International Journal of Foundations of Computer Science
© World Scientific Publishing Company

BIT-PARALLEL COMPUTATION OF LOCAL SIMILARITY SCORE
MATRICES WITH UNITARY WEIGHTS

HEIKKI HYYRO

Department of Computer Sciences, University of Tampere, Finland.
heikkt.hyyro@gmail.com

GONZALO NAVARRO

Department of Computer Science, University of Chile, Chile.
gnavarro@dcc.uchile.cl

Received (received date)
Revised (revised date)
Communicated by Editor’s name

ABSTRACT

Local similarity computation between two sequences permits detecting all the rel-
evant alignments present between subsequences thereof. A well-known dynamic pro-
gramming algorithm works in time O(mn), m and n being the lengths of the subse-
quences. The algorithm is rather slow when applied over many sequence pairs. In this
paper we present the first bit-parallel computation of the score matrix, for a simplified
choice of scores. If the computer word has w bits, then the resulting algorithm works
in O(mnlog min(m, n,w)/w) time, achieving up to 8-fold speedups in practice. Some
DNA comparison applications use precisely the simplified scores we handle, and thus
our algorithm is directly applicable. In others, our method could be used as a raw filter
to discard most of the strings, so the classical algorithm can be focused only on the
substring pairs that can yield relevant results.

Keywords: Local similarity; Approximate string matching; Bit-parallelism

1. Introduction and Related Work

Sequence comparison is a fundamental task in Computational Biology, in order
to detect relevant similarities between a pair of genetic or protein sequences [5].
Three kinds of similarities are of interest: (¢) global similarity compares two strings
as a whole, (ii) semiglobal (or semilocal) similarity looks for substrings of a given
string that are similar to a second given string, (ii¢) local similarity looks for similar
substrings of two given strings.

Similarity is usually expressed using a score function, which gives prizes or penal-
ties to operations on the strings and to pairings of characters of the two strings.
Usually pairing the same character in both strings involves a prize because we

have found a similarity. Pairing different characters, inserting or removing char-
acters, involves penalties. The specific values for prizes and penalties depend on
the biological model used for the similarity (for example, logarithms of mutation
probabilities). The similarity is then expressed as the highest possible score of a
sequence of operations that align one string to the other.

Global and semiglobal similarity find applications in other areas such as text
searching. Global similarity computation is then seen as a distance computation.
The distance is never negative, and the smaller it is, the more similar the sequences
are. Semiglobal similarity can be converted into an approximate search problem,
namely to find the approximate occurrences of a short pattern inside a long text.
Local similarity, instead, is more specific to computational biology applications.

All these sorts of similarity computations can be easily carried out in O(mn) time
using dynamic programming. Given strings A;. ., and Bj. ., the general method
is to compute an (m + 1) x (n + 1) matrix C whose cell C; ; gives the maximum
score/minimum distance to align/convert A _; to B. j. The cells of row 0 and
column 0 form initially known boundary cases, and the remaining m X n cells are
computed using a recurrence. For example, for global similarity score computation
we may have C; g = —i, Cyp; = —j, and for 4,5 > 0

C@j = max(Ci,Lj,l -l-(S(Ai,Bj), Ci’jfl -1, Ciij - 1)
where 6(A;,B;j) = if A; = Bj then 1lelse —1

where we have assumed that all penalties are —1 and prizes are +1. More com-
plicated score functions can be real-valued and depend on the characters involved.
The maximum score for the strings A and B is Cy, .

If we are instead computing distance, we may have C; o =4, Cop ; = j, and

Ci’j = min(Oi_l,j_l + 5(Ai,Bj); 01'7]‘_1 +1, Oi_l,j + 1)
where 6(A;, Bj) = if A; = Bj then 0 else 1

for 4,5 > 0, where we have assumed that all costs are 1. The minimum distance
between A and B is Cy, .

Semiglobal similarity computation is obtained by using the above formulas ex-
cept that Cp; = 0, so that an alignment of A can start afresh at any position in B.
High score/low distance at cell Cy, ; tells us that an interesting alignment ends at
position j in B.

Local similarity computation needs a somewhat different arrangement and, cu-
riously, it seems not expressible using the distance model, but just the score model.
In this case we have C; 9 = Cp; =0, and for 7,5 > 0

O@j = HlaX(O, Oi—l,j—l + 5(A¢,Bj)7 Ci,j—l -1, Ci—l,j — 1)
where §(A;, Bj) = if A; = Bj then 1else —1

where we remark the 0 value involved in the maximum. The objective of this zero
is that if an alignment in progress has given us more penalties than prizes, then it

is better to start afresh from that position. Any cell value C; ; that is high enough
indicates that similar substrings end at position 7 in A and j in B.

Much effort has been done in order to efficiently compute the distance matrix,
both for global and semiglobal alignments. In particular, bit-parallelism has given
the best results in practice. Bit-parallelism packs several values inside a computer
word and updates them all in one shot. This paradigm has been applied successfully
in several other problems as well, such as exact string matching [1], longest common
subsequence computation [3], and tree matching [13]. The bit-parallel algorithm
that best “parallelizes” the distance matrix computation is from Myers [9], which
computes semiglobal similarity and is easily adapted to compute global similarity
[6, 7]. Using Myers’ algorithm, both similarities can be computed in O(mn/w) time
using a computer word of w bits, which is the optimal bit-parallel speedup. Myers’
algorithm strongly relies on the fact that consecutive cells of C; ; differ only by —1,
0, or 1. Several other bit-parallel algorithms exploiting the same property exist [10].

Bit-parallel computation of score matrices, however, has not been attempted.
Bergeron and Hamel [2] have extended Myers’ scheme to handle arbitrary integer
weights for substitutions, as well as a fixed weight ¢ for insertions and deletions.
Their algorithm is O(mnclog(c)/w) time. This scheme does not seem to extend to
compute local similarity.

Other approaches to speed up matrix computation exist. Different Four-Russians
techniques [8, 14] obtain O(mn/log(mn)) time. The same complexity is obtained by
using a Ziv-Lempel factoring [4], which generalizes to local similarity with arbitrary
weights. In practice, when applicable, bit-parallel algorithms are faster.

In this paper we present a bit-parallel local similarity algorithm inspired on
Myers’ scheme (and more precisely on Hyyrd’s version [6]). The asymptotic running
time of the algorithm is O(mnlogmin(m,n,w)/w). Our algorithm assumes that
aligning two characters yields a prize of +1 when they are equal and a penalty of
—1 otherwise, and that inserting or deleting characters has a penalty of —1.

The main difficulties are (1) that the local similarity recurrence is more com-
plicated than the one afforded by Myers (in particular, differences of +2 among
contiguous cells are possible), and (2) that the zero in the maximization involves
knowing absolute cell values, while the whole philosophy of Myers’ scheme relies on
storing differential values. In Sections 2 to 3.3, we solve problem (1) by a rather
heavy extension of the principles behind Myers’ algorithm. Problem (2) is tackled
by applying bit-parallel witnesses [7] in Sections 3.4 to 4.2.

We have implemented the algorithm and compared it against plain dynamic
programming, which is currently the only alternative. The experimental results are
discussed in Section 5. We obtain up to 8-fold speedup over dynamic programming.

Our algorithm does not replace dynamic programming because it cannot handle
other prize and penalty values. On the other hand, while score computations on
protein sequences are always weighted, there are many cases of score computations
on DNA sequences where our simplified model is applicable [5, Section 11.5.2 and
16.15.1]. It may also be feasible to use our method as a fast filter to discard most of
the matrix and let the weighted dynamic programming algorithm concentrate only

on the matrix areas that look interesting. For example, recent research results [12]
suggest that constraining substitution matrices used for database homology search
to contain only values —1, 0, and 1, has a rather small effect on ROC measures of
algorithm sensitivity and specificity.

2. A Bit-Parallel Design

Let us focus on the simple score function depicted in the Introduction, that is,

01',0 = C()’j = 0 and, for 1,7 >0,
Ci’j = maX(O, Ciijfl + (S(Ai, Bj), C@j,l - 1, Ciflyj - 1)
where §(A;,B;) = if A; = Bj then 1else —1

We prove now some properties of matrix C. Note, to start, that C' contains no
negative values.

Lemma 1 Given the above definition of matriz C, it holds

Cij—Ci—1-1 € —1,0,+1 for anyi,j >0
Cij—Cij—1 €-1,0,+41,42 foranyi>0,j>0
Cij—Ci—1y €-1,0,41,42 foranyi>0,7>0

Proof. We proceed inductively, so we assume it proved for any (', j') such that
j' < j,orj =jand i <i. The base cases are immediate. Now, for the inductive
case, let us start with the first proposition. The option C;_1 ;—1 + 6(4;, B;) in the
“max” clause of the formula for C; ; guarantees that C; ;—C;_1 j—1 > —1. Inductive
Hypothesis tells us that Oi—l,j < Ci—l,j—l + 2 and Ci,j—l < Ci—l,j—l + 2, and thus
Ci’j = maX(O, Ci—l,j—l + 5(A¢,Bj), 01'73‘_1 -1, Ci—l,j — 1) < maX(Ci_l,j_l +
5(A¢,Bj), Oi—l,j—l + 1, Oi—l,j—l + 1) = Ci—l,j—l + 1. Here we removed the zero
from the “max” clause as it is known that C;_; j—1 +1 > 1 > 0. By combining the
two previous observations, we have that —1 < C; ; — C;—q ;-1 < 1.

Let us now consider the second proposition. First we note that C; ;—C; ;1 > —1
because of the option C;;_1 — 1 inside the “max” clause. From our Inductive
Hypothesis and the above-proved first proposition we have that C; ;1 > Ci_1 j—1 —
1>C;;—1-1=0C;; —2. Thus =1 < ;5 — C; -1 < 2. The third proposition is
symmetric with the second and comes out similarly. O

Given the ranges of values proved for consecutive differences, we will represent ma-
trix C incrementally using the following bit matrices:

M;; = A, =B, DPF,; = Ci;—Ci_11=+1
Zi’j = Olj =0 DZi’j = O@j —Ui—15-1 = 0
DM;; = Cij—Cim1j-1=-1
HT;; = Cij—Cij—1 =42 VIi; = Cij—Ci—1;=42
HP@J‘ = Cl,j ijfl =+1 VPZJ = Ci,j — Cifl,j =+1
HZi’j = 5 i,j—1 = 0 VZiJ = O@j — Ui, = 0
HMi’j = Olj —Uij—1= -1 VMlJ = O@j — Ui, = -1

Here M and Z stand for “match” and “zero”, respectively. D, H, and V stand for
“diagonal”, “horizontal”, and “vertical”, respectively. T', P, Z, and M stand for
“plus two”, “plus one”, “zero”, and “minus one”, respectively. When a cell refers
to a value out of bounds, such as HP; o, its value is not really important.
The above information clearly represents the cells of matrix C. For example,
i
Cij = Y @2xVI;+1xVP;—1xVM,;)

r=1

The next step is to derive logical properties that relate those bit matrices, so as
to permit an efficient bit-parallel implementation.

D_Pi’j = Mi’j \Y VTZ‘J',1 \Y HTifl,j :
It is clear that if either A; = By, C; j—1 = Ci—1,j—1+2,0r Ci_1j = Ci_1 -1+
2, then C; ; = Cj—1,j—1 + 1. Moreover, if none of them hold, there is no way
for C; ; to get the value Ci_1 ;1 + 1.

DZi’j = ~ DPiJ A\ (Ziflyjfl \Y VP@j,l \Y Hpiflyj) :

From the score recurrence we can easily derive the rule that C; ; = Ci_1 ;1 if
and only if CiJ‘ 75 Ciflyjfl +1 and maX(O, Ci’j,1 - 1, Ciij -].) = Cifl,jfl.
Moreover, since 0 < C;_1 j—1 and the condition C;; # C;—1,j—1 + 1 implies
that C@j,l < Ciijfl +2 and Cifl,j < Ciijfl +2, it turns out that already
Cifl,jfl Z maX(O,Ci,j,1 - 1,Ci,1’j - 1), so the condition max(O,Ci7j,1 -
1,Ci—1,;—1) = C;_1 j—1 can be changed into the form C;_1 ;1 € {0, Cj j_1—
1, Cj—1; — 1}. This results in the above formula for DZ; ;.

DM;; = ~ (DP,;V DZ,;): As it is the only remaining choice.

HT@j = DPiJ A\ VMiJ,l :

From now on we build on D% and the other bit matrices, by exhaustively
examining all the choices for C;; — C;_1 ;1 using submatrices where the
lower right cell is C;; = x and the upper left can thus have a value z — 1,
xz or x + 1. The lower left cell is C; j_1, which in this particular item must
have the value x — 2. We discard cases that are not possible according to
Lemma 1 and express the remaining cases as logical conditions. We put “x”
in the remaining corner to signal impossible cases.

rz—1 T X r+1 | x
r—2 | x r—2 | x r—2 | x

HPi’j = (Dpi,j/\VZi’j_l) vV (DZi,j/\VMi,j_l)I

r—1 x r+1| X
r—1|x z—1|=x r—1|=x

HM;, = VT;._1 V (DZZ ANVP; ',1) \Y (DMZ ANV Z; ',1) :
5J 5J »J »J »J »J

rx—1 T Tz +1
r+1 | x z+1 | x r+1 | x

Note the simplification in the first condition since V'T; j_1 = DF; ;.
HZ;; = ~(HT;;VHP,;vVHM,;): As it is the only remaining choice.

VTi’j = Dﬂ,j A\ HMiij:
Now we focus on the upper right corner.

r—1|x—2 T | x—2 z+1 | x—2
T X T X T

5] 5J »J 5] 5]

zr—1|x—1 z|xz—1 r+1 | x—1
T T X T

VMZ"]' = HTifl,j V (DZZ"j/\HPi,Lj) V (DMZ‘J' /\HZZ‘,LJ‘)Z

rz—1|x+1 | rz+1 z+1 | x+1
T T T

VZ,;, = ~VT;;VVP, ;VVM, ;) : As it is the only remaining choice.
J J J J

3. A Bit-Parallel Algorithm

Up to now we have focused on how to compute the C matrix without regard for
which should be the output of the algorithm. As explained, computational biologists
are interested in matrix positions where the local score exceeds some threshold k.
Those positions are then subject of further analysis.

Hence our algorithm will receive two strings A and B, as well as a threshold
value k, and will point out all the positions (7, j) of matrix C' where the score of the
local alignment between A ; and B, ; is at least k, that is, where C; ; > k.

The idea of the bit-parallel algorithm is to process C column by column (just like
the standard dynamic programming algorithm). However, the bit-parallel algorithm
will process all the column in one shot, not row by row. In this section we assume
m < w, that is, we can pack all bits of a column G; = G1...;m,; in a single computer
word, for any matrix G. Note that row zero is not represented. When needed, the
ith bit of vector G; will be written as G, (i) = G, ;.

Therefore, our computation will proceed with column bit vectors DP;, DMj,
DZ;, and so on, for j = 0...n, each packed in a computer word. After step j of the
algorithm, the vectors will hold the bits corresponding to column j of the matrix.

We will use common C' instructions to handle bits: “&” as the bitwise-and, “|”
as the bitwise-or, “” as the bitwise-xor, “~" as the bitwise-not, and “<<” to shift
all the bits one position to the left and enter a zero at the rightmost position. We
will also treat bit vectors as integers and perform arithmetic operations on them.

In a precomputation step, explained in Section 3.1, the “match” matrix M is
built in a suitable way for bit-parallel processing. The boundary conditions of
matrix C are handled by giving the proper values to Zy and V% vectors, namely
VPy=VMy=VIy=0and Zy =VZy =2" — 1. Then we process the characters
of B (matrix columns) one by one. Each step j computes the bit vectors for column
j from the vectors of column j — 1. First, the diagonal vectors Dx; as well as
the horizontal vector HP; are computed. Vector HP; is computed already at this
stage as we use it in computing DZ;. This part is complex and is explained in
Section 3.2. Then the rest of the horizontal and vertical vectors Hx*; and Vx; are
easy to compute, as explained in Section 3.3. Finally, in Section 3.4, we show how
to find and report high enough scores in column j, and how the same mechanism
handles also computing vector Z;. The way this last part is done is again slightly
complicated and uses a technique that is rather different from all the rest.

3.1. Computing Matriz M

Matrix M is represented as a table indexed by alphabet characters. M][c] is a
bit vector such that M|c](¢) = 1 iff A; = ¢. This table is precomputed before filling
matrix C. This way the cell value M, ; is actually represented by M[B,](7).

Matrix M is precomputed in O(m + |X|) time, where X is the alphabet of A and
B, as follows. First initialize M|c] < 0 for every ¢ € ¥ and then traverse string A
character-wise, setting bit M[A;](i) « 1.

3.2. Computing Vectors Dx; and H P;

Let us start with DP;. Asseen in Section 2, DF; ; = M;; V V11V HT;_1 ;.
Since we are computing all the values at column j in one shot, component H7;_1 ;
is troublesome because it is not yet computed (M, ; = M[B;](¢) is known so it is
not problematic). Let us expand HT;_; ; using its definition:

DPi,j = ij vV VTi)j_l \Y (DPi_l,j/\VMi_l,j_l)

where now the problematic value belongs to the same DP column. Let us express
this recurrence in vector form. We define temporary vectors X (i) = M[B;](i) V
VT;_1(i) and Y (i) = VM;_1(¢). Then the recurrence for vector DP; is

DP;(i) = X(i) Vv (DP;j(i —1) AY (i — 1))

This particular kind of circular dependency has already been solved by Myers
[9] in his simpler formulation for edit distance computation. Following Hyyrd’s
explanation [6, 11], we unroll DP;(i — 1) to obtain

DP;(i) = X(i) V (X(@E—-1)AY(@E—-1)) V (DPj(i—2)AY([i—-1)A Y(i—2))
and unrolling repeatedly we obtain

s=i—1r

DP;(i) = Viy (X(i—71) A (NZI_,Y(s)))

that is, any bit set in X before position ¢ can propagate through a sequence of bits
set in Y that reach position ¢ — 1, so as to set position ¢ in DP;. Myers [9] has
shown that the above formula can be computed using bit-parallelism as follows:

X« M[Bj] | VTj
Y VMj_l
DPj — (Y+(X&Y) Y)| X

Let us now consider DZ. From Section 2 we have
DZZ'J' = ~ D.PZ‘J' A (Ziijfl V VPiJ,l \Y Hpiflyj)

where the value HP;_; ; is currently unknown. But it turns out that vector HP;
can be computed once the vector DP; is known. In Section 2 we gave the formula

HP,j; = (DPij N VZija) vV (DZij A VM)

for it. If we look at the situation where the condition DZ; ; A VM, ;_1 is true, we
can have C; ; = x only if C;_; ; = x+1, that is, only if HP;_, ; is true. Also, DP; ;
must obviously be false. Hence, DZ; ; A\VM; ;1 = HP;_1; N\VM; j_1 N~ DP, ;.
Moreover, it is straightforward to see that the condition DZ; ; A VM; ;_1 is true
whenever HP;_1; N VM; ;1 AN ~ DP;; is true, and thus we have the following
alternative formula for HP; ;:

HPi’j = (DPi’j A\ VZi’j_l) V (HPi—l,j A\ VMi,j_l /\NDPi,j)

The circular dependency on HP; can be solved in similar fashion as in the case of
computing vector DP;. In this case, defining temporary vectors X and Y such that
X@)=DPj(i) NV Z;_1(i) and Y (i) = VM;_1(i +1)A ~ DP;(i + 1), the preceding
formula for HP; ; gets the vector form

HP;(i) = X(i) V (HP;(i —1) A Y(i — 1))

which is identical to the previous circular dependency for computing DP;. We get
immediately the following bit-parallel formula for computing H P;:

X « DP & VZ_,
Y (VMJ‘,1 & ~ DPJ) >>1
HP, — (Y+(X &Y))"Y)| X

Once vector H P; is available, computing the vector DZ; becomes easy: a straight-
forward conversion of its formula leads into the following bit-parallel code.

DZ; « ~DP; & (Zj-1 <<1) | 1) | VP,y | (HP; << 1))

where, after the shift of Z;_; we have introduced a “1” at its lowest bit to reflect
the fact that Cy ;—1 = 0 (that is, Zg j_1 = 1) for any j (recall that row zero of Z is
not represented). Similarly, HF, ; = 0 because Cp ; — Cpj—1 = 0 # 1, so we leave
the new rightmost bit in zero after shifting HP;.

The above way for computing HP; and DZ; involves a right-shift, which may
be inconvenient in practice (see Section 4.1). We have found a slightly indirect, but

in fact more efficient, alternative that avoids using right-shift. Let us consider H PJ(,
a slightly modified version of H P;, that is defined by the following formula.

HP/;, = (DPij N VZij1) V (HF]

1, N VIM;j-1)

The only difference to the previously shown alternative formula for HPF; ; is that
“A ~ DP;;” has been omitted from the right side. We claim that we may use
HP/; instead of HP; ; in the formula for DZ; ;.

Lemma 2

DZZ'J' = ND.PZ‘J' A\ (Ziijfl \Y VPiJ,l \Y HPi/—l,j)

Proof. Let us consider the value HP;_;; versus H P{_l’j, which makes the
above formula different from the original. It is clear from the definitions of HF; ;
and HP'i,j that HP;—1; = HP/_, ; in all other cases except the single case where
HPi/—Q,j A VMi_l’j_l A DPi_l’j = 1. We may assume that Oi—l,j—l = 2. When
VMi_l’j_l A DPi,j = 1, we know that Ci_27j_1 =1z + 1 and Ci—l,j =x+ 2.
Now Lemma 1 ensures that C; ; > C;_1j —1=2+2—1 =241, and further that
Ci’j < Oi—l,j—l + 1 =22+ 1. Hence O@j =rx+1= Oi—l,j—l + 1. This means that
DP;,; = 1,~DPF;; = 0,and DZ;; = 0. We see that the claimed formula is
correct also in this case as its value is 0 when ~ DF;; = 0. O

We find it efficient to compute the values H Pi’J in a “preshifted” form, as the
formula for DZ; ; uses the value HP;_; ;. Let U be such an auxiliary matrix that

Uij=HP]_; ;. Its formula is as follows.

U¢7j = HPiLl,j = (DPi—l,j A VZi_l’j_l) \% (Ui—l,j N VMi—l,j—l)

The circular dependency on this preshifted H PJ(can again be solved in the same

way as in the case of computing vector DP;. Now we define the temporary vectors
X(@)=DPj(i —1)ANVZ;_1(i — 1) and Y (i) = VM;_1(¢). This gives the following
vector form for the above formula of preshifted H P} ;.

Ui(i) = X@) v (Uj(i—1) AN Y([Ei—1))
Now Uj has the following bit-parallel formula.
X « DP &VZj_1)<<1
Ui — (VM; +(X & VM;)) " VM;) | X
Then we modify the previous bit-parallel formula for DZ; to use Uj.
DZ; — ~DP; & ((Zj-1 <<1) [1) | VPj1 | Uj)
Once DZ; is available, HP; may be computed using its original formula. The
translation to bit-parallel code is straightforward.
HP; «— (DP; & VZ;_1) | (DZ; & VM;_1)
We can record the value (DP; & V Z;_;) when computing U;, so that we do not

need to compute it again when computing HP;. This way the alternative solution
makes one less operation than the first method for computing HP; and DZ;.

Finally, we have the following simple bit-parallel formula for DM;.
DM; «— ~ (DP; | DZj)

3.3. Computing Other Vectors Hx; and Vx;

Once DP;, HP;, DM;, and DZ; have been computed for the current column
j, the rest flows easily by following the formulas used in Section 2. Again, when
we shift a bit vector to the left, we add or not a “1” bit at the rightmost position
depending on which is the value of that vector at the unrepresented row zero.

HT; — DP; & VM, ,

HMj — VTj_l | (DZJ & VPj_l) | (DMJ & VZj_l)

HZ; — ~ (HT; | HP; | HM,)

VT; «— DP; & (HM; << 1)

VP, — (DP; & (HZ; <<1) | 1)) | (DZ; & (HM; << 1))

VM; — (HT; <<1)|(DZ; & (HP; << 1)) | (DM; & (HZ; << 1) | 1))
VZ; — ~(VI; | VP | VM)

3.4. Keeping Scores and Computing Vector Z;

Once the bit vectors for column j have been computed, we check whether some
cell values in column j of matrix C' exceed the matching threshold k. At the same
time it is also convenient to check which cells have the value zero and record those
positions into vector Z;. Unfortunately the differential information of the bit vectors
does not allow us to make this in any simple and fast way. The naive approach would
be to use the difference information between adjacent cell values to compute and
check the cell values Ci. ;. This would take O(m) time per column, making the
overall running time O(mn), the same as with classical dynamic programming.

On the other hand, as shown by Myers [9], a single value C; ;.. , can be tracked
in constant time per column by using the horizontal vectors H*;. The problem is
that we need to track all the rows 7, falling again to O(m) time per column.

Our approach is to set up multiple witnesses into a single bit vector, and then
scan the column in parallel with the witnesses. Each witness will be associated with
some ¢ and keep track of the cell values C; 1. .5, that is, the cell values on row i of
C. A somewhat similar method was used in [7] as part of an approximate string
matching algorithm.

Let MW be a length-m bit vector that holds the multiple witnesses at column
J and let @ denote the number of bits taken by each witness. Then MW; can
hold r = |m/Q] witnesses. Let MW;{i} denote a witness that has its first bit
in position i of MW;. MW;{i} occupies the bits MW;(i...i 4+ Q — 1) and keeps
track of the cell values on row i of C. The first witness is always MW;{1}, and
the rest are spread evenly into MW;. This can be done in such manner that the
largest empty gap after the region of any witness is [(m — rQ@)/r]. Let us define
Q' =Q+ [(m—rQ)/r], that is, Q" gives the maximum distance between the first
bit of a witness and the first bit of the next witness or, for the last witness, the
position after the last bit of the whole vector.

10

Assume that C; ; = « and the witness MW;{i} exists. For reasons that become
clear below, we record the value z into MW;{i} in the form 29~ —z. To guarantee
that the witnesses can represent all possible score values from zero to min(m, n), the
parameter @ is determined as the minimum number for which 29~! > min(m, n),
that is, @ = [log, min(m,n)] + 1. Figure 1 exemplifies (vectors S, E, K will be
introduced soon).

ij MW] m =8, k= 37 S E K
olo] Q= [log,m]+1=4
L 0 1] o] [9]
2|2 ol The witness MW;{1} repre- 0 | o] BN r1 -
301 0 | sents the value Cy; = 0 as o] o o _
. 1 | 207" —0=8=1000,. — o g 2=0010,
= L o] [of
512 0 1 0 0
613 1] The witness MW;{5} repre- 0 o] EN b1
7121] sents the value Cs; = 2 as 0] o] o o 0010*
— — Q-1 _9_6= . — — — = 2
8 [1] o]) 2 T2 o] [[

Fig. 1. Example of usage of MW, S, E, and K vectors.
With these conventions the witnesses have the following properties:
(1) The Qth bit of MW;{i} is set if and only if C; ; = 0.

(2) Adding some value z to C; ; corresponds to subtracting « from MW;{i}, and
vice versa.

(3) If we add k — 1 to MW,{i}, then the Qth bit of MW;{i} is set if and only if
C@j <k.

The witnesses are initialized to MWy{i} = 2971 since all values in column 0 of
C are zero. After that the witness values are computed by using the horizon-
tal vectors. For example, if MW;_1{i} = x and the ith bit of HT; is set, then
MW;{i} = MW;_1{i} — 2 = — 2 (note that we subtracted the +2 due to prop-
erty (2)). When MW;_; and the horizontal vectors Hx; are available, all witnesses
MW;{1}... MW;{r} may be computed in bit-parallel fashion. To achieve this, we
use a “start” bit mask S with bits set in those locations that correspond to the first
bits of witnesses. Then, the whole witness vector MW} may be computed as:

MW; — MW,y —2(HT; & S) — (HP; & S) + (HM; & S)

Once MW); and the vertical vectors Vx; are available, all cell values in column j
of C' can be scanned in bit-parallel manner. First we copy MW; into an auxiliary
vector X. At this stage each witness M W;{i} copied into X represents the value
C;,j. Then each witness MW is updated Q' — 1 times. First to represent the value
Cit1,;, then the value Cj;o ;, and so on until the value Cijq—1;. After Q' — 1
iterations, all cells of column j have been scanned (some possibly twice if Q' # Q).
At each stage of the scan we check the current witness values for matches or zeros.

11

For this we use an “end” bit mask £ «— S << (@ — 1) that has a bit set in those
positions that correspond to the last bits of the witnesses. In addition we use a bit
mask K that holds the value £ — 1 at each witness location.

When the witnesses MW;{i} in X represent the cells C;y ;, the vector ((X +
K) & E) >> (Q — 1 — h) has bits set in those positions v where C, ; < k, and the
vector (X & E) >> (Q — 1 — h) has bits set in those positions u where C,, ; = 0.

Our strategy for checking matches is to record during the scan whether column j
contains any matches or not. These may then be checked more carefully, if desired,
but if all matching locations are recorded exactly, the running time becomes again
O(mn) in the worst case.

The match checking is done by using an auxiliary vector Y that is initialized by
setting Y« E. When MW;{i} represents Ciip j, weset Y «— Y & (X + K).
There is at least one match in column 75 if and only if Y # E after the Q' iterations
(consisting of the initial stage and Q" — 1 update stages). The zero vector Z; is
computed by initializing it to zero and setting Z; «— Z; | (X & E) >> (Q—1—h))
when MW;{i} represents Cj 4 ;.

Figure 2 gives the complete algorithm. We use the alternative solution for
computing HP; and DZ;. Note that, by carefully choosing the update order, we
manage to keep only one copy of each vector.

3.5. Analysis

Under the assumption that m < w, each bit-wise/arithmetic operation in our
algorithm takes constant time. In this case computing the M table takes O(m+|%|)
time, and the rest of the algorithm in Figure 2 clearly runs in time O(nQ’). Since
Q' < 2Q and Q = [log, min(m,n)] + 1, we have that nQ’ = O(nlogmin(m,n)) and
the total running time is O(|3] + m + nlogmin(m,n)).

If the pattern length m is not bounded by w, it is straightforward to implement
length-m bit vectors by using [m/w] vectors of length w. In addition, each bit-
wise/arithmetic operation on such bit-vectors can be performed in O([m/w]) time.
This results in the time O(m + [m/w]|Z|) for computing the M table, and the run
time of the rest of the algorithm is multiplied by a factor of O([m/w]), which yields
O(mnlogmin(m,n)/w), taking the alphabet size as a constant for simplicity.

4. Improving the Algorithm

In this section we discuss how to improve our algorithm both in theory and
practice. A practical consideration is to operate on size-w tiles instead of com-
plete length-m bit vectors. We manage to achieve this by bounding the size of the
witnesses. This also improves the asymptotic complexity of the original algorithm.

4.1. A Practical Tiling Mechanism

When m > w, it is not efficient in practice to implement the algorithm by simply
simulating complete length-m bit-vectors: This would result in reading/writing each
length-w vector-segment of a bit-vector from/to memory many more times than

12

LocalScores (A1..m, Bi..n, k)

1. Q « [logymin(m,n)] +1

2 v |m/Q)

3. S « distribute evenly r witnesses and mark their first bit

4. E—S<<(Q-1)

5. K~ Sx(k-1)

6 Q—Q+[(m—1Q)/r]

7. MW «— E

8. ForceX Do Ml «— 0

9. Foriecl...mDo M[A;] «— M[A;] | 2!

10. VPVMVT « 0,VZ,Z «— 2™ -1

11. Forjel...n Do

12. X « M[B;]|VT

13. DP « (VM+ (X & VM) "VM)|X

14. X « (DP&VZ)<<1

15. U~ (VM4+(X&VM) VM) | X

16. DZ « ~DP&(((Z<<1)|1)|VP|D)

17. HP « (DP&VZ)|(DZ & VM)

18. DM «— ~ (DP|DZ)

19. HT «— DP& VM

20. HM «— VT | (DZ & VP)| (DM & VZ)

21. HZ «— ~(HT|HP|HM)

22. VI «— DP & (HM << 1)

23. VP « (DP & (HZ <<1)1|1)) | (DZ & (HM << 1))

24. VM «— (HT <<1)|(DZ & (HP << 1)) | (DM & (HZ << 1) 1))

25. VZ « ~ (VT |VP|VM)

26. MW «— MW —2(HT & S)— (HP & S)+ (HM & S)

27. X — MW

28. Y —FE

29. Z «— 0

30. For he0...Q"—1 Do

31 Z — Z|(X&E)>>(Q—-1-h))

32. Y « Y& (X+K)

33. X « X-2((VT; >>h) & S)— (VP; >>h) & 5)
+ (VM; >>h) & 5)

34. If Y # F Then Record a match at column j

Fig. 2. Complete bit-parallel algorithm to compute local similarity. Some
optimizations have been discarded for clarity.

13

necessary, which is a considerable slowdown. A better approach is to consider that
the matrix C will be covered by a tiling of length-w computer words, and each
tile will be processed individually. This is similar to the suggestion of Myers [9].
Processing a tile involves the same steps as the basic single-word algorithm from the
previous section, but instead of operating on length-m vectors, the vectors involved
in the computation will be length-w segments that correspond to the cells covered
by the current tile-level. Fig. 3a depicts two typical ways of tiling matrix C.
Fig. 3b shows the hth length-w tile in column j. It covers the cells C(j_1)u41
..+, Chu,j. Let us use the superscript (h) to denote the hth tile so that for example
DPJ»(h) is a length-w vector that holds the values of the hth length-w segment of

DP;,i.e. DPj(h) = DP;j((h—1)w+1...hw). Here we may assume that the vectors
have zero bits in the possible areas that correspond to rows ¢ > m. Fig. 3b also
shows the left and/or upper neighboring cells/tiles that are involved in processing
the tile. The tile to the left, i.e. Ath tile in column j — 1, will provide the necessary
vector segments VM;ﬁ)l, VZJ(-}_L)17 VPj(ﬁ)1 and VTj(ﬁ)l. The cell values Cp_1yw,j—1
and C(_1)w,; provide information that enables us to perform the necessary one-
step left-shifts of the vectors. The left-shifts bring information from the wth row
of the (h — 1)th tile to the first row of the hth tile. For example, after left shifting
the vector Z;h) by one position, we must set its first bit to 1 if C(j,_1), ; = 0. As a

second example, after left shifting H Tj(h) by one position, we must set its first bit

WA

to 1 if O(hfl)w“j = O(hfl)uhj,l + 2.

C 0 n C’ 0 n
a) 0 0 b) hth tile in
44144444 column 7
> 1 1 1 1 1 ! !
w B _ - w ‘[‘[‘[‘['l ‘[‘[]_1 j
e - TR A‘ i (h - 1)w
= > (h—Dw+1
2w =17 ; 2w !‘ !‘ !‘ !‘ v‘ 1‘ :‘
m T m| DD DT[] T
A - ! ! ! ! ! ! !
> ! ! ! ! ! ! I hw
T I T O I T O T N R I
3w R AR AR AR AR AR AR AR

Fig. 3. a) Two tiling orders for processing matrix C. b) The hth tile in column
j (shaded) and the neighboring cells that are involved in processing it.
The tiling order is limited only by the requirement that the above described
neighboring information has to be available when processing a given tile. We find it
practical to use the leftmost order shown in Fig. 3a. In this case processing the tiles
can be done according to the following sketch. Here we will use the variables ZB,
HMB, HZB, HPB, and HTB to set the first bit of Z\"), EM"™ HZ" HP"
and H Tj(h), respectively, after the vector has been shifted left one position. In
Section 4.2, we will fill in some missing details such as how to manage the witnesses

when operating on individual length-w tiles.
1. Initialize the boundary values of C, as well as the vectors @), FE, and S.

2. Repeat steps 3—4 for h=1,..., [m/w], and then stop.

14

3. Initialize the relevant values for hth tile row. This includes computing array
M to contain the hth tiles of the length-m match vectors, setting CfUO))O =0,
and initializing MW ("),

4. Repeat steps 4.1-4.4 for j =1,...,n.

4.1. Read the value Cgf;l) and compare it to the value Cfuh;li that is known

from the previous tile or initialization.
4.2. If Cgfj_l) =0, set ZB to 1, and otherwise to 0. In similar way, set HM B
to 1 if Cgfj_l) = Cl(uhj__li —1, and so on also for HZB, HPB, and HT'B.

4.3. Perform the computations of the basic bit-parallel algorithm in Fig. 2,
where each vector contains the hth tile of the corresponding length-m
vector. In doing this, perform the left shifts in the form ((Z << 1) | ZB),
(HM << 1) | HMB), (HZ << 1) | HZB), (HP << 1) | HPB),
and ((HT << 1) | HT'B) in order to set the first bits correctly.

4.4. After the computation, record the value Cijh; for later use by the possible
(h + 1)th tile in column j.

4.2. Bounding the Witnesses

An immediate question about using the tiling scheme is how to fit one or more
witnesses into a length-w tile in the general case where min(m,n) is independent
of w. We achieve this by using delta encoding in storing the values in different
length-w tiles of the bit vectors. For the hth tile in column 7, we will use its middle
value CEZ;)/QJ J= Clh—1)w+|w/2),; as the point of comparison. Let ,u§h> denote the

comparison point CEZ)/Q IRE From Lemma 1 we have that the values C\" must

1..w,j’
be in the range uyl) —2l(w=1)/2].. .ugh) +2|w/2].

Consider a witness MWJ-(h)(i) = MW;((h — 1)w + ¢). We will record the value
Ci(z) =yto MWJ-(h) (1) in the form 29—1 — (y—ug-h)), and keep track of the values ug-h)
separately. Now the values in the witnesses lie in the range 29~ —2|w/2| ... 291+
2| (w — 1)/2]. For reasons that are given in Section 4.2.3, we will choose the value
@ to be the minimal choice that can represent the range —2w + 3...2w — 2 (i.e.
witness values 2971 — 2w +2...2971 + 2w — 3). This is achieved by setting Q =
[log, min(m, n, 2w — 2)] + 1.

4.2.1. Setting Up the Witnesses

In the tiling-based scheme, the witnesses will have similar structure at each tiling
level h, and their regions do not cross the boundaries between different tiling levels.
Once @ has been chosen, M Wj(h) will be set to hold r = |w/Q] witnesses. There
will be room for at least one witness as long as w > 4. The witnesses are again
spread evenly. Now Q' = Q + max(0, [(min(m,w) — rQ)/r]) gives the maximum
distance between the first bit of a witness and the first bit of the next witness or,
for the last witness, the position after the last bit of the whole vector. A difference

15

to the setup before is that now the witnesses have more than m bits available for
them if m < w. To ease matters in Section 4.2.3, we position the last witness to be
MWJ(h) (w—@Q" +1)if m > w: in this case the region of the last witness consists of
the last Q' bits of MWJ-(h).

Then the vectors S, E" and K™ will be initialized in same way as before.

4.2.2. Keeping Track of /L;h)

It is btralghtforward to keep track of the value ,u by using HM;, HZ;, HP;,

and HTj. Initially ,u OEZ /200 = =0. Let A§ denote the change of the compari-
son point when we move from column j—1 to column j on the hth tile row. The value
A() ,u(h) u(h)l may be computed by setting A = (2(HT; & 21w=1/2) 4
(HP & 2Lw- 1>/2J) (HM; & 2Lw=D/2)) >> L(w —1)/2]. After this we set

(h) = Mgh)l + A (h) , and also adjust accordingly the witnesses in M Wj(h) by setting

MW}’” MW, (i + (AW x SMM).

4.2.3. Computing Z;h), Checking for Matches, and Recording Cfuh;
h)

We follow the same principles as in Section 3.4. But since M Wj(now contains

values relative to ug-h)

, we first re-adjust the witnesses to represent their actual
values Ci(z): Instead of MWJ‘(h)7 we set the value MWJ-(h) - (ugh) x SM™) into the
auxiliary vector X ("), This may cause one or more witnesses to overflow, but we
simply ignore this for now. Then we perform @’ iterations as depicted in Section

3.4: First Zj(h) — 0 and an auxiliary vector Y(») «— E®)_ During each iteration
YO o Y™ & (XM 4 KM and 2" — ZM | (XM & EW) >> (Q —1 -
h)). After the Q' iterations, we check the validity of Z;h) and the auxiliary match
checking vector Y ("),

If u(h) > 2| (w —1)/2], then Ci(f;-) > ugh) —2[(w—-1)/2] >0fori=1...w and
it is correct to reset ZJ(-h) — 0. On the other hand, if /L;h) < 2[(w —1)/2], then
0< OZ.(E) < ugh) +2\w/2] <2|(w—1)/2]+2|w/2| = 2w — 2. As the witnesses can
represent the range —2w + 3 ... 2w — 2, none of the witnesses have overflown in this
case and Z J(»h) has already been computed correctly during the @’ iterations.

In similar way, if /L;h) > k+2|(w—1)/2], then Ci(,}]L‘) > k and we can declare a
match regardless of the value of Y(®). If k — 2|w/2] < /L;h) <k+2(w-1)/2],
then k — 2w +2 = k — 2[w/2 — 2[(w — 1)/2] < @ —2|(w - 1)/2] < ¥ <
i 4 2\w/2) < k+ 2| (w — 1)/2] + 2|w/2) = k + 2w — 2. Match checking uses
the vector X ") + K" which has the effect of decrementmg the values represented
in the witnesses by k — 1. Hence if k — 2|w/2]| < Hj)< k+ 2| (w — 1)/2], then

—2w+3< CM (k—1) < 2w — 1. Like above, in this case none of the witnesses
in X + K™ are in an overﬂown state and Y™ can be used in normal fashion
for match checking. Finally, if ,u) < k- 2|w/2], then C’Z(}; <u (h) +2lw/2] <k

16

and there is no match.
As the witnesses are set up so that the last witness has a region of Q' bits?,
the last witness in the auxiliary vector X (® will represent Ci(uh; = y in the form

201 — (y — ugh)) after the Q' iterations. We decode the value by setting Cfvh; =
plh 4201 (X > (w - Q).
Now we have the complete improved algorithm. Figure 4 shows the code for it.

4.8. Analysis of the Improved Algorithm

The manipulated bit vectors have length w, so each operation on them is done in
constant time. For each tiling level h, we compute the M table in O(min(m, w)+|3|)
time, and then process n tiles. Each tile takes O(Q’) = O(Q) = O(log min(m, n, w))
time. There is a total of O(m/w) tiling levels. By combining these, we have the total
running time O((m/w)(min(m,w) + |3| + nlogmin(m, n,w))) = O(m + m|3|/w +
mn log min(m, n,w)/w). This is O(mnlog min(m,n, w)/w) for |X| = O(n)

Compared to the best bit-parallel complexity for global and semiglobal similar-
ity (actually, for distance computation), O(mn/w), we have a logarithmic penalty
factor because of the use of local similarity. At this point it should be clear that we
can compute global and semiglobal scores (rather than distances) within the same
O(mn/w) complexity, just by removing the use of vector Z; and checking the score
only at a single cell or a single row. This removes the need for the witnesses and
their logarithmic penalty.

5. Experimental Results

We implemented a general O(mnlogmin(m,n,w)/w) version of our algorithm
and compared it to the plain dynamic programming algorithm. Both algorithms
were programmed in C, and we tried to make both implementations as efficient as
possible. The test computer was a 64-bit Sparc Ultra 2 with 128 MB RAM, and
the codes were compiled with GCC 3.3.1 with optimization switched on. The test
strings were randomly selected DNA sequences from the genome of S.cerevisiae
(baker’s yeast). The test contained two different types of scenarios. In the first
we tested with short patterns and a long text. This test involved the matching
thresholds £ = 1 and &k = m — 1 to see what kind of effect the value of k£ has. In
the second we tested aligning patterns and texts that have the same length, and
this time we show only the case k = m — 1 (in the first test we found the results
to be highly independent on k). The results are shown in Fig. 5. They are well in
accordance with the asymptotic running time O(mn log min(m,n, w)/w).

When m < n and m < w = 64, we use only m bits in each bit vector and the
running time becomes O(mnlogm/m). The experimental results in Fig.5 (left) ex-
hibit how the speedup factor is proportional to logm/m. In this case our algorithm
is from roughly 1.2 (m = 4) up to 6.2 (m = 32) times faster than the basic dynamic
programming algorithm.

@This is for m > w. If m < w, we may compute Cl(uh; wrong, but the value will never be used.

17

ImpLocalScores (A1, m, Bi..n, k)

© ® NS Tk w N

NN KN NN NNDNDLD P = o e = e e e e
TSR DN SO D ®ADD R WR =D

29.
30.
31.
32.
33.
34.
35.
36.
37.

38.
39.
40.
41.
42.

Q <« [logomin(m,n,2w —2)] +1, m’' < min(m,w)

r |w/Q|, BB« 2ltw=1/2]

S « distribute evenly r witnesses and mark their first bit

E—~S<<(Q-1), K«—Sx(k-1)

Q" —max(Q + [(m' —rQ)/r],Q)

Foricel..nDoC[i] < 0

For hel...[m/w] Do
For c€ ¥ Do Mic] «— 0
For i € (h— 1)w+ 1...min(m, hw) Do M[A;] «— M][A;] | 20i—1) modw
VPVM VT «— 0, VZ,Z «— 2¥ -1, MW «— E, prevC «— 0, p<0
Forje1...nDo

If C[j] =0 Then ZB « 1 Else ZB « 0

If C[j] = prevC — 1 Then HMB «— 1 Else HMB < 0
If C[j] = prevC Then HZB «— 1 Else HZB «— 0

If C[j] = prevC +1 Then HPB « 1 Else HPB «— 0
If C[j] = prevC +2 Then HTB « 1 Else HTB « 0
X « M[B,]| VT | HTB

DP « (VM+ (X & VM) "VM)|X
X « (DP & VZ)<<1)| HPB
U+~ (VM+(X&VM)"VM)| X
DZ « ~DP& ((Z<<1)|ZB)|VP|U)
HP « (DP & VZ)|(DZ & VM)
DM « ~(DP|DZ), HT « DP & VM
HM « VT |(DZ & VP)| (DM & VZ)
HZ « ~(HT | HP|HM)
VT « DP & (HM << 1) | HMB)
VP «— (DP & ((HZ <<1)|HZB)) | (DZ & (HM << 1) | HMB))
VM «— (HT <<1)| HTB)|(DZ & ((HP << 1) | HPB)
| (DM & ((HZ << 1) | HZB))

VZ — ~(VT|VP|VM)
A « (2(HT & BB) + (HP & BB) — (HM & BB)) >> |(w —1)/2]
pe—p+A
MW «— MW —-2(HT & S)—(HP & S)+ (HM & S)+ (A x SM)
X « MW —(uxSM), Y—E, Z < 0
For h€0...Q"'—1 Do

Z — Z|((X&E)>>(Q—-1—h))

Y « Y& (X +K)

X « X-2((VT; >>h) & S)— (VP; >>h) & 5)

+ (VM; >>h) & 5)

prevC — Clj]
Clj] = p+297" = (X >> (w - Q')
If u>2x |(w—1)/2] Then Z «— 0
If(Y#4#Fand p>k—2x |w/2]) or p>k+2x |[(w—1)/2] Then

Record a match in the hAth tile of column j

Fig. 4. An improved algorithm to compute local similarity. Some optimizations
have been discarded for clarity.

18

When m < n and m > w = 64, the asymptotic running time is O(mnlogw/w),
i.e. the speedup factor becomes fixed to logw/w. The experimental results in Fig.5
(right) exhibit this, as our algorithm is roughly 7.2 times faster when m > 256.
In the case m = 128 our algorithm is roughly 8.5 times faster. This deviation is
explained by the fact that our algorithm implementation uses the delta encoding
described in Section 4.2 only once [log, (2w — 2)] < [log, min(m, n)].

Overall the results indicate that our algorithm works well in practice as well as
in theory.

Ratio for n=500,000, increasing m, and k=1,m-1 Ratio for increasing n=m and k=m-1=n-1
7 9 . . .
6 8 b
£ s e 77
=1
e 4, 3 6F
j=2} H 5
< =
a 3 DE: 40
c d
2 2 S 37
1 o 2t
1 b
0
0
8 256 512 1024 2048

n=m

m,k combinations

Fig. 5. Speedup factor of our bit-parallel algorithm over the basic dynamic
programming algorithm. On the left, aligning long against short strings. On
the right, aligning strings of the same length.

6. Conclusions

We have presented the first bit-parallel algorithm to compute local similarity
score between two strings, which is a common task in computational biology. While
dynamic programming, the only existing algorithm, takes time O(mn) (m and n be-
ing the lengths of the strings), our algorithm needs time O(mn log min(m,n, w)/w)
using a computer word of w bits. Our experiments show up to 8-fold speedups.

Our algorithm cannot replace dynamic programming because it cannot handle
prize and penalty values other than +1. However, there are some DNA-related
applications where they use precisely those +1 penalties [5]. It is also feasible to
use such simplified weights as a fast preliminary filter to discard clearly uninteresting
areas of the matrix. Recent research [12] suggests that this is promising.

Several issues are left for future research. An interesting one from the bit-parallel
perspective is to investigate whether it is possible to “pack” the logical conditions
describing the differences between the matrix cells in a way that makes the overall
formula faster to compute. E.g. we use four bit vectors VT, VP, VZ, VM, to
describe four possible values +2, +1, 0, —1, whereas two bit vectors could suffice.

Another way to speed up the computation is an adaptive configuration of wit-
nesses. If most values in matrix C' are low, one would not really need log min(m, n, w)
bits to represent them, but rather could process most of the matrix with a denser
witness configuration. Say that the values to represent do not (usually) exceed ¢,

19

then one could use log ¢ bits per witness, so as to have m/log ¢ witnesses, obtaining
O(mnlog(q)/w) average time. This requires that the algorithm adapts the witness
spacing according to the matrix values as the computation progresses.

More ambitious and longer-term goals are accommodating other cost functions

apart from the unitary-cost one; and trying to obtain optimal speedup, removing
the term O(log min(m, n,w)) from the cost formula.

Acknowledgments

The second author was partially funded by the Millennium Nucleus Center for
Web Research, Grant P04-067-F, Mideplan, Chile.

References

1.

10.

11.

12.

13.

14.

R. Baeza-Yates and G. Gonnet. A New Approach to Text Searching. Communica-
tions of the ACM, 35(10):74-82, 1992.

. A. Bergeron and S. Hamel. Vector algorithms for approximate string matching.

International Journal of Foundations of Computer Science, 13(1):53-65, 2002.

M. Crochemore, C. S. Iliopoulos, and Y. J. Pinzon. Speeding-up Hirschberg and
Hunt-Szymanski LCS Algorithms. Fundamenta Informaticae, 56(1-2):89-103, 2003.

. M. Crochemore, G. Landau, and M. Ziv-Ukelson. A sub-quadratic sequence align-

ment algorithm for unrestricted scoring matrices. In Proc. 13th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’02), pages 679-688, 2002.

. D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and

Computational Biology. Cambridge University Press, 1997.

H. Hyyr6. Explaining and extending the bit-parallel approximate string matching
algorithm of Myers. Technical Report A-2001-10, Dept. of Computer and Informa-
tion Sciences, University of Tampere, Tampere, Finland, 2001.

H. Hyyr6 and G. Navarro. Bit-parallel witnesses and their applications to approxi-
mate string matching. Algorithmica, 41(3):203-231, 2005.

. W. Masek and M. Paterson. A faster algorithm for computing string edit distances.

J. of Computer and System Sciences, 20:18-31, 1980.

G. Myers. A fast bit-vector algorithm for approximate string matching based on
dynamic programming. Journal of the ACM, 46(3):395-415, 1999.

G. Navarro. A guided tour to approximate string matching. ACM Computing
Surveys, 33(1):31-88, 2001.

G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings — Practical on-line
search algorithms for texts and biological sequences. Cambridge University Press,
2002.

S. Smith. Homology Search with Binary and Trinary Scoring Matrices. Interna-
tional Journal of Bioinformatics Research and Applications 2(2):119-131, 2006.

H. Tsuji, A. Ishino, and M. Takeda. A Bit-Parallel Tree Matching Algorithm for
Patterns with Horizontal VLDC’s. In Proc. 12th String Processing and Information
Retrieval (SPIRE’05), LNCS 3772, pages 388-398, 2005.

S. Wu, U. Manber, and E. Myers. A sub-quadratic algorithm for approximate
limited expression matching. Algorithmica, 15(1):50-67, 1996.

20

