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ABSTRACT

Local similarity computation between two sequences permits detecting all the rel-
evant alignments present between subsequences thereof. A well-known dynamic pro-
gramming algorithm works in time O(mn), m and n being the lengths of the subse-
quences. The algorithm is rather slow when applied over many sequence pairs. In this
paper we present the first bit-parallel computation of the score matrix, for a simplified
choice of scores. If the computer word has w bits, then the resulting algorithm works
in O(mn log min(m, n, w)/w) time, achieving up to 8-fold speedups in practice. Some
DNA comparison applications use precisely the simplified scores we handle, and thus
our algorithm is directly applicable. In others, our method could be used as a raw filter
to discard most of the strings, so the classical algorithm can be focused only on the
substring pairs that can yield relevant results.

Keywords: Local similarity; Approximate string matching; Bit-parallelism

1. Introduction and Related Work

Sequence comparison is a fundamental task in Computational Biology, in order

to detect relevant similarities between a pair of genetic or protein sequences [5].

Three kinds of similarities are of interest: (i) global similarity compares two strings

as a whole, (ii) semiglobal (or semilocal) similarity looks for substrings of a given

string that are similar to a second given string, (iii) local similarity looks for similar

substrings of two given strings.

Similarity is usually expressed using a score function, which gives prizes or penal-

ties to operations on the strings and to pairings of characters of the two strings.

Usually pairing the same character in both strings involves a prize because we
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have found a similarity. Pairing different characters, inserting or removing char-

acters, involves penalties. The specific values for prizes and penalties depend on

the biological model used for the similarity (for example, logarithms of mutation

probabilities). The similarity is then expressed as the highest possible score of a

sequence of operations that align one string to the other.

Global and semiglobal similarity find applications in other areas such as text

searching. Global similarity computation is then seen as a distance computation.

The distance is never negative, and the smaller it is, the more similar the sequences

are. Semiglobal similarity can be converted into an approximate search problem,

namely to find the approximate occurrences of a short pattern inside a long text.

Local similarity, instead, is more specific to computational biology applications.

All these sorts of similarity computations can be easily carried out in O(mn) time

using dynamic programming. Given strings A1...m and B1...n, the general method

is to compute an (m + 1) × (n + 1) matrix C whose cell Ci,j gives the maximum

score/minimum distance to align/convert A...i to B...j . The cells of row 0 and

column 0 form initially known boundary cases, and the remaining m × n cells are

computed using a recurrence. For example, for global similarity score computation

we may have Ci,0 = −i, C0,j = −j, and for i, j > 0

Ci,j = max(Ci−1,j−1 + δ(Ai, Bj), Ci,j−1 − 1, Ci−1,j − 1)

where δ(Ai, Bj) = if Ai = Bj then 1 else − 1

where we have assumed that all penalties are −1 and prizes are +1. More com-

plicated score functions can be real-valued and depend on the characters involved.

The maximum score for the strings A and B is Cm,n.

If we are instead computing distance, we may have Ci,0 = i, C0,j = j, and

Ci,j = min(Ci−1,j−1 + δ(Ai, Bj), Ci,j−1 + 1, Ci−1,j + 1)

where δ(Ai, Bj) = if Ai = Bj then 0 else 1

for i, j > 0, where we have assumed that all costs are 1. The minimum distance

between A and B is Cm,n.

Semiglobal similarity computation is obtained by using the above formulas ex-

cept that C0,j = 0, so that an alignment of A can start afresh at any position in B.

High score/low distance at cell Cm,j tells us that an interesting alignment ends at

position j in B.

Local similarity computation needs a somewhat different arrangement and, cu-

riously, it seems not expressible using the distance model, but just the score model.

In this case we have Ci,0 = C0,j = 0, and for i, j > 0

Ci,j = max(0, Ci−1,j−1 + δ(Ai, Bj), Ci,j−1 − 1, Ci−1,j − 1)

where δ(Ai, Bj) = if Ai = Bj then 1 else − 1

where we remark the 0 value involved in the maximum. The objective of this zero

is that if an alignment in progress has given us more penalties than prizes, then it
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is better to start afresh from that position. Any cell value Ci,j that is high enough

indicates that similar substrings end at position i in A and j in B.

Much effort has been done in order to efficiently compute the distance matrix,

both for global and semiglobal alignments. In particular, bit-parallelism has given

the best results in practice. Bit-parallelism packs several values inside a computer

word and updates them all in one shot. This paradigm has been applied successfully

in several other problems as well, such as exact string matching [1], longest common

subsequence computation [3], and tree matching [13]. The bit-parallel algorithm

that best “parallelizes” the distance matrix computation is from Myers [9], which

computes semiglobal similarity and is easily adapted to compute global similarity

[6, 7]. Using Myers’ algorithm, both similarities can be computed in O(mn/w) time

using a computer word of w bits, which is the optimal bit-parallel speedup. Myers’

algorithm strongly relies on the fact that consecutive cells of Ci,j differ only by −1,

0, or 1. Several other bit-parallel algorithms exploiting the same property exist [10].

Bit-parallel computation of score matrices, however, has not been attempted.

Bergeron and Hamel [2] have extended Myers’ scheme to handle arbitrary integer

weights for substitutions, as well as a fixed weight c for insertions and deletions.

Their algorithm is O(mnc log(c)/w) time. This scheme does not seem to extend to

compute local similarity.

Other approaches to speed up matrix computation exist. Different Four-Russians

techniques [8, 14] obtain O(mn/ log(mn)) time. The same complexity is obtained by

using a Ziv-Lempel factoring [4], which generalizes to local similarity with arbitrary

weights. In practice, when applicable, bit-parallel algorithms are faster.

In this paper we present a bit-parallel local similarity algorithm inspired on

Myers’ scheme (and more precisely on Hyyrö’s version [6]). The asymptotic running

time of the algorithm is O(mn log min(m, n, w)/w). Our algorithm assumes that

aligning two characters yields a prize of +1 when they are equal and a penalty of

−1 otherwise, and that inserting or deleting characters has a penalty of −1.

The main difficulties are (1) that the local similarity recurrence is more com-

plicated than the one afforded by Myers (in particular, differences of +2 among

contiguous cells are possible), and (2) that the zero in the maximization involves

knowing absolute cell values, while the whole philosophy of Myers’ scheme relies on

storing differential values. In Sections 2 to 3.3, we solve problem (1) by a rather

heavy extension of the principles behind Myers’ algorithm. Problem (2) is tackled

by applying bit-parallel witnesses [7] in Sections 3.4 to 4.2.

We have implemented the algorithm and compared it against plain dynamic

programming, which is currently the only alternative. The experimental results are

discussed in Section 5. We obtain up to 8-fold speedup over dynamic programming.

Our algorithm does not replace dynamic programming because it cannot handle

other prize and penalty values. On the other hand, while score computations on

protein sequences are always weighted, there are many cases of score computations

on DNA sequences where our simplified model is applicable [5, Section 11.5.2 and

16.15.1]. It may also be feasible to use our method as a fast filter to discard most of

the matrix and let the weighted dynamic programming algorithm concentrate only
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on the matrix areas that look interesting. For example, recent research results [12]

suggest that constraining substitution matrices used for database homology search

to contain only values −1, 0, and 1, has a rather small effect on ROC measures of

algorithm sensitivity and specificity.

2. A Bit-Parallel Design

Let us focus on the simple score function depicted in the Introduction, that is,

Ci,0 = C0,j = 0 and, for i, j > 0,

Ci,j = max(0, Ci−1,j−1 + δ(Ai, Bj), Ci,j−1 − 1, Ci−1,j − 1)

where δ(Ai, Bj) = if Ai = Bj then 1 else − 1

We prove now some properties of matrix C. Note, to start, that C contains no

negative values.

Lemma 1 Given the above definition of matrix C, it holds

Ci,j − Ci−1,j−1 ∈ −1, 0, +1 for any i, j > 0

Ci,j − Ci,j−1 ∈ −1, 0, +1, +2 for any i ≥ 0, j > 0

Ci,j − Ci−1,j ∈ −1, 0, +1, +2 for any i > 0, j ≥ 0

Proof. We proceed inductively, so we assume it proved for any (i′, j′) such that

j′ < j, or j′ = j and i′ < i. The base cases are immediate. Now, for the inductive

case, let us start with the first proposition. The option Ci−1,j−1 + δ(Ai, Bj) in the

“max” clause of the formula for Ci,j guarantees that Ci,j−Ci−1,j−1 ≥ −1. Inductive

Hypothesis tells us that Ci−1,j ≤ Ci−1,j−1 + 2 and Ci,j−1 ≤ Ci−1,j−1 + 2, and thus

Ci,j = max(0, Ci−1,j−1 + δ(Ai, Bj), Ci,j−1 − 1, Ci−1,j − 1) ≤ max(Ci−1,j−1 +

δ(Ai, Bj), Ci−1,j−1 + 1, Ci−1,j−1 + 1) = Ci−1,j−1 + 1. Here we removed the zero

from the “max” clause as it is known that Ci−1,j−1 + 1 ≥ 1 > 0. By combining the

two previous observations, we have that −1 ≤ Ci,j − Ci−1,j−1 ≤ 1.

Let us now consider the second proposition. First we note that Ci,j−Ci,j−1 ≥ −1

because of the option Ci,j−1 − 1 inside the “max” clause. From our Inductive

Hypothesis and the above-proved first proposition we have that Ci,j−1 ≥ Ci−1,j−1−

1 ≥ Ci,j − 1− 1 = Ci,j − 2. Thus −1 ≤ Ci,j − Ci,j−1 ≤ 2. The third proposition is

symmetric with the second and comes out similarly. 2

Given the ranges of values proved for consecutive differences, we will represent ma-

trix C incrementally using the following bit matrices:

Mi,j ≡ Ai = Bj DPi,j ≡ Ci,j − Ci−1,j−1 = +1
Zi,j ≡ Ci,j = 0 DZi,j ≡ Ci,j − Ci−1,j−1 = 0

DMi,j ≡ Ci,j − Ci−1,j−1 = −1
HTi,j ≡ Ci,j − Ci,j−1 = +2 V Ti,j ≡ Ci,j − Ci−1,j = +2
HPi,j ≡ Ci,j − Ci,j−1 = +1 V Pi,j ≡ Ci,j − Ci−1,j = +1
HZi,j ≡ Ci,j − Ci,j−1 = 0 V Zi,j ≡ Ci,j − Ci−1,j = 0
HMi,j ≡ Ci,j − Ci,j−1 = −1 V Mi,j ≡ Ci,j − Ci−1,j = −1
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Here M and Z stand for “match” and “zero”, respectively. D, H , and V stand for

“diagonal”, “horizontal”, and “vertical”, respectively. T , P , Z, and M stand for

“plus two”, “plus one”, “zero”, and “minus one”, respectively. When a cell refers

to a value out of bounds, such as HPi,0, its value is not really important.

The above information clearly represents the cells of matrix C. For example,

Ci,j =

i
∑

r=1

(2 × V Tr,j + 1× V Pr,j − 1× V Mr,j)

The next step is to derive logical properties that relate those bit matrices, so as

to permit an efficient bit-parallel implementation.

DPi,j ≡ Mi,j ∨ V Ti,j−1 ∨ HTi−1,j :

It is clear that if either Ai = Bj , Ci,j−1 = Ci−1,j−1 +2, or Ci−1,j = Ci−1,j−1 +

2, then Ci,j = Ci−1,j−1 + 1. Moreover, if none of them hold, there is no way

for Ci,j to get the value Ci−1,j−1 + 1.

DZi,j ≡ ∼ DPi,j ∧ (Zi−1,j−1 ∨ V Pi,j−1 ∨ HPi−1,j) :

From the score recurrence we can easily derive the rule that Ci,j = Ci−1,j−1 if

and only if Ci,j 6= Ci−1,j−1 + 1 and max(0, Ci,j−1 − 1, Ci−1,j − 1) = Ci−1,j−1.

Moreover, since 0 ≤ Ci−1,j−1 and the condition Ci,j 6= Ci−1,j−1 + 1 implies

that Ci,j−1 < Ci−1,j−1 +2 and Ci−1,j < Ci−1,j−1 +2, it turns out that already

Ci−1,j−1 ≥ max(0, Ci,j−1 − 1, Ci−1,j − 1), so the condition max(0, Ci,j−1 −

1, Ci−1,j−1) = Ci−1,j−1 can be changed into the form Ci−1,j−1 ∈ {0, Ci,j−1−

1, Ci−1,j − 1}. This results in the above formula for DZi,j .

DMi,j ≡ ∼ (DPi,j ∨DZi,j) : As it is the only remaining choice.

HTi,j ≡ DPi,j ∧ V Mi,j−1 :

From now on we build on D∗ and the other bit matrices, by exhaustively

examining all the choices for Ci,j − Ci−1,j−1 using submatrices where the

lower right cell is Ci,j = x and the upper left can thus have a value x − 1,

x or x + 1. The lower left cell is Ci,j−1, which in this particular item must

have the value x − 2. We discard cases that are not possible according to

Lemma 1 and express the remaining cases as logical conditions. We put “×”

in the remaining corner to signal impossible cases.

x− 1
x− 2 x

x ×
x− 2 x

x + 1 ×
x− 2 x

HPi,j ≡ (DPi,j ∧ V Zi,j−1) ∨ (DZi,j ∧ V Mi,j−1) :

x− 1
x− 1 x

x
x− 1 x

x + 1 ×
x− 1 x

HMi,j ≡ V Ti,j−1 ∨ (DZi,j ∧ V Pi,j−1) ∨ (DMi,j ∧ V Zi,j−1) :
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x− 1
x + 1 x

x
x + 1 x

x + 1
x + 1 x

Note the simplification in the first condition since V Ti,j−1 ⇒ DPi,j .

HZi,j ≡ ∼ (HTi,j ∨HPi,j ∨HMi,j) : As it is the only remaining choice.

V Ti,j ≡ DPi,j ∧HMi−1,j:

Now we focus on the upper right corner.

x− 1 x− 2
x

x x− 2
× x

x + 1 x− 2
× x

V Pi,j ≡ (DPi,j ∧HZi−1,j) ∨ (DZi,j ∧HMi−1,j) :

x− 1 x− 1
x

x x− 1
x

x + 1 x− 1
× x

V Mi,j ≡ HTi−1,j ∨ (DZi,j ∧HPi−1,j) ∨ (DMi,j ∧HZi−1,j) :

x− 1 x + 1
x

x x + 1
x

x + 1 x + 1
x

V Zi,j ≡ ∼ (V Ti,j ∨ V Pi,j ∨ V Mi,j) : As it is the only remaining choice.

3. A Bit-Parallel Algorithm

Up to now we have focused on how to compute the C matrix without regard for

which should be the output of the algorithm. As explained, computational biologists

are interested in matrix positions where the local score exceeds some threshold k.

Those positions are then subject of further analysis.

Hence our algorithm will receive two strings A and B, as well as a threshold

value k, and will point out all the positions (i, j) of matrix C where the score of the

local alignment between A...i and B...j is at least k, that is, where Ci,j ≥ k.

The idea of the bit-parallel algorithm is to process C column by column (just like

the standard dynamic programming algorithm). However, the bit-parallel algorithm

will process all the column in one shot, not row by row. In this section we assume

m ≤ w, that is, we can pack all bits of a column Gj = G1...m,j in a single computer

word, for any matrix G. Note that row zero is not represented. When needed, the

ith bit of vector Gj will be written as Gj(i) = Gi,j .

Therefore, our computation will proceed with column bit vectors DPj , DMj,

DZj , and so on, for j = 0 . . . n, each packed in a computer word. After step j of the

algorithm, the vectors will hold the bits corresponding to column j of the matrix.

We will use common C instructions to handle bits: “&” as the bitwise-and, “|”

as the bitwise-or, “∧” as the bitwise-xor, “∼” as the bitwise-not, and “<<” to shift

all the bits one position to the left and enter a zero at the rightmost position. We

will also treat bit vectors as integers and perform arithmetic operations on them.
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In a precomputation step, explained in Section 3.1, the “match” matrix M is

built in a suitable way for bit-parallel processing. The boundary conditions of

matrix C are handled by giving the proper values to Z0 and V ∗0 vectors, namely

V P0 = V M0 = V T0 = 0 and Z0 = V Z0 = 2m − 1. Then we process the characters

of B (matrix columns) one by one. Each step j computes the bit vectors for column

j from the vectors of column j − 1. First, the diagonal vectors D∗j as well as

the horizontal vector HPj are computed. Vector HPj is computed already at this

stage as we use it in computing DZj. This part is complex and is explained in

Section 3.2. Then the rest of the horizontal and vertical vectors H∗j and V ∗j are

easy to compute, as explained in Section 3.3. Finally, in Section 3.4, we show how

to find and report high enough scores in column j, and how the same mechanism

handles also computing vector Zj . The way this last part is done is again slightly

complicated and uses a technique that is rather different from all the rest.

3.1. Computing Matrix M

Matrix M is represented as a table indexed by alphabet characters. M [c] is a

bit vector such that M [c](i) = 1 iff Ai = c. This table is precomputed before filling

matrix C. This way the cell value Mi,j is actually represented by M [Bj ](i).

Matrix M is precomputed in O(m+ |Σ|) time, where Σ is the alphabet of A and

B, as follows. First initialize M [c] ← 0 for every c ∈ Σ and then traverse string A

character-wise, setting bit M [Ai](i)← 1.

3.2. Computing Vectors D∗j and HPj

Let us start with DPj . As seen in Section 2, DPi,j ≡ Mi,j ∨ V Ti,j−1 ∨ HTi−1,j.

Since we are computing all the values at column j in one shot, component HTi−1,j

is troublesome because it is not yet computed (Mi,j = M [Bj ](i) is known so it is

not problematic). Let us expand HTi−1,j using its definition:

DPi,j ≡ Mi,j ∨ V Ti,j−1 ∨ (DPi−1,j ∧ V Mi−1,j−1)

where now the problematic value belongs to the same DP column. Let us express

this recurrence in vector form. We define temporary vectors X(i) ≡ M [Bj](i) ∨

V Tj−1(i) and Y (i) ≡ V Mj−1(i). Then the recurrence for vector DPj is

DPj(i) ≡ X(i) ∨ (DPj(i− 1) ∧ Y (i− 1))

This particular kind of circular dependency has already been solved by Myers

[9] in his simpler formulation for edit distance computation. Following Hyyrö’s

explanation [6, 11], we unroll DPj(i− 1) to obtain

DPj(i) ≡ X(i) ∨ (X(i− 1) ∧ Y (i− 1)) ∨ (DPj(i− 2) ∧ Y (i− 1) ∧ Y (i− 2))

and unrolling repeatedly we obtain

DPj(i) ≡ ∨i
r=0

(

X(i− r) ∧
(

∧i−1
s=i−rY (s)

))
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that is, any bit set in X before position i can propagate through a sequence of bits

set in Y that reach position i − 1, so as to set position i in DPj . Myers [9] has

shown that the above formula can be computed using bit-parallelism as follows:

X ← M [Bj ] | V Tj−1

Y ← V Mj−1

DPj ← ((Y + (X & Y )) ∧ Y ) | X

Let us now consider DZ. From Section 2 we have

DZi,j ≡ ∼ DPi,j ∧ (Zi−1,j−1 ∨ V Pi,j−1 ∨ HPi−1,j)

where the value HPi−1,j is currently unknown. But it turns out that vector HPj

can be computed once the vector DPj is known. In Section 2 we gave the formula

HPi,j ≡ (DPi,j ∧ V Zi,j−1) ∨ (DZi,j ∧ V Mi,j−1)

for it. If we look at the situation where the condition DZi,j ∧ V Mi,j−1 is true, we

can have Ci,j = x only if Ci−1,j = x+1, that is, only if HPi−1,j is true. Also, DPi,j

must obviously be false. Hence, DZi,j ∧ V Mi,j−1 ⇒ HPi−1,j ∧ V Mi,j−1 ∧ ∼ DPi,j .

Moreover, it is straightforward to see that the condition DZi,j ∧ V Mi,j−1 is true

whenever HPi−1,j ∧ V Mi,j−1 ∧ ∼ DPi,j is true, and thus we have the following

alternative formula for HPi,j :

HPi,j ≡ (DPi,j ∧ V Zi,j−1) ∨ (HPi−1,j ∧ V Mi,j−1 ∧ ∼ DPi,j)

The circular dependency on HPj can be solved in similar fashion as in the case of

computing vector DPj . In this case, defining temporary vectors X and Y such that

X(i) ≡ DPj(i)∧ V Zj−1(i) and Y (i) ≡ V Mj−1(i + 1)∧ ∼ DPj(i + 1), the preceding

formula for HPi,j gets the vector form

HPj(i) ≡ X(i) ∨ (HPj(i− 1) ∧ Y (i− 1))

which is identical to the previous circular dependency for computing DPj . We get

immediately the following bit-parallel formula for computing HPj :

X ← DPj & V Zj−1

Y ← (V Mj−1 & ∼ DPj) >> 1

HPj ← ((Y + (X & Y )) ∧ Y ) | X

Once vector HPj is available, computing the vector DZj becomes easy: a straight-

forward conversion of its formula leads into the following bit-parallel code.

DZj ← ∼ DPj & (((Zj−1 << 1) | 1) | V Pj−1 | (HPj << 1))

where, after the shift of Zj−1 we have introduced a “1” at its lowest bit to reflect

the fact that C0,j−1 = 0 (that is, Z0,j−1 = 1) for any j (recall that row zero of Z is

not represented). Similarly, HP0,j = 0 because C0,j − C0,j−1 = 0 6= 1, so we leave

the new rightmost bit in zero after shifting HPj .

The above way for computing HPj and DZj involves a right-shift, which may

be inconvenient in practice (see Section 4.1). We have found a slightly indirect, but
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in fact more efficient, alternative that avoids using right-shift. Let us consider HP ′
j ,

a slightly modified version of HPj , that is defined by the following formula.

HP ′
i,j ≡ (DPi,j ∧ V Zi,j−1) ∨ (HP ′

i−1,j ∧ V Mi,j−1)

The only difference to the previously shown alternative formula for HPi,j is that

“∧ ∼ DPi,j” has been omitted from the right side. We claim that we may use

HP ′
i,j instead of HPi,j in the formula for DZi,j .

Lemma 2

DZi,j ≡ ∼ DPi,j ∧ (Zi−1,j−1 ∨ V Pi,j−1 ∨ HP ′
i−1,j)

Proof. Let us consider the value HPi−1,j versus HP ′
i−1,j , which makes the

above formula different from the original. It is clear from the definitions of HPi,j

and HP ′i, j that HPi−1,j ≡ HP ′
i−1,j in all other cases except the single case where

HP ′
i−2,j ∧ V Mi−1,j−1 ∧ DPi−1,j ≡ 1. We may assume that Ci−1,j−1 = x. When

V Mi−1,j−1 ∧ DPi,j ≡ 1, we know that Ci−2,j−1 = x + 1 and Ci−1,j = x + 2.

Now Lemma 1 ensures that Ci,j ≥ Ci−1,j − 1 = x + 2− 1 = x + 1, and further that

Ci,j ≤ Ci−1,j−1 + 1 = x + 1. Hence Ci,j = x + 1 = Ci−1,j−1 + 1. This means that

DPi,j ≡ 1, ∼ DPi,j ≡ 0, and DZi,j ≡ 0. We see that the claimed formula is

correct also in this case as its value is 0 when ∼ DPi,j ≡ 0. 2

We find it efficient to compute the values HP ′
i,j in a “preshifted” form, as the

formula for DZi,j uses the value HP ′
i−1,j . Let U be such an auxiliary matrix that

Ui,j = HP ′
i−1,j . Its formula is as follows.

Ui,j ≡ HP ′
i−1,j ≡ (DPi−1,j ∧ V Zi−1,j−1) ∨ (Ui−1,j ∧ V Mi−1,j−1)

The circular dependency on this preshifted HP ′
j can again be solved in the same

way as in the case of computing vector DPj . Now we define the temporary vectors

X(i) ≡ DPj(i− 1) ∧ V Zj−1(i− 1) and Y (i) ≡ V Mj−1(i). This gives the following

vector form for the above formula of preshifted HP ′
i,j .

Uj(i) ≡ X(i) ∨ (Uj(i− 1) ∧ Y (i− 1))

Now Uj has the following bit-parallel formula.

X ← (DPj & V Zj−1) << 1

Uj ← ((V Mj + (X & V Mj))
∧ V Mj) | X

Then we modify the previous bit-parallel formula for DZj to use Uj .

DZj ← ∼ DPj & (((Zj−1 << 1) | 1) | V Pj−1 | Uj)

Once DZj is available, HPj may be computed using its original formula. The

translation to bit-parallel code is straightforward.

HPj ← (DPj & V Zj−1) | (DZj & V Mj−1)

We can record the value (DPj & V Zj−1) when computing Uj, so that we do not

need to compute it again when computing HPj . This way the alternative solution

makes one less operation than the first method for computing HPj and DZj.
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Finally, we have the following simple bit-parallel formula for DMj.

DMj ← ∼ (DPj | DZj)

3.3. Computing Other Vectors H∗j and V ∗j

Once DPj , HPj , DMj, and DZj have been computed for the current column

j, the rest flows easily by following the formulas used in Section 2. Again, when

we shift a bit vector to the left, we add or not a “1” bit at the rightmost position

depending on which is the value of that vector at the unrepresented row zero.

HTj ← DPj & V Mj−1

HMj ← V Tj−1 | (DZj & V Pj−1) | (DMj & V Zj−1)

HZj ← ∼ (HTj | HPj | HMj)

V Tj ← DPj & (HMj << 1)

V Pj ← (DPj & ((HZj << 1) | 1)) | (DZj & (HMj << 1))

V Mj ← (HTj << 1) | (DZj & (HPj << 1)) | (DMj & ((HZj << 1) | 1))

V Zj ← ∼ (V Tj | V Pj | V Mj)

3.4. Keeping Scores and Computing Vector Zj

Once the bit vectors for column j have been computed, we check whether some

cell values in column j of matrix C exceed the matching threshold k. At the same

time it is also convenient to check which cells have the value zero and record those

positions into vector Zj . Unfortunately the differential information of the bit vectors

does not allow us to make this in any simple and fast way. The naive approach would

be to use the difference information between adjacent cell values to compute and

check the cell values C1...m,j . This would take O(m) time per column, making the

overall running time O(mn), the same as with classical dynamic programming.

On the other hand, as shown by Myers [9], a single value Ci,1...n can be tracked

in constant time per column by using the horizontal vectors H∗j . The problem is

that we need to track all the rows i, falling again to O(m) time per column.

Our approach is to set up multiple witnesses into a single bit vector, and then

scan the column in parallel with the witnesses. Each witness will be associated with

some i and keep track of the cell values Ci,1...n, that is, the cell values on row i of

C. A somewhat similar method was used in [7] as part of an approximate string

matching algorithm.

Let MWj be a length-m bit vector that holds the multiple witnesses at column

j and let Q denote the number of bits taken by each witness. Then MWj can

hold r = ⌊m/Q⌋ witnesses. Let MWj{i} denote a witness that has its first bit

in position i of MWj . MWj{i} occupies the bits MWj(i . . . i + Q − 1) and keeps

track of the cell values on row i of C. The first witness is always MWj{1}, and

the rest are spread evenly into MWj . This can be done in such manner that the

largest empty gap after the region of any witness is ⌈(m − rQ)/r⌉. Let us define

Q′ = Q + ⌈(m − rQ)/r⌉, that is, Q′ gives the maximum distance between the first

bit of a witness and the first bit of the next witness or, for the last witness, the

position after the last bit of the whole vector.
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Assume that Ci,j = x and the witness MWj{i} exists. For reasons that become

clear below, we record the value x into MWj{i} in the form 2Q−1−x. To guarantee

that the witnesses can represent all possible score values from zero to min(m, n), the

parameter Q is determined as the minimum number for which 2Q−1 ≥ min(m, n),

that is, Q = ⌈log2 min(m, n)⌉ + 1. Figure 1 exemplifies (vectors S, E, K will be

introduced soon).

0

1

2

3

0

2

2

1

00

1

2

3

4

5

6

7

8

C
j

0

1

0

1

0

MWj

1

0

0

The witness MWj{1} repre-

sents the value C1,j = 0 as

2Q−1 − 0 = 8 = 10002.

0

1

0

0

0

1

0

0

1

0

0

0

1

0

0

0

S E K

0

1

0

0

0

1

0

0

k − 1 =

2 = 00102

k − 1 =

2 = 00102

The witness MWj{5} repre-

sents the value C5,j = 2 as

2Q−1 − 2 = 6 = 01102.

m = 8, k = 3,

Q = ⌈log
2
m⌉ + 1 = 4

Fig. 1. Example of usage of MW , S, E, and K vectors.

With these conventions the witnesses have the following properties:

(1) The Qth bit of MWj{i} is set if and only if Ci,j = 0.

(2) Adding some value x to Ci,j corresponds to subtracting x from MWj{i}, and

vice versa.

(3) If we add k − 1 to MWj{i}, then the Qth bit of MWj{i} is set if and only if

Ci,j < k.

The witnesses are initialized to MW0{i} = 2Q−1 since all values in column 0 of

C are zero. After that the witness values are computed by using the horizon-

tal vectors. For example, if MWj−1{i} = x and the ith bit of HTj is set, then

MWj{i} = MWj−1{i} − 2 = x − 2 (note that we subtracted the +2 due to prop-

erty (2)). When MWj−1 and the horizontal vectors H∗j are available, all witnesses

MWj{1} . . .MWj{r} may be computed in bit-parallel fashion. To achieve this, we

use a “start” bit mask S with bits set in those locations that correspond to the first

bits of witnesses. Then, the whole witness vector MWj may be computed as:

MWj ← MWj−1 − 2(HTj & S)− (HPj & S) + (HMj & S)

Once MWj and the vertical vectors V ∗j are available, all cell values in column j

of C can be scanned in bit-parallel manner. First we copy MWj into an auxiliary

vector X . At this stage each witness MWj{i} copied into X represents the value

Ci,j . Then each witness MWj is updated Q′− 1 times. First to represent the value

Ci+1,j , then the value Ci+2,j , and so on until the value Ci+Q′−1,j . After Q′ − 1

iterations, all cells of column j have been scanned (some possibly twice if Q′ 6= Q).

At each stage of the scan we check the current witness values for matches or zeros.

11



For this we use an “end” bit mask E ← S << (Q− 1) that has a bit set in those

positions that correspond to the last bits of the witnesses. In addition we use a bit

mask K that holds the value k − 1 at each witness location.

When the witnesses MWj{i} in X represent the cells Ci+h,j , the vector ((X +

K) & E) >> (Q− 1− h) has bits set in those positions u where Cu,j < k, and the

vector (X & E) >> (Q− 1− h) has bits set in those positions u where Cu,j = 0.

Our strategy for checking matches is to record during the scan whether column j

contains any matches or not. These may then be checked more carefully, if desired,

but if all matching locations are recorded exactly, the running time becomes again

O(mn) in the worst case.

The match checking is done by using an auxiliary vector Y that is initialized by

setting Y ← E. When MWj{i} represents Ci+h,j , we set Y ← Y & (X + K).

There is at least one match in column j if and only if Y 6= E after the Q′ iterations

(consisting of the initial stage and Q′ − 1 update stages). The zero vector Zj is

computed by initializing it to zero and setting Zj ← Zj | ((X & E) >> (Q−1−h))

when MWj{i} represents Ci+h,j .

Figure 2 gives the complete algorithm. We use the alternative solution for

computing HPj and DZj . Note that, by carefully choosing the update order, we

manage to keep only one copy of each vector.

3.5. Analysis

Under the assumption that m ≤ w, each bit-wise/arithmetic operation in our

algorithm takes constant time. In this case computing the M table takes O(m+ |Σ|)

time, and the rest of the algorithm in Figure 2 clearly runs in time O(nQ′). Since

Q′ < 2Q and Q = ⌈log2 min(m, n)⌉+1, we have that nQ′ = O(n log min(m, n)) and

the total running time is O(|Σ| + m + n log min(m, n)).

If the pattern length m is not bounded by w, it is straightforward to implement

length-m bit vectors by using ⌈m/w⌉ vectors of length w. In addition, each bit-

wise/arithmetic operation on such bit-vectors can be performed in O(⌈m/w⌉) time.

This results in the time O(m + ⌈m/w⌉|Σ|) for computing the M table, and the run

time of the rest of the algorithm is multiplied by a factor of O(⌈m/w⌉), which yields

O(mn log min(m, n)/w), taking the alphabet size as a constant for simplicity.

4. Improving the Algorithm

In this section we discuss how to improve our algorithm both in theory and

practice. A practical consideration is to operate on size-w tiles instead of com-

plete length-m bit vectors. We manage to achieve this by bounding the size of the

witnesses. This also improves the asymptotic complexity of the original algorithm.

4.1. A Practical Tiling Mechanism

When m > w, it is not efficient in practice to implement the algorithm by simply

simulating complete length-m bit-vectors: This would result in reading/writing each

length-w vector-segment of a bit-vector from/to memory many more times than

12



LocalScores (A1...m, B1...n, k)
1. Q ← ⌈log2 min(m, n)⌉+ 1
2. r← ⌊m/Q⌋
3. S ← distribute evenly r witnesses and mark their first bit
4. E ← S << (Q− 1)
5. K ← S × (k − 1)
6. Q′ ← Q + ⌈(m− rQ)/r⌉
7. MW ← E
8. For c ∈ Σ Do M [c] ← 0
9. For i ∈ 1 . . .m Do M [Ai] ← M [Ai] | 2

i−1

10. V P, V M, V T ← 0, V Z, Z ← 2m − 1
11. For j ∈ 1 . . . n Do
12. X ← M [Bj ] | V T
13. DP ← ((V M + (X & V M)) ∧ V M) | X
14. X ← (DP & V Z) << 1
15. U ← ((V M + (X & V M)) ∧ V M) | X
16. DZ ← ∼ DP & (((Z << 1) | 1) | V P | U)
17. HP ← (DP & V Z) | (DZ & V M)
18. DM ← ∼ (DP | DZ)
19. HT ← DP & V M
20. HM ← V T | (DZ & V P ) | (DM & V Z)
21. HZ ← ∼ (HT | HP | HM)
22. V T ← DP & (HM << 1)
23. V P ← (DP & ((HZ << 1) | 1)) | (DZ & (HM << 1))
24. V M ← (HT << 1) | (DZ & (HP << 1)) | (DM & ((HZ << 1) | 1))
25. V Z ← ∼ (V T | V P | V M)
26. MW ← MW − 2(HT & S)− (HP & S) + (HM & S)
27. X ← MW
28. Y ← E
29. Z ← 0
30. For h ∈ 0 . . .Q′ − 1 Do
31. Z ← Z | ((X & E) >> (Q− 1− h))
32. Y ← Y & (X + K)
33. X ← X − 2((V Tj >> h) & S)− ((V Pj >> h) & S)

+ ((V Mj >> h) & S)
34. If Y 6= E Then Record a match at column j

Fig. 2. Complete bit-parallel algorithm to compute local similarity. Some
optimizations have been discarded for clarity.
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necessary, which is a considerable slowdown. A better approach is to consider that

the matrix C will be covered by a tiling of length-w computer words, and each

tile will be processed individually. This is similar to the suggestion of Myers [9].

Processing a tile involves the same steps as the basic single-word algorithm from the

previous section, but instead of operating on length-m vectors, the vectors involved

in the computation will be length-w segments that correspond to the cells covered

by the current tile-level. Fig. 3a depicts two typical ways of tiling matrix C.

Fig. 3b shows the hth length-w tile in column j. It covers the cells C(h−1)w+1,j,

. . ., Chw,j . Let us use the superscript (h) to denote the hth tile so that for example

DP
(h)
j is a length-w vector that holds the values of the hth length-w segment of

DPj , i.e. DP
(h)
j = DPj((h− 1)w + 1 . . . hw). Here we may assume that the vectors

have zero bits in the possible areas that correspond to rows i > m. Fig. 3b also

shows the left and/or upper neighboring cells/tiles that are involved in processing

the tile. The tile to the left, i.e. hth tile in column j − 1, will provide the necessary

vector segments V M
(h)
j−1, V Z

(h)
j−1, V P

(h)
j−1 and V T

(h)
j−1. The cell values C(h−1)w,j−1

and C(h−1)w,j provide information that enables us to perform the necessary one-

step left-shifts of the vectors. The left-shifts bring information from the wth row

of the (h− 1)th tile to the first row of the hth tile. For example, after left shifting

the vector Z
(h)
j by one position, we must set its first bit to 1 if C(h−1)w,j = 0. As a

second example, after left shifting HT
(h)
j by one position, we must set its first bit

to 1 if C(h−1)w,j = C(h−1)w,j−1 + 2.

C

w

m

2w

3w

0

0 n C

w

m

2w

3w

0

0 n

j

hw

1j

a) b)

(h − 1)w + 1

hth tile in

column j

(h − 1)w

Fig. 3. a) Two tiling orders for processing matrix C. b) The hth tile in column
j (shaded) and the neighboring cells that are involved in processing it.

The tiling order is limited only by the requirement that the above described

neighboring information has to be available when processing a given tile. We find it

practical to use the leftmost order shown in Fig. 3a. In this case processing the tiles

can be done according to the following sketch. Here we will use the variables ZB,

HMB, HZB, HPB, and HTB to set the first bit of Z
(h)
j , HM

(h)
j , HZ

(h)
j , HP

(h)
j ,

and HT
(h)
j , respectively, after the vector has been shifted left one position. In

Section 4.2, we will fill in some missing details such as how to manage the witnesses

when operating on individual length-w tiles.

1. Initialize the boundary values of C, as well as the vectors Q, E, and S.

2. Repeat steps 3–4 for h = 1, . . . , ⌈m/w⌉, and then stop.
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3. Initialize the relevant values for hth tile row. This includes computing array

M to contain the hth tiles of the length-m match vectors, setting C
(0)
w,0 = 0,

and initializing MW (h).

4. Repeat steps 4.1–4.4 for j = 1, . . . , n.

4.1. Read the value C
(h−1)
w,j and compare it to the value C

(h−1)
w,j−1 that is known

from the previous tile or initialization.

4.2. If C
(h−1)
w,j = 0, set ZB to 1, and otherwise to 0. In similar way, set HMB

to 1 if C
(h−1)
w,j = C

(h−1)
w,j−1 − 1, and so on also for HZB, HPB, and HTB.

4.3. Perform the computations of the basic bit-parallel algorithm in Fig. 2,

where each vector contains the hth tile of the corresponding length-m

vector. In doing this, perform the left shifts in the form ((Z << 1) | ZB),

((HM << 1) | HMB), ((HZ << 1) | HZB), ((HP << 1) | HPB),

and ((HT << 1) | HTB) in order to set the first bits correctly.

4.4. After the computation, record the value C
(h)
w,j for later use by the possible

(h + 1)th tile in column j.

4.2. Bounding the Witnesses

An immediate question about using the tiling scheme is how to fit one or more

witnesses into a length-w tile in the general case where min(m, n) is independent

of w. We achieve this by using delta encoding in storing the values in different

length-w tiles of the bit vectors. For the hth tile in column j, we will use its middle

value C
(h)
⌊w/2⌋,j = C(h−1)w+⌊w/2⌋,j as the point of comparison. Let µ

(h)
j denote the

comparison point C
(h)
⌊w/2⌋,j . From Lemma 1 we have that the values C

(h)
1...w,j, must

be in the range µ
(h)
j − 2⌊(w − 1)/2⌋ . . . µ

(h)
j + 2⌊w/2⌋.

Consider a witness MW
(h)
j (i) = MWj((h − 1)w + i). We will record the value

C
(h)
i,j = y to MW

(h)
j (i) in the form 2Q−1−(y−µ

(h)
j ), and keep track of the values µ

(h)
j

separately. Now the values in the witnesses lie in the range 2Q−1−2⌊w/2⌋ . . .2Q−1+

2⌊(w − 1)/2⌋. For reasons that are given in Section 4.2.3, we will choose the value

Q to be the minimal choice that can represent the range −2w + 3 . . . 2w − 2 (i.e.

witness values 2Q−1 − 2w + 2 . . . 2Q−1 + 2w − 3). This is achieved by setting Q =

⌈log2 min(m, n, 2w − 2)⌉+ 1.

4.2.1. Setting Up the Witnesses

In the tiling-based scheme, the witnesses will have similar structure at each tiling

level h, and their regions do not cross the boundaries between different tiling levels.

Once Q has been chosen, MW
(h)
j will be set to hold r = ⌊w/Q⌋ witnesses. There

will be room for at least one witness as long as w ≥ 4. The witnesses are again

spread evenly. Now Q′ = Q + max(0, ⌈(min(m, w) − rQ)/r⌉) gives the maximum

distance between the first bit of a witness and the first bit of the next witness or,

for the last witness, the position after the last bit of the whole vector. A difference
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to the setup before is that now the witnesses have more than m bits available for

them if m < w. To ease matters in Section 4.2.3, we position the last witness to be

MW
(h)
j (w−Q′ + 1) if m > w: in this case the region of the last witness consists of

the last Q′ bits of MW
(h)
j .

Then the vectors S(h), E(h), and K(h) will be initialized in same way as before.

4.2.2. Keeping Track of µ
(h)
j

It is straightforward to keep track of the value µ
(h)
j by using HMj , HZj , HPj ,

and HTj. Initially µ
(h)
j = C

(h)
⌊w/2⌋,0 = 0. Let ∆

(h)
j denote the change of the compari-

son point when we move from column j−1 to column j on the hth tile row. The value

∆
(h)
j = µ

(h)
j − µ

(h)
j−1 may be computed by setting ∆

(h)
j = (2(HTj & 2⌊(w−1)/2⌋)+

(HPj & 2⌊(w−1)/2⌋)− (HMj & 2⌊(w−1)/2⌋)) >> ⌊(w − 1)/2⌋. After this we set

µ
(h)
j = µ

(h)
j−1 + ∆

(h)
j , and also adjust accordingly the witnesses in MW

(h)
j by setting

MW
(h)
j = MW

(h)
j + (∆

(h)
j × SM (h)).

4.2.3. Computing Z
(h)
j , Checking for Matches, and Recording C

(h)
w,j

We follow the same principles as in Section 3.4. But since MW
(h)
j now contains

values relative to µ
(h)
j , we first re-adjust the witnesses to represent their actual

values C
(h)
i,j : Instead of MW

(h)
j , we set the value MW

(h)
j − (µ

(h)
j × SM (h)) into the

auxiliary vector X(h). This may cause one or more witnesses to overflow, but we

simply ignore this for now. Then we perform Q′ iterations as depicted in Section

3.4: First Z
(h)
j ← 0 and an auxiliary vector Y (h) ← E(h). During each iteration

Y (h) ← Y (h) & (X(h) + K(h)) and Z
(h)
j ← Z

(h)
j | ((X(h) & E(h)) >> (Q − 1 −

h)). After the Q′ iterations, we check the validity of Z
(h)
j and the auxiliary match

checking vector Y (h).

If µ
(h)
j > 2⌊(w − 1)/2⌋, then C

(h)
i,j ≥ µ

(h)
j − 2⌊(w − 1)/2⌋ > 0 for i = 1 . . . w and

it is correct to reset Z
(h)
j ← 0. On the other hand, if µ

(h)
j ≤ 2⌊(w − 1)/2⌋, then

0 ≤ C
(h)
i,j ≤ µ

(h)
j + 2⌊w/2⌋ ≤ 2⌊(w− 1)/2⌋+ 2⌊w/2⌋ = 2w− 2. As the witnesses can

represent the range −2w +3 . . . 2w− 2, none of the witnesses have overflown in this

case and Z
(h)
j has already been computed correctly during the Q′ iterations.

In similar way, if µ
(h)
j ≥ k + 2⌊(w − 1)/2⌋, then C

(h)
i,j ≥ k and we can declare a

match regardless of the value of Y (h). If k − 2⌊w/2⌋ ≤ µ
(h)
j < k + 2⌊(w − 1)/2⌋,

then k − 2w + 2 = k − 2⌊w/2 − 2⌊(w − 1)/2⌋ ≤ µ
(h)
j − 2⌊(w − 1)/2⌋ ≤ C

(h)
i,j ≤

µ
(h)
j + 2⌊w/2⌋ < k + 2⌊(w − 1)/2⌋ + 2⌊w/2⌋ = k + 2w − 2. Match checking uses

the vector X(h) +K(h), which has the effect of decrementing the values represented

in the witnesses by k − 1. Hence if k − 2⌊w/2⌋ ≤ µ
(h)
j < k + 2⌊(w − 1)/2⌋, then

−2w + 3 ≤ C
(h)
i,j − (k − 1) < 2w − 1. Like above, in this case none of the witnesses

in X(h) + K(h) are in an overflown state and Y (h) can be used in normal fashion

for match checking. Finally, if µ
(h)
j < k − 2⌊w/2⌋, then C

(h)
i,j ≤ µ

(h)
j + 2⌊w/2⌋ < k
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and there is no match.

As the witnesses are set up so that the last witness has a region of Q′ bitsa,

the last witness in the auxiliary vector X(h) will represent C
(h)
w,j = y in the form

2Q−1 − (y − µ
(h)
j ) after the Q′ iterations. We decode the value by setting C

(h)
w,j =

µ
(h)
j + 2Q−1 − (X(h) >> (w −Q′)).

Now we have the complete improved algorithm. Figure 4 shows the code for it.

4.3. Analysis of the Improved Algorithm

The manipulated bit vectors have length w, so each operation on them is done in

constant time. For each tiling level h, we compute the M table in O(min(m, w)+|Σ|)

time, and then process n tiles. Each tile takes O(Q′) = O(Q) = O(log min(m, n, w))

time. There is a total of O(m/w) tiling levels. By combining these, we have the total

running time O((m/w)(min(m, w) + |Σ|+ n log min(m, n, w))) = O(m + m|Σ|/w +

mn log min(m, n, w)/w). This is O(mn log min(m, n, w)/w) for |Σ| = O(n)

Compared to the best bit-parallel complexity for global and semiglobal similar-

ity (actually, for distance computation), O(mn/w), we have a logarithmic penalty

factor because of the use of local similarity. At this point it should be clear that we

can compute global and semiglobal scores (rather than distances) within the same

O(mn/w) complexity, just by removing the use of vector Zj and checking the score

only at a single cell or a single row. This removes the need for the witnesses and

their logarithmic penalty.

5. Experimental Results

We implemented a general O(mn log min(m, n, w)/w) version of our algorithm

and compared it to the plain dynamic programming algorithm. Both algorithms

were programmed in C, and we tried to make both implementations as efficient as

possible. The test computer was a 64-bit Sparc Ultra 2 with 128 mb ram, and

the codes were compiled with GCC 3.3.1 with optimization switched on. The test

strings were randomly selected DNA sequences from the genome of S.cerevisiae

(baker’s yeast). The test contained two different types of scenarios. In the first

we tested with short patterns and a long text. This test involved the matching

thresholds k = 1 and k = m − 1 to see what kind of effect the value of k has. In

the second we tested aligning patterns and texts that have the same length, and

this time we show only the case k = m − 1 (in the first test we found the results

to be highly independent on k). The results are shown in Fig. 5. They are well in

accordance with the asymptotic running time O(mn log min(m, n, w)/w).

When m ≤ n and m < w = 64, we use only m bits in each bit vector and the

running time becomes O(mn log m/m). The experimental results in Fig.5 (left) ex-

hibit how the speedup factor is proportional to log m/m. In this case our algorithm

is from roughly 1.2 (m = 4) up to 6.2 (m = 32) times faster than the basic dynamic

programming algorithm.

aThis is for m > w. If m ≤ w, we may compute C
(h)
w,j wrong, but the value will never be used.
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ImpLocalScores (A1...m, B1...n, k)
1. Q ← ⌈log2 min(m, n, 2w − 2)⌉+ 1, m′ ← min(m, w)
2. r← ⌊w/Q⌋, BB ← 2⌊(w−1)/2⌋

3. S ← distribute evenly r witnesses and mark their first bit
4. E ← S << (Q− 1), K ← S × (k − 1)
5. Q′ ← max(Q + ⌈(m′ − rQ)/r⌉, Q)
6. For i ∈ 1 . . . n Do C[i] ← 0
7. For h ∈ 1 . . . ⌈m/w⌉ Do
8. For c ∈ Σ Do M [c] ← 0

9. For i ∈ (h− 1)w + 1 . . .min(m, hw) Do M [Ai] ← M [Ai] | 2
(i−1) mod w

10. V P, V M, V T ← 0, V Z, Z ← 2w − 1, MW ← E, prevC ← 0, µ← 0
11. For j ∈ 1 . . . n Do
12. If C[j] = 0 Then ZB ← 1 Else ZB ← 0
13. If C[j] = prevC − 1 Then HMB ← 1 Else HMB ← 0
14. If C[j] = prevC Then HZB ← 1 Else HZB ← 0
15. If C[j] = prevC + 1 Then HPB ← 1 Else HPB ← 0
16. If C[j] = prevC + 2 Then HTB ← 1 Else HTB ← 0
17. X ← M [Bj ] | V T | HTB
18. DP ← ((V M + (X & V M)) ∧ V M) | X
19. X ← ((DP & V Z) << 1) | HPB
20. U ← ((V M + (X & V M)) ∧ V M) | X
21. DZ ← ∼ DP & (((Z << 1) | ZB) | V P | U)
22. HP ← (DP & V Z) | (DZ & V M)
23. DM ← ∼ (DP | DZ), HT ← DP & V M
24. HM ← V T | (DZ & V P ) | (DM & V Z)
25. HZ ← ∼ (HT | HP | HM)
26. V T ← DP & ((HM << 1) | HMB)
27. V P ← (DP & ((HZ << 1) | HZB)) | (DZ & ((HM << 1) | HMB))
28. V M ← ((HT << 1) | HTB) | (DZ & ((HP << 1) | HPB)

| (DM & ((HZ << 1) | HZB))
29. V Z ← ∼ (V T | V P | V M)
30. ∆← (2(HT & BB) + (HP & BB)− (HM & BB)) >> ⌊(w − 1)/2⌋
31. µ← µ + ∆
32. MW ← MW − 2(HT & S)− (HP & S) + (HM & S) + (∆× SM)
33. X ← MW − (µ× SM), Y ← E, Z ← 0
34. For h ∈ 0 . . .Q′ − 1 Do
35. Z ← Z | ((X & E) >> (Q− 1− h))
36. Y ← Y & (X + K)
37. X ← X − 2((V Tj >> h) & S)− ((V Pj >> h) & S)

+ ((V Mj >> h) & S)
38. prevC ← C[j]
39. C[j]← µ + 2Q−1 − (X >> (w −Q′))
40. If µ > 2× ⌊(w − 1)/2⌋ Then Z ← 0
41. If (Y 6= E and µ ≥ k − 2× ⌊w/2⌋) or µ > k + 2× ⌊(w − 1)/2⌋ Then
42. Record a match in the hth tile of column j

Fig. 4. An improved algorithm to compute local similarity. Some optimizations
have been discarded for clarity.
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When m ≤ n and m ≥ w = 64, the asymptotic running time is O(mn log w/w),

i.e. the speedup factor becomes fixed to log w/w. The experimental results in Fig.5

(right) exhibit this, as our algorithm is roughly 7.2 times faster when m ≥ 256.

In the case m = 128 our algorithm is roughly 8.5 times faster. This deviation is

explained by the fact that our algorithm implementation uses the delta encoding

described in Section 4.2 only once ⌈log2(2w − 2)⌉ < ⌈log2 min(m, n)⌉.

Overall the results indicate that our algorithm works well in practice as well as

in theory.
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Fig. 5. Speedup factor of our bit-parallel algorithm over the basic dynamic
programming algorithm. On the left, aligning long against short strings. On
the right, aligning strings of the same length.

6. Conclusions

We have presented the first bit-parallel algorithm to compute local similarity

score between two strings, which is a common task in computational biology. While

dynamic programming, the only existing algorithm, takes time O(mn) (m and n be-

ing the lengths of the strings), our algorithm needs time O(mn log min(m, n, w)/w)

using a computer word of w bits. Our experiments show up to 8-fold speedups.

Our algorithm cannot replace dynamic programming because it cannot handle

prize and penalty values other than ±1. However, there are some DNA-related

applications where they use precisely those ±1 penalties [5]. It is also feasible to

use such simplified weights as a fast preliminary filter to discard clearly uninteresting

areas of the matrix. Recent research [12] suggests that this is promising.

Several issues are left for future research. An interesting one from the bit-parallel

perspective is to investigate whether it is possible to “pack” the logical conditions

describing the differences between the matrix cells in a way that makes the overall

formula faster to compute. E.g. we use four bit vectors V T , V P , V Z, V M , to

describe four possible values +2, +1, 0, −1, whereas two bit vectors could suffice.

Another way to speed up the computation is an adaptive configuration of wit-

nesses. If most values in matrix C are low, one would not really need log min(m, n, w)

bits to represent them, but rather could process most of the matrix with a denser

witness configuration. Say that the values to represent do not (usually) exceed q,
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then one could use log q bits per witness, so as to have m/ log q witnesses, obtaining

O(mn log(q)/w) average time. This requires that the algorithm adapts the witness

spacing according to the matrix values as the computation progresses.

More ambitious and longer-term goals are accommodating other cost functions

apart from the unitary-cost one; and trying to obtain optimal speedup, removing

the term O(log min(m, n, w)) from the cost formula.
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