using only o(n)

extra bits on top of the original sequence of n bits [19, 2]. An optimized practical

variant is described in [6].

Note that our C array has only two entries, which are easily precomputed.

Similarly, Occ can be expressed in terms of rank.

C[0] = 0 Occ(B, 0, i) = i− rank(B, i)
C[1] = n− rank(B, n′) Occ(B, 1, i) = rank(B, i)

Therefore, formulas C[c]+Occ(T bwt, c, i) in the search algorithm of Figure 1 are

solved in our index by using rank on B.

There is a small twist, however, because we are not putting a terminator to

our binary sequence T ′ and hence no terminator appears in B. Let us call “#”

(# < 0 < 1) the terminator that should appear in T ′, so that it is not confused

with the terminator “$” of T . In the position p# such that A′[p#] = 1, we should

have B[p#] = #. Instead, we are setting B[p#] to the last bit of T ′. This is the

last bit of the Huffman codeword assigned to the terminator “$” of T , and it is

zero according to Definition 3. Hence the correct B sequence would be of length

n′ + 1, starting with 0 (which corresponds to T ′[n′], the character preceding the

occurrence of “#”), and it would have B[p#] = #. To obtain the right mapping to

our binary B, we must add 1 to C[0] + Occ(B, 0, i) when i < p#. The computation

of C[1] + Occ(B, 1, i) remains unchanged. Overall, formula C[c] + Occ(T bwt, c, i) is

computed as follows

C[c] + Occ(T bwt, c, i) =

{

i− rank(B, i) + [i < p#], if c = 0
n− rank(B, n′) + rank(B, i), if c = 1

(1)

where p# = (A′)−1[1].

Therefore, by preprocessing B to solve rank queries, we can search B exactly as

in the FM-index. Our search pattern is not the original P , but its binary encoding

P ′[1, m′] using the Huffman code we applied to T .
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Algorithm Huff-FM Count(P ′,B,Bh)
(1) i = m′;
(2) sp = 1; ep = n′;
(3) while ((sp ≤ ep) and (i ≥ 1)) do

(4) if P ′[i] = 0 then
sp = (sp − 1) − rank(B, sp − 1) + [sp − 1 < p#] + 1;
ep = ep − rank(B, ep) + [ep < p#];

else sp = n′ − rank(B, n′) + rank(B, sp − 1) + 1;
ep = n′ − rank(B, n′) + rank(B, ep);

(7) i = i − 1;
(8) if ep < sp then return 0 else return rank(Bh, ep) − rank(Bh, sp − 1);

Figure 2: Algorithm for counting the number of occurrences of P ′[1, m′] in T ′[1, n′].

The answer to that search, however, is different from that of the search of T for

P . The reason is that the search of T ′ for P ′ returns the number of suffixes of T ′

that start with P ′. Certainly these include the suffixes of T that start with P , but

also other suffixes of T ′ that do not start a Huffman codeword, yet start with P ′.

Array Bh now comes into play to filter out those spurious occurrences. In the

range [sp, ep] found by the search of B′ for P ′, every bit set in Bh[sp, ep] represents

a true occurrence. Hence the true number of occurrences can be computed as

rank(Bh, ep)− rank(Bh, sp− 1). Figure 2 shows the final search algorithm.

3.3. Analysis

The index stores B and Bh, each of n′ < (H0 + 1)n bits. The extra space

required by the rank structures is o(n′) = o((H0 +1)n). The only dependence on σ

is that we must store the Huffman code, for which σ log n bits is sufficient (say, using

a canonical Huffman tree). Thus our index requires at most 2n(H0 + 1)(1 + o(1))+

σ log n bits. The latter term is o(n) even for very large alphabets, σ = o(n/ log n).

Note that alternative indexes achieving kth order compression [5, 10, 11, 18] require

σ = O(n1/k). The space of our index will grow slightly in the next sections due to

additional requirements for locating and displaying queries.

Let us now consider the time for counting queries. If we assume that the charac-

ters in P have the same distribution of T (which holds in particular if P is randomly

chosen from T , or generated by the same statistical source), then the length of P ′

is m′ < m(H0 + 1). This is the number of steps to search B using the algorithm of

Figure 2, so the search complexity is O(m(H0 + 1)). Since H0 ≤ log σ, our time is

better than the O(m log σ) complexity of several indexes [5, 10, 11]c.

We now analyze our worst-case search cost, which depends on the maximum

height of a Huffman tree with total frequency n. Consider the longest root-to-leaf

path in the Huffman tree. The leaf symbol has frequency at least 1. Let us traverse

the path upwards and consider the (sum of) frequencies encountered in the other

branch at each node. These numbers must be, at least, 1, 1, 2, 3, 5, . . ., that is,

cIn practice, those indexes can also achieve O(m(H0 + 1)) average time using Huffman-shaped
wavelet trees.
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the Fibonacci sequence F (i). Hence, a Huffman tree with depth d needs that the

text is of length at least n ≥ 1 +
∑d

i=1 F (i) = F (d + 2) [25, pp. 397]. Therefore,

the maximum length of a codeword is F−1(n) − 2 = logφ(n) − 2 + o(1), where

φ = (1 +
√

5)/2.

Thus, the encoded pattern P ′ cannot be longer than O(m log n) and this is also

the worst case search cost. This matches the worst-case search cost of the original

CSA, while our average case is better. It is actually possible to reduce our worst-

case time to O(m log σ), without altering the average search time nor the space

usage, by forcing the Huffman tree to become balanced after level (1 + x) log σ, for

some suitable constant x > 0. For details see [8].

4. Locating Occurrences and Displaying the Text

Up to now we have focused on counting time, that is, the time needed to de-

termine the suffix array interval containing all the occurrences. In practice, one

needs also the text positions where they appear, as well as possibly a text context.

Since self-indexes replace the text, in general one needs to extract arbitrary text

substrings from the index.

Given the suffix array interval that contains the occ occurrences found, the FM-

index locates each such position in O(σ log1+ε n) time, for any 0 < ε < 1 (which

affects the sublinear space component). The CSA can locate each occurrence in

O(logε n) time, where ε is paid in the space, nH0/ε. Similarly, a text substring

of length L can be displayed in time O(σ(L + log1+ε n)) by the FM-index and

O(L + logε n) by the CSA.

In this section we show that our index can do better than the FM-index, although

not as well as the CSA. Using (1+ε)n additional bits, we can locate each occurrence

in time O(1
ε (H0 + 1) log n) and display a text context in time O(L log σ + log n) in

addition to locating time. On average, if random text positions are involved, the

overall complexity to display a text interval is O((H0 + 1)(L + 1
ε log n)).

A first problem is how to extract, in O(occ) time, the occ positions of the bits

set in Bh[sp, ep]. This is easy using select function of Definition 6. Actually we

need a simpler version, selectnext(Bh, j), which returns the position of the first 1

in Bh[j, n].

Let r = rank(Bh, sp − 1). Then, the positions of the bits set in Bh are

select(Bh, r + 1), select(Bh, r + 2), . . ., select(Bh, r + occ). We recall that occ =

rank(Bh, ep) − rank(Bh, sp − 1). This can be expressed using selectnext: The

positions pos1 . . . posocc can be found as

pos1 = selectnext(Bh, sp),

posi+1 = selectnext(Bh, posi + 1).

To complete the locating and displaying processes, we need additional structures.

4.1. Structure

We sample T ′ at approximately regular intervals, so that only codeword begin-
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nings can be sampled. A sampling parameter 0 < ε < 1 will control the density of

the sampling and the corresponding space/time tradeoff.

Definition 7 Given 0 < ε < 1, let ℓ = ⌈ 2n′

εn log n⌉ be the sampling step. Our

sampling of T ′ is a sequence S[1, ⌊ εn
2 log n⌋], so that S[i] is the first position of the

codeword that covers position 1+ℓ(i−1) in T ′, that is, S[i] = select(Th, rank(Th, 1+

ℓ(i− 1))).

Our index will include three additional structures called ST , TS, and S. TS is

an array storing the positions of A′ that point to the sampled positions in T ′, in

increasing text position order.

Definition 8 TS[1, ⌊ εn
2 log n⌋] is an array such that TS[i] = j iff A′[j] = S[i].

Array ST is formed using the same positions of A′, now sorted by position in

A′ and storing their position in T .

Definition 9 ST [1, ⌊ εn
2 log n⌋] is an array such that ST [i] = rank(Th,A′[j]), where

j is the i-th position in A′ that points to a position present in S.

Finally, S[i] tells whether the i-th entry of A′ that points a codeword beginning,

points to sampled a text position. S will be further processed for rank queries.

Definition 10 S[1, n] is a bit array such that S[i] = 1 iff A′[select(Bh, i)] is in S.

4.2. Locating

We have to determine the text position corresponding to an entry A′[i] for

which Bh[i] = 1, that is, a valid occurrence. We use bit array S[rank(Bh, i)]

to determine whether A′[i] points or not to a codeword beginning in position in

ST [rank(S, rank(Bh, i))]. If it does, we are done. Otherwise, just as with the

FM-index, we determine position i′ whose value is A′[i′] = A′[i]− 1. This process

is repeated until a new codeword beginning is found, that is, Bh[i′] = 1 (this

corresponds to moving backward bit by bit in T ′). We then check again whether

this position is sampled, and so on until finding a sampled codeword beginning. If

we finally obtain position pos after d repetitions, the answer is pos + d as we have

moved backward d positions in T .

It is left to specify how to determine i′ from i. In the FM-index, this is done

via the LF-mapping, i′ = C[T bwt[i]] + Occ(T bwt, T bwt[i], i). In our index, the LF-

mapping over A′ is implemented using Eq. (1). Figure 3 gives the pseudocode.

4.3. Displaying

In order to display a text substring T [l, r] of length L = r− l+1, we start by bi-

nary searching TS for the smallest sampled text position larger than r. Let j be the

index found in TS. Given value i = TS[j], we know that S[rank(Bh, i)] = 1 as i is a

sampled entry in A′. The corresponding position in T is ST [rank(S, rank(Bh, i))].

Once we find the first sampled text position that follows r, we know its cor-

responding position i in A′. From there on, we move backwards in T ′ (via the
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Algorithm Huff-FM Locate(i,B,Bh,S,ST )
(1) d = 0;
(2) while S[rank(Bh, i)] = 0 do

(3) do if B[i] = 0 then i = i − rank(B, i) + [i < p#];
else i = n′ − rank(B, n′) + rank(B, i);

(4) while Bh[i] = 0;
(5) d = d + 1;
(6) return d + ST [rank(S, rank(Bh, i))];

Figure 3: Algorithm for locating the text position of the occurrence at B[i]. It is
invoked for each i = select(Bh, r + k), 1 ≤ k ≤ occ, r = rank(Bh, sp− 1).

Algorithm Huff-FM Display(l,r,B,Bh,S,ST ,TS)
(1) j = min{k, ST [rank(S, rank(Bh, TS[k]))] > r}; // binary search
(2) i = TS[j];
(3) p = ST [rank(S, rank(Bh, i))];
(4) L = 〈 〉;
(5) while p ≥ l do

(6) do L = B[i] · L;
(7) if B[i] = 0 then i = i − rank(B, i) + [i < p#];

else i = n′ − rank(B, n′) + rank(B, i);
(8) while Bh[i] = 0;
(9) p = p − 1;
(10) Huffman-decode the first r − l + 1 characters from list L;

Figure 4: Algorithm for extracting T [l, r].

LF-mapping over A′), position by position, until reaching the first bit of the code-

word for T [r + 1]. Then, we obtain the L preceding characters of T , by further

traversing T ′ backwards, now collecting all its bits until reaching the first bit of the

codeword for T [l]. The collected bit stream is reversed and Huffman-decoded to

obtain T [l, r]. Figure 4 shows the pseudocode.

4.4. Analysis

Array TS requires εn
2 (1 + o(1)) bits, since there are n′/ℓ entries and each entry

needs log n′ ≤ log n + O(log log n) bits. Array ST requires other εn
2 bits, as its

entries require log n bits. Finally, array S preprocessed for rank queries requires

n(1 + o(1)) bits. Overall, we spend (1 + ε)n(1 + o(1)) additional bits of space for

locating and displaying queries. This raises our final space requirement to n(2H0 +

3 + ε)(1 + o(1)) + σ log n bits.

Let us now consider the time for locating. This corresponds to the maximum

distance between two consecutive samples in T ′, as we traverse it backwards until

finding a sampled position. Recall from Section 3 that no Huffman codeword can

be longer than logφ n− 2 + o(1) bits. Then, the distance between two consecutive

10



samples in T ′, after the adjustment to codeword beginnings, cannot exceed

ℓ+logφ n−2+o(1) ≤ 2

ε
(H0+1) logn+logφ n−1+o(1) = O

(

1

ε
(H0 + 1) logn

)

,

which is therefore the worst-case locating complexity.

For the displaying time, each of the L characters obtained costs us O(H0 + 1)

on average because we obtain the codeword bits one by one. In the worst case they

cost us O(log n). Note that we might have to traverse some additional characters

from the next sampled position until reaching the text area of interest. Finally,

we must consider the O(log n) time for the binary search of TS. overall, the time

complexity is O((H0 + 1)(L + 1
ε log n)) on average and O(L log n + (H0 + 1)1

ε log n)

in the worst case.

Theorem 1 Given a text T [1, n] over an alphabet σ and with zero-order entropy

H0, the FM-Huffman index requires n(2H0 +3+ ε)(1+ o(1))+σ log n bits of space,

for any constant 0 < ε < 1 fixed at construction time. It can count the occurrences

of P [1, m] in T in average time O(m(H0 + 1)) and worst-case time O(m log n).

Each such occurrence can be located in worst-case time O(1
ε (H0 + 1) log n). Any

text substring of length L can be displayed in time O((H0 + 1)(L + 1
ε log n)) on

average and O((L + (H0 + 1)1
ε ) log n) in the worst case.

5. K-ary Huffman

While storing B seems necessary as we are using zero-order compression of T ,

doubling the space requirement to store Bh seems a waste of space. In this section

we explore a way to reduce the size of Bh. Instead of using Huffman over a binary

coding alphabet, we can use a coding alphabet of k > 2 symbols, so that each symbol

needs ⌈log k⌉ bits. Varying the value of k yields interesting time/space tradeoffs. We

use only powers of 2 for k values, so that each symbol can be represented without

wasting space.

The space usage varies in different aspects. The size of B increases since Huff-

man’s compression ratio degrades as k grows. B has length n′ < (H
(k)
0 + 1)n

symbols, where H
(k)
0 is the zero-order entropy of the text computed using base

k logarithm, that is, H
(k)
0 = H0/ log2 k. Therefore, the size of B is bounded by

n′ log k = (H0 + log k)n bits. The size of Bh, on the other hand, is reduced since it

needs one bit per symbol, that is n′ bits.

The total space used by B and Bh structures is then n′(1 + log k) < n(H
(k)
0 +

1)(1 + log k), which is not larger than the space requirement of the binary version,

2n(H0 + 1), for 1 ≤ log k ≤ H0. In particular, if we choose log k = αH0, then the

space is upper bounded by n((1+α)H0+1+1/α), which is optimized at α = 1/
√

H0

(that is, log k =
√

H0). Using this optimal α value, the overall space required by B

and Bh is n(
√

H0 + 1)2 < n(H0 + 1)(1 + 2/
√

H0). The original overhead factor of

2 over pure Huffman compression has been reduced to 1 + O(1/
√

H0).

The space for the rank structures changes as well. The rank structure for Bh is

computed in the same way of the binary version, and therefore its size is reduced to
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o(H
(k)
0 n) bits. To solve Occ(B, c, i) queries, we must build the sublinear-size rank

structures over σ virtual binary sequences Bc[1, n′], so that Bc[i] = 1 iff B[i] = c.

Therefore, Occ(B, c, i) = rank(Bc, i) can be computed in constant time. The size

of those rank structures adds up o(kH
(k)
0 n) bits. (The solution for rank requires

accessing the bit vectors Bc, but one can use B itself instead.)

If we use the optimum k derived above, the space for the rank structures

is o(n2
√

H0/
√

H0) extra space, which turns out to be still o(n) (more precisely,

O(n/ log log n)) for H0 ≤ (log log n)2. This value is reasonably large in practice.

Regarding the time complexities, the pattern has average length < m(H
(k)
0 + 1)

symbols. This is the counting complexity, which is reduced as we increase k. Using

the value k = 2
√

H0 that optimizes the space complexity, the counting time is

O(m
√

H0). On the other hand, the average counting time can be made O(m) by

using a constant α. For locating queries and displaying text, we need the same

additional structures TS, ST and S as for the binary version. The k-ary version

can locate the position of an occurrence in O
(

1
ǫ (H

(k)
0 + 1) log n

)

time, which is

the maximum distance between two sampled positions. Similarly, the time used to

display a substring of length L becomes O((H
(k)
0 + 1)(L + 1

ǫ log n)) on average and

O(L log n + (H
(k)
0 + 1)1

ǫ log n) in the worst case. Again, with the optimum k, H
(k)
0

is
√

H0, and it can be made O(1) by using a constant α.

6. Kautz-Zeckendorf Coding

The previous section aims at reducing the size of Bh in exchange for increasing

the size of other structures. In this section we aim at completely getting rid of

the Bh array, by replacing Huffman coding with another for which the bit stream

itself enables synchronization at codeword boundaries. Our solution is based on

a representation of integers first advocated by Kautz [14] for its synchronization

properties, that presents each number in a unique form as a sum of Fibonacci

numbers. This technique is better known from a work by Zeckendorf [26], therefore

we will call it Kautz-Zeckendorf coding.

Consider the (slightly displaced) Fibonacci sequence 1, 2, 3, 5, 8, 13, . . ., that

is, f1 = 1, f2 = 2, and fi+2 = fi+1 + fi. It is easy to prove by induction that any

natural number N can be uniquely decomposed into a sum of Fibonacci numbers,

where each number is summed at most once and no two consecutive elements of

the sequence are used in the decomposition. (If two consecutive elements fi and

fi+1 appear in the decomposition we can use fi+2 instead.) Thus we can represent

N as a bit vector, whose i-th bit is set iff the i-th Fibonacci number is used to

represent N . No two consecutive bits can be set in this representation because this

would mean that we used two consecutive numbers in the decomposition. This can

be generalized to k consecutive ones [14]. The recurrence is now f
(k)
i = i for i ≤ k

and f
(k)
i+k = f

(k)
i+k−1 + f

(k)
i+k−2 + . . . + f

(k)
i+1 + f

(k)
i . In this representation we do not

permit a sequence of k consecutive elements of the sequence in the decomposition,

and thus no stream of k 1’s appears in the bit vector.

The binary encoding we use for symbols differs slightly from the above descrip-
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tion. The reason is that, for example, 0, 00, 000, . . . are all different codewords,

albeit all of them represent N = 0. Operationally, our codes of a given length are

obtained by generating all the binary sequences of that length and then removing

those having k consecutive 1’s. We also require the codeword to finish with a 0, for

reasons to be made clear soon. We then generate the codes by increasing length,

assigning the i-th code to the i-th most frequent source symbol. In addition, all the

codewords are prepended with a sequence of k 1’s followed by one 0.

If, during the LF-mapping, we read a 0 and then k successive 1’s from T ′, we

know that we are at a codeword beginning. Thus, Bh is no longer needed. This is

expected to outweight the fact that the encoding is not optimal as Huffman. An

important side-effect is also that there is no need for select nor selectnext to find

the successive matches: they all are in a contiguous range in A′. All the rest of the

operatory remains unchanged.

There is another consequence of the way we generate the codewords. Because the

codewords are zero-terminated, the longest runs of 1’s are precisely the codeword

headers, of k 1’s. Those are the lexicographically largest suffixes of T ′, and thus

the characters preceding them occupy the n largest positions in B. As all those

preceding characters are 0, we can remove the last n bits from B knowing that they

will be zero. This saves one additional bit per symbol in T . Letting codewords

finishing with up to k − 1 1’s does not save that much space.

7. Experimental Results

In this section we present experimental results on counting, locating and dis-

playing queries, and compare the efficiency to existing indexes. The indexes used

for the experiments were the FM-index implemented by Navarro [20], Sadakane’s

CSA [23], the RLFM index [18], the SSA index using balanced wavelet trees [18],

and the LZ index [20]. Other indexes, like the Compressed Compact Suffix Array

(CCSA) of Mäkinen and Navarro [17], the Compact SA of Mäkinen [16] and the

implementation of Ferragina and Manzini of the FM-index were not included be-

cause they are not comparable to the FM-Huffman index due either to their large

space requirement (Compact SA) or their high search times (CCSA and original

FM index).

We considered three types of text for the experiments: 80 MB of English text

obtained from the TREC-3 collectiond (files WSJ87-89), 60 MB of DNA and 55 MB

of protein sequences, both obtained from the BLAST database of the NCBIe (files

month.est_others and swissprot respectively).

Our experiments were run on an Intel(R) Xeon(TM) processor at 3.06 GHz, 2

GB of RAM and 512 KB cache, running Gentoo Linux 2.6.10. We compiled the

code with gcc 3.4.2 using optimization option -O9.

We first give the results regarding the space used by our index and then the

results of the experiments classified by query type.

dText Retrieval Conference, http://trec.nist.gov
eNational Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov
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7.1. Space Consumption

Table 1 (top) shows the space that the k-ary Huffman index takes as a fraction

of the text for different values of k and for the three types of text considered. These

values do not include the space required to locate positions and display text.

We can see that the space requirements are the lowest for k = 4. For higher

values this space increases, although staying reasonable until k = 16. With larger

k values the spaces are too high for these indexes to be comparable to the rest.

It is also interesting to see how the space requirement of the index is divided

among its different structures. Table 1 (bottom) shows the space used by each of

the structures for the index with k = 2 and k = 4, considering the three types of

text. For higher values of k the space used by the rank tables will increase too fast

compared to the reduction in Bh.

k Fraction of text
English DNA Proteins

2 1.68 0.76 1.45
4 1.52 0.74 1.30
8 1.60 0.91 1.43
16 1.84 — 1.57
32 2.67 — 1.92
64 3.96 — —

FM-Huffman k = 2 FM-Huffman k = 4
Structure Space [MB] Space [MB]

English DNA Proteins English DNA Proteins

B 48.98 16.59 29.27 49.81 18.17 29.60
Bh 48.98 16.59 29.27 24.91 9.09 14.80
Rank(B) 18.37 6.22 10.97 37.36 13.63 22.20
Rank(Bh) 18.37 6.22 10.97 9.34 3.41 5.55

Total 134.69 45.61 80.48 121.41 44.30 72.15
Text 80.00 60.00 55.53 80.00 60.00 55.53
Fraction 1.68 0.76 1.45 1.52 0.74 1.30

Table 1: On top, space requirement of our k-ary Huffman index for different values
of k. The value corresponding to row k = 8 for DNA actually corresponds to k = 5,
since this is the total number of symbols to code in this file. Similarly, the value of
row k = 32 for the protein sequence corresponds to k = 24. On the bottom, detailed
comparison of k = 2 versus k = 4. We omit the spaces used by the Huffman table,
the constant-size tables for rank, and array C, as they are all negligible.

A similar study is carried out on Kautz-Zeckendorf coding in Table 2, although

in this case there is no array Bh. The space is not the result of a tension between B

and Bh, but between the length of the header and the number of different codewords

of each length.
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k Fraction of text
English DNA Proteins

1 2.04 0.41 1.39
2 0.91 0.54 0.88
3 1.04 0.71 1.02
4 1.20 0.89 1.19
5 1.37 1.06 1.36

Table 2: Space requirement of our FM-KZ index with parameter k, for different
values of k.

7.2. Counting Queries

For the three files, we show the counting time as a function of the pattern length,

varying from 10 to 100, with a step of 10. For each length we used 1000 patterns

taken at random positions from each text. Each search was repeated 1000 times.

Figure 5 (left) shows the time for counting the occurrences for each index and for

the three files considered. As the CSA index has a space/time tuning parameter

space for this type of queries, we adjusted it to use approximately the same space

of the binary FM-Huffman index.

We show in Figure 5 (right) the average search time per character along with

the space requirement to count occurrences. Only the CSA permits a space/time

tradeoff for counting queries, so the it appears as a line while the other indexes are

represented by points.

7.3. Locating and Displaying

We measured the time each index took to search for a pattern and locate the

positions of the occurrences found. From the English text and the DNA sequence

we took 1000 random patterns of length 10. From the protein sequence we used

patterns of length 5.

Figure 6 (left) shows the time per occurrence located for each index as a function

of its size. Most indexes (except LZ) permit a space/time tradeoff for locating, so

they appear as lines in the plots. The CSA has two such parameters now, and we

show the optimal combination that achieves each space occupancy.

Figure 6 (right) shows the time to display a text character as a function of

the index size. For the same searched patterns above, we displayed 100 charac-

ters around each of their occurrences. As for counting, only the CSA permits a

space/time tradeoff for this operation.

7.4. Analysis of Results

We can see that our FM-Huffman index with k = 16 is the fastest for count-

ing queries for English and proteins. The version with k = 4 also gives relevant

space/time tradeoffs. On the other hand, FM-KZ is the clear winner on DNA, as

it takes by far the least space and its counting time is the best, together with SSA

15



0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40 50 60 70 80 90 100

tim
e 

(m
ill

is
ec

on
ds

)

m

Search time on English text (80 Mb)

FM
RLFM

CSA L=8
SSA

FM-Huffman
FM-Huffman k=4

FM-Huffman k=16
FM-KZ2

0

0.0005

0.001

0.0015

0.002

0.6 0.8 1 1.2 1.4 1.6 1.8 2

tim
e 

pe
r 

ch
ar

ac
te

r 
(m

ill
is

ec
on

ds
)

space (fraction of the text)

Space v/s search time per character on English text (80 Mb)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40 50 60 70 80 90 100

tim
e 

(m
ill

is
ec

on
ds

)

m

Search time on DNA (60 Mb)

FM
RLFM

CSA L=20
SSA

FM-Huffman
FM-Huffman k=4

FM-KZ1

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

tim
e 

pe
r 

ch
ar

ac
te

r 
(m

ill
is

ec
on

ds
)

space (fraction of the text)

Space v/s search time per character on DNA (60 Mb)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40 50 60 70 80 90 100

tim
e 

(m
ill

is
ec

on
ds

)

m

Search time on proteins (55 Mb)

FM
RLFM

CSA L=12
SSA

FM-Huffman
FM-Huffman k=4

FM-Huffman k=16
FM-KZ2

0

0.0005

0.001

0.0015

0.002

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

tim
e 

pe
r 

ch
ar

ac
te

r 
(m

ill
is

ec
on

ds
)

space (fraction of the text)

Space v/s search time per character on proteins (55 Mb)

Figure 5: On the left, counting time as a function of the pattern length over English
(80 MB), DNA (60 MB), and a proteins (55 MB). On the right, average search time
per character as a function of the index size. The times of the LZ index are not
competitive in this experiment.
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Figure 6: On the left, time to locate the positions of the occurrences as a function
of the size of the index. On the right, time per character to display text passages.
We show the results of searching on 80 MB of English text, 60 MB of DNA and
finally 55 MB of proteins. The reporting time of LZ on English is 0.07 milliseconds.
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and FM-Huffman. The other outstanding index is SSA, as it offers an attractive

space/time tradeoff on English and proteins, being second-best on DNA. As ex-

pected, all the FM-Huffman and FM-KZ versions are faster than CSA, RLFM and

LZ, the latter not being competitive for counting queries.

For locating queries, our indexes do not give competitive space/time tradeoffs

on English nor proteins, where the FM-index, CSA and SSA dominate in all the

spectrum. When all the indexes use much space, our FM-index variants can be

faster than RLFM, CSA, LZ, and barely the SSA. For DNA, however, our FM-KZ

index gives the best tradeoff in all the spectrum. The next relevant indexes are the

SSA and the FM-Huffman variants.

Regarding display time, our FM-Huffman index variants are again the fastest.

On English text, however, the LZ is equally fast and much smaller (k = 16 is the

relevant FM-Huffman version here). The FM-index, FM-KZ, and CSA also give

relevant space/time tradeoffs. On DNA, the FM-Huffman version with k = 4 is

the fastest, requiring also little space. The only other interesting tradeoff is given

by FM-KZ, which takes by far the least space and competitive time. Finally, on

proteins, FM-Huffman version k = 16 is clearly the fastest. The best competitor,

the FM-index, uses 30% less space but it is twice as slow. The other relevant

space/time tradeoff is given by FM-KZ.

In general we can see that the FM-Huffman index is in many cases the fastest,

albeit it cannot operate on very little space as other indexes. On DNA, on the other

hand, FM-KZ is in most cases the smallest and fastest index.

8. Conclusions

We have presented a practical data structure inspired by the FM-index [3], which

removes its sharp dependence on the alphabet size σ. Our key idea is to Huffman-

compress the text before applying the Burrows-Wheeler transform over it. Over

a text of n characters, our structure needs O(n(H0 + 1)) bits, being H0 the zero-

order entropy of the text. It can search for a pattern of length m in O(m(H0 +

1)) average time. Our structure has the advantage of (almost) not depending on

the alphabet size, and of having better complexities than other indexes for some

operations. We also discussed and tested alternative variants of our index, where the

binary Huffman was replaced with other encodings with stronger synchronization

properties.

Our structures are simple and easy to implement. Our experimental results show

that our indexes are competitive in practice against other implemented alternatives.

In some cases they are not the most succinct, but they are the fastest, even if we

let the other structures use significantly more space. In other cases, our indexes are

both the smallest and fastest among the compared alternatives.

After several years of mainly theoretical development, the field of compressed

full-text self-indexing is moving fast to practical considerations. Our work can be

seen as one of the first practice-oriented developments [7]. Recently, new indexes

and variants have been implemented and a site devoted to practical implementa-

tions and testbeds is being developed (http://pizzachili.dcc.uchile.cl and
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http://pizzachili.di.unipi.it). New implementations are being constantly

added to this site. Our immediate future work is to adapt the most promising vari-

ants of our indexes to the common interface of this site, so as to permit a uniform

comparison among the most up-to-date implementations. We also plan to continue

the research on coding variants whose properties can be used to reduce the size of

the index.
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